The invention relates generally to mobile security, and specifically, to assessing the vulnerability of a mobile communication device.
Mobile communication devices or mobile devices, such as cellular telephones, smartphones, wireless-enabled personal data assistants, and the like, are becoming more popular as cellular and wireless network providers are able to expand coverage and increase bandwidth. Mobile devices have evolved beyond providing simple telephone functionality and are now highly complex multifunctional devices with capabilities rivaling those of desktop or laptop computers. In addition to voice communications, many mobile devices are capable of text messaging, e-mail communications, internet access, and the ability to run full-featured application software. Mobile devices can use these capabilities to perform online transactions such as banking, stock trading, payments, and other financial activities. Furthermore, a mobile device used by an individual, a business, or a government agency can often store confidential or private information in forms such as electronic documents, text messages, access codes, passwords, account numbers, e-mail addresses, personal communications, phone numbers, and financial information.
In turn, it is more important to protect those devices against malware, malicious attacks and other exploits. Specifically, it would be helpful to be able to identify vulnerabilities for a mobile communication device, so that the user of the mobile communication device can be alerted if his or her device suffers from any exploitable weaknesses. It is also important for an organization that relies on mobile devices to understand the state of their security and be able to respond to vulnerabilities on mobile devices in an efficient and effective manner.
Presently, current solutions for assessing the vulnerabilities of a computer on a network focus on a conventional desktop, laptop, server, or other computing devices that often enjoy more processing power and memory than a mobile communication device and generally have less restricted application environments than a mobile communication device. As such, these computing devices can often include local monitoring services that can run in the background without overly taxing valuable computing resources. In addition, conventional computing devices are often consistently tethered to a particular local network, such that devices can be remotely scanned over the local network for security weaknesses. Mobile communication devices, on the other hand, are often connected to public networks and switch between networks and network types, making remote, network-based security scans undesirable.
What is therefore needed is a way to provide similar protective services for mobile communication devices in a manner that does not overly tax resources on the mobile communication device, and that extends protective services even when the mobile communication device is not connected to a particular network or is not connected to any network.
There are many differences between mobile communication devices (e.g. operating systems, hardware capabilities, software configurations) that make it difficult to have a single system for accurately assessing the vulnerability of multiple types of devices. Additionally, many mobile communication devices are able to accept installation of various third-party software applications or “apps” that have been developed to extend the capabilities of the device. The installation of apps can alter the vulnerability state of a device, since each app may alter how and with which networks the mobile device communicates. What is therefore needed is a way to assess vulnerabilities of a mobile communication device that accounts for differences such as the operating system, the make, model, configuration, or any installed software on the mobile device. Also needed is a way for a user or administrator to view the security status of, remediate, and otherwise assess and manage the security of multiple different mobile communication devices.
The invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements, and in which:
The invention is a system and a method for identifying, assessing, and responding to vulnerabilities on or affecting a mobile communication device. As will be discussed further below, a mobile communication device may transmit certain information to a server, and the server may transmit certain result information to the device that contains an assessment or identifies known or potential vulnerabilities affecting the device. Additionally or alternatively, the server may transmit notifications about possible or actual vulnerabilities affecting a mobile communication device, which may include instructions for remediating any vulnerabilities identified as affecting the mobile communication device. Furthermore, the server may host a management console that allows an administrator to view the security status of multiple mobile communication devices and take action to secure them if necessary.
It should be appreciated that the invention can be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, a computer readable medium such as a computer readable storage medium containing computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein. One will appreciate that the mobile communication device described herein may include any computer or computing device running an operating system for use on handheld or mobile devices, such as smartphones, PDAs, mobile phones and the like. For example, a mobile communication device may include devices such as the Apple iPhone®, the Palm Pre™, or any device running the Android™ OS, Symbian OS®, Windows Mobile® OS, Palm OS® or Palm Web OS™.
In the context of this document, a computer usable medium or computer readable medium may be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus or device. For example, the computer readable storage medium or computer usable medium may be, but is not limited to, a random access memory (RAM), read-only memory (ROM), or a persistent store, such as a mass storage device, hard drives, CDROM, DVDROM, tape, erasable programmable read-only memory (EPROM or flash memory), or any magnetic, electromagnetic, infrared, optical, or electrical system, apparatus or device for storing information. Alternatively or additionally, the computer readable storage medium or computer usable medium may be any combination of these devices or even paper or another suitable medium upon which the program code is printed, as the program code can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
Applications, software programs or computer readable instructions may be referred to as components or modules. Applications may be hardwired or hard coded in hardware or take the form of software executing on a general purpose computer such that when the software is loaded into and/or executed by the computer, the computer becomes an apparatus for practicing the invention. Applications may also be downloaded in whole or in part through the use of a software development kit or toolkit that enables the creation and implementation of the invention. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention.
One will appreciate that communication between mobile communication device 101 and server 151 may utilize a variety of networking protocols and security measures. In an embodiment, server 151 operates as an HTTP server and the device 101 operates as an HTTP client. To secure the data in transit, mobile communication device 101 and server 151 may use Transaction Layer Security (“TLS”). Additionally, to ensure that mobile communication device 101 has authority to access server 151, and/or to verify the identity of mobile communication device 101, device 101 may send one or more authentication credentials to server 151. For example, authentication credentials may include a username and password or any other data that identifies mobile communication device 101 to server 151. Authentication may allow server 151 to store specific information, such as vulnerability identification information, about mobile communication device 101, and may also provide a persistent view of the security status of mobile communication device 101.
