1. Field of the Invention
The field of the invention relates to microelectromechanical systems (MEMS).
2. Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
One aspect of the invention is a reflective display, comprising a substrate having a first surface, a plurality of interferometric modulators disposed on a second surface of the substrate opposite the first surface, and a cover having a third surface, the cover positioned in optical communication with the first surface with a gap existing between the first and third surfaces, the cover including a plurality of light redirectors, the light redirectors configured to redirect at least a portion of light incident on the third surface of the cover onto the first surface.
Another aspect of the invention is a system for illuminating a reflective display, comprising a display cover configured to be placed in front of the reflective display and including a plurality of light redirectors, the display cover having a first surface configured to face the front of the reflective display, there being a gap between the first surface and the front of the display, and a light source configured to transmit light onto the first surface of the display cover along a path that is oblique to the display cover, wherein the light redirectors are configured to redirect at least a portion of the incident light onto the front of the reflective display.
Another aspect of the invention is a method of illuminating a reflective display, comprising transmitting light onto a first surface of a display cover along a path that is oblique to the cover, the first surface of the display cover facing a second surface of a reflective display, there being a gap between the first surface and the second surface, and redirecting at least a portion of the transmitted light towards the second surface of the reflective display.
Another aspect of the invention is a reflective display, comprising a substrate having a first surface, a plurality of reflective display elements disposed on a second surface of the substrate opposite the first surface, and a plurality of light redirectors in optical communication with the substrate and reflective display elements so as to redirect at least a portion of light originating along a path that is oblique to the first surface into the substrate and reflective display elements.
Another aspect of the invention is a method of illuminating a reflective display, comprising transmitting light onto a reflective display panel along a path that is oblique to the display panel and redirecting at least a portion of the transmitted light so that redirected light is directed along a path that is less oblique to the display panel than the transmitted light.
Another aspect of the invention is an illuminated reflective display system, comprising a plurality of reflective display elements and fluorescent or phosphorescent material located in optical communication with the display elements and configured such that the material absorbs light having a first wavelength and emits light having a second wavelength different from the first wavelength into the reflective display elements.
Another aspect of the invention is a method of illuminating a reflective display, comprising transmitting light onto fluorescent or phosphorescent material that absorbs at least a portion of the light and emitting from said fluorescent or phosphorescent material light having a different wavelength than the transmitted light onto reflective display elements.
Another aspect of the invention is an illuminated reflective display, comprising a substrate having a plurality of reflective display elements disposed on a first surface thereof, a light source adapted to emit light into the substrate, a first material disposed on a second surface of the substrate opposite the first surface, the first material comprising a plurality of light redirectors, and a second material disposed on the first material, wherein the second material has an index of retraction different than said first material.
Another aspect of the invention is an illuminated reflective display, comprising a substrate, a plurality of interferometric modulators disposed on the substrate and having a front from which incident light is reflected, a plurality of at least partially transparent posts supporting a reflective surface of said interferometric modulators, a plurality of light redirectors disposed on or in the substrate, and a light source positioned on a side opposite the front of the interferometric modulators.
Another aspect of the invention is an illuminated interferometric modulator display, comprising a plurality of interferometric modulators having a front from which incident light is reflected, a plurality of at least partially transparent posts supporting a reflective surface of the interferometric modulators, a plurality of light redirectors aligned with the posts, and a light source positioned on a side opposite the front of the interferometric modulators.
Another aspect of the invention is a method of illuminating a reflective display, comprising transmitting light through a plurality of at least partially transparent posts into a substrate, wherein the posts support a reflective surface in a plurality of interferometric modulators disposed on the substrate, and redirecting at least a portion of the transmitted light from the substrate into the interferometric modulators.
Another aspect of the invention is an illuminated reflective display produced by a process comprising positioning a plurality of interferometric modulators on a substrate and positioning a plurality of light redirectors in optical communication with the interferometric modulators, the light redirectors configured to redirect at least a portion of light incident on the light redirectors into the interferometric modulators.
Another aspect of the invention is an illuminated reflective display, comprising a plurality of interferometric modulators having a front surface from which light is reflected, means for redirecting light originating along a path that is oblique to the front surface into the interferometric modulators, and means for providing light to the means for redirecting.
Another aspect of the invention is a reflective display produced by a process, comprising positioning a plurality of interferometric modulators on a first surface of a substrate, forming a plurality of light redirectors in a cover, the cover having a second surface, and positioning the cover in optical communication with the plurality of interferometric modulators such that a gap exists between the second surface and a third surface on the substrate opposite the first surface, the light redirectors configured to redirect at least a portion of light incident on the second surface onto the third surface.
Another aspect of the invention is a system for illuminating a reflective display produced by a process, comprising forming a plurality of light redirectors in a cover, the cover having a first surface, positioning the cover in front of a reflective display with a gap between the first surface and the front of the display, and positioning a light source to transmit light onto the first surface of the display cover along a path that is oblique to the display cover, wherein the light redirectors are configured to redirect at least a portion of the incident light onto the front of the reflective display.
Another aspect of the invention is a reflective display produced by a process, comprising positioning a plurality of reflective display elements on a first surface of a substrate, and positioning a plurality of light redirectors in optical communication with the substrate and reflective display elements so as to redirect at least a portion of light originating along a path that is oblique to a second surface of the substrate opposite the first surface into the substrate and reflective display elements.
Another aspect of the invention is an illuminated reflective display system produced by a process, comprising positioning fluorescent or phosphorescent material in optical communication with a plurality of reflective display elements, wherein the material absorbs light having a first wavelength and emits light having a second wavelength different from the first wavelength into the reflective display elements.
Another aspect of the invention is an illuminated reflective display produced by a process, comprising positioning a plurality of interferometric modulators on a first surface of a substrate, positioning a light source so as to emit light into the substrate, positioning a first material on a second surface of the substrate opposite the first surface, the first material comprising a plurality of light redirectors, and positioning a second material on the first material, wherein the second material has an index of refraction different than the first material.
Another aspect of the invention is an illuminated interferometric modulator display produced by a process, comprising forming a plurality of at least partially transparent posts to support a reflective surface in a plurality of interferometric modulators, the interferometric modulators having a front from which incident light is reflected, positioning a plurality of light redirectors to be aligned with the posts, and positioning a light source on a side opposite the front of the interferometric modulators.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
Interferometric modulator displays and other reflective displays provide display information by reflecting light. In low light situations, it is desirable to provide supplemental illumination. Because of the reflective nature of these displays, it is desirable to provide the supplemental illumination into the front of the display elements. Generally, backlighting such as is used in transmissive displays is not suitable for illuminating reflective displays. Accordingly, described herein are systems and methods for illuminating reflective displays by providing light redirectors to redirect supplemental illumination into the front of reflective display elements. Various light redirectors are provided that redirect light from a light source positioned in front of the display, to the side of the display, or behind the display.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 15a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a pixel array 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
Generally, the interferometric modulator is utilized in a highly reflective, direct view, flat panel display. Because of its high reflectivity, the interferometric modulator has little need for illumination in most lighting conditions. The typical consumer expects to be able to read electronic displays in certain situations where there is little ambient illumination. As a result, some form of illumination is desirable for the interferometric modulator and other purely reflective spatial light modulators that typically use ambient illumination.
The typical backside illumination techniques used extensively with liquid crystal displays (LCDs) do not work for purely reflective spatial light modulators. A purely reflective spatial light modulator is one through which light cannot be transmitted from back to front in such a manner as to illuminate the modulator elements. It is possible to leave gaps between the elements of a purely reflective spatial light modulator to allow backside illumination to travel through and emerge at the front of the panel, but the light will not contain any image information, as the light does not actually illuminate the elements, passing them by on its path through the display panel. Thus, it is desirable to provide illumination directed to the front of reflective display elements in reflective displays.
As described in more detail below, various embodiments of the invention provide light redirectors to redirect light from a light source positioned at various locations in a reflective display so that the light is directed onto the front of reflective display elements in the reflective display.
