The invention relates to methods and apparatus for verifying the identities of people. The invention may be applied in fields such as securing access to premises, securing access to computer systems, verifying that a particular person was at a particular place at a particular time, or the like.
There are a wide variety of situations in which it is necessary to provide a mechanism fo reliably identifying a person. Secret passwords can be used for this purpose, however such passwords can be compromised. Complicated passwords are hard to remember. Physical devices such as smart cards, keys and the like can be lost and can also be used if they fall into the wrong hands.
The deficiencies of the prior art have resulted in increased attention being paid to biometric identification techniques. Systems which identify people by way of their fingerprints, iris patters, photographs, tissue spectra, voice characteristics and the like have been demonstrated. Such systems suffer from various disadvantages. In many cases the systems require expensive apparatus to implement. Such systems can also require significant computation resources to implement.
Despite the very extensive research and great resources that have been expended in developing biometric identification systems there remains a need for such systems that can be implemented in a cost effective manner.
In drawings which illustrate non-limiting embodiments of the invention:
a and 3b are respectively sets of pressure profiles for two different persons;
Systems according to this invention use touch-sensitive sensors to make measurements that are characteristic of individual people. One aspect of this invention relates to a touch-sensitive sensor suitable for making such measurements.
Several parameters related to the geometric layout of the pressure transducers are important. It is preferred (but not essential) that the linear arrays of pressure transducers are of sufficient length to extend past the fingertip of the longest finger of all individuals in the set of people to be identified. The inventors have discovered that the spacing of the pressure transducers 2 must be small enough to measure the changes in pressure that occur over the length of the finger; in some embodiments the pressure transducers are spaced apart with a spacing between adjacent pressure transducers in the range of 1 mm to 5 mm. The pressure transducers are preferably regularly spaced.
To improve the performance of the system, additional features may be added to the touch sensor in order to spatially “register” the user's fingers in a repeatable manner. For example, a guide 7 may be provided to fix a location of a junction between the user's first and second fingers. Guide 7 may, for example, comprise a fixed cylindrical member projecting upwardly from surface 1. Guide 7 may extend perpendicularly to surface 1 for a distance of 15 mm or so. In the illustrated embodiment of the invention, two other guides (8 & 9) are provided to locate the user's first and second fingers. Guides 8 and 9 are fixed relative to surface 1 and extend approximately 15 mm perpendicularly from the surface.
The user places his hand on surface 1 and locates it such that the spot between the first and second knuckles is pressed firmly against guide 7, the index finger rests against guide 8, and the middle finger is resting against guide 9.
It is preferred that surface 1 be smooth and that transducers which sense pressure applied at points 2 be embedded behind surface 1. The transducers which sense pressures applied to points 2 may be implemented using any suitable pressure-sensing technology. Any transducer capable of converting applied pressure or applied force into a detectable signal such as a voltage signal, a current signal, a light signal or the like can be used. For the purpose of this disclosure, the term “pressure transducer” applies to any suitable sensor technology. For example, pressure transducers suitable for use in this invention include KINOTEX™ pressure transducers (which is commercially available from Tactex Controls Inc. of Victoria B.C. Canada) and force-sensitive resistors (which are commercially available from a number of sources). The choice of pressure transducer technology does not limit this invention.
To improve the comfort of the device, it is preferred to provide some curvature to the surface, as shown in
In the embodiment of
The geometrical arrangement of the points 2 at which the pressure transducers monitor pressure may be varied extensively without departing from the invention. For example, a regularly spaced rectangular array (i.e. rows and columns) of pressure transducers can be embedded in surface 1 or (1a). In another example, pressure transducers can be provided to measure pressures at points arranged in five linear arrays, one of the linear arrays underlying each finger and thumb of a user.
When a user presses hand 3 against a touch sensor (6 or 6a) a set of pressure readings is created. The set of pressure readings may be called a “pressure profile.” The pressure profile is essentially a data vector (i.e. a 1×N array, where N is the number of pressure transducers). The graphs on the left hand side of
The pressure profiles shown in
For example, a touch sensor 1 which has 30 pressure transducers in array 4 and 50 pressure transducers in array 5, can be used to provide a 30-element long index finger pressure profile and a 50-element long middle finger profile. These two finger profiles may be combined to yield an aggregate pressure profile that is 80 elements long. The inventors have found that each person produces a pressure profile that is characteristic of that person. By this, it is understood that the pressure profile has two characteristics:
The pressure profiles may bear some relationship to the anatomical structure of the user's hand. However, it is not necessary to this invention to understand or to know why particular individuals produce the pressure profiles that they do.
On the basis of the repeatability and uniqueness of the pressure profile, it is possible to construct a system to verify the identity of an individual. Several such systems are described here. The systems may be employed to provide access control, to validate time cards, to enable/disable alarm systems, or for a variety of other applications.
