System and method for implementing universal cloud classification (UCC) as a service (UCCaaS)

Information

  • Patent Grant
  • 10263898
  • Patent Number
    10,263,898
  • Date Filed
    Wednesday, July 20, 2016
    9 years ago
  • Date Issued
    Tuesday, April 16, 2019
    6 years ago
Abstract
Disclosed is a system and method of providing transport-level identification and isolation of container traffic. The method includes assigning, by a software-defined-network (SDN) controller in an SDN-enable cloud environment, a service-ID to a service, a tenant-ID to a tenant and/or workload-ID to yield universal cloud classification details, and extracting, from a data flow, the universal cloud classification details. The method includes receiving a policy, generating flow rules based on the policy and universal cloud classification details, and transmitting the flow rules to an openflow application to confine packet forwarding decisions for the data flow.
Description
TECHNICAL FIELD

The present disclosure provide for universal cloud classification (UCC) “as a Service” as a way to make the cloud-ID available to the provider, tenants and applications in a cloud environment. While being transmitted on the network layer, the IDs are accessible by application programming interfaces (APIs) through the UCCaaS application. Direct access to these IDs providers, tenants and applications enables policy enforcement.


BACKGROUND

Universal Cloud Classification (UCC) is a tiered/hierarchical model used to incorporate Cloud-ID natively in the transport layer. It enables segmentation and classification of traffic based on cloud entities such as Cloud providers, services and tenants. The implementation approach of UCC thus far has been ‘default on’, meaning that UCC is either enabled or disabled for the entire environment. There is currently no way to enable and disable UCC on-demand as well as dynamically enable it on a per-tenant basis.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings in which:



FIG. 1 illustrates the basic computing components of a computing device according to an aspect of this disclosure.



FIG. 2 illustrates the general context in which the present disclosure applies.



FIG. 3 illustrates an example method.





DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

The present disclosure addresses the above-identified issues. The UCC introduced above incorporates a cloud-ID, tenant-ID, and service-ID into the layer 3 of the network so that network entities in an environment or across different environments can use these IDs to perform policy enforcement. It is difficult to manage policies at scale. With the UCC visibility into the network layer, one can apply policies with less overhead processes. The UCC information provides visibility into the network, the services and tenants. The IDs can be used to apply policies against tenants, services, and cloud providers. The present disclosure extends and applies the use of these various IDs, and introduces a new workload-ID, through a UCC as a Service (USSaaS) component.


The present disclosure provides a solution which enables a means of using the UCC for tenants of cloud services to leverage the advantages of the UCC for their individual needs. In order to implement the UCCaaS to interoperate with the UCC and their IDs, the system needs some kind of entry point into the cloud environment in order to be able to access the IDs, define policies, and implement policies. The UCCaaS provides this entry point and functionality to enhance the benefits of the UCC. The disclosure uses UCC to support both north- and south-bound APIs for tenants, providers and applications leveraging the defined IDs.


This disclosure includes systems, methods and computer-readable storage devices which implement the concept disclosed herein. In one example, the method includes assigning, by a software-defined-network (SDN) controller in an SDN-enable cloud environment, a service-ID to a service and a tenant-ID to a tenant to yield universal cloud classification details, and extracting, from a data flow, the universal cloud classification details. The method includes receiving a policy, generating flow rules based on the policy and universal cloud classification details, and transmitting the flow rules to an openflow application to confine packet forwarding decisions for the data flow.


The UCCaaS can provide APIs to enable calls to request the assignment of a service-ID and a tenant-ID from a service like Keystone. OpenStack Identity (known as Keystone) provides a central directory of users mapped to the OpenStack services they can access. It acts as a common authentication system across the cloud operating system and can integrate with existing backend directory services like the lightweight directory access protocol (LDAP). It supports multiple forms of authentication including standard username and password credentials, token-based systems and AWS-style (i.e., AMAZON WEB SERVICES) logins. Additionally, the catalog provides a queryable list of all of the services deployed in a cloud (e.g., OPENSTACK) in a single registry. Users and third-party tools can programmatically determine which resources they can access. In the present disclosure, Keystone (or a similar service) can communicate through APIs to a central registrar or entity to perform one or more of assigning, defining, generating, managing, maintaining, updating, deleting, etc. the IDs.


The UCCaaS can then extract the IDs, access a database that stores the IDs and associated policies (on a per-service, per-tenant or even per-workload basis). The UCCaaS can then use the policies to define flow rules that are then delivered via an API to an OpenFlow Application and hardware/software switches for managing data flow.


DESCRIPTION

When a person wants to define a network, she must rely on various protocols which have been defined for environments where the cloud was not envisioned at the time. There are limitations in terms of scalability, but none of them have in the context of the cloud. Conventional classification is typically based on Internet Protocol (IP) prefixes or addresses, protocol numbers identifying, for example, TCP or UDP, TCP/UDP port numbers and higher layer identities. These isolation techniques are used to identify individual endpoints and applications hosted. However, in cloud computing, providers host many different services on top of the same UDP/TCP ports, the same range of public IP addresses across many endpoints. There is currently no service-awareness in networks, which is critical to properly isolate providers, theirs services and tenants.


These challenges magnify in the case of running services across multiple clouds (InterCloud use-case). Classification becomes even more critical with multi-tenancy and tenant/service mobility across clouds. Traffic between cloud environments needs to be affiliated to its originating cloud provider and services.


With the introduction of cloud computing, ways to adapt network IDs to the virtualized, dynamic and agile infrastructure of a cloud environment have been tried. In legacy networks, matching traffic against their VLAN, IP or port affiliation often has been granular enough to accurately define business related policies. However, with cloud computing, simply relying on VLANs, IP addresses or port numbers as classification mechanisms, is not sufficient. Classifying traffic based on network IDs requires deep-packet-inspection. This typically results in high latency for the tenant.


Virtual Extensible Local Area Networks (VxLANs) have been introduced recently to circumvent the limitations providers faced using VLANs. VxLAN now offers a 24-bit network segmentation ID. Even though it might address the scale limitations of VLANs, it still lacks the cloud computing specific classification and separation of providers, services and tenants.


A hierarchical end-to-end classification scheme is used in cloud computing. The classification scheme includes a cloud-identifier (ID), a service-ID, a tenant-ID, and/or a workload-ID to identify a cloud provider, a service provided by the cloud provider, a tenant that uses the service, and/or a workload or subpart of a workload from the tenant. The cloud-ID is usually assigned once when a user registers a cloud environment. In a cloud computing environment, conventional techniques do not allow classification and isolation on a per-cloud/-service and -tenant basis on the network layer. Multi-tenancy is an important aspect of cloud computing; however, the conventional techniques to define multi-tenancy in the networks are not sufficient for cloud environments.


The present disclosure provides a new approach to enable and disable the UCC on-demand as well as enable it on a per-tenant, per-service or even on a per-workload or sub-workload basis. The disclosure first shall discuss basic computer hardware components and then shall address more specifically the UCCaaS model.



FIG. 1 discloses some basic hardware components that can apply to system examples of the present disclosure. Following the discussion of the basic example hardware components, the disclosure will turn to the UCCaaS approach. With reference to FIG. 1, an exemplary system and/or computing device 100 includes a processing unit (CPU or processor) 110 and a system bus 105 that couples various system components including the system memory 115 such as read only memory (ROM) 120 and random access memory (RAM) 125 to the processor 110. The system 100 can include a cache 112 of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 110. The system 100 copies data from the memory 115, 120, and/or 125 and/or the storage device 130 to the cache 112 for quick access by the processor 110. In this way, the cache provides a performance boost that avoids processor 110 delays while waiting for data. These and other modules can control or be configured to control the processor 110 to perform various operations or actions. Other system memory 115 may be available for use as well. The memory 115 can include multiple different types of memory with different performance characteristics. It can be appreciated that the disclosure may operate on a computing device 100 with more than one processor 110 or on a group or cluster of computing devices networked together to provide greater processing capability. The processor 110 can include any general purpose processor and a hardware module or software module, such as module 1132, module 2134, and module 3136 stored in storage device 130, configured to control the processor 110 as well as a special-purpose processor where software instructions are incorporated into the processor. The processor 110 may be a self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric. The processor 110 can include multiple processors, such as a system having multiple, physically separate processors in different sockets, or a system having multiple processor cores on a single physical chip. Similarly, the processor 110 can include multiple distributed processors located in multiple separate computing devices, but working together such as via a communications network. Multiple processors or processor cores can share resources such as memory 115 or the cache 112, or can operate using independent resources. The processor 110 can include one or more of a state machine, an application specific integrated circuit (ASIC), or a programmable gate array (PGA) including a field PGA.


