Embodiments of the disclosure relate to the field of cybersecurity. More specifically, one embodiment of the disclosure relates to an improved system and method for detecting cyberattacks conducted through remote injection or local reflection.
Process injection is a method of injecting code (e.g., executable, dynamic link library “DLL”, etc.) into a running process. In many situations, process injection may be done for legitimate reasons. However, for over a decade, process injection has become a common attack vector for cyberattacks, particularly on user operated endpoint devices because process injection used to inject shellcode (i.e., code used for malicious purposes), can readily employ detection evasion techniques to camouflage its malicious code within a running process and, at a later time, gain access to certain resources. The running process itself may provide the injected, malicious code with access to certain resources (e.g., particular memory, enhanced privileges, etc.), thereby improving the chances of a successful cyberattack. For example, a malicious DLL may be stealthily injected into a running process to establish a “hidden” socket connection. Thereafter, the malicious code may perpetuate activities for financial gain or to embarrass, harass or blackmail the user such as gaining access to and exfiltrating sensitive or confidential information from a user's endpoint device, or even to perpetuate a disruptive cyberattack.
Conventional security systems are configured to examine processes operating on the endpoint device and their effects on resources to identify malicious processes. For example, the Windows® operating system (OS) is currently configured with “Event Tracing for Windows (ETW),” namely a diagnostic tool that is configured to trace and log events that are conducted by user processes produced during the execution of user-mode applications and kernel-mode drivers. In particular, ETW collects information associated with detected events (e.g., new thread creation), which is stored into a log file residing in the user space for later evaluation. However, the process injection analytics are performed in user space and malicious threads are frequently terminated soon after execution.
Accordingly, in some situations, ETW might not have access to salient meta-information that could prove useful in detecting malicious code execution. As a result, ETW has been plagued by high rates of false positives and false negatives, suggesting that a more reliable system for detecting malicious code execution is needed.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Elements in these figures are illustrated for simplicity and clarity, and thus, all elements forming the systems described below have not necessarily been included. For example, common, but well-understood, elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the disclosure.
To improve security of a computing system, cyberthreat analytic logic has been developed to accurately detect a cybersecurity threat (cyberthreat) involving malicious position independent code execution. Herein, “malicious, position-independent code execution” broadly pertains to (i) malicious remote (code) injection in which malicious code is associated with a thread inserted into a process currently in operation and/or (ii) malicious local reflection in which a malicious thread is created and invoked by the same process. Herein, a “process” may correspond to an executing instance associated with certain functionality supported by a software program such as a software application for example. A “thread” generally includes a subset of instructions and shares resources of the process with other threads. Whether created through remote injection or through local reflection, on, the cyberthreat analytic logic analyzed each thread to evaluate whether it furthers a cyberattack.
According to one embodiment of the disclosure, the above-identified cyberthreat analytic logic is configured to operate on a computing system. An illustrative example of a computing system includes an endpoint device or a cloud network (or service) for example, although a computing system may correspond to any system architecture that includes one or more processors and a memory. This memory, when abstracted as a virtualized storage resource, may be segmented into a kernel space and a user space. The cyberthreat analytic logic includes logic that may be implemented as computer program code stored during deployment within the kernel space and the user space.
More specifically, according to one embodiment of the disclosure, the cyberthreat analytic logic features a first logic unit and a second logic unit. The first logic unit is configured to detect and collect information associated with one or more newly created threads during execution of user process(es). The second logic unit is configured to conduct analyses on the collected information to determine whether any of these newly created thread(s) is associated with malicious position independent code execution. Herein, the creation of a thread caused by malicious position independent code execution is referred to as a “malicious code execution event.” For example, a malicious code execution event may correspond to injection of code into a process identified by a targeted handle or a linking of a DLL, which is accessed by content within a particular process. Also, for brevity sake, “malicious position-independent code execution” may be generally referred to herein as “malicious code execution.”
According to one embodiment of the disclosure, the first logic unit is maintained within kernel space of the memory and operates as a kernel driver. The second logic unit, operating as a security agent, is maintained within the user space of the memory. By implementing the first logic unit within the kernel space and the second logic unit within the user space, the cyberthreat analytic logic achieves improved accuracy and reliability (e.g., reduction in false positives and/or false negatives) through enhanced control of the operability of the computing system, as operations of the thread under inspection cannot be terminated prior to termination of the first logic unit, assisting in the collection of meta-information and code associated with newly created threads. Alternatively, it is contemplated that the first logic unit may conduct a preliminary analysis of the meta-information and/or code to determine whether to pass the meta-information and/or code to the second logic unit (e.g., pass when the meta-information has a certain likelihood of being malicious),
For this embodiment of the disclosure, the first logic unit may be configured to detect threads that are newly created during execution of a user process. Besides detecting newly created threads, the first logic unit may be further configured to disregard a certain type or certain types of newly created threads from further analysis. As an illustrative example, the first logic unit may exclude one type of thread, such as system threads (e.g., threads created in the kernel space) for example, thereby performing analytics on information associated with a reduced set (e.g., one or more) of newly created threads. The first logic unit may further gather meta-information associated with each thread of the reduced set of newly created threads as well as the code associated with each thread of the reduced set of newly created threads.