As previously mentioned, data storage 111 may be used to store sets of information about mobile communication device vulnerabilities (“vulnerability information”), which may be transmitted in whole or in part to one or more mobile communication devices in the form of “result information.” As used herein, a vulnerability may include an exploitable weakness on a mobile communication device that may result from the device hardware or software. Vulnerabilities may arise due to weaknesses in the device's operating system, other software or hardware flaws in the device, protocol implementation or specification flaws, misconfiguration of the device, software applications installed or stored on the device, or services provided through, to or by the device. Vulnerabilities may arise form the features of the device, such as from the presence of Bluetooth, infrared or Internet capabilities on the device, or other communication interfaces and protocols available on the device. Vulnerabilities may arise from weaknesses in the device's interaction with, flaws in, or misconfiguration of other services and systems such as text messaging, voice mail, telephony, or other services and systems accessed through a mobile communication device. Information about a vulnerability, i.e., vulnerability information, may be stored in data storage 111 and accessed by server 151 or mobile communication device 101. Data storage 111 may store general information about mobile communication device vulnerabilities, or may store information about vulnerabilities specific to a mobile communication device. As will be discussed further below, sets of vulnerability information corresponding to vulnerabilities that could affect or actually affect the mobile communication device may be transmitted in the form of result information, notifications, or both.
One will appreciate that as used herein, vulnerability information may include the name, description, severity rating, security impact summary and remediation instructions for a vulnerability. Vulnerability information may be included in the result information server 151 transmits to mobile communication device 101 or may be stored in data storage 111. Result information may include a list of vulnerabilities that are known to affect mobile communication device 101, a list of potential vulnerabilities that may affect mobile communication device 101, and a list of vulnerabilities that are known not to affect mobile communication device 101. Each entry in a list of vulnerabilities may include some or all of the set of vulnerability information for a vulnerability. As will be discussed in more detail below, the result information may also include a binary assessment of mobile communication device 101 (e.g., good or bad, “okay” or “not okay”), a threat score, remediation instructions for known or potential vulnerabilities, or may instruct display of a graduated icon that changes depending upon state (a sad face for a vulnerable mobile communication device, to a happy face for a “safe” mobile communication device). Vulnerability information may include criteria for determining if a mobile communication device 101 is affected. In an embodiment, vulnerability information may include information about a vulnerability such as a title, a description, a security impact summary, human or computer readable remediation instructions or a severity rating for the vulnerability.
As used herein, “vulnerability identification information” or “identification information” includes data that server 151 may use to determine if mobile communication device 101 is susceptible to any vulnerabilities. Such vulnerability identification information may include the operating system and version for mobile communication device 101; the firmware version of the mobile communication device 101, the device model for mobile communication device 101; carrier information for mobile communication device 101; authentication information; and/or user information for the user of mobile communication device 101. Vulnerability identification information may also include a list of files, software components, libraries and/or a list of the applications or other software installed on mobile communication device 101, as well as other information related to these applications and software such as version and configuration information, configuration information about the mobile communication device 101, communications interfaces and protocols in use by mobile communication device 101 (e.g., WiFi, Bluetooth, IR, SMS, MMS), cellular network information, cellular carrier information, the make and model of mobile communication device 101, and the like.
In an embodiment, vulnerability information stored in data storage 111 may have associated information that includes a description, a title, an overview of the security impact, remediation instructions, and criteria for affected firmware versions. In an embodiment, mobile communication device 101 sends vulnerability identification information to server 151 that includes the device's firmware version. Server 151 may utilize data storage 111 to examine the vulnerability information stored therein and determine if the firmware version for mobile communication device 101 matches the firmware version criteria for any vulnerabilities. If any vulnerabilities match, server 151 may determine that mobile communication device 101 is vulnerable. Server 151 may then transmit result information to the mobile communication device 101, as described herein and shown in the Figures. In an embodiment, server 151 only transmits result information corresponding to vulnerabilities that affect mobile communication device 101. In an embodiment, server 151 transmits result information for all vulnerabilities that may affect device 101. In an embodiment, server 151 transmits result information which contains all vulnerabilities that may affect device 101 and which of those vulnerabilities actually do affect device 101. In an embodiment, the firmware version criteria for being affected by a vulnerability includes the version of the firmware in which the vulnerability was fixed. One will appreciate that some vulnerabilities may only affect certain firmware versions, and that once firmware has been updated to a new version, some vulnerabilities which affected previous versions may no longer be of issue. In order to account for variations in firmware, server 151 may detect and transmit information for vulnerabilities regardless of the firmware version on mobile communication device 101, thereby adding extra precautions. Alternatively, server 151 may only send result information for those vulnerabilities that affect the version of firmware installed on mobile communication device 101, thereby being more specific.
For example, a certain vulnerability may affect a mobile communication device having firmware version 1.0, but not a mobile communication device with firmware version 2.0. Server 151 may receive information about the firmware version of mobile communication device 101, and if the firmware version is earlier than version 2.0, then mobile communication device 101 is determined to be susceptible to the certain vulnerability. However, if the firmware version for mobile communication device 101 is 2.0 or higher, then mobile communication device 101 may not be susceptible to the certain vulnerability. One will appreciate that other variations are possible, and that the determination of whether to send more or less result information may be a setting specified by an administrator, or may involve the application of logic depending upon the severity of the vulnerability and the risks or benefits of transmitting an overabundance of result information to mobile communication device 101. One will also appreciate that the amount of result information to transmit to mobile communication device 101 may also depend upon the capabilities of mobile communication device 101 or the bandwidth of the network.
In an embodiment, data storage 111 stores vulnerability information for at least two types of mobile devices 101. The two mobile device types may have different operating systems, firmware versions, model numbers, carrier information, authentication information, user information, configuration information, states, software applications, and the like. As a result, the vulnerability identification information for each of the at least two mobile devices will differ in some aspect. As such, in an embodiment, data storage 111 may store vulnerability information for vulnerabilities that may affect both of the two device types, including vulnerabilities that may affect one device type but not the other. One will appreciate that data storage 111 may store vulnerability information for a variety of mobile communication devices, and will be able to provide information that will help identify, assess and remediate vulnerabilities for a variety of mobile communication devices.
