The present invention relates generally to the analysis of multimedia content, and more specifically to a system for identifying a context of the multimedia content.
In the related art there are different techniques for identifying the context of multimedia content. One optional technique for determining a context of multimedia content (e.g., an image) is based on metadata data associated with the multimedia content. The metadata is typically associated with a multimedia content element and includes parameters such as the element's size, type, name, a short description, and so on. Attributes of the metadata may be mapped to various context categories, such as sports, friends, pets, and so on. For example, if a metadata attribute would include the name of the basketball player “Kobe Bryant” the respective image would be mapped to a sports context.
However, the attributes of metadata associated with multimedia content of the element are typically provided by the creator of the multimedia content or by a person saving or placing the multimedia content in a local device and/or a website. Therefore, the metadata, in most cases, is not sufficiently descriptive of the multimedia element. For example, a user may save a picture featuring a cat under the file name of “weekend fun.” In such an example, the metadata would not be descriptive of the contents of the picture.
Furthermore, techniques for determining the context of multimedia content based on their metadata or other textual information associated with the content cannot provide the current context of the multimedia content. As an example, consider an image of a sushi dish; the context can be distinguished between whether it is a dish currently served to a user at a restaurant or whether it is a recipe to prepare the dish. In addition, currently there is no available solution to determine the context of dynamic objects shown within multimedia content.
It would therefore be advantageous to provide a solution that would overcome the deficiencies noted above.
A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term some embodiments may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
The disclosure relates in various embodiments to a method and system for determining a current context of a multimedia content element. The method comprises receiving at least one multimedia content element from a user device; receiving at least one environmental variable related to the at least one multimedia content element; generating at least one signature for the multimedia content element; determining a context of the at least one multimedia content element based on the at least one contextual parameter; and determining the current context of the at least one multimedia content element based on at least one contextual parameter and the determined context.
The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
Certain exemplary embodiments disclosed herein provide a system and method that determine the context of one or more multimedia content elements, or portions thereof. Accordingly, at least one signature is generated for each multimedia content element, or portion thereof, received from a user device 120. In addition, at least one environmental variable is received from the user device 120. Then, respective of the signatures at least a first contextual parameter is determined and respective of the at least one environmental variable, at least a second contextual parameter is determined. Based on at least the first contextual parameter and at least the second contextual parameter, the context of the multimedia content elements is determined.
One or more user devices 120-1 through 120-n (collectively referred hereinafter as user devices 120 or individually as a user device 120, merely for simplicity purposes), such as, for example, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, a wearable computing device and other kinds of wired and/or mobile appliances, equipped with browsing, viewing, listening, filtering, and managing capabilities etc., are connected to the network 110. In an exemplary implementation, some or all of the user devices 120 are configured to capture multimedia content, for example, using a camera embedded in a user device 120.
In an embodiment, each user device 120 is further configured to collect one or more environmental variables related to the captured multimedia content. Such variables may include, but are not limited to, a time that the multimedia element was captured, a location of a user device 120, motion information related to a user device 120, weather information within the location, and so on.
In one configuration, the environment variables are captured by a software application (app) 125. As a non-limiting example, the user device 120-1 may further comprise an application software (app) 125-1 installed therein. The application 125-1 may be downloaded from an application repository such as, e.g., the AppStore®, Google Play®, or any repositories hosting software applications. The application 125 may be pre-installed in the user device 120. In one embodiment, the application 125 is a web-browser.
A data warehouse 150 is also included the system 100. In one configuration, the context server 130 communicates with a data warehouse 150 through the network 110. In other non-limiting configurations, the context server 130 is directly connected to the data warehouse 150.
The various embodiments disclosed herein are realized using the context server 130 and a signature generator system (SGS) 140. The SGS 140 may be connected to the context server 130 directly or through the network 110. The context server 130 is configured to receive and serve multimedia content and to cause the SGS 140 to generate a signature respective of the multimedia content elements. The process for generating the signatures for multimedia content is explained in more details herein below with respect to
According to the embodiments disclosed herein the current context of a multimedia content elements or elements is determined based, in part, on at least one environmental variable respective of the at least one multimedia content element. To this end, the context server 130 is configured to receive a multimedia content element and at least one parameter related to such element from the user device 120. The multimedia content element may be captured, stored, or downloaded by the user device 120. For each received multimedia content element at least one signature is generated using the SGS 140. The at least one generated signature is robust to noise and distortion as discussed below.
Based on the generated signatures, the context of the received multimedia content element is determined. A context is a set of common patterns among concepts. Mathematically, a context can be represented as a matrix of co-occurrences of concepts. A threshold may be associated with the number of co-occurrences of concepts in the matrix to establish a context. A concept is a collection of signatures representing a multimedia element and metadata describing the concept. The collection is a signature reduced cluster generated by inter-matching the signatures generated for the many multimedia elements, clustering the inter-matched signatures, and providing a reduced cluster set of such clusters. As a non-limiting example, a ‘Superman concept’ is a signature reduced cluster of signatures describing elements (such as multimedia content elements) related to, e.g., a Superman cartoon: a set of metadata consisting of textual representations of the Superman concept. Techniques for generating concepts and concept structures are described further in the U.S. Pat. No. 8,266,185 to Raichelgauz, et al., which is assigned to common assignee, and is incorporated hereby by reference for all that it contains.