Stated differently, according to one embodiment of the disclosure, the first logic unit may be configured to (i) detect newly created threads, (ii) filter certain type(s) of threads (e.g., system threads, etc.) from these detected threads to produce the reduced set of newly created threads, and (iii) acquire meta-information associated with each thread of the reduced set of newly created threads. According to one embodiment of the disclosure, upon registration with a particular component of a Windows® Operating System (OS), such as a specific Windows® Application Programming Interface (API) for example, the first logic unit may receive a thread create notification (e.g., thread notification callback) in response to creation of a new thread. Each thread create notification may include meta-information associated with its corresponding newly created thread, where portions of this meta-information may be analyzed by both the first logic unit in conducting filtering operations and the second logic unit in determining whether the newly created thread is invoked to conduct a cyberattack based on malicious code execution.
More specifically, upon detecting one or more newly created threads, the first logic unit (kernel driver) is configured to perform one or more filtering operations to eliminate certain types of threads, resulting in a reduced set of newly created threads to be subsequently analyzed. With respect to a first filtering operation, the first logic unit may be configured to monitor for newly created threads based on the locality of its source. For example, the first logic unit may be configured to monitor for newly created threads based on different filtering levels: new threads created by another process (remote injection), new threads created by the same process (local reflection), or both of these new thread types. Thus different filtering levels may be used to concentrate or expand analytics to particular thread type(s).
“Remote injection” occurs when a bad actor uses an already running process by inserting a thread (e.g., a subset of instructions) from a particular process into the running user process. The thread may correspond to malicious code inserted into memory associated with the user process or a changed path of execution inserted into the user process. Hence, a remote injection event, being one type of malicious code execution event, may be detected by the first logic unit when a source process identifier (PID) associated with a newly created thread differs from its destination PID. Similarly, “local reflection” occurs when a process includes code that attempts to allocate memory and inject new functionality without transferring to another process. For example, reflective DLL injection operates by creating a DLL that maps itself into memory when executed, instead of relying on the Windows® loader. Herein, a local reflection event, being another type of malicious code execution event, may be detected by the first logic unit when the source PID matches its destination PID. The source PID and destination PID for a newly created thread may be provided as information within the thread create notification associated with that thread.
With respect to a second filtering operation, the first logic unit may be configured to identify whether a newly created thread was created in kernel space or in user space. In particular, the first logic unit may extract and evaluate the value of the source PID to determine whether the new thread is created in the kernel space or user space in memory. For a Windows® OS, a thread is identified as being created in the kernel space when the source PID is assigned a certain prescribed value. Therefore, the first logic unit may disregard information associated with newly created threads with source PIDs that identify the thread as created in the kernel space.
The first logic unit further acquires meta-information associated with each thread of the reduced set of newly created threads. For each thread, the meta-information may include, but is not limited or restricted to the following: (a) information identifying what permissions are assigned to a newly created thread, (b) a start address for the newly created thread, (c) a size of memory allocated to the newly created thread, or the like. Using the start address and the thread allocated memory size, as an optional capability, the first logic unit may be further configured to copy (and store) contents within the memory allocated to the particular newly created thread in order to acquire code associated with that thread (hereinafter referred to as “thread code”). The same operations can be performed for each thread of the reduced set of newly created threads. As the acquisition of the meta-information and/or thread code is performed by the first logic unit operating as a kernel driver, the fetching of such meta-information and/or thread code is ensured as, according to Windows® OS functionality, the newly created thread cannot terminate prior to termination of operability of the kernel driver.
In particular, the first logic unit may be configured to retrieve code associated with each thread of the reduced set of newly created threads (“thread code”). During malicious code execution, the thread code may correspond to shellcode, namely a collection of position independent code that an attacker has curated and compiled that may be processed without requiring the code to be loaded by a Windows®-based loader. As an illustrative example, if operating as shellcode, the thread code may be code with the intent to perpetuate malicious or criminal activities (broadly referred to as “malware”). These malicious activities may involve the use of software, one or more commands, or other data to take advantage of resources available to a user process associated with the newly created thread or even a vulnerability associated with a remote user process.
Operating in user (memory) space and determining whether a detected code execution event is malicious, the second logic unit may be configured to receive the meta-information associated with each thread belonging to the reduced set of the newly created threads along with its corresponding thread code (e.g., entire thread code or one or more portions thereof). For instance, according to one embodiment of the disclosure, the first logic unit conducts one or more analyses of the meta-information (and/or thread code) for each newly created thread, where the analyses may, at least in part, determine whether a particular level of correlation exists between the meta-information (and/or thread code) associated with each newly created thread and contents within one or more blacklists and/or whitelists. Upon determining that the correlation between the meta-information associated with each newly created thread and content within any of the one or more blacklists (e.g., identical or comparison greater than the prescribed degree of similarity) meets or exceeds the particular level of correlation, the second logic unit may classify the newly created thread is involved in a cyberattack and issue an alert identifying that a malicious code execution is being conducted on the endpoint device.