When data storage 111 stores information about vulnerabilities that may affect multiple types of mobile communication devices, it is important that the transmitted result information not include information regarding vulnerabilities that as a user may perceive as irrelevant to a particular device. As such it is important that the list of vulnerabilities that may affect a device not simply include all vulnerabilities stored by data storage 111. In an embodiment, a vulnerability may affect a device if the device's vulnerability identification information at least partially matches the vulnerability's criteria for affecting a device. Providing partially matching result information provides a conservative, or safer approach to detecting and identifying potential vulnerabilities, as it may provide a opportunity for further assessment and action (e.g. further analysis conducted by software on a device), rather than only providing full criteria matches.
In an embodiment, the partial match includes criteria related to a device that does not change, is unlikely to change, or is irrespective of particular software versions, firmware versions, updates, and configuration. Such criteria may include the device's operating system, model, carrier, software applications installed, hardware capabilities, and the like. For example, data storage 111 may store information about a vulnerability that affects a particular range of firmware versions of the Apple iPhone® OS. This vulnerability information may include criteria that it affects the Apple iPhone® OS and criteria that it affects specific firmware ranges of various device models. In an embodiment, the server 151 determines that the vulnerability does affect all devices running Apple iPhone® OS that match the vulnerability information's firmware version criteria, the vulnerability may affect devices running any firmware version containing Apple iPhone® OS, and the vulnerability may not affect any devices running Android™, Windows Mobile®, Symbian OS®, or other operating systems. One will appreciate that other methods of determining what vulnerabilities stored by data storage 111 may affect a device may be performed without departing from the scope of this disclosure.
In an embodiment, the scope or type of result information transmitted by server 151 may be general information, or may be specific information about vulnerabilities that may specifically affect mobile communication device 101. As such, the result information transmitted to device 101 may include all of the vulnerability information stored in data storage 111, or may include a subset of all of the vulnerability information stored in data storage 111. The option to transmit general or specific result information may be an option set by an administrator, may depend upon the hardware or software constraints of the mobile communication device, or may depend upon the bandwidth of the network connecting server 151 to mobile communication device 101.
In an embodiment, determining which vulnerabilities specifically affect mobile communication device 101 may involve correlating the vulnerability identification information provided by mobile communication device 101 to the vulnerability information available to server 151. As used herein, “correlating” vulnerability identification information to vulnerability information may involve determining whether the vulnerability described by the vulnerability information affects a device, whether it may affect a device, or whether it does not affect a device. Determinations may be made through a variety of methods, including matching vulnerability identification information with vulnerability information and determining whether identification information satisfies one or more criteria for vulnerability. Correlating may be performed by server 151 and/or data storage 111, and may include applying logic, comparing operating systems, comparing version identifiers, checking for the presence of specific software or other data on the mobile communication device, and the like. In an embodiment, correlating may utilize an identification of the hardware or specifications of the mobile communication device. In an embodiment, correlating may also be performed by mobile device 101.
In block 302 of
Server 151 may transmit a notification to mobile communication device 101 via a variety of mechanisms. A notification may be sent via email, text messaging, or through a client-server communication system as described in U.S. patent application Ser. No. 12/372,719, entitled, “SYSTEM AND METHOD FOR REMOTELY SECURING OR RECOVERING A MOBILE DEVICE,” and incorporated in full herein. A notification may provide information about a vulnerability, information about a potential vulnerability, the status of a mobile communication device, information about remediation instructions, or may request that the user of an affected mobile communication device perform some action to update the vulnerability information on the mobile communication device, or perform some action to remediate the mobile communication device.
In an embodiment, a notification may contain information or an instruction indicating that the mobile communication device 101 needs to connect to server 151 in order to receive new vulnerability information. The notification may be directed to software resident on the mobile communication device 101, may include software readable remediation instructions, and may be in the form of an SMS or may be sent via a push notification service, such as that provided by Apple Computer Inc. to its iPhone® devices. For example, mobile communication device 101 may receive a notification with instructions that the device should be updated to protect against a new security risk. A specific application on the device may require an update, in which case the notification may also cause mobile communication device 101 to update the specific application without user intervention. In an embodiment, a notification may be directed to the user of the mobile communication device. This may include a text message, push notification, or e-mail message containing human-readable information, or a voicemail or other verbal communication directed to the user of mobile communication device 101. Notifying a mobile communication device 101 allows for rapid response to new vulnerabilities, thereby greatly increasing the effectiveness of systems that would otherwise rely on a scheduled or manually-initiated check for security vulnerabilities.
In block 401 of
One will appreciate that the process illustrated in
One will appreciate that the process illustrated in
In block 901 of
If the time limit for receiving a remediation confirmation has been exceeded, then in block 904, an action may be taken. For example, server 151 may notify an administrator about the vulnerable mobile communication device and that the user has not taken action in the specified period of time. In this example, an administrator may take manual action such as sending a personal email or otherwise notifying the user to secure the device 101. In an embodiment, server 151 may automatically disable mobile communication device 101 in some fashion to prevent affecting other devices on the network 121 or to prevent further damage. For example, server 151 may prevent mobile communication device 101 from connecting to a specific network, email system, document repository, or other system. Alternatively, server 151 may disable mobile communication device 101 such that an administrator must verify that the device is safe before it is can be used again. Some mechanisms by which the disablement can take place are disclosed in U.S. patent application Ser. No. 12/372,719, entitled, “SYSTEM AND METHOD FOR REMOTELY SECURING OR RECOVERING A MOBILE DEVICE,” and U.S. patent application Ser. No. 12/255,632, entitled, “SECURE MOBILE PLATFORM SYSTEM,” both of which are incorporated in full herein. In an embodiment, the user of mobile communication device 101 may be notified by server 151 via email, text message or other means of communication that the mobile communication device is vulnerable and that corrective action was not taken within the prescribed time. The notification may serve as a reminder to help the user take action and secure the device. In this fashion, the invention goes beyond simply updating a mobile communication device to ensure security, or periodically scanning mobile communication devices on the network for potential vulnerabilities. As described herein, the invention may provide a customized vulnerability assessment based upon the unique state and configuration of each mobile communication device on the network, and may provide notifications and remediation instructions based upon this unique state and configuration.