In certain implementations, one or more probabilistic models may be utilized to determine the correlation between signatures representing concepts in order to determine the context. The probabilistic models determine, for example, the probability that a signature may appear in the same orientation and in the same ratio as another signature.
As an example for a context of multimedia content, an image may represent palm trees and a beach. In this example, the context of the image may be determined to be “sea shore.”
In another embodiment a context of a received multimedia content element may be retrieved from a data warehouse 150 based on the signature(s) generated for the multimedia content.
The context server 130 is further configured to analyze the at least one environmental variable in order to add another layer to the context defining current attributes to associate with the context. The analysis of the at least one environmental variable includes generating at least one contextual parameter related to the received variable. For example, if the environmental variable includes a location, the context server 130 would determine a contextual parameter related to the location, e.g., shopping mall, restaurant, outdoors, or exact location of the user. As in the above example, if the image of the beach is received with a location of Venice Beach, the context can be updated from “sea shore” to “California sea shore”.
As another example, an image is captured by a user device 120 and analyzed by the context server 130. The image includes visual representations of a piece of tuna fish and cucumber. Then, the determined context in this example is “sushi”. The received environmental variable is a restaurant name the user of the device 120 previously checked. Thus, based on the analysis of the environmental variable the contextual parameter is determined to be “Japanese restaurant” and respective thereof another layer is added to the determined context to note “sushi served in a Japanese restaurant.”
In a non-limiting embodiment, the contextual parameter is determined by comparing the received variable or variables to a plurality of concepts. The metadata associated with the concept can serve as the contextual parameter. A database for maintaining concepts to be utilized for the comparison can be found in a co-pending U.S. patent application Ser. No. 13/766,463, filed Feb. 13, 2013, assigned to common assignee, which is hereby incorporated by reference for all the useful information it contains. The database of concepts can be part of the data warehouse 150. In another embodiment, the received variable is explicitly used as the contextual parameter if the received parameter is determined to be descriptive.
According to another embodiment, the context server 130 is further configured to search the data warehouse 150 for a matching advertisement based on the determined current context. An example for matching an advertisement based on the determined context is disclosed in a co-pending U.S. patent application Ser. No. 13/770,603, filed Feb. 19, 2013, assigned to common assignee, which is hereby incorporated by reference for all the useful information it contains.
It should be noted that using signatures and environmental variables for determining the context and thereby for the searching of advertisements ensures more accurate reorganization of multimedia content than, for example, when using metadata. For instance, in order to provide a matching advertisement for a sports car it may be desirable to locate a car of a particular model. However, in most cases the model of the car would not be part of the metadata associated with the multimedia content (image). Moreover, the car shown in an image may be at angles different from the angles of a specific photograph of the car that is available as a search item. The signature generated for that image would enable accurate recognition of the model of the car because the signatures generated for the multimedia content elements, according to the disclosed embodiments, allow for recognition and classification of multimedia content elements, such as, content-tracking, video filtering, multimedia taxonomy generation, video fingerprinting, speech-to-text, audio classification, element recognition, video/image search and any other application requiring content-based signatures generation and matching for large content volumes such as, web and other large-scale databases.
It should be noted that each of the context server 130 and the SGS 140 typically comprises a processing system (not shown) that is coupled to a memory (not shown), and optionally a network interface (not shown). The processing system is connected to the memory, which typically contains instructions that can be executed by the processing system. The context server 130 may also include a network interface (not shown) to the network 110. In one embodiment, the processing system is realized by or includes an array of Computational Cores configured as discussed in more detail below. In another embodiment, the processing system of each of the context server 130 and SGS 140 may comprise or be a component of a larger processing system implemented with one or more processors. The one or more processors may be implemented with any combination of general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate array (FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic, discrete hardware components, dedicated hardware finite state machines, or any other suitable entities that can perform calculations or other manipulations of information.
In S220, at least one signature for the multimedia content element is generated. The signature for the multimedia content element generated by a signature generator is described below with respect to
In S230, respective of the at least one generated signature a context of the multimedia content element is determined. In one embodiment, a context server is configured to analyze the correlation between the signatures generated for multimedia content element, or portions thereof. Each signature may represent a different concept. The signatures are analyzed to determine the correlation concepts. As noted above, a concept is an abstract description of the content to which the signature was generated. For example, a concept of the signature generated for a picture showing a bouquet of red roses is “flowers”. The correlation between concepts can be achieved by identifying a ratio between signatures' sizes, a spatial location of each signature, and so on using probabilistic models. The probabilistic models determine, for example, the probability that a signature may appear in the same orientation and in the same ratio as another signature. In another embodiment, the at least one generated signature can be utilized to retrieved a matching context, for example, from a data warehouse 150.
In S240, at least one environmental variable respective of the at least one multimedia content element is received from the user device. The environmental variable may be for example a time that the multimedia element was captured, a location of a user device 120, motion information related to a user device 120, weather information within the location, and so on. The environmental variables are collected by the user device (e.g., a user device 120) and/or an application (e.g., app 125) installed therein. In certain embodiments, the environmental variable is received together with the multimedia content element.