More specifically, according to one embodiment of the disclosure, the second logic unit may conduct analytics to determine whether at least a particular level of correlation (first threshold) exists between at least a portion of the meta-information and contents within a first blacklist and/or a first whitelist. For example, as the first blacklist includes meta-information associated with known malicious code execution events, the second logic unit may classify the thread represented by the meta-information is part of a cybersecurity attack when the correlation between the meta-information and contents within the first blacklist meets or exceeds the first threshold. Optionally, as the first whitelist may include meta-information associated with known, non-malicious code execution events such as injection of a DLL to change operability of an input/output (I/O) device such as a mouse or injection of a DLL into a process to monitor hooking operations. The second logic unit may classify the thread represented by the meta-information as non-malicious (benign) code when the correlation between the meta-information and contents within the first whitelist exceeds a first prescribed threshold (e.g., first threshold or a higher/lower threshold). In the event that there is no correlation between the meta-information and the contents of the first blacklist and whitelist, the thread is deemed suspicious (or indefinite), which may lead to an analysis of the thread code or further analysis by a remote source.
Similarly, the second logic unit may determine whether a specific level of correlation (second threshold) exists between a representation of the thread code and content within a second blacklist and/or a second whitelist. According to one embodiment of the disclosure, the representation of the thread code may be a hash value such as a MD5 or SHA-256 value, a checksum, or another data format having a consistent size regardless of the byte size of the thread code. Alternatively, the representation of the thread code may be one or more portions of the thread code extracted from the entirety of the thread code. As a result, the content within the second blacklist and/or the second white list may include corresponding representations of shellcode associated with known, malicious code execution and/or corresponding representations of code associated with non-malicious code execution, respectively. The selected shellcode and/or code may be determined through machine learning, experiential knowledge, artificial intelligence-based results, or the like.
Similar to the analyses of the meta-information, as the second blacklist includes known shellcode, the second logic unit may classify the thread (represented by the thread code) is part of a cyberattack when the correlation between the thread code and the known shellcode exceeds a second prescribed threshold. The second prescribed threshold may be equivalent to the first threshold or may be adjusted (higher/lower) to accommodate the user's security risk tolerance. Optionally, as the second whitelist may include meta-information associated with known, non-malicious code, the second logic unit may classify the thread represented by the thread code as non-malicious (benign) code when the correlation between the thread code and contents within the second whitelist exceeds a third prescribed threshold (e.g., second threshold or higher/lower).
With respect to the computerized method for detecting malicious code execution, a first operation is conducted by the first logic unit, such as a kernel driver being part of the cyberthreat analytic logic for example, to detect newly created threads for one or more processes executing on a computing system (e.g., endpoint device, cloud network/service, etc.). According to one embodiment of the disclosure, one or more filtering operations may be conducted on the detected, newly created threads by filtering logic deployed within the kernel driver. The filtering operations produce a reduced set of newly created threads.
The kernel driver continues analyses of the reduced set of newly created threads by collecting meta-information associated with each of the detected threads, namely characteristics such as the locality of the creation of that thread (e.g., DLL location versus a user allocated memory), access permissions, memory allocation size for the thread, starting address for memory allocated for the thread, or the like. The kernel driver may include a heuristics engine to apply heuristics (rules based on the experiential knowledge and prior analyses of known malware) to collect and detect the particular meta-information for use in determining whether the newly created thread is malicious (and associated with a cyberattack) or benign. Additionally, using a portion of the collected meta-information, the kernel driver may be configured to further collect the thread code (i.e., code associated with the newly created thread). Both the meta-information along with the thread code are provided to the second logic unit, operating as a security agent.
According to one embodiment of the disclosure, the “security agent” may be an instance of a software component, which is instrumented as part of or operating in conjunction with the Windows® OS software and configured to conduct malware detection by at least analyzing incoming information from the kernel driver. As an illustrative example, the security agent may collect and compare meta-information (e.g., one or more portions of the collected meta-information) to meta-information associated with known malicious code execution events. Additionally, the security agent may collect and compare a representation of the thread code to a plurality of representations of shellcode in order to provide an additional analytic point to detect a malicious code execution event, where this additional analysis point further reduces the presence of false positives (FPs) and false negatives (FNs). The security agent generates a “threat score,” namely a value that represents a likelihood of a thread under analysis being part of a cyberattack based on malicious (position-independent) code execution.
More specifically, the security agent receives the meta-information and/or thread code related to the “suspicious” newly created thread from the kernel driver. The security agent conducts additional analyses of the meta-information and/or thread code to determine, based on determined threat score(s) for example, whether any of this information identifies that the thread is part of a cyberattack based on malicious code execution. Herein, according to one embodiment, the malicious code execution may be determined based on a comparison of meta-information associated with the newly created thread to meta-information associated with known malicious code execution events. The malicious (position-independent) code execution may be further confirmed based on an analysis of a representation of the thread code to representations of known shellcode.
Where the newly created thread is determined to be part of a cyberattack, an alert is triggered. The alert may operate as a warning of the detection of malicious thread injection, such as issuance of a dashboard warning to a security administrator and/or issuance of the same or different type of warning (e.g., pop-up message, text message, etc.) to the endpoint device user. Moreover, the information collected during the above-identified analyses (e.g., meta-information, shellcode, etc.) may be used to determine an identity of threat actors behind the cyberattack. Threat actors may be identifiable based on specifics associated with their cyberattack efforts, such as the uncovered shellcode may have been used by a particular threat actor in another attempted cyberattack previously attributed to that threat actor.
Where the newly created thread is determined, based on the meta-information and/or thread code, to be part of a cyberattack based on malicious code execution, the second logic unit may trigger a remediation operation to occur. The type of remediation selected may be dependent on the threat score(s) representing a likelihood of maliciousness for a newly created thread.