A stand-alone identity verification system 11 is schematically represented in
Output device 14 is controlled by computer 12 and may be one of several types, depending upon the application. For example, output device 14 may be of a type that operates a door lock, if the identity verification system 11 is to be used to control access to a building or room. For another example, output device 14 may be of a type that punches time-cards for employees. For another example, output device 14 may comprise a software process running on the computer 12 that permits the user access to network services, printers, databases, the internet, etc.
A more elaborate identity verification system 18 is schematically represented in
A flowchart describing how these systems (11 & 18) can be used is shown in
If step 106 determines that the acquired pressure profile does match the stored reference key, then the user is authorized, (step 107), and the output device is activated, (step 108). If the comparison is not successful, then the software 16 checks an access policy, (step 109). That access policy 109 may include limits on the number of attempted accesses in a set period of time. Access policy 109 may also retrieve additional data from a database (15 or other) regarding general access policies or specific information related to the user. The check against access policy may result in forcing the user to retry acquiring the pressure profile, (path 110), it may force the user to re-enter a pass-code, (path 111), or it may reject authorization, (step 112), by which we mean that the identity of the user has not been verified.
The step 101 of entering the user's pass-code is not necessary in all implementations. In installations where there is intended to be only a single user allowed (for example, access to a safe), then the database 15 needs to only store one set of data (e.g. one reference profile), and the user's pressure profile can be compared against that data only.
It is possible to use a touch sensor 6 for other purposes in addition to its purpose of acquiring the user's pressure profile. In system 11, it maybe convenient to combine the keypad and touch sensor into a single device. Since the touch sensor 6 is inherently pressure sensitive, a graphic indicating alphanumeric “buttons” can be applied to or incorporated in surface 1. Software.16 maybe configured to interpret the pressure data as a pass-code or a pressure profile depending on which step of the process it is executing. Touch sensor 6 may operate like a keypad during step 101 and as described above during steps 103 & 104.
Step 105 pre-processes the pressure profile for subsequent comparison to stored data for a particular individual. The result of step 105 may be considered to be a “key” which is characteristic of the individual. Step 106 makes the comparison between the key and a previously stored reference key.
It is also necessary to establish a database of reference keys for users of system 11. The reference key for each user is or, more commonly, is derived from a pressure profile for that user. The users' reference pressure profiles may be obtained in a manner similar to that of steps 105 & 106. For example, each new user may be required to provide several (for example, five) “trial” pressure profiles. An average of those pressure profiles is stored on database 15 as that individual's “reference profile.” A measure of the normal (anticipated) deviation from the profile can be computed from the trial pressure profiles. That deviation may also be stored on the database 15. The deviation represents the tolerance that will be applied to the pressure profile during comparison. At such time as the user requires his identity to be verified by the system, the deviation from the currently acquired pressure profile relative to his stored profile is measured, and if it falls within the recorded tolerance, the pressure profile may be deemed to match that of the user.
It is a further benefit if the amount of data related to each user can be minimized. This will make the size of database 15 more manageable and decrease the time taken to perform comparisons. There are well known methods for compressing data that will work on these data.
The following method may be used for comparing the pressure profiles. It is based on the known method of principle component analysis. The procedure requires the establishment of database 15 as follows:
It is important to note that the principle components of the data are not directly related to any anatomical characteristic (such as the length of the user's index finger). Fundamentally, this invention does not require an understanding of the relationship between the pressure profile and the anatomical structure of the user's hand (i.e. hand geometry).
The foregoing discussion has concentrated on the static pressure profile produced when a user presses his or her hand against a touch sensor 6 (or 6a). That is, we discussed the nature of a “snapshot” of the pressure profile taken at one instant in time. Obviously, as the user applies and relieves pressure to the touch sensor 6, the readings from the pressure transducers will vary in time. In general, the readings will rise to some value as the user applies pressure and then fall again as the user removes his hand. It is also found that some transducer readings rise and fall several times, even as the user is increasing the total force applied to the pad. This pressure variation is largely involuntary—that is, not under the conscious control of the user.
The inventors have discovered that the pattern of changes in pressure that occur with time are also characteristic of the individual. In other words, the time history of the pressure profile has the following characteristics:
This invention also provides apparatus and methods to verify the identity of a person who is grasping an object. As illustrated in
The data acquired differ from the static pressure profiles previously in that they include additional time information. However, the data may be processed in a manner similar to that described above. The stored reference key may contain information about how the pressure profile, or individual parts of the pressure profile vary with time for a particular user.
From the foregoing discussion, it is clear that the present invention is widely applicable to situations where a user needs to assert his or her identity. It common to protect access to computer and information resources (i.e. computer networks, databases, stored information, printers, etc.) by means of a password. An increased level of security is achieved by combining password protection with the biometric security provided by this invention. To this end, it is an aspect of this invention that a touch sensor capable of obtaining a user's pressure profile can be integrated with common computer input devices.
For example,
As another example,
As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2371665 | Feb 2002 | CA | national |
| Filing Document | Filing Date | Country | Kind |
|---|---|---|---|
| PCT/CA03/00195 | 2/13/2002 | WO |