In S250, respective of the at least one environmental variable, a contextual parameter is determined. As noted above, the contextual parameter may be determined by comparing the environmental variable to a plurality of concepts. The metadata of the matching concept is determined to be the contextual parameter. In another embodiment, the received variable is explicitly used as the contextual parameter if the received parameter is determined to be descriptive.
In S260, a current context is determined based on the contextual parameter and the context of the at least one multimedia content element. In an exemplary embodiment, the contextual parameter is added as another layer to the context determined at S240 to better define the current relevancy of the context. Therefore, the current context provides an accurate and current interpretation or representation for the received multimedia content element.
As a non-limiting example, an image showing a panda bear is received from a user device together with a user location at a shopping mall as the variable. Based on the signatures generated for the panda bear image, the determined context is “mammal”. An analysis of the received environmental results in a contextual parameter of a “toys store”. Respective thereto, the current context of the received content element is determined to be “toys.”
In S270, it is checked whether there are additional multimedia content elements to analyze multimedia content elements, and if so, execution continues with S210; otherwise, execution terminates.
It should be noted that the order of which the steps are performed in
Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the signatures (hereinafter the “Architecture”). Further details on the Computational Cores generation are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in
To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the Computational Cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames.
The signatures' generation process is now described with reference to
In order to generate Robust Signatures 4, i.e., signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame T is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: {right arrow over (S)} which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.
For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:
where, is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); ThX is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.
The Threshold values ThX are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:
1: For: Vi>ThRS
1−p(V>ThS)−1−(1−ε)l<<1
i.e., given that I nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, Ĩ is sufficiently low (according to a system's specified accuracy).
2: p(Vi>ThRS)≈l/L
i.e., approximately l out of the total L nodes can be found to generate a Robust Signature according to the above definition.
3: Both Robust Signature and Signature are generated for certain frame i.
It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to common assignee, which are hereby incorporated by reference for all the useful information they contain.
A Computational Core generation is a process of definition, selection, and tuning of the parameters of the Cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:
The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices, and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Number | Date | Country | Kind |
---|---|---|---|
171577 | Oct 2005 | IL | national |
173409 | Jan 2006 | IL | national |
185414 | Aug 2007 | IL | national |
This application claims the benefit of U.S. Provisional Application No. 61/889,545 filed on Oct. 11, 2013, the contents of which are hereby incorporated by reference. This application is also a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/770,603 filed on Feb. 19, 2013, now pending. The Ser. No. 13/770,603 application is a CIP of U.S. patent application Ser. No. 13/624,397 filed on Sep. 21, 2012, now pending. The Ser. No. 13/624,397 is a CIP of: (a) U.S. patent application Ser. No. 13/344,400 filed on Jan. 5, 2012, now pending, which is a continuation of U.S. patent application Ser. No. 12/434,221, filed May 1, 2009, now U.S. Pat. No. 8,112,376;(b) U.S. patent application Ser. No. 12/195,863, filed Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the below-referenced U.S. patent application Ser. No. 12/084,150; and,(c) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235 filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005 and Israeli Application No. 173409 filed on Jan. 29, 2006.All of the applications referenced above are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5214746 | Fogel et al. | May 1993 | A |
5307451 | Clark | Apr 1994 | A |
5412564 | Ecer | May 1995 | A |
5436653 | Ellis et al. | Jul 1995 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5638425 | Meador et al. | Jun 1997 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5763069 | Jordan | Jun 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5835901 | Duvoisin, III | Nov 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5940821 | Wical | Aug 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
5991306 | Bums et al. | Nov 1999 | A |
6038560 | Wical | Mar 2000 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6070167 | Qian et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6128651 | Cezar | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6163510 | Lee et al. | Dec 2000 | A |
6240423 | Hirata | May 2001 | B1 |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6314419 | Faisal | Nov 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6363373 | Steinkraus | Mar 2002 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6493692 | Kobayashi et al. | Dec 2002 | B1 |