For instance, when a threat score assigned to the thread by thread classification logic within the security agent exceeds a first threshold denoting that the thread is malicious, the alert may trigger an automated remediation, e.g., by terminating the process associated with the malicious thread (or blocking further activities by the malicious thread). However, where the threat score assigned by the thread classification logic exceeds a second threshold (less than the first threshold but still denotes the thread is malicious), the alert may cause the dashboard warning and prompt an analyst to review the results and determine whether or not to initiate a remediation operation. However, where the threat score assigned to the thread by the thread classification logic exceeds a third threshold (less than the second threshold but still denotes the thread is malicious), the alert may cause the dashboard warning and rely on remediation to be conducted by the administrator based on security protocols set by the enterprise or user associated with the endpoint device.
If the suspicious thread is determined to be benign by the security agent (e.g., based on additional information available to the agent such as signatures, other indicators-of-compromise (IOCs), etc.), further analysis of the meta-information and/or thread code associated with the thread under analysis may be discontinued. However, if the security agent continues to classify the thread as “suspicious” (e.g., the threat classification of the newly created thread cannot yet be confirmed as “malicious” or “benign”), the security agent may be configured to provide the meta-information and the thread code to a centralized system (e.g., third party security server), which is communicatively coupled directly or remotely to the computing system via a network connection. The centralized system is configured to perform an emulation operation or other in-depth analyses on the meta-information and/or the thread code in order analyze the potential effects to the computing system (and network) if the thread code had been executed.
I. Terminology
In the following description, certain terminology is used to describe aspects of the invention. In certain situations, each of the terms “logic,” “logic unit,” “component,” and “system” is representative of hardware, firmware, and/or software that is configured to perform one or more functions. As hardware, the logic (or logic unit/component/system) may include one or more processors (referred to herein as “processor”) and/or a memory. Examples of a processor may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, or any virtual representation of the processor, namely software that is coded to function the same as or similar to the physical processor. Similarly, examples of a memory may include, but are not limited or restricted to any type of volatile or non-volatile memory, or any virtual representation of the memory being software that is coded to function the same as or similar to the physical memory.
Alternatively, or in combination with the hardware circuitry described above, the logic (or logic unit/component/system) may be software in the form of one or more software modules. The software modules may include an executable application, a daemon application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, a shared library/dynamic load library, or one or more instructions. The software module(s) may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code may be stored in persistent storage.
A “computing system” generally refers to a physical electronic device featuring a processor, memory, and/or network connection or a virtual electronic device with this functionality. Examples of a computing system may include, but are not limited or restricted to any physical or virtual resource operating as a server, an endpoint device (e.g., a desktop or laptop computer, a wearable, a tablet, a device-installed mobile software, management console, industrial controller, info-entertainment system, etc.), a network adapter, or an intermediary communication device (e.g., router, firewall, etc.), a cloud service, or the like.
The term “meta-information” generally refers to a collection of information about (e.g., associated with) a thread for example. Examples of the meta-information may include, but are not limited or restricted to the following: (i) thread permission and/or (ii) thread execution address range.
The term “message” generally refers to signaling as information placed in a prescribed format and may be transmitted between different components. For instance, a message may be a Windows® messages or Windows® API.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.
In certain instances, the terms “compare,” comparing,” “comparison,” or other tenses thereof generally mean determining if a match (e.g., identical or a prescribed level of correlation) is achieved between two items where one of the items may include content pertaining to meta-information that is associated with an email message being analyzed.
The term “transmission medium” generally refers to a physical or logical communication link (or path) between two or more network devices. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), may be used.
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. As an example, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of exemplary embodiments. The scope of the disclosure should be determined with reference to the claims. Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic that is described in connection with the referenced embodiment is included in at least the referenced embodiment. Likewise, reference throughout this specification to “some embodiments” or similar language means that particular features, structures, or characteristics that are described in connection with the referenced embodiments are included in at least the referenced embodiments. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” “in some embodiments,” and similar language throughout this specification can, but do not necessarily, all refer to the same embodiment.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
II. Cyberthreat Analytic Logic Deployments
Referring to
As shown in
As further shown, the memory 130 further stores software 150, which reside within a second area 134 of the memory 130 (referred to as “user space”). Of the software 150, a first software program 152, when executed by the processor(s) 120, may invoke one or more user processes 1601-160m (M≥1). Each of the user processes 1601-160m may correspond to an executing instance of a program that performs certain functionality exhibited by the computing system 100 (e.g., input/output, file system management, etc.) in contrast to the kernel 142 that manages the individual user processes 1601-160m within the user space 134 Each user process can access the portion of memory allocated to the process but cannot access the portion of memory allocated to other processes unless explicitly allowed. These user processes 1601-160m may be automatically launched or manually launched by the user, and after being launched, some or all of the user processes 1601-160m may operate sequentially or concurrently (i.e., at least partially overlapping in time) with each other.