The system bus 105 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. A basic input/output system (BIOS) stored in ROM 120 or the like, may provide the basic routine that helps to transfer information between elements within the computing device 100, such as during start-up. The computing device 100 further includes storage devices 130 or computer-readable storage media such as a hard disk drive, a magnetic disk drive, an optical disk drive, tape drive, solid-state drive, RAM drive, removable storage devices, a redundant array of inexpensive disks (RAID), hybrid storage device, or the like. The storage device 130 is connected to the system bus 105 by a drive interface. The drives and the associated computer-readable storage devices provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the computing device 100. In one aspect, a hardware module that performs a particular function includes the software component stored in a tangible computer-readable storage device in connection with the necessary hardware components, such as the processor 110, bus 105, an output device such as a display 135, and so forth, to carry out a particular function. In another aspect, the system can use a processor and computer-readable storage device to store instructions which, when executed by the processor, cause the processor to perform operations, a method or other specific actions. The basic components and appropriate variations can be modified depending on the type of device, such as whether the computing device 100 is a small, handheld computing device, a desktop computer, or a computer server. When the processor 110 executes instructions to perform “operations”, the processor 110 can perform the operations directly and/or facilitate, direct, or cooperate with another device or component to perform the operations.


Although the exemplary embodiment(s) described herein employs a storage device such as a hard disk 130, other types of computer-readable storage devices which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, digital versatile disks (DVDs), cartridges, random access memories (RAMs) 125, read only memory (ROM) 120, a cable containing a bit stream and the like, may also be used in the exemplary operating environment. According to this disclosure, tangible computer-readable storage media, computer-readable storage devices, computer-readable storage media, and computer-readable memory devices, expressly exclude media such as transitory waves, energy, carrier signals, electromagnetic waves, and signals per se.


To enable user interaction with the computing device 100, an input device 145 represents any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 135 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems enable a user to provide multiple types of input to communicate with the computing device 100. The communications interface 140 generally governs and manages the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic hardware depicted may easily be substituted for improved hardware or firmware arrangements as they are developed.


For clarity of explanation, the illustrative system embodiment is presented as including individual functional blocks including functional blocks labeled as a “processor” or processor 110. The functions these blocks represent may be provided through the use of either shared or dedicated hardware, including, but not limited to, hardware capable of executing software and hardware, such as a processor 110, that is purpose-built to operate as an equivalent to software executing on a general purpose processor. For example the functions of one or more processors presented in FIG. 1 can be provided by a single shared processor or multiple processors. (Use of the term “processor” should not be construed to refer exclusively to hardware capable of executing software.) Illustrative embodiments may include microprocessor and/or digital signal processor (DSP) hardware, read-only memory (ROM) 120 for storing software performing the operations described below, and random access memory (RAM) 125 for storing results. Very large scale integration (VLSI) hardware embodiments, as well as custom VLSI circuitry in combination with a general purpose DSP circuit, may also be provided.


The logical operations of the various embodiments are implemented as: (1) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a general use computer, (2) a sequence of computer implemented steps, operations, or procedures running on a specific-use programmable circuit; and/or (3) interconnected machine modules or program engines within the programmable circuits. The system 100 shown in FIG. 1 can practice all or part of the recited methods, can be a part of the recited systems, and/or can operate according to instructions in the recited tangible computer-readable storage devices. Such logical operations can be implemented as modules configured to control the processor 110 to perform particular functions according to the programming of the module. For example, FIG. 1 illustrates three modules Mod1132, Mod2134 and Mod3136 which are modules configured to control the processor 110. These modules may be stored on the storage device 130 and loaded into RAM 125 or memory 115 at runtime or may be stored in other computer-readable memory locations.


One or more parts of the example computing device 100, up to and including the entire computing device 100, can be virtualized. For example, a virtual processor can be a software object that executes according to a particular instruction set, even when a physical processor of the same type as the virtual processor is unavailable. A virtualization layer or a virtual “host” can enable virtualized components of one or more different computing devices or device types by translating virtualized operations to actual operations. Ultimately however, virtualized hardware of every type is implemented or executed by some underlying physical hardware. Thus, a virtualization compute layer can operate on top of a physical compute layer. The virtualization compute layer can include one or more of a virtual machine, an overlay network, a hypervisor, virtual switching, and any other virtualization application.


The processor 110 can include all types of processors disclosed herein, including a virtual processor. However, when referring to a virtual processor, the processor 110 includes the software components associated with executing the virtual processor in a virtualization layer and underlying hardware necessary to execute the virtualization layer. The system 100 can include a physical or virtual processor 110 that receive instructions stored in a computer-readable storage device, which cause the processor 110 to perform certain operations. When referring to a virtual processor 110, the system also includes the underlying physical hardware executing the virtual processor 110.


The disclosure now turns to FIG. 2, which illustrates an example environment 200 for UCC as a service. The present inventors disclose a novel approach to dynamically and on-demand leverage the UCC cloud-IDs. This leverage is enabled through a service model for the UCC. This service model will be integrated into a cloud environment enabling tenants to dynamically leverage UCC in their environments.


The following provides an example of a structure for a cloud-ID (C-ID), service-IDs (S-IDs), and tenant-IDs (T-IDs): Cloud provider 1 is assigned cloud-ID 12:12:12:12; Cloud services 1 and 2 are assigned S-IDs ab:ab:ab:ab:ab:ab and 34:34:34:34:34:34, respectively; Tenant 1 is assigned T-IDs cd:cd:cd:cd:cd:cd and 56:56:56:56:56:56 for cloud service 1 and 2, respectively; and Tenant 2 is assigned T-IDs 78:78:78:78:78:78 and 78:78:78:78:78:78 (i.e., the same T-ID) for cloud services 1 and 2, respectively.


These or other structures of the various ID's can be utilized in the present disclosure. A similar ID structure can also be applied to workload or a subcomponent of the workload.


As shown in FIG. 2, the UCC as a Service (UCCaaS) 202 application is aware of the IDs defined within a cloud environment for the services 204 and the tenants 206. Based on the UCC classification details it gathers from the flows 212, it pushes flow rules to the OpenFlow forwarder 214 to configure forwarding decisions 216.


The concept of “UCC as a Service” is introduced as a module 202 in a software-defined network (SDN)-enabled cloud environments (e.g., OpenDaylight, VTS, etc.) 200 to leverage the UCC IDs. Instead of relying on every device within the environment to inspect and understand the UCC information, the UCCaaS 202 moves this logic out to an SDN controller. As an additional application (App) offering south- and north-bound APIs, the UCCaaS 202 taps into already existing infrastructure applications used to define forwarding rules. In addition, the UCCaaS 202 leverages the UCC IDs incorporated into the IPv6 extension headers (or other headers or data fields in a packet), defines forwarding decisions on internal rules (which can be obtained from a database 210) and pushes these out to the OpenFlow Application 214 using the standardized 5-tuple flow rules. Other structures can be used as well to pass the flow rules through the API. The logic around the UCC can be enabled or disabled by simply adding another application to an SDN controller. The flow rules, defined by using the 5-tuple classification or in another manner, can be defined without direct understanding of UCC ID's on the hardware and/or software switches.