6493705 | Kobayashi et al. | Dec 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523022 | Hobbs | Feb 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6526400 | Takata et al. | Feb 2003 | B1 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6560597 | Dhillon et al. | May 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6601060 | Tomaru | Jul 2003 | B1 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6611837 | Schreiber | Aug 2003 | B2 |
6618711 | Ananth | Sep 2003 | B1 |
6640015 | Lafruit | Oct 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6665657 | Dibachi | Dec 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6681032 | Bortolussi et al. | Jan 2004 | B2 |
6704725 | Lee | Mar 2004 | B1 |
6728706 | Aggarwal et al. | Apr 2004 | B2 |
6732149 | Kephart | May 2004 | B1 |
6742094 | Igari | May 2004 | B2 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6751613 | Lee et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6813395 | Kinjo | Nov 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6836776 | Schreiber | Dec 2004 | B2 |
6845374 | Oliver et al. | Jan 2005 | B1 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6978264 | Chandrasekar et al. | Dec 2005 | B2 |
6985172 | Rigney et al. | Jan 2006 | B1 |
7006689 | Kasutani | Feb 2006 | B2 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7020654 | Najmi | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7047033 | Wyler | May 2006 | B2 |
7124149 | Smith et al. | Oct 2006 | B2 |
7158681 | Persiantsev | Jan 2007 | B2 |
7199798 | Echigo et al. | Apr 2007 | B1 |
7215828 | Luo | May 2007 | B2 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7277928 | Lennon | Oct 2007 | B2 |
7296012 | Ohashi | Nov 2007 | B2 |
7299261 | Oliver et al. | Nov 2007 | B1 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7340358 | Yoneyama | Mar 2008 | B2 |
7340458 | Vaithilingam et al. | Mar 2008 | B2 |
7346629 | Kapur et al. | Mar 2008 | B2 |
7353224 | Chen et al. | Apr 2008 | B2 |
7376672 | Weare | May 2008 | B2 |
7376722 | Sim et al. | May 2008 | B1 |
7392238 | Zhou et al. | Jun 2008 | B1 |
7406459 | Chen et al. | Jul 2008 | B2 |
7433895 | Li et al. | Oct 2008 | B2 |
7450740 | Shah et al. | Nov 2008 | B2 |
7464086 | Black et al. | Dec 2008 | B2 |
7519238 | Robertson et al. | Apr 2009 | B2 |
7523102 | Bjarnestam et al. | Apr 2009 | B2 |
7526607 | Singh et al. | Apr 2009 | B1 |
7529659 | Wold | May 2009 | B2 |
7536384 | Venkataraman et al. | May 2009 | B2 |
7536417 | Walsh et al. | May 2009 | B2 |
7542969 | Rappaport et al. | Jun 2009 | B1 |
7548910 | Chu et al. | Jun 2009 | B1 |
7555477 | Bayley et al. | Jun 2009 | B2 |
7555478 | Bayley et al. | Jun 2009 | B2 |
7562076 | Kapur | Jul 2009 | B2 |
7574436 | Kapur et al. | Aug 2009 | B2 |
7574668 | Nunez et al. | Aug 2009 | B2 |
7577656 | Kawai et al. | Aug 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7660737 | Lim et al. | Feb 2010 | B1 |
7689544 | Koenig | Mar 2010 | B2 |
7694318 | Eldering et al. | Apr 2010 | B2 |
7697791 | Chan et al. | Apr 2010 | B1 |
7769221 | Shakes et al. | Aug 2010 | B1 |
7788132 | Desikan et al. | Aug 2010 | B2 |
7788247 | Wang et al. | Aug 2010 | B2 |
7801893 | Gulli | Sep 2010 | B2 |
7836054 | Kawai et al. | Nov 2010 | B2 |
7860895 | Scofield et al. | Dec 2010 | B1 |
7904503 | Van De Sluis | Mar 2011 | B2 |
7920894 | Wyler | Apr 2011 | B2 |
7921107 | Chang et al. | Apr 2011 | B2 |
7933407 | Keidar et al. | Apr 2011 | B2 |
7974994 | Li et al. | Jul 2011 | B2 |
7987194 | Walker et al. | Jul 2011 | B1 |
7987217 | Long et al. | Jul 2011 | B2 |
7991715 | Schiff et al. | Aug 2011 | B2 |
8000655 | Wang et al. | Aug 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
3036893 | Reich | Oct 2011 | A1 |
8098934 | Vincent et al. | Jan 2012 | B2 |
8112376 | Raichelgauz et al. | Feb 2012 | B2 |
8266185 | Raichelgauz et al. | Sep 2012 | B2 |
8275764 | Jeon | Sep 2012 | B2 |
8312031 | Raichelgauz et al. | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8316005 | Moore | Nov 2012 | B2 |
8326775 | Raichelgauz et al. | Dec 2012 | B2 |
8332478 | Levy et al. | Dec 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
RE44225 | Aviv | May 2013 | E |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8495489 | Everingham | Jul 2013 | B1 |
8527978 | Sallam | Sep 2013 | B1 |
8548828 | Longmire | Oct 2013 | B1 |
8634980 | Urmson | Jan 2014 | B1 |
8635531 | Graham et al. | Jan 2014 | B2 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8655878 | Kulkarni et al. | Feb 2014 | B1 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8682667 | Haughey | Mar 2014 | B2 |
8688446 | Yanagihara | Apr 2014 | B2 |
8706503 | Cheyer et al. | Apr 2014 | B2 |
8775442 | Moore et al. | Jul 2014 | B2 |
8781152 | Momeyer | Jul 2014 | B2 |
8782077 | Rowley | Jul 2014 | B1 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8868619 | Raichelgauz et al. | Oct 2014 | B2 |
8868861 | Shimizu et al. | Oct 2014 | B2 |
8880539 | Raichelgauz et al. | Nov 2014 | B2 |
8880566 | Raichelgauz et al. | Nov 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8898568 | Bull et al. | Nov 2014 | B2 |
8922414 | Raichelgauz et al. | Dec 2014 | B2 |
8959037 | Raichelgauz et al. | Feb 2015 | B2 |
8990125 | Raichelgauz et al. | Mar 2015 | B2 |
8990199 | Ramesh et al. | Mar 2015 | B1 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9031999 | Raichelgauz et al. | May 2015 | B2 |
9087049 | Raichelgauz et al. | Jul 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9165406 | Gray et al. | Oct 2015 | B1 |
9191626 | Raichelgauz et al. | Nov 2015 | B2 |
9197244 | Raichelgauz et al. | Nov 2015 | B2 |
9218606 | Raichelgauz et al. | Dec 2015 | B2 |
9235557 | Raichelgauz et al. | Jan 2016 | B2 |
9256668 | Raichelgauz et al. | Feb 2016 | B2 |
9298763 | Zack | Mar 2016 | B1 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9330189 | Raichelgauz et al. | May 2016 | B2 |
9384196 | Raichelgauz et al. | Jul 2016 | B2 |
9438270 | Raichelgauz et al. | Sep 2016 | B2 |
9440647 | Sucan | Sep 2016 | B1 |
9466068 | Raichelgauz et al. | Oct 2016 | B2 |
9606992 | Geisner et al. | Mar 2017 | B2 |
9646006 | Raichelgauz et al. | May 2017 | B2 |