In one embodiment, illustrated in
A light source 100, such as an LED, is connected to the front light plate 200 such that light 202 emitted from the light source 100 enters the front light plate 200. In the embodiment illustrated in
In one embodiment, light 202 emitted by light source 100 is maintained within the front light plate 200 by total internal reflection until the light 202 contacts the surfaces 204, from which it is reflected through the substrate 300 and into the elements 310. The light plate 200 may comprise a number of grooves 210 that provide surfaces 204 off of which light 202 may be reflected. Advantageously, light 202 may be redirected into the elements 310 in a narrow beam that is substantially perpendicular to the front surface of the substrate 300. Advantageously, the majority of light 202 that is directed into elements 310 is reflected out of the elements 310 and transmitted through the substrate 300 and light plate 200 without being significantly affected by the grooves 210.
In one embodiment, the elements 310 are interferometric modulators. In other embodiments the elements are other optical devices capable of reflecting light of a desired wavelength. By directing the light 202 from the front light 100 directly into the interferometric modulator elements 310, the brightness of the display is increased compared to use of ambient light alone, particularly in situations in which there is limited ambient light. In addition, this arrangement allows for the use of the display in situations in which there is little or no ambient light.
In the embodiment illustrated in
A front light plate 200 containing grooves 210 may be constructed by injection molding, controlled etching, or by any other process known to those of skill in the art. The material for use in the front light plate 200 may be any suitable transparent or partially transparent material such as plastic or glass.
In one embodiment, the reflecting structures 210 are spaced such that light is directed to the elements 310 and not to the gap between the elements 320.
In another embodiment, instead of grooves 210, lines of reflective material may be placed within or on front light plate 200 to provide light redirection into elements 310.
In one embodiment, the front light plate 200 may be placed against the substrate 300 as depicted in
The light source 100, as well as other light sources described herein, may be any suitable light source known in the art. Non-limiting examples include LEDs or fluorescent lights such as Cold Compact Fluorescent Lights.
In another embodiment, a backlight is used to provide light to an array of interferometric modulator elements. The use of a backlight to enhance the function of an interferometric modulator display may be desirable, for example, in a device that already utilizes a backlight, such as a cellular phone.
An embodiment of an interferometric modulator utilizing a backlight is illustrated in
The light redirector 410 may include a reflective structure, light scattering structures such as a plurality of scattering centers, phosphorescent or fluorescent material, or any other suitable feature configured to redirect light. Transparent posts 400 may be constructed of any suitable transparent or partially transparent material such as a transparent oxide or polymer, and may be colorless or include a color tint. In one advantageous embodiment, posts 400 are colorless and transparent. Light redirectors 410 may be incorporated in any desired position within transparent posts 400 by which light may be appropriately directed into the interferometric modulators.
In the embodiment illustrated in
In an alternative embodiment, the light redirector 410 is located in the substrate 300 rather than in the post 400 (
In another embodiment, light redirectors 410 may be positioned in the substrate 300 above gaps 320 between individual interferometric modulator elements 310. Light 202 from a backlight 110 can then pass through the very small gaps 320 to the light redirectors 410, as illustrated in
In another embodiment, light redirectors 410 are formed above the substrate 300 (
In an alternative embodiment, light redirectors 410 may be uniformly distributed throughout film 500 in low density. Thus, for example with reference to
In each of the embodiments utilizing a backlight described above, the nature of the light redirectors 410 can be manipulated to achieve a desired result, such as by changing the angle of diagonal mirrors or by utilizing a curved surface rather than a straight mirror. For example, the shape of a reflective structure can be modified to produce a narrower or broader reflected light beam. A reflective structure producing a broader reflected beam may be utilized in situations where a wider view angle is needed, while a structure with a narrower reflected beam may be used in a situation where maximum brightness from a more limited view angle is desirable.
In addition, in each of the embodiments an absorbing material may be preferably located above the light redirectors to form a black mask on top. Such a mask would prevent ambient light from reflecting from the light redirectors 410 back toward the viewer 50, which would decrease contrast.
In many display applications, a cover glass or plastic is inserted above the display to protect the display (e.g., the surface plastic over the display in a cell phone).
Light redirectors 610 may be reflective structures, scattering centers, fluorescent or phosphorescent material, or any other suitable light redirector. The shape of reflective structure light redirectors may be selected to direct the light 202 in the desired way. The structural features may be reflective, or may serve as diffusive scattering centers that scatter light in all directions, including into the interferometric modulator elements. By changing the shape and depth of the features, the reflectance can be adjusted. For example, a diagonal structure will direct the light 202 into the elements 310 along a narrow beam as discussed above. However, if a structure with a curved surface is utilized (not shown), a broader reflected beam will result. A broader beam may be desired, for example, to achieve a wider view angle. However, it may be desirable to narrow the dispersion angle of the beam to limit the observation of color shifting upon off-angle viewing. Thus, in one embodiment, the dispersion angle of the beam is optimized by adjusting the shape of light redirectors 610 to provide an optimum balance between view angle and low observation of color shifting. One of skill in the art will readily understand the type of structure to produce the desired reflectance for a given situation.
Light redirectors 610 may be formed on the cover 600 by applying a film or coating comprising the light redirectors 610 to the bottom surface 604 of the cover 600. Thus, the light redirectors 610 may be disposed within a laminate on the cover 600. In one embodiment, the light redirectors 610 may be patterned onto the bottom of the cover 600 such as by using photolithography to pattern and etch features on the cover 600. The features may include projections, such as illustrated in
Light 202 from the light source 100 may be directed to be incident on the bottom surface 604 of cover 600. Thus, the light source 100 may be positioned between the substrate 300 and the cover 600 as illustrated in
Preferably the light 202 is directed into the elements 310 of the array in as narrow a beam as possible. Again, by directing the light 202 from the light source 100 into the interferometric modulator elements 310 at a substantially perpendicular angle, light 202 with display information will be directed along a typical viewer's line of sight—normal to the display. Furthermore, a narrow dispersion angle for the beam decreases the observation of color shifting upon off-angle viewing.
In other embodiments, the transparent substrate 300 itself is utilized as a front light. A particular embodiment of this configuration is illustrated in
In some embodiments, a second film 700 is placed over the first film 500. In one embodiment, the second film 700 has an index of refraction that is less than the index of refraction of the first film 500 in order to provide internal reflective surfaces for reflecting light into the interferometric modulator elements 310. In one advantageous embodiment, the index of refraction of the second film 700 is close to the index of refraction of air. The second film 700 protects the first film 500 and in particular the grooves 520, for example by keeping dirt and debris out of the grooves 520.
An alternative embodiment that uses the substrate 300 as the front light comprises replacement of the grooves 520 by a phosphorescent or fluorescent material. In this embodiment, the light is redirected through absorption and re-emission by these materials. In a typical case, the light source 100 is a blue/UV LED and the phosphor will absorb light of this wavelength and reemit green or white light.
Side Lighting with Scattering Centers
Scattering centers can be used to redirect light received from a light source located at the side of an interferometric modulator array into the interferometric modulator elements. Scattering centers scatter incident light in multiple directions. These centers may comprise particles, such a metallic particles, with uneven surfaces. In the embodiment illustrated in
Light 202 from a side light source 100, such as an LED, is directed along a path that is oblique to the interferometric modulator elements and hits the scattering centers 800. From the scattering centers 800, the light 202 is scattered in multiple directions. Multiple scatterings from multiple scattering centers 800 increase the broad distribution of light direction emitted from the film 500. Some of the light 202 is directed through the substrate 300 into the interferometric modulator elements 310.
In an alternative embodiment, the scattering particles 800 have a shape suitable for preferentially scattering light in a specific direction. Such particles may be aligned relative to the direction of the light source 100 and the interferometric modulator elements 310 such that light from the light source 100 is preferentially directed into the interferometric modulator elements 310, as illustrated in
In some embodiments, the angle scattering centers 800 are located within the film 500. For example, metal particles or flakes can be incorporated into the film 500. In other embodiments, surface features are incorporated in the film 500 that cause light hitting the features to be scattered. In one embodiment the surface features are roughened areas that cause light scattering. In other embodiments the surface features are geometric structures that cause light scattering.
The aligned scattering centers 800 in
Alternatively, reflective material or fluorescent or phosphorescent material may be used as light redirectors instead of scattering centers.
As discussed in the various embodiments above, the light redirectors may include phosphorescent or fluorescent material. Such material absorbs incident light and then reemits light at a different frequency. This characteristic may be used to enhance the color gamut of the light provided to a reflective display.
As illustrated in
The phosphorescent or fluorescent material 630 is selected to emit light of a desired wavelength. The material may combine a single phosphor or fluorphor, or may comprise a combination of two or more phospors, fluorophors, or a mixture of phospohors and fluorophors. In one embodiment, the material comprises three different materials that emit at three different wavelengths. For example, the phosphorescent material 630 may comprise three or more phosphors to provide red, green and blue light in narrow lines. The particular phosphors and/or fluorophors to be used may be selected by one of skill in the art based on the desired application. A wide variety of phosphors and fluorophors, including those emitting red, green and blue visible light, are well known in the art and are available commercially, for example from Global Trade Alliance, Inc. (Scottsdale, Ariz.).
In addition, the light source 100 is preferably selected to provide sufficient excitation of the phosphors or fluorophors in the material 630 such that light of the desired wavelength is emitted. In one embodiment the light source 100 is a visible light. In one embodiment, the light source 100 is a source of ultraviolet radiation. In one embodiment, the light source 100 is a light emitting diode (LED). Preferably the LED is a blue LED. In a particular embodiment the LED emits light with a wavelength between about 300 and about 400 nm.
The phosphorescent and/or fluorescent material 630 may be applied to the surface of a substrate 300 by incorporation in a film 500 that is attached to the substrate surface as illustrated. In other embodiments, the phosphorescent material is attached directly to a surface of the substrate, either on the top or bottom surfaces, or is incorporated in the substrate itself. Fluorophors or phosphors may be incorporated into a glass substrate or a film by floating the material in the glass or film material during manufacture. As described earlier, films may be applied to the substrate via lamination or spin coating. Those of skill in the art will appreciate other methods for incorporating fluorophors or phosphors within a display.
One of skill in the art will recognize that the material 630 can be chosen to provide broad wavelength illumination as well. Thus, in some embodiments the material 630 is used to provide the necessary illumination to light a display in dark or very low ambient light conditions. In a particular embodiment, the light source 103 used to excite the phosphor material 630 is directly coupled to the substrate 300 as illustrated in
In another embodiment illustrated in
The color gamut may also be enhanced by the use of LED line illumination. In this embodiment, a light source that emits a narrow line of a particular wavelength or wavelengths of light is utilized. Because the wavelength of the light entering the interferometric modulator structure is restricted, the color gamut is enhanced. In addition, changes in color with view angle (view angle shift) is minimized. In one embodiment the light source is an LED that emits red, green and blue light in narrow lines.
A light source that emits defined wavelengths of light can be used in conjunction with any of the embodiments described herein for directing light from a front light source into the interferometric modulator structure. For example, an LED that emits light of a particular wavelength or wavelengths can be used as the light source 100 in the structures illustrated in
Although the foregoing invention has been described in terms of certain embodiments, other embodiments will be apparent to those of ordinary skill in the art. Additionally, other combinations, omissions, substitutions and modification will be apparent to the skilled artisan, in view of the disclosure herein.
This application is a continuation of U.S. patent application Ser. No. 11/064,143, filed Feb. 22, 2005, entitled “SYSTEM AND METHOD FOR ILLUMINATING INTERFEROMETRIC MODULATOR DISPLAY,” which claims priority to U.S. Provisional Application No. 60/613,951, filed on Sep. 27, 2004, entitled “SYSTEM AND METHOD FOR ILLUMINATING INTERFEROMETRIC MODULATOR DISPLAY,” both of which are assigned to the assignee hereof. The disclosures of the prior applications are considered part of and are incorporated by reference in their entireties in this disclosure.
Number | Date | Country | |
---|---|---|---|
60613951 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11064143 | Feb 2005 | US |
Child | 14012264 | US |