Referring still to
Within the kernel space 132, an Application Programming Interface (API) 170 provides a mechanism to issue a thread creation notification 182 to the first logic unit 180 in response to creation of a new thread (e.g., thread 1651) that occurs during execution of the process 1601. The thread create notification 182 may correspond to a thread notification callback that provides the first logic unit 180 with meta-information associated with the newly created thread (e.g., thread 1651) such as a PD. Additionally, other meta-information associated with the thread 1651 (e.g., thread permissions, thread addressing information, allocated memory size allocated to the thread 1651, etc.) may be acquired by accessing certain Windows-based data structures. Thereafter, a portion of this collection of meta-information associated with the thread 1651 may be useful in determining whether the new thread 1651 was created in either the kernel space 132 or the user space 134 of the memory 130 and whether the thread 1651 is part of a malicious code execution cyberattack.
A second logic unit 185, also referred to as a “security agent,” is installed within the user space 134. The second logic unit 185 may be implemented as an instance of a software component that is instrumented for communications with the first logic unit 180 (e.g., kernel driver) and for conducting malware detection, notably detection of a malicious code execution event. For such detection, the second logic unit 185 may collect and determine whether a suitable level of correlation exists between the meta-information associated with the thread 1651 and meta-information associated with known malicious code execution events (i.e., these events are stored in memory and may be accessed as a shared resource). If this level of correlation is reached or exceeded, the thread 1651 is associated with a cyberattack involving malicious code execution. A similar analysis of the code associated with the thread 1651 may be accessed based on the thread create notification 182 to provide additional analytics to confirm a malicious process execution event, where these additional analytics may further reduce an occurrence of a false positive (FP) or a false negative (FN).
Referring now to
Herein, the cyberthreat analytic logic 110 features the first logic unit 180 and the second logic unit 185, which are deployed as software components maintained with cloud storage 192 (e.g., S3 storage where the cloud service 190 is offered by a public cloud network such as Amazon Web Services “AWS,” etc.). The first logic unit 180 is deployed within a first region 193 of the cloud storage 192, and thus, afforded full or substantial access permissions to memory available in the cloud storage 192 (corresponding to the kernel space 132). The second logic unit 185, deployed with a second region 194 of the cloud storage 192, is afforded lesser access permissions than the first logic unit 180 (corresponding to the user space 134). According to this embodiment of the disclosure, the processor(s) 120 of the cloud network 100 may corresponding to a virtual processor 196 such as one or more compute engines (CE) 198 provided as part of AWS.
III. Cyberthreat Analytic Logic Operability
Referring now to
More specifically, as illustrated in
According to one embodiment of the disclosure, the newly created thread 1651 may be loaded into memory associated with (e.g., allocated to) the process 1601 through remote (code) injection or local reflection. In particular, the first logic unit 180 may be configured to detect the newly created thread 1651 is inserted into memory associated with (e.g., allocated to) the process 1601 through remote injection when the source PID 202 associated with the newly created thread 1651 differs from its destination PID 204. Similarly, the first logic unit 180 may be configured to detect the newly created thread 1651 is created through local reflection when the source PID 202 associated with the newly created thread 1651 is the same as its destination PID 204.
As described above, the source PID 202 and the destination PID 204 may be provided as part of the information 200 within the thread create notification 182. From the source PID 202, the first logic unit 180 can further identify whether the newly created thread is a kernel-based thread (i.e., created in the kernel space 132) or a userland-based thread (i.e., a thread created in the user space 134). In particular, the first logic unit 180 is configured to detect whether the newly created thread 1651 constitutes a kernel-based thread or a userland-based thread when the source PID 202 is assigned a prescribed value.
Stated differently, upon detecting one or more newly created threads 1651-165N, the first logic unit 180 (kernel driver) may be configured to perform one or more filtering operations to potentially discard certain types of threads, thereby generating a reduced set of threads 1651-165j (N≥J≥1) for subsequent analysis. With respect to a first filtering operation, the first logic unit 180 may be configured to concentrate monitoring of the newly created threads 1651-165N based on the locality of its source. As a result, the first logic unit 180 may be configured to monitor for (i) new threads created through remote (code) injection, (ii) new threads created through local reflection, or (iii) new thread created through remote (code) injection or local reflection.
Upon receiving the information 200 within the thread create notification 182, the first logic unit 180 may be further configured to perform a second filtering operation that disregards thread create notifications associated with newly created system threads (e.g., threads generated in the kernel space 132). The thread create notification 182 may identify whether a newly created thread is a system thread when the source PID 204 has a prescribed value (e.g., PID 4 is the Process ID for the Windows® system process). Herein, the first filtering operation and the second filtering operation may be performed sequentially or concurrently.
Additionally, the first logic unit 180 may be configured to gather meta-information 220 associated with each thread of the reduced set of newly created threads 210. The meta-information 220 may include, but is not limited or restricted to (a) information identifying what permissions 222 (read/write/execute) are assigned to a specific newly created thread, (b) a start address 224 for that specific newly created thread, (c) a size of memory 226 allocated to the specific newly created thread, or the like.
In summary, according to one embodiment of the disclosure, the first logic unit 180 may be configured to (i) detect newly created threads, optionally through a Windows-based API 170, (ii) filter certain type(s) of threads (e.g., system threads, threads created through remote injection, threads created through local reflection, etc.) from these detected threads to produce the reduced set of newly created threads 210, and (iii) acquire meta-information 220 associated with each thread of the reduced set of newly created threads 210.