One will appreciate that other actions may be performed in order to optimally secure a mobile device once it is known to be vulnerable. The embodiments described herein may be combined as part of a security response process. In an example, a user may receive a direct reminder after one day if his or her device is determined to be vulnerable and is not yet remediated. After two additional days, if the device is still vulnerable, an administrator may be notified and the device disallowed access to email and the organization's VPN service. Once the device is remediated, the administrator may be notified and access to email and VPN may be automatically restored. Other examples are also possible without departing from this disclosure or the scope of the invention.
If in block 903 of
In block 201 of
In an embodiment, the data transmitted by server 151 in block 1002 of
In an embodiment, the data transmitted by server 151 in block 1002 of
In an embodiment, server 151 may transmit reports based on security status information available at the server. The reports may show changes in security status over time or show a current summary. Some example reports include the number of vulnerable of devices with respect to time, the current number of vulnerable devices with each severity level, the current number of vulnerable devices broken down by operating system type, and a list of contact information for users with the most severely vulnerable devices.
In an embodiment, server 151 may transmit security related events that are generated both by clients and by server 151 due to automatic or administrative action. The events may be displayed, gathered, processed, or otherwise interacted with as disclosed in U.S. patent application Ser. No. 12/255,635, entitled, “SECURITY STATUS AND INFORMATION DISPLAY SYSTEM,” which is incorporated in full herein.
In an embodiment, server 151 allows an administrator to perform actions related to a device or group of devices. Actions that may be performed include notifying the user of the device via a push notification, text message, email, or another messaging system; disabling the device; disabling the device's access to a service, potentially using a mechanism disclosed in U.S. patent application Ser. No. 12/255,632, entitled, “SECURE MOBILE PLATFORM SYSTEM”; or those disclosed in U.S. patent application Ser. No. 12/372,719, entitled, “SYSTEM AND METHOD FOR REMOTELY SECURING OR RECOVERING A MOBILE DEVICE,” both of which are incorporated in full herein.
In an embodiment, server 151 allows an administrator to configure how the server operates. One such configuration may include custom triggers or alerts on certain events (e.g. devices not remediating in a period of time) that will result in logging and administrator notification via email, text message, or other messaging medium. Other examples of configuration options include: the time period the server waits before notifying an administrator of an un-remediated vulnerable device, the email address or addresses administrators should be notified at, how often to remind users of vulnerable devices that they need to take remediation actions, what method of contact server 151 should use to remind users (e.g. SMS, E-mail, push notification service), how the server interacts with e-mail or VPN services to disable access for a specific vulnerable device, and other ways of controlling the functionality disclosed herein.
In an embodiment, vulnerability identification information is stored by server 151 so that, in the case of a new vulnerability, server 151 can determine whether the device is vulnerable, not vulnerable, or potentially vulnerable based on the information is has. In an embodiment, the server stores vulnerability identification information on data storage 111. This allows an IT admin to get an instant picture of the security risk of their device deployment in the case of a new emerging vulnerability. Such rapid understanding is critical to prioritize response effort in the case of a rapidly spreading worm or severe vulnerability.
In the description above and throughout, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be evident, however, to one of ordinary skill in the art, that the invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form to facilitate explanation. The description of the preferred embodiments is not intended to limit the scope of the claims appended hereto. Further, in the methods disclosed herein, various steps are disclosed illustrating some of the functions of the invention. One will appreciate that these steps are merely exemplary and are not meant to be limiting in any way. Other steps and functions may be contemplated without departing from this disclosure or the scope of the invention.