The application 202 of FIG. 2 offers a north-bound and a south-bound API interface shown as “API Calls” between the UCCaaS 202 and the OpenFlow Application 214, as API Calls between the UCCaaS 202 and the various services to instantiate virtual machines 204 and to the service to define tenants 206. The north-bound interface is used both the handle service-ID assignment 204 and tenant-ID assignment 206 and lifecycle management. A cloud orchestration tool can directly interact with the UCCaaS application 202 to request tenant-IDs and service-IDs when spinning up or creating applications or tenants respectively. The south-bound API on the other hand allows other applications, the provider or the tenant to interact with UCCaaS 202 to query IDs and their associated tenant, service information.


The UCCaaS can provide APIs to enable calls to request the assignment of a service-ID and a tenant-ID from a service (204, 206) like OpenStack Identity. OpenStack Identity (known as Keystone) provides a central directory of users mapped to the OpenStack services they can access. It acts as a common authentication system across the cloud operating system and can integrate with existing backend directory services like LDAP. It supports multiple forms of authentication including standard username and password credentials, token-based systems and AWS-style (i.e. Amazon Web Services) logins. Additionally, the catalog provides a queryable list of all of the services deployed in an OpenStack cloud in a single registry. Users and third-party tools can programmatically determine which resources they can access. In the present disclosure, an identity service for cloud computing solutions, such as Keystone for OpenStack, can communicate through APIs to a central registrar or entity to perform one or more of assigning, defining, generating, managing, maintaining, updating, deleting, etc., the IDs.


The UCCaaS 202 stores the various IDs in a database 210 can then can extract the IDs from packet in data flows, access a database 210 that stores the IDs and associated policies (on a per-service, per-tenant or even per-workload, per-subcomponent of workload basis). The UCCaaS 202 can then use the policies to define flow rules that are then delivered via an API to an OpenFlow Application 214 and Hardware/Software switches for managing data flow 216.



FIG. 2 illustrates a logical component 212 in the UCCaaS 202 that inspects the packets received from a OpenFlow enabled vSwitch 216 through an OpenFlow Application 214, detects the service-ID, tenant-ID, workload-ID, sub-workload-ID and/or other IDs and requests details such as flow-definitions and policy miles 210 that can be enforced on the switch 216. This is just an example use-case for the south-bound API interface and could be used by other applications as well. In addition to the API interfaces, the UCCaaS 202 also maintains a database 210 that stores the tenant/service/workload-IDs and any associated details such as application information, assigned policies, etc. The central database 210 stores the service/tenant/workload-IDs and correlation between the IDs as well as the policies we want to use for an ID, a pair of IDs, or three IDs. It stores the IDs, the relationship between the IDs and the policies and how they are applied. Service-IDs can be a network policy, database policy, bandwidth policy, processor policy (i.e., number of processors (real or virtual)) that are allowed to be used at one time, or characteristics of processors (i.e., does the tenant want real or virtual processor, or a particular clock speed) to be used for a particular tenant or workload. Workload-IDs can span an entire “job” or workload or can represent a subcomponent of workload, such as the data staging component which can have different policies applies than the processing component.


A tenant may want to have a first set of flow ales apply to a first workload or application and a second set of flow rules apply to a second workload or second application. The different treatment can be implemented either by a separate application ID that is assigned by a service or by the tenant or by an alternate tenant-ID such that the tenant-ID can identify the tenant and workload for that tenant. In one aspect, the fields used the assign the service-ID can have options to be able to specify or identify particular workload. Thus, the workload-ID can in one aspect but a subset of the service-ID. The service-ID is unique but a subfield in the service-ID can identify the workload-ID. In this regard, the workload-ID provide a further refining of the policies where a first job (such as a query to a database) may be identified through a workload-ID as a lower priority job and a second job from the tenant can be assigned a higher priority, with more network resources enabled, through its identification via the workload-ID. In this regards, the ID could also be used to chop up a workload into sub components and a respective subdivided component could have a different policy applied. For example, a data staging component of workload may have a separate ID to an ID associated with a processing stage of the workload.


The UCCaaS application 202 (in the application layer) performs two operations. First, it is used to manage the provider-specific service, tenant and/or workload-IDs 208 and maintains the data store 210 of the assigned IDs. The IDs are handed out by the services that are used to instantiate virtual machines and define tenants and/or workload for cloud services. Part or all of the information is then used to define policies for flows within the cloud provider's network. For example, the workload-ID and the service-ID can be utilized to define a particular policy which guides the ultimate flow rules. Any combination of a workload-ID, a service-ID and a tenant-ID can be used to develop or apply a policy. In one aspect, a workload can have a changing ID throughout its processing. For example, a workload may start out performing a data intensive portion of its work under a first ID, and then when the workload transitions to a more compute processor component of its job, then the workload can transition to another workload ID.


In one aspect, the APIs are accessible to outside of a cloud providers environment to exchange ID specific information (service-ID related) in a secure way. Included herein is the concept of providing means for external parties to access certain information of the cloud-IDs saved within the UCCaaS 202 enables exchange of cloud-ID information across multiple cloud platforms.


In another aspect, the UCCaaS 202 can operate both legacy non-UCC enabled and newer UCC-enabled environments by making the cloud-IDs available as an overlay. Even if network elements don't support UCC-enabled operations directly in the transport, the network elements can leverage the cloud-IDs via API calls.


In yet another aspect, the UCCaaS 202 can be used to define forwarding decisions either on Layer 2 or Layer 3 devices. The UCCaaS 202 can offer south-bound API interfaces that enable interaction with network elements and allows pushing policies based on their requests. The UCCaaS 202 can maintain forwarding definitions on a per-service, per-tenant and/or per-workload basis that can be used to define L2 or L3 policies. For example, a virtual switch can forward a packet to its SDN controller (such as OpenDayLight, VTS, etc.). The controller inspects the packet to define forwarding rules. By inspecting the packet, the controller detects the UCC header and extracts the service-ID, tenant-IDs, and/or workload-IDs. Via an API call, the controller can communicate with the UCCaaS 202 to request any policies defined to the Service/Tenant/Workload-ID set. The UCCaaS 202 receives the API call and responds with previously defined policies. The policies can be define by the provider, the service, the tenant itself, or be defined as part of the workload on a predetermined basis or dynamically based on feedback from the environment. The policy can be set in part by any of the parties as well. Based on the provided policies, the OpenFlow based controller 214 in the network layer (i.e., Layer 3 of the OSI) pushes forwarding rules down through an API to the hardware switch or virtual switch 216.


The UCCaaS APIs can be used by other services such as a segment routing as a service to request policies to define the segment routing forwarding overlay (See CPOL 1003152, incorporated herein by reference). Similar to the layer 2 example previously described, the provider, the application and/or the tenant can define policies that influences automatically or based on thresholds the forwarding behavior and segment routing overlay on a per service/tenant/workload-ID set.


The UCCaaS 202 can introduce a plurality of enhancements to cloud environments wanting to use the UCC-based identifiers. While UCC itself is proposed to operate on the Network Layer of the OSI model, the UCCaaS 202 can leverage the transmitted information in a centralized way eliminating the need for every network device to requiring an understanding of the UCC. With the support of APIs to both the network devices and tenants, the provider and applications (and ideally as well to external parties), the UCC provides a way to overlay UCC information and define policies based on the IDs provided (on a per service/tenant/workload-ID basis).


Several of the benefits of the UCCaaS 202 include the ability to leverage the UCC on demand and on dynamic basis in a way that is defined by tenant, provider, workload and/or external party needs. It is an easier implementation and deployment of UCC and can include support for the UCC on legacy deployments. There are other services in a cloud providers environment can leverage UCC and its IDs to enforce policies on a per-tenant, per-service, and/or per-application basis.



FIG. 3 illustrates method example according to this disclosure. The method includes assigning, by a software defined network controller in a software-defined network—enable cloud environment, a service-ID to a service and/or a tenant-ID to a tenant to yield universal cloud classification details (302). As noted above, a workload-ID can also be assigned to workload or parts of workload. The method includes extracting, from a data flow, the universal cloud classification details (304) and receiving a policy (306). The policy can include one or more forwarding and routing rules, workload or tenant rules, etc.