Additionally, as an optional capability, the first logic unit 180 may be configured to obtain code 230 associated with each thread of the reduced set of newly created threads 210 (hereinafter referred to as “thread code” 230). According to one embodiment, the first logic unit 180 may obtain the thread code 230 by performing a memory copy of a region of memory defined by the start address 224 and the thread allocated memory size 226 being part of the meta-information 220. This acquisition of the meta-information 220 and/or thread code 230 is assured based on the deployment of the first logic unit 180 as a kernel driver within the kernel space 132 as described above.
In particular, where the first logic unit 180 is configured to retrieve the thread code 230 and malicious code execution is being conducted, the thread code 230 would correspond to shellcode. Hence, analytics of the shellcode 230 may be conducted to verify whether a newly created thread is or is not associated with a cyberattack through remote injection or local reflection.
Operating in user space 134 and responsible for determining whether the thread 1651, as represented by the meta-information 220 and/or the thread code 230 is associated with a cyberattack, the second logic unit (security agent) 185 may be configured to receive the meta-information 220 and optionally the thread code 230. Herein, the second logic unit 185 may be configured to receive the meta-information 220 and optionally the thread code 230 for each filtered, newly created thread successively. Alternatively, the first logic unit 180 may temporarily store the meta-information and/or thread code for multiple detected threads and upload to the second logic unit 185 collectively (e.g., upload information associated with multiple detections at scheduled times or at times when processor utilization is less than a prescribed threshold (e.g., less than 50% utilization, less than 25% utilization, etc.). Herein, description of meta-information and/or thread code uploading for a single thread is discussed, albeit the information may be accompany meta-information and/or thread code for other newly created (and filtered) threads.
According to one embodiment of the disclosure, the security agent 185 conducts one or more analyses of the meta-information 220, where the analyses may include a determination whether a particular level of correlation (e.g., from identical to a selected degree of similarity) exists between one or more portions of the meta-information 220 and known malicious meta-information 242 within one or more blacklists 240. Upon determining that the correlation between the portion(s) of the meta-information 220 and known malicious meta-information 242 within any of the blacklists 240 meets or exceeds the particular level of correlation, the security agent 185 may issue an alert 260 identifying that a malicious code execution event, representative of a cyberattack based on malicious code execution, is being conducted on the computing system 100.
Additionally, as an optional analytic, the security agent 185 may conduct one or more analyses on the thread code 230. The analyses may include (i) performing a transformation of the thread code 230 (e.g., conducting a one-way hash operation) to generate a representation 270 of the thread code 230 (or a portion of the thread code 230) and (ii) determining whether a certain level of correction exists between the representation 270 of the thread code 230 (or a portion of the thread code 230) and representations 280 of known shellcode 244 (or portions of the known shellcode 244). The representations of known shellcode 244 (or portions thereof) may be stored within the one or more blacklists 240. This comparison may be conducted to confirm that the newly created thread associated with the thread code 230 is associated with a cyberattack based on malicious code execution. Herein, according to one embodiment of the disclosure, the representation 270 of the thread code 230 (or a portion of the thread code 230) and representations 280 of the known shellcode (or portions of the known shellcode 244) may be a resultant hash value such as a MD5 or SHA-256 value, a checksum, or another data format having, e.g., a consistent size regardless of the byte size of the thread code 230.
In summary, the security agent 185 conducts analytics to determine whether a suitable level of correlation exists between at least a portion of the collected meta-information 220 and contents within a first blacklist 2401 and/or a first whitelist 2501. For example, the first blacklist 2401 may include the known malicious meta-information 242. The first whitelist 2501 may include meta-information 243 associated with known, non-malicious code execution events. Similarly, the security agent 185 may conduct analytics to determine whether a suitable level of correlation exists between the representation 270 of the thread code 230 or a portion thereof (e.g., SHA-256 hash value, MD5 hash value, checksum, etc.) and content within a second blacklist 2402 and/or a second whitelist 2502. The second blacklist 2402 may include representations 282 (one-way hash values) of shellcode (or portions of shellcode) while the second whitelist 2502 may include representations 282 (e.g., one-way hash values) of selected code associated with non-malicious code execution events. The code being used to formulate the second whitelist 2502 may be determined through machine learning, experiential knowledge, artificial intelligence-based results, or the like.
. However, if the security agent 185 is configured to classify the thread as “suspicious” or indefinite (e.g., the threat classification of the newly created thread cannot yet be confirmed as “malicious” or “benign”), the security agent 185 may be configured to provide the meta-information 220 and the thread code 230 to a centralized system 290 (e.g., third party security server), which is communicatively coupled directly or remotely to the computing system via a network connection. The centralized system 290 is configured to perform an emulation operation or other in-depth analyses on the meta-information 220 (e.g., virtual machine (VM-based) execution or machine-learning analysis) and/or the thread code 230 in order analyze the potential effects to the computing system (or network) caused by execution of the newly created thread. Additionally, the centralized system 290 may perform enrichment operations such as determining additional context with respect to the newly created thread such as whether any malicious domains are present in the thread code 230 and/or determining whether any intelligence in the form of context information can be obtained from the results of static and/or dynamic analyses.
IV. Thread Detection Logic—Architecture and Operability
Referring to
Herein, the monitoring logic 310 may be configured to establish communications with kernel-level tracing component 350, which is assessable via the Windows® Thread Creation API 170. The kernel-level tracing component 350 is configured to provide the thread create notification 182 to notify the monitoring logic 310 of a new thread being created during operations of a monitored process. Herein, the monitoring logic 310 may be notified in accordance with a “push” notification scheme in which the kernel-level tracing component 350 sends the thread create notification 182 in response to creation of a new thread by a monitored process. Alternatively, the monitor logic 310 may be notified in accordance with a “pull” notification scheme in which the monitoring logic 310 issues a query message 312 to the kernel-level tracing component 350, which returns one or more thread create notifications 182 corresponding to new threads that are being created and operating as part of the monitored process.