This is an application for reissue of U.S. Pat. No. 8,397,301 B2, and is a continuation of application Ser. No. 14/109,725, which is also an application for reissue of U.S. Pat. No. 8,397,301 B2.
Number | Name | Date | Kind |
---|---|---|---|
3416032 | Jahns et al. | Dec 1968 | A |
4553257 | Mori et al. | Nov 1985 | A |
5319776 | Hile et al. | Jun 1994 | A |
5574775 | Miller, II et al. | Nov 1996 | A |
6185689 | Todd et al. | Feb 2001 | B1 |
6269456 | Hodges et al. | Jul 2001 | B1 |
6272353 | Dicker et al. | Aug 2001 | B1 |
6301668 | Gleichauf et al. | Oct 2001 | B1 |
6453345 | Trcka et al. | Sep 2002 | B2 |
6529143 | Mikkola et al. | Mar 2003 | B2 |
6792543 | Pak et al. | Sep 2004 | B2 |
6907530 | Wang | Jun 2005 | B2 |
6959184 | Byers et al. | Oct 2005 | B1 |
7020895 | Albrecht | Mar 2006 | B2 |
7023383 | Stilp et al. | Apr 2006 | B2 |
7069589 | Schmall et al. | Jun 2006 | B2 |
7096006 | Kouznetsov | Aug 2006 | B2 |
7096368 | Kouznetsov | Aug 2006 | B2 |
7123933 | Poor et al. | Oct 2006 | B2 |
7127455 | Carson et al. | Oct 2006 | B2 |
7171690 | Kouznetsov et al. | Jan 2007 | B2 |
7178166 | Taylor et al. | Feb 2007 | B1 |
7210168 | Hursey et al. | Apr 2007 | B2 |
7228566 | Caceres et al. | Jun 2007 | B2 |
7236598 | Sheymov et al. | Jun 2007 | B2 |
7237264 | Graham et al. | Jun 2007 | B1 |
7266810 | Karkare et al. | Sep 2007 | B2 |
7290276 | Ogata | Oct 2007 | B2 |
7305245 | Alizadeh-Shabdiz et al. | Dec 2007 | B2 |
7308256 | Morota et al. | Dec 2007 | B2 |
7308712 | Banzhof | Dec 2007 | B2 |
7325249 | Sutton et al. | Jan 2008 | B2 |
7325252 | Bunker | Jan 2008 | B2 |
7346922 | Miliefsky | Mar 2008 | B2 |
7356835 | Gancarcik et al. | Apr 2008 | B2 |
7370345 | Bardsley | May 2008 | B2 |
7376969 | Njemanze et al. | May 2008 | B1 |
7386297 | An | Jun 2008 | B2 |
7386883 | Bardsley | Jun 2008 | B2 |
7392043 | Kouznetsov et al. | Jun 2008 | B2 |
7392543 | Szor | Jun 2008 | B2 |
7397424 | Houri | Jul 2008 | B2 |
7397434 | Mun et al. | Jul 2008 | B2 |
7401359 | Gartside et al. | Jul 2008 | B2 |
7403762 | Morgan et al. | Jul 2008 | B2 |
7414988 | Jones et al. | Aug 2008 | B2 |
7415270 | Wilhelmsson et al. | Aug 2008 | B2 |
7433694 | Morgan et al. | Oct 2008 | B2 |
7467206 | Moore et al. | Dec 2008 | B2 |
7471954 | Brachet et al. | Dec 2008 | B2 |
7472422 | Agbabian | Dec 2008 | B1 |
7474897 | Morgan et al. | Jan 2009 | B2 |
7493127 | Morgan et al. | Feb 2009 | B2 |
7502620 | Morgan et al. | Mar 2009 | B2 |
7515578 | Alizadeh-Shabdiz et al. | Apr 2009 | B2 |
7525541 | Chun et al. | Apr 2009 | B2 |
7551579 | Alizadeh-Shabdiz et al. | Jun 2009 | B2 |
7551929 | Alizadeh-Shabdiz et al. | Jun 2009 | B2 |
7634800 | Ide et al. | Dec 2009 | B2 |
7685132 | Hyman | Mar 2010 | B2 |
7696923 | Houri | Apr 2010 | B2 |
7768963 | Alizadeh-Shabdiz | Aug 2010 | B2 |
7769396 | Alizadeh-Shabdiz et al. | Aug 2010 | B2 |
7774637 | Beddoe et al. | Aug 2010 | B1 |
7809353 | Brown et al. | Oct 2010 | B2 |
7818017 | Alizadeh-Shabdiz et al. | Oct 2010 | B2 |
7835754 | Alizadeh-Shabdiz et al. | Nov 2010 | B2 |
7856234 | Alizadeh-Shabdiz et al. | Dec 2010 | B2 |
7856373 | Ullah | Dec 2010 | B2 |
7861303 | Kouznetsov et al. | Dec 2010 | B2 |
7907966 | Mammen | Mar 2011 | B1 |
7916661 | Alizadeh-Shabdiz et al. | Mar 2011 | B2 |
7999742 | Alizadeh-Shabdiz | Aug 2011 | B2 |
8014788 | Alizadeh-Shabdiz et al. | Sep 2011 | B2 |
8019357 | Alizadeh-Shabdiz et al. | Sep 2011 | B2 |
8031657 | Jones et al. | Oct 2011 | B2 |
8054219 | Alizadeh-Shabdiz | Nov 2011 | B2 |
8089398 | Alizadeh-Shabdiz | Jan 2012 | B2 |
8089399 | Alizadeh-Shabdiz | Jan 2012 | B2 |
8090386 | Alizadeh-Shabdiz et al. | Jan 2012 | B2 |
8126456 | Lotter et al. | Feb 2012 | B2 |
8127358 | Lee | Feb 2012 | B1 |
8458793 | McKenna | Jun 2013 | B2 |
20010044339 | Cordero et al. | Nov 2001 | A1 |
20020042886 | Lahti et al. | Apr 2002 | A1 |
20020087483 | Harif | Jul 2002 | A1 |
20020108058 | Iwamura | Aug 2002 | A1 |
20020183060 | Ko et al. | Dec 2002 | A1 |
20020191018 | Broussard | Dec 2002 | A1 |
20030028803 | Bunker et al. | Feb 2003 | A1 |
20030046134 | Frolick et al. | Mar 2003 | A1 |
20030079145 | Kouznetsov et al. | Apr 2003 | A1 |
20030115485 | Milliken | Jun 2003 | A1 |
20030120951 | Gartside et al. | Jun 2003 | A1 |
20030131148 | Kelley et al. | Jul 2003 | A1 |
20040022258 | Tsukada et al. | Feb 2004 | A1 |
20040025042 | Kouznetsov et al. | Feb 2004 | A1 |
20040133624 | Park | Jul 2004 | A1 |
20040158741 | Schneider | Aug 2004 | A1 |
20040185900 | McElveen | Sep 2004 | A1 |
20040225887 | O'Neil et al. | Nov 2004 | A1 |
20040259532 | Isomaki et al. | Dec 2004 | A1 |
20050010821 | Cooper et al. | Jan 2005 | A1 |
20050015443 | Levine et al. | Jan 2005 | A1 |
20050074106 | Orlamunder et al. | Apr 2005 | A1 |
20050076246 | Singhal | Apr 2005 | A1 |
20050091308 | Bookman et al. | Apr 2005 | A1 |
20050125779 | Kelley et al. | Jun 2005 | A1 |
20050130627 | Calmels et al. | Jun 2005 | A1 |
20050138395 | Benco et al. | Jun 2005 | A1 |
20050138413 | Lippmann et al. | Jun 2005 | A1 |
20050154796 | Forsyth | Jul 2005 | A1 |
20050197099 | Nehushtan | Sep 2005 | A1 |
20050227669 | Haparnas | Oct 2005 | A1 |
20050237970 | Inoue | Oct 2005 | A1 |
20050254654 | Rockwell et al. | Nov 2005 | A1 |
20050278777 | Loza | Dec 2005 | A1 |
20050282533 | Draluk et al. | Dec 2005 | A1 |
20060026283 | Trueba | Feb 2006 | A1 |
20060073820 | Craswell et al. | Apr 2006 | A1 |
20060075388 | Kelley et al. | Apr 2006 | A1 |
20060080680 | Anwar et al. | Apr 2006 | A1 |
20060095454 | Shankar et al. | May 2006 | A1 |
20060101517 | Banzhof | May 2006 | A1 |
20060101518 | Schumaker et al. | May 2006 | A1 |
20060130145 | Choi et al. | Jun 2006 | A1 |
20060150238 | D'Agostino | Jul 2006 | A1 |
20060150256 | Fanton et al. | Jul 2006 | A1 |
20060179485 | Longsine et al. | Aug 2006 | A1 |
20060218482 | Ralston et al. | Sep 2006 | A1 |
20060224742 | Shahbazi | Oct 2006 | A1 |
20060253205 | Gardiner | Nov 2006 | A1 |
20060253584 | Dixon et al. | Nov 2006 | A1 |
20060272011 | Ide et al. | Nov 2006 | A1 |
20060277408 | Bhat et al. | Dec 2006 | A1 |
20060294582 | Linsley-Hood et al. | Dec 2006 | A1 |
20070005327 | Ferris | Jan 2007 | A1 |
20070011319 | McClure et al. | Jan 2007 | A1 |
20070015519 | Casey | Jan 2007 | A1 |
20070016953 | Morris et al. | Jan 2007 | A1 |
20070016955 | Goldberg et al. | Jan 2007 | A1 |
20070028095 | Allen et al. | Feb 2007 | A1 |
20070028303 | Brennan | Feb 2007 | A1 |
20070028304 | Brennan | Feb 2007 | A1 |
20070050471 | Patel et al. | Mar 2007 | A1 |
20070086476 | Iglesias et al. | Apr 2007 | A1 |
20070154014 | Aissi et al. | Jul 2007 | A1 |
20070174472 | Kulakowski | Jul 2007 | A1 |
20070186282 | Jenkins | Aug 2007 | A1 |
20070214504 | Milani Comparetti et al. | Sep 2007 | A1 |
20070220608 | Lahti et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240221 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070248047 | Shorty et al. | Oct 2007 | A1 |
20070250627 | May et al. | Oct 2007 | A1 |
20070293263 | Eslambolchi et al. | Dec 2007 | A1 |
20070297610 | Chen et al. | Dec 2007 | A1 |
20080028470 | Remington et al. | Jan 2008 | A1 |
20080046557 | Cheng | Feb 2008 | A1 |
20080047007 | Satkunanathan et al. | Feb 2008 | A1 |
20080065507 | Morrison et al. | Mar 2008 | A1 |
20080070495 | Stricklen et al. | Mar 2008 | A1 |
20080072329 | Herschaft | Mar 2008 | A1 |
20080086773 | Tuvell et al. | Apr 2008 | A1 |
20080086776 | Tuvell et al. | Apr 2008 | A1 |
20080109871 | Jacobs | May 2008 | A1 |
20080127171 | Tarassov | May 2008 | A1 |
20080127179 | Moss et al. | May 2008 | A1 |
20080127334 | Gassoway | May 2008 | A1 |
20080127336 | Sun et al. | May 2008 | A1 |
20080132218 | Samson et al. | Jun 2008 | A1 |
20080134281 | Shinde et al. | Jun 2008 | A1 |
20080140767 | Rao et al. | Jun 2008 | A1 |
20080148381 | Aaron | Jun 2008 | A1 |
20080172746 | Lotter et al. | Jul 2008 | A1 |
20080178294 | Hu et al. | Jul 2008 | A1 |
20080181116 | Kavanaugh et al. | Jul 2008 | A1 |
20080196104 | Tuvell et al. | Aug 2008 | A1 |
20080200160 | Fitzpatrick et al. | Aug 2008 | A1 |
20080208950 | Kim et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080235801 | Soderberg et al. | Sep 2008 | A1 |
20080276111 | Jacoby et al. | Nov 2008 | A1 |
20080293396 | Barnes et al. | Nov 2008 | A1 |
20080318562 | Featherstone et al. | Dec 2008 | A1 |
20090199298 | Miliefsky | Aug 2009 | A1 |
20090205047 | Podjarny | Aug 2009 | A1 |
20090248623 | Adelman et al. | Oct 2009 | A1 |
20090293125 | Szor | Nov 2009 | A1 |
20100064341 | Aldera | Mar 2010 | A1 |
20100100939 | Mahaffey et al. | Apr 2010 | A1 |
20100100963 | Mahaffey | Apr 2010 | A1 |
20100154032 | Ollmann | Jun 2010 | A1 |
20100313270 | Kim et al. | Dec 2010 | A1 |
20100332593 | Barash et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2430588 | Mar 2007 | GB |
2007081356 | Jul 2001 | WO |
2005101789 | Oct 2005 | WO |
WO2005101789 | Oct 2005 | WO |
2006110181 | Oct 2006 | WO |
2008007111 | Jan 2008 | WO |
2008057737 | May 2008 | WO |
Entry |
---|
Real world Computing, Jun. 16, 2008 (PC Pro), pp. 1-2. |
Simone, “Playing with ActiveMQ,” Mostly Useless, Dec. 27, 2007, available at <http://www.mostly-useless.com/blog/2007/12/27/playing-with-activemq/>, retrieved Mar. 30, 2012, 6 pages. |
Trillian, available at <http://www.trillian.im/>, retrieved Sep. 14, 2011, 24 pages. |
U.S. Appl. No. 13/033,025; Prosecution history available via USPTO. Filed Feb. 23, 2011. |
U.S. Appl. No. 13/212,055; Prosecution history available via USPTO. Filed Aug. 17, 2011. |
U.S. Appl. No. 12/255,632, filed Oct. 21, 2008. |
U.S. Appl. No. 12/372,719, filed Feb. 17, 2009. |
U.S. Appl. No. 12/621,431, filed Nov. 18, 2009. |
U.S. Appl. No. 12/868,669, filed Aug. 25, 2010. |
U.S. Appl. No. 12/868,672, filed Aug. 25, 2010. |
U.S. Appl. No. 12/868,676, filed Aug. 25, 2010. |
U.S. Appl. No. 12/876,018, filed Sep. 3, 2010. |
U.S. Appl. No. 13/160,382, filed Jun. 14, 2011. |
U.S. Appl. No. 13/160,447, filed Jun. 14, 2011. |
U.S. Appl. No. 13/162,477, filed Jun. 16, 2011. |
U.S. Appl. No. 13/267,731, filed Oct. 6, 2011. |
Virus Total, VT Community, www.virustotal.com/index.html; Dated Dec. 16, 2011; 44 Pages. |
U.S. Appl. No. 12/255,635. Prosecution history available via USPTO (including Office Action dated Mar. 24. 2011). |
U.S. Appl. No 12/255,632. Prosecution history available via USPTO (including Office Action dated Apr. 13, 2011). |
U.S. Appl. No. 12/255,626. Prosecution history available via USPTO (including Office Action dated Feb. 1, 2011). |
U.S. Appl. No. 12/255,621. Prosecution history available via USPTO (including Office Action dated Apr. 13, 2011). |
McAfee, Internet Archive, Way Back Machine, available at <http://web.archive.org/web/20080517102505/www.mcafeesecure.com/us/technology-intro.jsp>, retrieved Feb. 23, 2011, 2 pages. |
Qualys, “Executive Dashbard,” Internet Archive, Way Back Machine, available at <http://web.archive.org/web/20080507161417/ www.qualys.com/products/screens/?screen=Executive + Dashboard>, retrieved Feb. 23, 2011, 1 page. |
Qualys, “Vulnerability Management,” Internet Archive, Way Back Machine, available at <http://web.archive.org/web/20080611095201/www.qualys.com/solutions/vulnerability_management> retrieved Feb. 24, 2011, 1 page. |
Ten, Joe, “Norton 360 Version 3.0 Review,” Mar. 9, 2009, available at <http://techielobang.com/blog/2009/03/09/norton-360-version-30-review/> retrieved Feb. 23, 2011, 12 pages. |
Windows Update, Internet Archive, Way Back Machine, available at <http://web.archive.org/web/20071022193017/http://en.wikipedia.org/wiki/Windows_Update> retrieved Feb. 23, 2011, 3 pages. |
U.S. Appl. No. 12/255,614. Prosecution history available via USPTO (including Office Action dated Apr. 14, 2011). |
Richardson, Alexis “Introduction to RabbitMQ,” Google UK, Sep. 25, 2008, available at <http://www.rabbitmq.com/resources/google-tech-talk-final/alexis-google-rabbitmq-talk.pdf>, retrieved Mar. 30, 2012, 33 pages. |
Fisher, Oliver “Malware? We Don't Need No Stinking Malwarel,” Google, Oct. 24, 2008, available at <http://googlewebmastercentral.blogspot.com/2008/10/malware-we-dont-need-no-stinking.html>, retrieved Mar. 30, 2012, 11 pages. |
Reardon, Marguerite “Mobile Phones That Track Your Buddies,” Cnet, Nov. 14, 2006, available at <http://news.cnet.com/Mobile-phones-that-track-your-buddies/2100-1039_3-6135209.html>, retrieved Mar. 30, 2012, 4 pages. |
Fette, Ian “Understanding Phishing and Malware Protection in Google Chrome,” the Chromium Blog, Nov. 14, 2008, available at <http://blog_chrounium_org/2008/11/understanding-phishing-and-malware.htm>, retrieved May 17, 2011, 6 pages. |
Kincaid, Jason “Urban Airship Brings Easy Push Notifications to Android,” TechCrunch, Aug. 10, 2010, available at.<http://techcrunch.com/2010/08/10/urban-airship-brings-easy-push-notifications-to-android/>, retrieved Jun. 16, 2011, 5 pages. |
Keane, Justin K. “Using the Google Safe Browsing API from PHP,” Mad Irish, Aug. 7, 2009, available at <http://www.madirish.net/node/245>, retrieved Mar. 30, 2012, 5 pages. |
Jefferies, Charles P. “Webroot AntiVirus 2010 With Spy Sweeper Review,” Notebook Review, Jun. 22, 2010,.available at <http://http://www._notebookreview.com/default.asp?newsID=5700&review=Webroot+AntiVirus+2010+With+Spy+Sweeper+Review>, retrieved May 18, 2011, 3 pages. |
“Berry Locator”, 2007, Mobireport LLC, 1 page. |
“Firefox”, Wikipedia, Jul. 20, 2011, available at <http://en.wikipedia.org/wiki/firefox> Retrieved Aug. 10, 2011, 37 Pages. |
“F-Secure Mobile Security for S60 Users Guide”, F-Secure Corporation 2009, pp. 1-34. |
“Java Virtual Machine”, Wikipedia, Aug. 7, 2011, Available at <http://en.wikipedia.org/wikilJava_Virtual_Machine> Retrieved Aug. 10, 2011, 7 pages. |
“Kaspersky Mobile Security”, Kaspersky Lab 1997-2007, 1 page. |
“Kaspersky Mobile Security”, Kaspersky Lab 2008, available at <http://www.kaspersky.com/ kaspersky_mobile_security> Retrieved Sep. 11, 2008, 2 Pages. |
“Norton Smartphone Security”, Symantec, 2007, Available at <http://www.symantec.com/norton/smartphone-security> Retrieved Oct. 21, 2008, 2 pages. |
“PhoneBak PDA Phone Anti-theft software for your PDA phone”, 2007, Bak2u Pte Ltd (Singapore) pp. 1-4. |
“PhoneBak: Mobile Phone Theft Recovery Software”, 2007, Westin Tech. |
“Symantec Endpoint Protection”, Symantec, 2008, Available at <http://www.symantec.com/business/products/family.jsp?familyid=endpointsecurity>, 6 pages. |
“Symantec Mobile Security Suite for Windows Mobile”, Symantec, 2008 Available at <http://www.symantec.com/ business/products/sysreq.jsp?pcid=2241&pvid=mobile_security_suite_1>, 5 pages. |
“TippingPoint Security Management System (SMS)”, TippingPoint, Available at <http://www.tippingpoint.com/ products_sms.html>, 2 pages. |
Summerson, Cameron “5 Android Antivirus Apps Compared, Find Out Which Ones Are Worth Having!,” Android Headlines, Mar. 8, 2011, available at <http://androidheadlines.com/2011/03/5-android-antivirus-apps-comapred-findout-which-ones-are-worth-having.html>, retrieved Mar. 30, 2012, 9 pages. |
“Android Cloud to Device Messaging Framework,” Google Code Labs, available at <http://code.google.com/android/c2dm/>, retrieved Sep. 14, 2011, 9 pages. |
“BlackBerry Push Service Overview,” Dec. 16, 2009, available at <http://us.blackberry.com/developers/platform/.pushapi.jsp#tab_tab_resources>, retrieved Sep. 14, 2011, 21 pages. |
“eSoft unveils SiteFilter 3.0 for OEMs,” Infosecurity, Mar. 23, 2010, available at <http://www.infosecurity-magazine.com/view/82731esoft-unveils-sitefilter-30-for-oems/>. |
“Get the Physical Location of Wireless Router From its MAC Address (BSSID),” Coderrr, Sep. 10, 2008, available at<http://codermwordpress.com/2008/09/10/get-the-physical-location-of-wireless-router-from-its-mac-address-bssidt>, retrieved Mar. 30, 2012, 13 pages. |
“Hooking—Wikipedia, the Free Encyclopedia,” Internet Archive Wayback Machine, Apr. 13, 2010, available at <http://web.archive.org/web/20100415154752/http://en.wikipedia.org/wiki/Hooking>, retrieved Mar. 30, 2012, 6 pages. |
Mytton, David “How to Build an Apple Push Notification Provider Server (Tutorial),” Server Density, Jul. 10, 2009,.available at <http://blog.serverdensity.com/2009/07/10/how-to-build-an-apple-push-notification-provider-server-tutorial/ >, retrieved Apr. 2, 2012, 33 pages. |
“Pidgin the Universal Chat Client,” Pidign, available at <http://www.pidgin.im/>, retrieved Sep. 14, 2011, 14 pages. |
Pogue, David “Simplifying the Lives of Web Users,” the New York Times, Aug. 18, 2010, available at <http://www.nytimes.com/2010108/19/technology/personaltech119pogue.html>, retrieved May 17, 2011, 5 pages. |
“Twilio Cloud Communications Web Service Api for Building Voice and Sms Applications,” Twilio available at <http://.www.twilio.com>, retrieved Sep. 14, 2011, 12 pages. |
“Understanding Direct Push,” Microsoft, Feb. 18, 2009, available at <http://technet.microsoft.com/en-us/library/.aa997252(v=exchg.80).aspx>, retrieved Mar. 30, 2012, 3 pages. |
“Urban Airship: Powering Modern Mobile,” available at <http://urbanairship.com/products/>, retrieved Sep. 16, 2011, 14 pages. |
“zVeloDB URL Database,” zVelo, available at <https:/Izvelo.com/technology/zvelodb-url-database>, retrieved Mar. 30, 2012, 2 pages. |
U.S. Appl. No. 11/397,521. |
U.S. Appl. No. 13/284,248. |
U.S. Appl. No. 13/313,937. |
U.S. Appl. No. 13/314,032. |
U.S. Appl. No. 13/333,654. |
U.S. Appl. No. 13/335,779. |
U.S. Appl. No. 13/410,979. |
Amazon.com: Mining the Web Discovering Knowledge from Hypertext Data (9781558607545): Soumen Chakrabarti: Books, Amazon available at <http://www.amazon.com/exec/obidos/Asin/1558607544/>, retrieved Jun. 7, 2012, pp. 1-7. |
Clickatell, available at <http://www.clickatell.com>, retrieved Sep. 14, 2011, 11 pages. |
Dolcourt, Jessica; Dashwire: Manage Your Cell Phone on the Web, News Blog, with Jessica Dolocourt, Oct. 29, 2007, 5:00am PDT <http://news.cnet.com/8301-10784_3-9805657-7.html> retrieved Jun. 15, 2009; pp. 1-3. |
Diligenti, M., et al., Focused Crawling Using Context Graphs:, Proceedings of the 26th VLDB Conference, Cairo, Egypt, 2000, pp. 1-8. |
Grafio “Stay Secure”, Opera Software, Sep. 29, 2008, Available at <http://widgets.opera.com/widget/4495> Retrieved Oct. 21, 2008, 4 pages. |
MobileWipe web page, pp. 1-4. |
PagerDuty, available at <http://www.pagerduty.com>, retrieved Sep. 14, 2011, 23 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2009/061370; Mailed on Dec. 14, 2009; pp. 1-12. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2009/061372; Mailed on Mar. 24, 2010; pp. 1-16. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2011/049182; Mailed on Dec. 23, 2011; pp. 1-11. |
Prey, available at <http://preyproject.com/>, retrieved Jan. 10, 2012, 4 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 14109725 | Dec 2013 | US |
Child | 12621431 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12621431 | Nov 2009 | US |
Child | 15898124 | US | |
Parent | 12621431 | Nov 2009 | US |
Child | 14109725 | US |