9679062 | Schillings et al. | Jun 2017 | B2 |
9734533 | Givot | Aug 2017 | B1 |
9807442 | Bhatia et al. | Oct 2017 | B2 |
9875445 | Amer et al. | Jan 2018 | B2 |
9984369 | Li et al. | May 2018 | B2 |
10133947 | Yang | Nov 2018 | B2 |
10347122 | Takenaka | Jul 2019 | B2 |
10491885 | Hicks | Nov 2019 | B1 |
20010019633 | Tenze et al. | Sep 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020010715 | Chinn et al. | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020037010 | Yamauchi | Mar 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020042914 | Walker et al. | Apr 2002 | A1 |
20020059580 | Kalker | May 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith et al. | Jul 2002 | A1 |
20020099870 | Miller et al. | Jul 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020113812 | Walker et al. | Aug 2002 | A1 |
20020123928 | Eldering | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020129296 | Kwiat et al. | Sep 2002 | A1 |
20020143976 | Barker et al. | Oct 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020159640 | Vaithilingam et al. | Oct 2002 | A1 |
20020161739 | Oh | Oct 2002 | A1 |
20020163532 | Thomas et al. | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020178410 | Haitsma et al. | Nov 2002 | A1 |
20020184505 | Mihcak et al. | Dec 2002 | A1 |
20030005432 | Ellis et al. | Jan 2003 | A1 |
20030028660 | Igawa et al. | Feb 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030041047 | Chang et al. | Feb 2003 | A1 |
20030050815 | Seigel et al. | Mar 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030086627 | Berriss et al. | May 2003 | A1 |
20030089216 | Birmingham | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030101150 | Agnihotri et al. | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030115191 | Copperman et al. | Jun 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030182567 | Barton et al. | Sep 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030191764 | Richards | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung et al. | Nov 2003 | A1 |
20030229531 | Heckerman et al. | Dec 2003 | A1 |
20040003394 | Ramaswamy | Jan 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040059736 | Willse | Mar 2004 | A1 |
20040068510 | Hayes et al. | Apr 2004 | A1 |
20040091111 | Levy | May 2004 | A1 |
20040095376 | Graham et al. | May 2004 | A1 |
20040098671 | Graham et al. | May 2004 | A1 |
20040107181 | Rodden | Jun 2004 | A1 |
20040111432 | Adams et al. | Jun 2004 | A1 |
20040111465 | Chuang et al. | Jun 2004 | A1 |
20040117367 | Smith et al. | Jun 2004 | A1 |
20040117638 | Monroe | Jun 2004 | A1 |
20040128142 | Whitham | Jul 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040133927 | Sternberg et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040215663 | Liu et al. | Oct 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040249779 | Nauck et al. | Dec 2004 | A1 |
20040260688 | Gross | Dec 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050144455 | Haitsma | Jun 2005 | A1 |
20050163375 | Grady | Jul 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050193015 | Logston | Sep 2005 | A1 |
20050238198 | Brown et al. | Oct 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050245241 | Durand et al. | Nov 2005 | A1 |
20050249398 | Khamene et al. | Nov 2005 | A1 |
20050256820 | Dugan et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060013451 | Haitsma | Jan 2006 | A1 |
20060020860 | Tardif et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060026203 | Tan et al. | Feb 2006 | A1 |
20060031216 | Semple et al. | Feb 2006 | A1 |
20060033163 | Chen | Feb 2006 | A1 |
20060041596 | Stirbu et al. | Feb 2006 | A1 |
20060048191 | Xiong | Mar 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060100987 | Leurs | May 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060120626 | Perlmutter | Jun 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060143674 | Jones et al. | Jun 2006 | A1 |
20060153296 | Deng | Jul 2006 | A1 |
20060159442 | Kim et al. | Jul 2006 | A1 |
20060173688 | Whitham | Aug 2006 | A1 |
20060184638 | Chua et al. | Aug 2006 | A1 |
20060204035 | Guo et al. | Sep 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060218191 | Gopalakrishnan | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242130 | Sadri et al. | Oct 2006 | A1 |
20060242139 | Butterfield et al. | Oct 2006 | A1 |
20060242554 | Gerace et al. | Oct 2006 | A1 |
20060247983 | Dalli | Nov 2006 | A1 |
20060248558 | Barton | Nov 2006 | A1 |
20060251339 | Gokturk | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20060288002 | Epstein et al. | Dec 2006 | A1 |
20070009159 | Fan | Jan 2007 | A1 |
20070011151 | Hagar et al. | Jan 2007 | A1 |
20070019864 | Koyama et al. | Jan 2007 | A1 |
20070022374 | Huang et al. | Jan 2007 | A1 |
20070033163 | Epstein et al. | Feb 2007 | A1 |
20070038608 | Chen | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070067682 | Fang | Mar 2007 | A1 |
20070071330 | Oostveen et al. | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130112 | Lin | Jun 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070156720 | Maren | Jul 2007 | A1 |
20070168413 | Barletta et al. | Jul 2007 | A1 |
20070174320 | Chou | Jul 2007 | A1 |
20070195987 | Rhoads | Aug 2007 | A1 |
20070196013 | Li | Aug 2007 | A1 |
20070220573 | Chiussi et al. | Sep 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070255785 | Hayashi | Nov 2007 | A1 |
20070268309 | Tanigawa et al. | Nov 2007 | A1 |
20070282826 | Hoeber et al. | Dec 2007 | A1 |
20070294295 | Finkelstein et al. | Dec 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080019614 | Robertson et al. | Jan 2008 | A1 |
20080040277 | Dewitt | Feb 2008 | A1 |
20080046406 | Seide et al. | Feb 2008 | A1 |
20080049629 | Morrill | Feb 2008 | A1 |
20080049789 | Vedantham et al. | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080079729 | Brailovsky | Apr 2008 | A1 |
20080091527 | Silverbrook et al. | Apr 2008 | A1 |
20080109433 | Rose | May 2008 | A1 |