The filtering logic 320 is configured to perform one or more filtering operations to disregard newly created system threads, namely kernel-based threads for example, to maintain information 215 associated with the reduced set of newly created threads within a data store 360. In particular, each of the thread notification callbacks may include information to identify whether a newly created thread associated with that thread notification callback is a kernel-based thread. Given that malicious code execution tends to be perpetrated on userland-based threads, newly created system threads can be discarded, resulting in a lesser number of threads to be evaluated.
The meta-information collection logic 330 is configured to collect the meta-information 220 associated with each of the reduced set of newly created threads 210. For each newly created thread from the reduced set of newly created threads 210, the meta-information 220 may be extracted from information within its corresponding thread create notification 182 and/or information gathered from accessing certain Windows-based data structures (where acquisition is ensured based on deployment and operability of the first logic unit 180 as a kernel driver within the kernel space 132 of the memory 130). As described above, the meta-information 220 may include, but is not limited or restricted to at least (a) permissions 222 assigned to a particular newly created thread, (b) the start address 224, and/or (c) the allocated memory size 226 for the newly created thread.
Herein, the thread code extraction logic 340 is in communication with the meta-information collection logic 330 to receive the start address 224 of the newly created thread and the thread allocated memory size 226, being part of the meta-information 220 obtained by the meta-information collection logic 330, for each newly created thread. Based on this information, the thread code extraction logic 340 conducts a memory copy of the contents within a segment of memory defined by the start address 224 and the thread allocated memory size 226 to acquire the thread code 230. The controller 370 performs (drives) operability of the first logic unit 180.
Referring now to
For each of the newly created threads, meta-information associated with the newly created threads is collected (operation 430). The particular meta-information to be collected may be pre-selected (e.g., manufacturer set), configurable (e.g., selected) by a security administrator, or a combination where certain meta-information that is considered essential for malicious code execution analytics (e.g., starting address, thread memory allocation size, etc.) is pre-selected while other meta-information may be retrieved as selected by the security administrator (or user). Also, provided retrieval of the thread code is desired, using a portion of the collected meta-information, the thread code associated with the newly created thread may be recovered (operations 440 and 445). Optionally, as shown in
Therefore, the meta-information and optionally the thread code is provided to the security agent residing in the user space (operation 460). The agent is configured to conduct analytics on the meta-information and/or thread code to determine whether the newly created thread is associated with a malicious code execution cyberattack.
V. Security Agent—Architecture and Operability
Referring to
More specifically, the thread analytic logic 500 may include correlation logic 505, which is configured to conduct one or more analyses associated with the meta-information 220 to determine whether a correlation exists between a portion of the meta-information 220 and contents maintained within the blacklists 240, which include a first set (one or more) of blacklists 540 and/or a first set of whitelists 550. For example, the thread analytic logic 500 is configured to (i) access the first set of blacklists 540, which includes meta-information 545 associated with known malicious code execution events, and (ii) conduct one or more analyses to determine a level of correlation between the meta-information 220 and the meta-information 545 maintained within the first set of blacklist 540. This level of correlation, referred to as a first threat score 560 (e.g., ranging from 0→100), may be provided to the thread classification logic 520. Albeit, in lieu of determining a level of correlation based on scoring, it is contemplated that the level of correlation may be determined based on a degree of compliance and/or non-compliance with a set of rules that may be formulated to identify meta-information associated with known malicious code execution events.
Similarly, whitelists 250 may be utilized. More specifically, the thread analytic logic 500 may be configured to (i) access the first set of whitelist 550, which includes meta-information 555 associated with known, non-malicious code execution events, and (ii) conduct one or more analyses to determine a level of correlation between the meta-information 220 and the meta-information 555 maintained within the first set of whitelists 550. This level of correlation, referred to as a second threat score 561, which may be calibrated differently than the first threat score 560 (e.g., ranging from 100→0), may be provided to the classification logic 520. As stated above, in lieu of determining a level of correlation based on scoring, it is contemplated that the level of correlation may be determined based on a degree of compliance and/or non-compliance with another set of rules that may be formulated to identify meta-information associated with known non-malicious code execution events.
Additionally, the thread analytic logic 500 may further conduct one or more analyses pertaining to the thread code 230, which assists in determining whether the newly created thread is associated with a cyberattack based on malicious (position-independent) code execution. Herein, the thread analytic logic 500 includes transformation logic 510 that is configured to receive the thread code 230 and conduct one or more operations on the thread code 230 to generate a representation 570 of the thread code 230. Herein, the representation 570 of the thread code 230 may correspond to a hash value generated from the thread code 230 or a portion of the thread code 230 such as a SHA-256 hash value or an MD5 hash value. As an alternative, the representation 570 of the thread code 230 may correspond to an extracted portion of the thread code 230 or a checksum of the thread code 230. For this embodiment, the extracted portion of the thread code 230 may be selected based on machine learning, experiential knowledge, artificial intelligence-based results, or the like.