The method includes generating flow rules based on the policy and universal cloud classification details (308) and transmitting the flow rules to an openflow application to confine packet forwarding decisions for the data flow (310). The openflow application can forward the flow rule and/or provide direction to hardware or software switches for managing the routing of packets on a per service/tenant/workload basis.


In one aspect, there can be backwards compatibility with the conventional way of managing the routing of data flows. In this regard, developing the flow rules based on policies and service/tenant/workload-IDs will be applied to manage at least a part of the overall routing of data but the standard use of IP addresses can be applied also to part of the overall routing of a data flow. The UCC IDs, for example, can be used to do the forwarding of data without completely replacing the IP addresses. In another aspect, the use of UCC IDs as disclosed herein can be used to completely replace all other routing instructions. The UCC IDs provide a much more granular approach to flow control.


In one aspect, the IDs are used in the decision making process of how to define the flow rules that apply to IP addresses or MAC addresses. For example, the component 212 in the UCCaaS determines that a particular packet has a service-ID and a particular tenant-ID, and based on the IDs, identifies a policy which directs how the network should route or switch the flow containing the pack along a certain path.


One or more of the service-ID, the tenant-ID and the workload-ID are stored in a database and used for the various purchases set forth herein. The method can include storing in a header or other field of a packet in a packet flow one or more of the service-ID, the tenant-ID and the workload-ID. The flow rules can be generated or defined without direct understanding of the service-ID, the tenant-ID or the workload-ID. The policy can be predetermined and selected based on one or more of the service-ID, the tenant-ID, and the workload-ID. Or, they policy can be dynamic and generated as needed based on one or more of the service-ID, the tenant-ID, and the workload-ID. External data can be utilized as well for choosing or generating the policy. Thus, the policy can be defined on one of a per service-ID basis, per tenant-ID basis, per workload-ID basis, or some other basis such as external data. The extracting of the universal cloud classification details can be performed at an openflow application or a UCCaaS component. A controller module in the software-defined network-enable cloud environment, or some other component, can assign the service-ID to the service, the tenant-ID to the tenant and/or the workload-ID to the workload of the tenant. When the workload-ID is assigned, the universal cloud classification details can include the service-ID, the tenant-ID and the workload-ID, as well as any other external data. The method can further include generating the flow rules based on the universal cloud classification details.


The present examples are to be considered as illustrative and not restrictive, and the examples is not to be limited to the details given herein, but may be modified within the scope of the appended claims.


Claim language reciting “at least one of” a set indicates that one member of the set or multiple members of the set satisfy the claim. For example, claim language reciting “at least one of A and B” means A, B, or A and B.

Claims
  • 1. A method comprising: assigning, by a software defined network controller in a software-defined network-enable cloud environment, a service-ID to a service and a tenant-ID to a tenant, to yield universal cloud classification details;extracting, from a data flow, the universal cloud classification details;generating flow rules based on a received policy and universal cloud classification details, the flow rules defined without inspecting each device to obtain a direct understanding of the tenant-ID; andtransmitting the flow rules to an application to confine packet forwarding decisions for the data flow.
  • 2. The method of claim 1, further comprising: storing the service-ID and the tenant-ID.
  • 3. The method of claim 1, wherein the universal cloud classification details are stored in a header of a packet in the data flow.
  • 4. The method of claim 1, wherein the flow rules are defined using a 5-tuple classification.
  • 5. The method of claim 1, wherein the flow rules are defined without direct understanding of the service-ID.
  • 6. The method of claim 1, wherein the software defined network controller communicates via an application programming interface.
  • 7. The method of claim 1, wherein the policy is based on the service-ID and the tenant-ID.
  • 8. The method of claim 1, wherein the policy is defined on one of a per service-ID basis and per tenant-ID basis.
  • 9. The method of claim 1, wherein the extracting comprises extracting the universal cloud classification details at one of an openflow application and a universal cloud classification as a service component.
  • 10. The method of claim 1, wherein a controller module in the software-defined network-enable cloud environment assigns the service-ID to the service and the tenant-ID to the tenant.
  • 11. The method of claim 1, further comprising: assigning a workload-ID to workload of the tenant,wherein the universal cloud classification details comprise the service-ID, the tenant-ID and the workload-ID.
  • 12. The method of claim 11, further comprising: generating the flow rules based on the universal cloud classification details.
  • 13. A system comprising: one or more processors; and a computer-readable medium, storing instructions which, when executed by the one or more processors, cause the one or more processors to perform operations comprising:assigning, by a software-defined network controller in a software-defined network-enable cloud environment, a service-ID to a service and a tenant-ID to a tenant to yield universal cloud classification details;extracting, at a switch and from a data flow, the universal cloud classification details;receiving a policy;generating flow rules based on the policy and universal cloud classification details, the flow rules defined without inspecting each device to obtain a direct understanding of the tenant-ID; andtransmitting the flow rules to an application to confine packet forwarding decisions for the data flow.
  • 14. The system of claim 13, wherein the flow rules are defined using a 5-tuple classification.
  • 15. The system of claim 13, wherein the universal cloud classification details are stored in a header of a packet in the data flow.
  • 16. The system of claim 13, wherein the software-defined network controller communicates via an application programming interface.
  • 17. The system of claim 13, wherein the policy is based on the service-ID and the tenant-ID.
  • 18. The system of claim 13, wherein the policy is defined on one of a per service-ID basis and per tenant-ID basis.
  • 19. The system of claim 13, wherein the computer-readable medium stores additional instructions which, when executed by the processor, cause the processor to perform further operations comprising assigning a workload-ID to workload of the tenant, wherein the universal cloud classification details comprise the service-ID, the tenant-ID and the workload-ID.
  • 20. A computer-readable storage device storing instructions via a non-transitory storage medium which, when executed by a processor, cause the processor to perform operations comprising: assigning, by a software-defined network controller in a software-defined network-enable cloud environment, a service-ID to a service and a tenant-ID to a tenant to yield universal cloud classification details;extracting, at a switch and from a data flow, the universal cloud classification details;receiving a policy;generating flow rules based on the policy and universal cloud classification details, the flow rules defined without inspecting each device to obtain a direct understanding of the tenant-ID; andtransmitting the flow rules to an application to confine packet forwarding decisions for the data flow.
US Referenced Citations (433)
Number Name Date Kind
5812773 Norin Sep 1998 A
5889896 Meshinsky et al. Mar 1999 A
6108782 Fletcher et al. Aug 2000 A
6178453 Mattaway et al. Jan 2001 B1
6298153 Oishi Oct 2001 B1
6343290 Cossins et al. Jan 2002 B1
6643260 Kloth et al. Nov 2003 B1
6683873 Kwok et al. Jan 2004 B1
6721804 Rubin et al. Apr 2004 B1
6733449 Krishnamurthy et al. May 2004 B1
6735631 Oehrke et al. May 2004 B1
6885670 Regula Apr 2005 B1
6996615 McGuire Feb 2006 B1
7054930 Cheriton May 2006 B1
7058706 Lyer et al. Jun 2006 B1
7062571 Dale et al. Jun 2006 B1
7076397 Ding et al. Jul 2006 B2
7111177 Chauvel et al. Sep 2006 B1
7212490 Kao et al. May 2007 B1
7277948 Igarashi et al. Oct 2007 B2
7313667 Pullela et al. Dec 2007 B1
7379846 Williams et al. May 2008 B1
7480672 Hahn et al. Jan 2009 B2
7496043 Leong et al. Feb 2009 B1
7536476 Alleyne May 2009 B1
7567504 Darling et al. Jul 2009 B2
7606147 Luft et al. Oct 2009 B2
7647594 Togawa Jan 2010 B2
7684322 Sand et al. Mar 2010 B2
7773510 Back et al. Aug 2010 B2
7808897 Mehta et al. Oct 2010 B1
7881957 Cohen et al. Feb 2011 B1
7917647 Cooper et al. Mar 2011 B2
8010598 Tanimoto Aug 2011 B2
8028071 Mahalingam et al. Sep 2011 B1
8041714 Aymeloglu et al. Oct 2011 B2
8121117 Amdahl et al. Feb 2012 B1
8171415 Appleyard et al. May 2012 B2
8234377 Cohn Jul 2012 B2
8244559 Horvitz et al. Aug 2012 B2
8250215 Stienhans et al. Aug 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8284664 Aybay et al. Oct 2012 B1
8284776 Petersen Oct 2012 B2
8301746 Head et al. Oct 2012 B2
8345692 Smith Jan 2013 B2
8406141 Couturier et al. Mar 2013 B1
8407413 Yucel et al. Mar 2013 B1
8448171 Donnellan et al. May 2013 B2
8477610 Zuo et al. Jul 2013 B2
8495252 Lais et al. Jul 2013 B2
8495356 Ashok et al. Jul 2013 B2
8510469 Portolani Aug 2013 B2
8514868 Hill Aug 2013 B2
8532108 Li et al. Sep 2013 B2
8533687 Greifeneder et al. Sep 2013 B1
8547974 Guruswamy et al. Oct 2013 B1
8560639 Murphy et al. Oct 2013 B2
8560663 Baucke et al. Oct 2013 B2
8589543 Dutta et al. Nov 2013 B2
8590050 Nagpal et al. Nov 2013 B2
8611356 Yu et al. Dec 2013 B2
8612625 Andreis et al. Dec 2013 B2
8630291 Shaffer et al. Jan 2014 B2
8639787 Lagergren et al. Jan 2014 B2
8656024 Krishnan et al. Feb 2014 B2
8660129 Brendel et al. Feb 2014 B1
8719804 Jain May 2014 B2
8775576 Hebert et al. Jul 2014 B2
8797867 Chen et al. Aug 2014 B1
8805951 Faibish et al. Aug 2014 B1
8850182 Fritz et al. Sep 2014 B1
8856339 Mestery et al. Oct 2014 B2
8880678 Colton Nov 2014 B1
8909780 Dickinson et al. Dec 2014 B1
8909928 Ahmad et al. Dec 2014 B2
8918510 Gmach et al. Dec 2014 B2
8924720 Raghuram et al. Dec 2014 B2
8930747 Levijarvi et al. Jan 2015 B2
8938775 Roth et al. Jan 2015 B1
8959526 Kansal et al. Feb 2015 B2
8977754 Curry, Jr. et al. Mar 2015 B2
9009697 Breiter et al. Apr 2015 B2
9015324 Jackson Apr 2015 B2
9043439 Bicket et al. May 2015 B2
9049115 Rajendran et al. Jun 2015 B2
9063789 Beaty et al. Jun 2015 B2
9065727 Liu et al. Jun 2015 B1
9075649 Bushman et al. Jul 2015 B1
9104334 Madhusudana et al. Aug 2015 B2
9143612 Roncoroni Sep 2015 B2
9164795 Vincent Oct 2015 B1
9167050 Durazzo et al. Oct 2015 B2
9201701 Boldyrev et al. Dec 2015 B2
9201704 Chang et al. Dec 2015 B2
9203784 Chang et al. Dec 2015 B2
9223634 Chang et al. Dec 2015 B2
9244776 Koza et al. Jan 2016 B2
9251114 Ancin et al. Feb 2016 B1
9264478 Hon et al. Feb 2016 B2
9313048 Chang et al. Apr 2016 B2
9361192 Smith et al. Jun 2016 B2
9380075 He et al. Jun 2016 B2
9432294 Sharma et al. Aug 2016 B1
9444744 Sharma et al. Sep 2016 B1
9473365 Melander et al. Oct 2016 B2
9503530 Niedzielski Nov 2016 B1
9558078 Farlee et al. Jan 2017 B2
9613078 Vermeulen et al. Apr 2017 B2
9628471 Sundaram et al. Apr 2017 B1
9632858 Sasturkar et al. Apr 2017 B2
9658876 Chang et al. May 2017 B2
9692802 Bicket et al. Jun 2017 B2
9727359 Tsirkin Aug 2017 B2
9736063 Wan et al. Aug 2017 B2
9755858 Bagepalli et al. Sep 2017 B2
9792245 Raghavan et al. Oct 2017 B2
9804988 Ayoub et al. Oct 2017 B1
9954783 Thirumurthi et al. Apr 2018 B1
20020004900 Patel Jan 2002 A1
20020073337 Ioele et al. Jun 2002 A1
20020143928 Maltz et al. Oct 2002 A1
20020166117 Abrams et al. Nov 2002 A1
20020174216 Shorey et al. Nov 2002 A1
20030018591 Komisky Jan 2003 A1
20030056001 Mate et al. Mar 2003 A1
20030228585 Inoko et al. Dec 2003 A1
20040004941 Malan et al. Jan 2004 A1
20040095237 Chen et al. May 2004 A1
20040131059 Ayyakad et al. Jul 2004 A1
20040264481 Darling et al. Dec 2004 A1
20050060418 Sorokopud Mar 2005 A1
20050125424 Herriott et al. Jun 2005 A1
20060059558 Selep et al. Mar 2006 A1
20060104286 Cheriton May 2006 A1
20060120575 Ahn et al. Jun 2006 A1
20060126665 Ward et al. Jun 2006 A1
20060146825 Hofstaedter et al. Jul 2006 A1
20060155875 Cheriton Jul 2006 A1
20060168338 Bruegl et al. Jul 2006 A1
20060294207 Barsness et al. Dec 2006 A1
20070011330 Dinker et al. Jan 2007 A1
20070174663 Crawford et al. Jul 2007 A1
20070223487 Kajekar et al. Sep 2007 A1
20070242830 Conrado et al. Oct 2007 A1
20080005293 Bhargava et al. Jan 2008 A1
20080084880 Dharwadkar Apr 2008 A1
20080165778 Ertemalp Jul 2008 A1
20080198752 Fan et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080235755 Blaisdell et al. Sep 2008 A1
20090006527 Gingell, Jr. et al. Jan 2009 A1
20090010277 Halbraich et al. Jan 2009 A1
20090019367 Cavagnari et al. Jan 2009 A1
20090031312 Mausolf et al. Jan 2009 A1
20090083183 Rao et al. Mar 2009 A1
20090138763 Arnold May 2009 A1
20090177775 Radia et al. Jul 2009 A1
20090178058 Stillwell, III et al. Jul 2009 A1
20090182874 Morford et al. Jul 2009 A1
20090265468 Annambhotla et al. Oct 2009 A1
20090265753 Anderson et al. Oct 2009 A1
20090293056 Ferris Nov 2009 A1
20090300608 Ferris et al. Dec 2009 A1
20090313562 Appleyard et al. Dec 2009 A1
20090323706 Germain et al. Dec 2009 A1
20090328031 Pouyadou et al. Dec 2009 A1
20100042720 Stienhans et al. Feb 2010 A1
20100061250 Nugent Mar 2010 A1
20100115341 Baker et al. May 2010 A1
20100131765 Bromley et al. May 2010 A1
20100191783 Mason et al. Jul 2010 A1
20100192157 Jackson et al. Jul 2010 A1
20100205601 Abbas et al. Aug 2010 A1
20100211782 Auradkar et al. Aug 2010 A1
20100217886 Seren et al. Aug 2010 A1
20100293270 Augenstein et al. Nov 2010 A1
20100318609 Lahiri et al. Dec 2010 A1
20100325199 Park et al. Dec 2010 A1
20100325257 Goel et al. Dec 2010 A1
20100325441 Laurie et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110016214 Jackson Jan 2011 A1
20110035754 Srinivasan Feb 2011 A1
20110055396 Dehaan Mar 2011 A1
20110055398 Dehaan et al. Mar 2011 A1
20110055470 Portolani Mar 2011 A1
20110072489 Parann-Nissany Mar 2011 A1
20110075667 Li et al. Mar 2011 A1
20110110382 Jabr et al. May 2011 A1
20110116443 Yu et al. May 2011 A1
20110126099 Anderson et al. May 2011 A1
20110138055 Daly et al. Jun 2011 A1
20110145413 Dawson et al. Jun 2011 A1
20110145657 Bishop et al. Jun 2011 A1
20110173303 Rider Jul 2011 A1
20110185063 Head et al. Jul 2011 A1
20110199902 Leavy et al. Aug 2011 A1
20110213687 Ferris et al. Sep 2011 A1
20110213966 Fu et al. Sep 2011 A1
20110219434 Betz et al. Sep 2011 A1
20110231715 Kunii et al. Sep 2011 A1
20110231899 Pulier et al. Sep 2011 A1
20110239039 Dieffenbach et al. Sep 2011 A1
20110252327 Awasthi et al. Oct 2011 A1
20110261811 Battestilli et al. Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110276675 Singh et al. Nov 2011 A1
20110276951 Jain Nov 2011 A1
20110295998 Ferris et al. Dec 2011 A1
20110305149 Scott et al. Dec 2011 A1
20110307531 Gaponenko et al. Dec 2011 A1
20110320870 Kenigsberg et al. Dec 2011 A1
20120005724 Lee Jan 2012 A1
20120023418 Frields et al. Jan 2012 A1
20120054367 Ramakrishnan et al. Mar 2012 A1
20120072318 Akiyama et al. Mar 2012 A1
20120072578 Alam Mar 2012 A1
20120072581 Tung et al. Mar 2012 A1
20120072985 Davne et al. Mar 2012 A1
20120072992 Arasaratnam et al. Mar 2012 A1
20120084445 Brock et al. Apr 2012 A1
20120084782 Chou et al. Apr 2012 A1
20120096134 Suit Apr 2012 A1
20120102193 Rathore et al. Apr 2012 A1
20120102199 Hopmann et al. Apr 2012 A1
20120131174 Ferris et al. May 2012 A1
20120137215 Kawara May 2012 A1
20120158967 Sedayao et al. Jun 2012 A1
20120159097 Jennas, II et al. Jun 2012 A1
20120166649 Watanabe et al. Jun 2012 A1
20120167094 Suit Jun 2012 A1
20120173541 Venkataramani Jul 2012 A1
20120173710 Rodriguez Jul 2012 A1
20120179909 Sagi et al. Jul 2012 A1
20120180044 Donnellan et al. Jul 2012 A1
20120182891 Lee et al. Jul 2012 A1
20120185632 Lais et al. Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192016 Gotesdyner et al. Jul 2012 A1
20120192075 Ebtekar et al. Jul 2012 A1
20120201135 Ding et al. Aug 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204169 Breiter et al. Aug 2012 A1
20120204187 Breiter et al. Aug 2012 A1
20120214506 Skaaksrud et al. Aug 2012 A1
20120222106 Kuehl Aug 2012 A1
20120236716 Anbazhagan et al. Sep 2012 A1
20120240113 Hur Sep 2012 A1
20120265976 Spiers et al. Oct 2012 A1
20120272025 Park et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120281708 Chauhan et al. Nov 2012 A1
20120290647 Ellison et al. Nov 2012 A1
20120297238 Watson et al. Nov 2012 A1
20120311106 Morgan Dec 2012 A1
20120311568 Jansen Dec 2012 A1
20120324092 Brown et al. Dec 2012 A1
20120324114 Dutta et al. Dec 2012 A1
20130003567 Gallant et al. Jan 2013 A1
20130013248 Brugler et al. Jan 2013 A1
20130036213 Hasan et al. Feb 2013 A1
20130044636 Koponen et al. Feb 2013 A1
20130066940 Shao Mar 2013 A1
20130069950 Adam et al. Mar 2013 A1
20130080509 Wang Mar 2013 A1
20130080624 Nagai et al. Mar 2013 A1
20130091557 Gurrapu Apr 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130104140 Meng et al. Apr 2013 A1
20130111540 Sabin May 2013 A1
20130117337 Dunham May 2013 A1
20130124712 Parker May 2013 A1
20130125124 Kempf May 2013 A1
20130138816 Kuo et al. May 2013 A1
20130144978 Jain et al. Jun 2013 A1
20130152076 Patel Jun 2013 A1
20130152175 Hromoko et al. Jun 2013 A1
20130159097 Schory et al. Jun 2013 A1
20130159496 Hamilton et al. Jun 2013 A1
20130160008 Cawlfield et al. Jun 2013 A1
20130162753 Hendrickson et al. Jun 2013 A1
20130169666 Pacheco et al. Jul 2013 A1
20130179941 McGloin et al. Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130185413 Beaty et al. Jul 2013 A1
20130185433 Zhu et al. Jul 2013 A1
20130191106 Kephart et al. Jul 2013 A1
20130198050 Shroff et al. Aug 2013 A1
20130198374 Zalmanovitch et al. Aug 2013 A1
20130204849 Chacko Aug 2013 A1
20130232491 Radhakrishnan et al. Sep 2013 A1
20130232492 Wang Sep 2013 A1
20130246588 Borowicz et al. Sep 2013 A1
20130250770 Zou et al. Sep 2013 A1
20130254415 Fullen et al. Sep 2013 A1
20130262347 Dodson Oct 2013 A1
20130283364 Chang et al. Oct 2013 A1
20130297769 Chang et al. Nov 2013 A1
20130318240 Hebert et al. Nov 2013 A1
20130318546 Kothuri et al. Nov 2013 A1
20130339949 Spiers et al. Dec 2013 A1
20140006481 Frey et al. Jan 2014 A1
20140006535 Reddy Jan 2014 A1
20140006585 Dunbar et al. Jan 2014 A1
20140019639 Ueno Jan 2014 A1
20140040473 Ho et al. Feb 2014 A1
20140040883 Tompkins Feb 2014 A1
20140052877 Mao Feb 2014 A1
20140059310 Du et al. Feb 2014 A1
20140074850 Noel et al. Mar 2014 A1
20140075048 Yuksel et al. Mar 2014 A1
20140075108 Dong et al. Mar 2014 A1
20140075357 Flores et al. Mar 2014 A1
20140075501 Srinivasan Mar 2014 A1
20140089727 Cherkasova et al. Mar 2014 A1
20140098762 Ghai et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140122560 Ramey et al. May 2014 A1
20140136779 Guha et al. May 2014 A1
20140140211 Chandrasekaran et al. May 2014 A1
20140141720 Princen et al. May 2014 A1
20140156557 Zeng et al. Jun 2014 A1
20140160924 Pfautz et al. Jun 2014 A1
20140164486 Ravichandran et al. Jun 2014 A1
20140169215 Rajendran Jun 2014 A1
20140188825 Muthukkaruppan et al. Jul 2014 A1
20140189095 Lindberg et al. Jul 2014 A1
20140189125 Amies et al. Jul 2014 A1
20140215471 Cherkasova Jul 2014 A1
20140222953 Karve et al. Aug 2014 A1
20140244851 Lee Aug 2014 A1
20140245298 Zhou et al. Aug 2014 A1
20140269266 Filsfils et al. Sep 2014 A1
20140280805 Sawalha Sep 2014 A1
20140282536 Dave et al. Sep 2014 A1
20140282611 Campbell et al. Sep 2014 A1
20140282669 McMillan Sep 2014 A1
20140282889 Ishaya et al. Sep 2014 A1
20140289200 Kato Sep 2014 A1
20140297569 Clark et al. Oct 2014 A1
20140297835 Buys Oct 2014 A1
20140314078 Jilani Oct 2014 A1
20140317261 Shatzkamer et al. Oct 2014 A1
20140366155 Chang et al. Dec 2014 A1
20140372567 Ganesh et al. Dec 2014 A1
20150006470 Mohan Jan 2015 A1
20150033086 Sasturkar et al. Jan 2015 A1
20150043335 Testicioglu et al. Feb 2015 A1
20150043576 Dixon et al. Feb 2015 A1
20150052247 Threefoot Feb 2015 A1
20150052517 Raghu et al. Feb 2015 A1
20150058382 St. Laurent et al. Feb 2015 A1
20150058459 Amendjian et al. Feb 2015 A1
20150058557 Madhusudana et al. Feb 2015 A1
20150070516 Shoemake et al. Mar 2015 A1
20150071285 Kumar et al. Mar 2015 A1
20150089478 Cheluvaraju et al. Mar 2015 A1
20150100471 Curry, Jr. et al. Apr 2015 A1
20150106802 Ivanov et al. Apr 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150109923 Hwang Apr 2015 A1
20150117199 Chinnaiah Sankaran et al. Apr 2015 A1
20150117458 Gurkan et al. Apr 2015 A1
20150120914 Wada et al. Apr 2015 A1
20150149828 Mukerji et al. May 2015 A1
20150178133 Phelan et al. Jun 2015 A1
20150215819 Bosch et al. Jul 2015 A1
20150227405 Jan Aug 2015 A1
20150227406 Jan Aug 2015 A1
20150242204 Hassine et al. Aug 2015 A1
20150249709 Teng et al. Sep 2015 A1
20150271199 Bradley et al. Sep 2015 A1
20150280980 Bitar Oct 2015 A1
20150281067 Wu Oct 2015 A1
20150281113 Siciliano et al. Oct 2015 A1
20150309908 Pearson et al. Oct 2015 A1
20150319063 Zourzouvillys et al. Nov 2015 A1
20150326524 Tankala et al. Nov 2015 A1
20150339210 Kopp et al. Nov 2015 A1
20150373108 Fleming et al. Dec 2015 A1
20150379062 Vermeulen et al. Dec 2015 A1
20160011925 Kulkarni et al. Jan 2016 A1
20160013990 Kulkarni et al. Jan 2016 A1
20160062786 Meng et al. Mar 2016 A1
20160065417 Sapuram et al. Mar 2016 A1
20160094398 Choudhury et al. Mar 2016 A1
20160094480 Kulkarni et al. Mar 2016 A1
20160094643 Jain et al. Mar 2016 A1
20160094894 Inayatullah et al. Mar 2016 A1
20160099847 Melander et al. Apr 2016 A1
20160099873 Geröet al. Apr 2016 A1
20160103838 Sainani et al. Apr 2016 A1
20160105393 Thakkar et al. Apr 2016 A1
20160127184 Bursell May 2016 A1
20160134557 Steinder et al. May 2016 A1
20160147676 Cha et al. May 2016 A1
20160162436 Raghavan et al. Jun 2016 A1
20160164914 Madhav et al. Jun 2016 A1
20160188527 Cherian et al. Jun 2016 A1
20160234071 Nambiar et al. Aug 2016 A1
20160239399 Babu et al. Aug 2016 A1
20160253078 Ebtekar et al. Sep 2016 A1
20160254968 Ebtekar et al. Sep 2016 A1
20160261564 Foxhoven et al. Sep 2016 A1
20160277368 Narayanaswamy Sep 2016 A1
20160292611 Boe et al. Oct 2016 A1
20160352682 Chang Dec 2016 A1
20160378389 Hrischuk et al. Dec 2016 A1
20170005948 Melander et al. Jan 2017 A1
20170024260 Chandrasekaran et al. Jan 2017 A1
20170026470 Bhargava et al. Jan 2017 A1
20170034199 Zaw Feb 2017 A1
20170041342 Efremov et al. Feb 2017 A1
20170054659 Ergin et al. Feb 2017 A1
20170063674 Maskalik et al. Mar 2017 A1
20170097841 Chang et al. Apr 2017 A1
20170099188 Chang et al. Apr 2017 A1
20170104755 Arregoces et al. Apr 2017 A1
20170126583 Xia May 2017 A1
20170147297 Krishnamurthy et al. May 2017 A1
20170163569 Koganti Jun 2017 A1
20170171158 Hoy et al. Jun 2017 A1
20170192823 Karaje et al. Jul 2017 A1
20170264663 Bicket et al. Sep 2017 A1
20170300359 Kollur Oct 2017 A1
20170302521 Lui et al. Oct 2017 A1
20170310556 Knowles et al. Oct 2017 A1
20170317932 Paramasivam Nov 2017 A1
20170339070 Chang et al. Nov 2017 A1
20180069885 Patterson et al. Mar 2018 A1
20180173372 Greenspan et al. Jun 2018 A1
20180174060 Velez-Rojas et al. Jun 2018 A1
Foreign Referenced Citations (13)
Number Date Country
101719930 Jun 2010 CN
101394360 Jul 2011 CN
102164091 Aug 2011 CN
104320342 Jan 2015 CN
105740084 Jul 2016 CN
2228719 Sep 2010 EP
2439637 Apr 2012 EP
2645253 Nov 2014 EP
10-2015-0070676 May 2015 KR
M394537 Dec 2010 TW
WO 2009155574 Dec 2009 WO
WO 2010030915 Mar 2010 WO
WO 2013158707 Oct 2013 WO
Non-Patent Literature Citations (63)
Entry
Author Unknown, “5 Benefits of a Storage Gateway in the Cloud,” Blog, TwinStrata, Inc., Jul. 25, 2012, XP055141645, 4 pages, https://web.archive.org/web/20120725092619/http://blog.twinstrata.com/2012/07/10//5-benefits-of-a-storage-gateway-in-the-cloud.
Author Unknown, “Joint Cisco and VMWare Solution for Optimizing Virtual Desktop Delivery: Data Center 3.0: Solutions to Accelerate Data Center Virtualization,” Cisco Systems, Inc. and VMware, Inc., Sep. 2008, 10 pages.
Author Unknown, “Open Data Center Alliance Usage: Virtual Machine (VM) Interoperability in a Hybrid Cloud Environment Rev. 1.2,” Open Data Center Alliance, Inc., 2013, 18 pages.
Author Unknown, “Real-Time Performance Monitoring on Juniper Networks Devices, Tips and Tools for Assessing and Analyzing Network Efficiency,” Juniper Networks, Inc., May 2010, 35 pages.
Beyer, Steffen, “Module “Data::Locations?!”,” YAPC::Europe, London, UK,ICA, Sep. 22-24, 2000, XP002742700, 15 pages.
Borovick, Lucinda, et al., “Architecting the Network for the Cloud,” IDC White Paper, Jan. 2011, 8 pages.
Bosch, Greg, “Virtualization,” last modified Apr. 2012 by B. Davison, 33 pages.
Broadcasters Audience Research Board, “What's Next,” http://lwww.barb.co.uk/whats-next, accessed Jul. 22, 2015, 2 pages.
Cisco Systems, Inc. “Best Practices in Deploying Cisco Nexus 1000V Series Switches on Cisco UCS B and C Series Cisco UCS Manager Servers,” Cisco White Paper, Apr. 2011, 36 pages, http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/white_paper_c11-558242.pdf.
Cisco Systems, Inc., “Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments,” Cisco White Paper, Jan. 2011, 6 pages.
Cisco Systems, Inc., “Cisco Intercloud Fabric: Hybrid Cloud with Choice, Consistency, Control and Compliance,” Dec. 10, 2014, 22 pages.
Cisco Technology, Inc., “Cisco Expands Videoscape TV Platform Into the Cloud,” Jan. 6, 2014, Las Vegas, Nevada, Press Release, 3 pages.
CSS Corp, “Enterprise Cloud Gateway (ECG)—Policy driven framework for managing multi-cloud environments,” original published on or about Feb. 11, 2012; 1 page; http://www.css-cloud.com/platform/enterprise-cloud-gateway.php.
Fang K., “LISP MAC-EID-TO-RLOC Mapping (LISP based L2VPN),” Network Working Group, Internet Draft, CISCO Systems, Jan. 2012, 12 pages.
Herry, William, “Keep It Simple, Stupid: OpenStack nova-scheduler and its algorithm”, May 12, 2012, IBM, 12 pages.
Hewlett-Packard Company, “Virtual context management on network devices”, Research Disclosure, vol. 564, No. 60, Apr. 1, 2011, Mason Publications, Hampshire, GB, Apr. 1, 2011, 524.
Juniper Networks, Inc., “Recreating Real Application Traffic in Junosphere Lab,” Solution Brief, Dec. 2011, 3 pages.
Kenhui, “Musings on Cloud Computing and IT-as-a-Service: [Updated for Havana] Openstack Computer for VSphere Admins, Part 2: Nova-Scheduler and DRS”, Jun. 26, 2013, Cloud Architect Musings, 12 pages.
Kolyshkin, Kirill, “Virtualization in Linux,” Sep. 1, 2006, XP055141648, 5 pages, https://web.archive.org/web/20070120205111/http://download.openvz.org/doc/openvz-intro.pdf.
Lerach, S.R.O., “Golem,” http://www.lerach.cz/en/products/golem, accessed Jul. 22, 2015, 2 pages.
Linthicum, David, “VM Import could be a game changer for hybrid clouds”, InfoWorld, Dec. 23, 2010, 4 pages.
Naik, Vijay K., et al., “Harmony: A Desktop Grid for Delivering Enterprise Computations,” Grid Computing, 2003, Fourth International Workshop on Proceedings, Nov. 17, 2003, pp. 1-11.
Nair, Srijith K. et al., “Towards Secure Cloud Bursting, Brokerage and Aggregation,” 2012, 8 pages, www.flexiant.com.
Nielsen, “SimMetry Audience Measurement—Technology,” http://www.nielsen-admosphere.eu/products-and-services/simmetry-audience-measurement-technology/, accessed Jul. 22, 2015, 6 pages.
Nielsen, “Television,” http://www.nielsen.com/us/en/solutions/measurement/television.html, accessed Jul. 22, 2015, 4 pages.
Open Stack, “Filter Scheduler,” updated Dec. 17, 2017, 5 pages, accessed on Dec. 18, 2017, https://docs.openstack.org/nova/latest/user/filter-scheduler.html.
Rabadan, J., et al., “Operational Aspects of Proxy-ARP/ND in EVPN Networks,” BESS Worksgroup Internet Draft, draft-snr-bess-evpn-proxy-arp-nd-02, Oct. 6, 2015, 22 pages.
Saidi, Ali, et al., “Performance Validation of Network-Intensive Workloads on a Full-System Simulator,” Interaction between Operating System and Computer Architecture Workshop, (IOSCA 2005), Austin, Texas, Oct. 2005, 10 pages.
Shunra, “Shunra for HP Software; Enabling Confidence in Application Performance Before Deployment,” 2010, 2 pages.
Son, Jungmin, “Automatic decision system for efficient resource selection and allocation in inter-clouds,” Jun. 2013, 35 pages.
Wikipedia, “Filter (software)”, Wikipedia, Feb. 8, 2014, 2 pages, https://en.wikipedia.org/w/index.php?title=Filter_%28software%29&oldid=594544359.
Wikipedia; “Pipeline (Unix)”, Wikipedia, May 4, 2014, 4 pages, https://en.wikipedia.org/w/index.php?title=Pipeline2/028Unix%29&oldid=606980114.
Amedro, Brian, et al., “An Efficient Framework for Running Applications on Clusters, Grids and Cloud,” 2010, 17 pages.
Author Unknown, “A Look at DeltaCloud: The Multi-Cloud API,” Feb. 17, 2012, 4 pages.
Author Unknown, “About Deltacloud,” Apache Software Foundation, Aug. 18, 2013, 1 page.
Author Unknown, “Architecture for Managing Clouds, A White Paper from the Open Cloud Standards Incubator,” Version 1.0.0, Document No. DSP-IS0102, Jun. 18, 2010, 57 pages.
Author Unknown, “Cloud Infrastructure Management Interface—Common Information Model (CIMI-CIM),” Document No. DSP0264, Version 1.0.0, Dec. 14, 2012, 21 pages.
Author Unknown, “Cloud Infrastructure Management Interface (CIMI) Primer,” Document No. DSP2027, Version 1.0.1, Sep. 12, 2012, 30 pages.
Author Unknown, “cloudControl Documentation,” Aug. 25, 2013, 14 pages.
Author Unknown, “Interoperable Clouds, A White Paper from the Open Cloud Standards Incubator,” Version 1.0.0, Document No. DSP-IS0101, Nov. 11, 2009, 21 pages.
Author Unknown, “Microsoft Cloud Edge Gateway (MCE) Series Appliance,” Iron Networks, Inc., 2014, 4 pages.
Author Unknown, “Use Cases and Interactions for Managing Clouds, A White Paper from the Open Cloud Standards Incubator,” Version 1.0.0, Document No. DSP-IS00103, Jun. 16, 2010, 75 pages.
Author Unknown, “Apache Ambari Meetup What's New,” Hortonworks Inc., Sep. 2013, 28 pages.
Author Unknown, “Introduction,” Apache Ambari project, Apache Software Foundation, 2014, 1 page.
Citrix, “Citrix StoreFront 2.0” White Paper, Proof of Concept Implementation Guide, Citrix Systems, Inc., 2013, 48 pages.
Citrix, “CloudBridge for Microsoft Azure Deployment Guide,” 30 pages.
Citrix, “Deployment Practices and Guidelines for NetScaler 10.5 on Amazon Web Services,” White Paper, citrix.com, 2014, 14 pages.
Gedymin, Adam, “Cloud Computing with an emphasis on Google App Engine,” Sep. 2011, 146 pages.
Good, Nathan A., “Use Apache Deltacloud to administer multiple instances with a single API,” Dec. 17, 2012, 7 pages.
Kunz, Thomas, et al., “OmniCloud—The Secure and Flexible Use of Cloud Storage Services,” 2014, 30 pages.
Logan, Marcus, “Hybrid Cloud Application Architecture for Elastic Java-Based Web Applications,” F5 Deployment Guide Version 1.1, 2016, 65 pages.
Lynch, Sean, “Monitoring cache with Claspin” Facebook Engineering, Sep. 19, 2012, 5 pages.
Meireles, Fernando Miguel Dias, “Integrated Management of Cloud Computing Resources,” 2013-2014, 286 pages.
Mu, Shuai, et al., “uLibCloud: Providing High Available and Uniform Accessing to Multiple Cloud Storages,” 2012 IEEE, 8 pages.
Sun, Aobing, et al., “IaaS Public Cloud Computing Platform Scheduling Model and Optimization Analysis,” Int. J. Communications, Network and System Sciences, 2011, 4, 803-811, 9 pages.
Szymaniak, Michal, et al., “Latency-Driven Replica Placement”, vol. 47 No. 8, IPSJ Journal, Aug. 2006, 12 pages.
Toews, Everett, “Introduction to Apache jclouds,” Apr. 7, 2014, 23 pages.
Von Laszewski, Gregor, et al., “Design of a Dynamic Provisioning System for a Federated Cloud and Bare-metal Environment,” 2012, 8 pages.
Ye, Xianglong, et al., “A Novel Blocks Placement Strategy for Hadoop,” 2012 IEEE/ACTS 11th International Conference on Computer and Information Science, 2012 IEEE, 5 pages.
Al-Harbi, S.H., et al., “Adapting κ-means for supervised clustering,” Jun. 2006, Applied Intelligence, vol. 24, Issue 3, pp. 219-226.
Bohner, Shawn A., “Extending Software Change Impact Analysis into COTS Components,” 2003, IEEE, 8 pages.
Hood, C. S., et al., “Automated Proactive Anomaly Detection,” 1997, Springer Science and Business Media Dordrecht , pp. 688-699.
Vilalta R., et al., “An efficient approach to external cluster assessment with an application to martian topography,” Feb. 2007, 23 pages, Data Mining and Knowledge Discovery 14.1: 1-23. New York: Springer Science & Business Media.
Related Publications (1)
Number Date Country
20180026893 A1 Jan 2018 US