20080152231 | Gokturk | Jun 2008 | A1 |
20080159622 | Agnihotri et al. | Jul 2008 | A1 |
20080163288 | Ghosal et al. | Jul 2008 | A1 |
20080165861 | Wen et al. | Jul 2008 | A1 |
20080166020 | Kosaka | Jul 2008 | A1 |
20080172615 | Igelman et al. | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080201314 | Smith et al. | Aug 2008 | A1 |
20080201361 | Castro et al. | Aug 2008 | A1 |
20080204706 | Magne et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080253737 | Kimura et al. | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080270569 | McBride | Oct 2008 | A1 |
20080294278 | Borgeson | Nov 2008 | A1 |
20080307454 | Ahanger et al. | Dec 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090013414 | Washington et al. | Jan 2009 | A1 |
20090022472 | Bronstein | Jan 2009 | A1 |
20090024641 | Quigley | Jan 2009 | A1 |
20090034791 | Doretto | Feb 2009 | A1 |
20090037408 | Rodgers | Feb 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090043818 | Raichelgauz | Feb 2009 | A1 |
20090080759 | Bhaskar | Mar 2009 | A1 |
20090089587 | Brunk et al. | Apr 2009 | A1 |
20090119157 | Dulepet | May 2009 | A1 |
20090125529 | Vydiswaran et al. | May 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090175538 | Bronstein et al. | Jul 2009 | A1 |
20090204511 | Tsang | Aug 2009 | A1 |
20090208106 | Dunlop et al. | Aug 2009 | A1 |
20090216639 | Kapczynski et al. | Aug 2009 | A1 |
20090216761 | Raichelgauz | Aug 2009 | A1 |
20090220138 | Zhang et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090245603 | Koruga et al. | Oct 2009 | A1 |
20090253583 | Yoganathan | Oct 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20090254824 | Singh | Oct 2009 | A1 |
20090259687 | Mai et al. | Oct 2009 | A1 |
20090277322 | Cai et al. | Nov 2009 | A1 |
20090278934 | Ecker | Nov 2009 | A1 |
20090282218 | Raichelgauz et al. | Nov 2009 | A1 |
20090297048 | Slotine et al. | Dec 2009 | A1 |
20100023400 | Dewitt | Jan 2010 | A1 |
20100042646 | Raichelgauz | Feb 2010 | A1 |
20100082684 | Churchill | Apr 2010 | A1 |
20100088321 | Soloman et al. | Apr 2010 | A1 |
20100104184 | Bronstein et al. | Apr 2010 | A1 |
20100106857 | Wyler | Apr 2010 | A1 |
20100111408 | Matsuhira | May 2010 | A1 |
20100125569 | Nair et al. | May 2010 | A1 |
20100162405 | Cook et al. | Jun 2010 | A1 |
20100173269 | Puri et al. | Jul 2010 | A1 |
20100191567 | Lee et al. | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100268524 | Nath et al. | Oct 2010 | A1 |
20100284604 | Chrysanthakopoulos | Nov 2010 | A1 |
20100306193 | Pereira | Dec 2010 | A1 |
20100312736 | Kello | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100322522 | Wang et al. | Dec 2010 | A1 |
20100325138 | Lee et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20110029620 | Bonforte | Feb 2011 | A1 |
20110035289 | King et al. | Feb 2011 | A1 |
20110038545 | Bober | Feb 2011 | A1 |
20110052063 | McAuley et al. | Mar 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110106782 | Ke et al. | May 2011 | A1 |
20110125727 | Zou et al. | May 2011 | A1 |
20110145068 | King et al. | Jun 2011 | A1 |
20110164180 | Lee | Jul 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110202848 | Ismalon | Aug 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110218946 | Stern et al. | Sep 2011 | A1 |
20110246566 | Kashef | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110276680 | Rimon | Nov 2011 | A1 |
20110296315 | Lin et al. | Dec 2011 | A1 |
20110313856 | Cohen et al. | Dec 2011 | A1 |
20120082362 | Diem et al. | Apr 2012 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120133497 | Sasaki | May 2012 | A1 |
20120150890 | Jeong et al. | Jun 2012 | A1 |
20120167133 | Carroll et al. | Jun 2012 | A1 |
20120179642 | Sweeney et al. | Jul 2012 | A1 |
20120179751 | Ahn | Jul 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120191686 | Hjelm et al. | Jul 2012 | A1 |
20120197857 | Huang et al. | Aug 2012 | A1 |
20120221470 | Lyon | Aug 2012 | A1 |
20120227074 | Hill et al. | Sep 2012 | A1 |
20120239690 | Asikainen et al. | Sep 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120301105 | Rehg et al. | Nov 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130031489 | Gubin et al. | Jan 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067035 | Amanat et al. | Mar 2013 | A1 |
20130067364 | Berntson et al. | Mar 2013 | A1 |
20130080433 | Raichelgauz et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski et al. | Apr 2013 | A1 |
20130103814 | Carrasco | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130173635 | Sanjeev | Jul 2013 | A1 |
20130212493 | Krishnamurthy | Aug 2013 | A1 |
20130226820 | Sedota, Jr. | Aug 2013 | A1 |
20130226930 | Amgren et al. | Aug 2013 | A1 |
20130283401 | Pabla et al. | Oct 2013 | A1 |
20130311924 | Denker et al. | Nov 2013 | A1 |
20130325550 | Varghese et al. | Dec 2013 | A1 |
20130332951 | Gharaat et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140059443 | Tabe | Feb 2014 | A1 |
20140095425 | Sipple | Apr 2014 | A1 |
20140111647 | Atsmon | Apr 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140169681 | Drake | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140188786 | Raichelgauz et al. | Jul 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140201330 | Lozano Lopez | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140310825 | Raichelgauz et al. | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20140341476 | Kulick et al. | Nov 2014 | A1 |
20140379477 | Sheinfeld | Dec 2014 | A1 |
20150033150 | Lee | Jan 2015 | A1 |
20150100562 | Kohlmeier et al. | Apr 2015 | A1 |
20150117784 | Lin | Apr 2015 | A1 |
20150120627 | Hunzinger et al. | Apr 2015 | A1 |
20150134688 | Jing | May 2015 | A1 |
20150154189 | Raichelgauz et al. | Jun 2015 | A1 |
20150254344 | Kulkarni et al. | Sep 2015 | A1 |
20150286742 | Zhang et al. | Oct 2015 | A1 |
20150289022 | Gross | Oct 2015 | A1 |
20150324356 | Gutierrez et al. | Nov 2015 | A1 |
20150363644 | Wnuk | Dec 2015 | A1 |
20160007083 | Gurha | Jan 2016 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
20160210525 | Yang | Jul 2016 | A1 |
20160221592 | Puttagunta | Aug 2016 | A1 |
20160239566 | Raichelgauz et al. | Aug 2016 | A1 |
20160306798 | Guo et al. | Oct 2016 | A1 |
20160342683 | Kwon | Nov 2016 | A1 |
20160357188 | Ansari | Dec 2016 | A1 |
20170017638 | Satyavarta et al. | Jan 2017 | A1 |
20170032257 | Sharifi | Feb 2017 | A1 |
20170041254 | Agara Venkatesha Rao | Feb 2017 | A1 |
20170109602 | Kim | Apr 2017 | A1 |
20170154241 | Shambik et al. | Jun 2017 | A1 |
20170255620 | Raichelgauz | Sep 2017 | A1 |
20170262437 | Raichelgauz | Sep 2017 | A1 |
20170323568 | Inoue | Nov 2017 | A1 |
20180081368 | Watanabe | Mar 2018 | A1 |
20180101177 | Cohen | Apr 2018 | A1 |
20180157916 | Doumbouya | Jun 2018 | A1 |
20180158323 | Takenaka | Jun 2018 | A1 |
20180204111 | Zadeh | Jul 2018 | A1 |
20190005726 | Nakano | Jan 2019 | A1 |
20190039627 | Yamamoto | Feb 2019 | A1 |
20190043274 | Hayakawa | Feb 2019 | A1 |
20190045244 | Balakrishnan | Feb 2019 | A1 |
20190056718 | Satou | Feb 2019 | A1 |
20190065951 | Luo | Feb 2019 | A1 |
20190188501 | Ryu | Jun 2019 | A1 |
20190220011 | Della Penna | Jul 2019 | A1 |
20190317513 | Zhang | Oct 2019 | A1 |
20190364492 | Azizi | Nov 2019 | A1 |
20190384303 | Muller | Dec 2019 | A1 |
20190384312 | Herbach | Dec 2019 | A1 |
20190385460 | Magzimof | Dec 2019 | A1 |
20190389459 | Berntorp | Dec 2019 | A1 |
20200004248 | Healey | Jan 2020 | A1 |
20200004251 | Zhu | Jan 2020 | A1 |
20200004265 | Zhu | Jan 2020 | A1 |
20200005631 | Visintainer | Jan 2020 | A1 |
20200018606 | Wolcott | Jan 2020 | A1 |
20200018618 | Ozog | Jan 2020 | A1 |
20200020212 | Song | Jan 2020 | A1 |
20200050973 | Stenneth | Feb 2020 | A1 |
20200073977 | Montemerlo | Mar 2020 | A1 |
20200090484 | Chen | Mar 2020 | A1 |
20200097756 | Hashimoto | Mar 2020 | A1 |
20200133307 | Kelkar | Apr 2020 | A1 |
20200043326 | Tao | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
1085464 | Jan 2007 | EP |
0231764 | Apr 2002 | WO |
0231764 | Apr 2002 | WO |
2003005242 | Jan 2003 | WO |
2003067467 | Aug 2003 | WO |
2004019527 | Mar 2004 | WO |
2005027457 | Mar 2005 | WO |
2007049282 | May 2007 | WO |
20070049282 | May 2007 | WO |
2014076002 | May 2014 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
2016070193 | May 2016 | WO |
Entry |
---|
Hua, Xian-Sheng, Xian Chen, and Hong-Jiang Zhang. “Robust video signature based on ordinal measure.” Image Processing, 2004. ICIP'04. 2004 International Conference on. vol. 1. IEEE, 2004. |
Yanagawa, Akira, et al. “Columbia university's baseline detectors for 374 Iscom semantic visual concepts.” Columbia University ADVENT technical report (2007): 222-2006. |
Lu, Chun-Shien, and Hong-Yuan Mark Liao. “Structural digital signature for image authentication: an incidental distortion resistant scheme.” Proceedings of the 2000 ACM workshops on Multimedia. ACM, 2000. |
Jasinschi, Radu S., et al. “A probabilistic layered framework for integrating multimedia content and context information.” 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. vol. 2. IEEE, 2002. (Year: 2002). |
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005. |
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475. |
Foote, Jonathan et al., “Content-Based Retrieval of Music and Audio”; 1997, Institute of Systems Science, National University of Singapore, Singapore (Abstract). |
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000. |
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009. |
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009. |
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008. |
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012. |
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046. |
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251. German National Research Center for Information Technology. |
Lin, C.; Chang, S.: “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Mutlimedia '98; Bristol, U.K., Sep. 1998; pp. 49-54. |
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003. |
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254. |
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005. |
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4. |
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591. |
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005. |
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine; a case study”, Information Processing Letters, Amsterdam, NL, col. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190. |
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688. |
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252. |
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Received Nov. 16, 2001, Available online Mar. 12, 2002. |
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003. |
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009. |
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008. |
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007. |
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995. |
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009. |
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Montery, California, Dec. 1989. |
Mandhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009. |
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996. |
Scheper, et al. “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96. |
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia. |
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system. |
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357. |
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523. |
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346. |
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK. |
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176. |
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388. |
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications. |
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications. |
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Leaming”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications. |
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications. |
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4. |
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003. |
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3. |
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19. |
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE New York, pp. 1-2. |
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11. |
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bauman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10. |
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017. |
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292. |
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU. |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017. |
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230. |
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University Advent technical report, 2007, pp. 222-2006-8. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14. |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts institute of Technology, 2004, pp. 1-106. |
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Leaming”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228. |
Ma Et El. (“Semantics modeling based image retrieval system using neural networks” 2005 (Year: 2005). |
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA. |
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ]. |
Bowl et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14. |
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4. |
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society; 2010; pp. 52-60. (Year: 2010). |
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3. |
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009). |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106. |
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314. |
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017. |
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017. |
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103. |
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005). |
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251. |
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173. |
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12. |
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41. |
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3. |
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996. |
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292. |
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48. |
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014). |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93. |
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions on circuits and systems for video technology 8.5 (1998): 644-655. |
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12. |
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230. |
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275. |
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56. |
Stolberg et al (“Hibrid-Soc: A Multi-Core Soc Architecture for Multimedia Signal Processing” 2003). |
Stolberg et al, “Hibrid-Soc: A Mul Ti-Core Soc Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281. |
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007). |
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528. |
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12. |
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300. |
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5. |
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17. |
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222, 2007, pp. 2006-2008. |
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China Received Nov. 16, 2001, Available online Mar. 12, 2002, pp. 239-263. |
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42. |
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15. |
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002). |
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011). |
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006). |
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016). |
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005). |
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018). |
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015). |
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines. |
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications. |
Park, el al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications. |
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234. |
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications. |
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France. |
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year. 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong. |
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26. |
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona. |
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343485, Czech Republic. |
Number | Date | Country | |
---|---|---|---|
20150026177 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61889545 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13770603 | Feb 2013 | US |
Child | 14509552 | US | |
Parent | 13624397 | Sep 2012 | US |
Child | 13770603 | US | |
Parent | 13344400 | Jan 2012 | US |
Child | 13624397 | US | |
Parent | 12434221 | May 2009 | US |
Child | 13344400 | US | |
Parent | 12195863 | Aug 2008 | US |
Child | 13624397 | US | |
Parent | 12084150 | Apr 2009 | US |
Child | 12195863 | US | |
Parent | 12084150 | US | |
Child | 13624397 | US |