Thereafter, the thread analytic logic 500 conducts one or more analyses associated with the representation 570 to determine a level of correlation between the representation 570 and contents maintained within a second set of blacklist 580 and/or a second set of whitelist 560. In particular, the thread analytic logic 500 is configured to (i) access the second set of blacklists 580, which includes representation 585 of shellcode pertaining to malicious code execution, and (ii) conduct one or more analyses to determine a level of correlation between the representation 570 and representations 585 maintained within the second set of blacklists 580. This level of correlation, such a third threat score 562 (e.g., ranging from 0→100) or a degree of compliance and/or non-compliance with a chosen rule set for example, may be provided to the classification logic 520.
Also, the thread analytic logic 500 is configured to (i) access the second set of whitelists 590, which includes representations 595 associated with definitive, non-malicious thread code, and (ii) conduct one or more analyses to determine a level of correlation between the representation 570 and representations 595 maintained within the second set of whitelists 590. This level of correlation, such as a fourth threat score 563, which may be calibrated differently than the third threat score 562 (e.g., ranging from 100→0) or measured based on compliance and/or non-compliance with another rule set, may be provided to the classification logic 520.
As further shown in
Herein, where the newly created thread is deemed malicious based on the final threat score determined from the meta-information 220 and/or the thread code 230, the classification logic 520 may provide information 599 to the reporting logic 530 that identifies an assigned classification for the thread under analysis. For instance, when the final threat score determined the classification logic 520 exceeds a first threshold that denotes the newly created thread is malicious, the reporting logic 530 may receive information that causes the reporting logic 530 to issue the alert 260 that triggers an automated remediation of the newly created thread by terminating the process associated with the malicious thread (or blocking further activities by the malicious thread). However, where the final threat score assigned by the classification logic 520 exceeds a second threshold (less than the first threshold but still that denotes the thread is malicious), the reporting logic 530 may issue an alert that causes a dashboard warning and prompts an analyst to immediately review the results and determine whether to conduct a remediation operation on the malicious thread. However, where the final threat score assigned by the classification logic 520 exceeds a third threshold (less than the second threshold but still that denotes the thread is malicious), reporting logic 530 may issue an alert that causes the dashboard warning on the endpoint device (and/or another endpoint device), where remediation is determined by an administrator based on security protocols to be followed by the user of the endpoint device.
VI. Cyberthreat Analytic Logic—Flow of Operation
Referring now to
For each (filtered) thread of the reduced set of newly created threads, meta-information associated with each of these detected threads is collected (operation 615). The meta-information may include thread characteristics such as the locality of the creation of that thread (e.g., DLL location versus a user allocated memory), access permissions, thread memory allocation size for the thread, starting address for memory allocated for the thread, or the like. Additionally, using a portion of the collected meta-information, the code associated with the newly created thread (e.g., thread code) may be obtained (operation 620). The meta-information and/or the thread code is provided to the second logic unit that conducts non-behavioral analyses of the meta-information (operation 625). The non-behavioral analyses corresponds to analyses that can be performed without execution of the thread and monitoring behaviors of the thread or process associated with the thread.
According to one embodiment of the disclosure, a second series of operations is conducted by the second logic unit, such as a security agent being part of the cyberthreat analytic logic for example. Herein, for this embodiment of the disclosure, the second series of operations includes the non-behavioral analyses, where the second logic unit is determining the level of correlation between the received meta-information and meta-information associated with known malicious code execution events (operation 630). Additionally, or as an optional analytic, the level of correlation between a representation of the received thread code and a plurality of representations of shellcode associated with known malicious code execution events may be determined (operation 635).
Thereafter, based on the levels (or level) of correlation determined, represented by the threat scores (or threat score) according to one embodiment of the disclosure, a determination is made whether the newly created thread is associated with a cyberattack based on malicious code execution (operation 640). Depending on the levels of correlation (threat scores) determined, the newly created thread may be classified as “malicious,” “benign,” or “suspicious,” which may prompt additional analytics (e.g., emulation, behavioral analysis, etc.) remotely from the computing system (operations 645-655). Where the newly created thread is determined to be associated with a cyberattack based on malicious code execution (e.g., thread deemed malicious), an alert is generated and, optionally, a remediation scheme to initiate (operations 660-665). The type and/or user involvement in the selection of a particular remediation scheme (e.g., automated, administrator-based, etc.) may be based, at least in part, on the values of the threat scores. For instance, where the threat score exceeds a threshold that definitively classifies the thread as part of a cyberattack, the remediation scheme is automated without any administrator participation. As the threat score diminishes, the administrator (for the endpoint or cloud service) may have greater input as to the type and/or degree of remediation (e.g., blocking, quarantining, continued process with heightened controls as to communications over a public network (e.g., reduced to local area network, reduced to only certain approved web or email servers, etc.).
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Amold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9372989 | Grystan | Jun 2016 | B2 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060259967 | Thomas | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Amold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255014 | Sallam | Oct 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150101044 | Martin | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150326592 | Vissamsetty | Nov 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20170124327 | Kumbhar | May 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
20190156027 | Dabak | May 2019 | A1 |
20200210591 | Monastyrsky | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub .- mining.pdf-. |
“Network Security: NetDetector-Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.sp?reload=true&arnumbe- r=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cohen, M.I. , “PyFlag-An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-d/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |