The foregoing features and other features of the disclosure will now be described with reference to the drawings of various objects of the disclosure. The illustrated embodiment is intended to illustrate, but not to limit the disclosure. The drawings include the following:
The present system is described herein with reference to two example embodiments. Those of ordinary skill in the art will appreciate, however, that these embodiments are merely examples. Alternative configurations from those shown in the attached figures may also embody the advantageous characteristics described above. These alternative configurations are within the scope of the present system.
Stationary anode 104 generates the X-ray beam 106, which is emitted out from X-ray tube 102 through window 108. In this example, X-ray beam 106 provides instantaneous coverage ‘L’ to the extent of cone angle θ. The volume of electron bombardment and X-ray generation required to provide full coverage L of object 110 requires a large amount of power and creates large amounts of heat, which in turn requires a large cooling system. By requiring large amounts of power and a large cooling system, the size of X-ray tube 102 must also be large.
Referring again to
In operation, cathode 302 emits electrons into the vacuum of X-ray tube 202. Dynamic anode 204 collects the electrons to establish a flow of electrical current through X-ray tube 202. Dynamic anode 204 generates an X-ray beam 208 that emits through window 206 in X-ray tube 202 to create an image of object 110 under examination.
In this embodiment, dynamic anode 204, is an anode that is made to move within X-ray tube 202, such that X-ray beam 208 is made to scan across object 110.
For example, referring to
As shown in
As shown in
In another embodiment, an X-ray backscatter system is provided which includes an X-ray tube (vacuum tube) that generates photons, and at least one silicon-based detector or photo-multiplier tube. Generally, photons emerge from the source or anode in a collimated “flying spot” beam that scans vertically. Backscattered photons are collected in the detector(s) and used to generate two-dimensional or three-dimensional images of objects. The angle over which the spot travels is limited by the X-ray fan angle coming off the anode.
An X-ray backscatter Non-Line-of-Sight Reverse Engineering application is the subject of U.S. patent application Ser. No. 11/352,118, entitled Non-Line Of Sight Reverse Engineering For Modifications Of Structures And Systems, filed on Feb. 10, 2006, the disclosure of which is assigned to the assignee of the present application, and the disclosure of which is incorporated herein by reference in its entirety.
In one embodiment, a rotating collimator 410, having an aperture 412, encircles X-ray tube 402 and rotates around stationary anode 404 such that aperture 412 rotates across the length of window 408. A portion of X-ray beam 406 passes through aperture 412 as aperture 412 rotates across window 408.
In this example, stationary anode 404 X-ray directs beam 406 to the internal side of collimator 410. Beam 406 impinges on collimator 410 to the extent of cone angle θ. As aperture 412 of collimator 410 passes through beam 406 a small portion 416 of beam 406 passes through to provide coverage on object 414. Since most of beam 406 is not used to impinge on to object 414, the power used to generate beam 406 is wasted.
In one operational embodiment, the relative rotation of dynamic anode 502 and of rotating collimator 508 is linked. Accordingly, in this embodiment, aperture 510 can be made to rotate in constant alignment with dynamic anode 502. By linking the relative rotation of anode 502 and collimator 508, X-ray beam 504 may be directed specifically at aperture 510 during the entire imaging operation. Because beam 504 is concentrated directly in the vicinity of aperture 510 during the entire imaging operation, the concentration 512 of beam 504 which actually passes through aperture 510 represents a large percentage of the actual beam 504.
Thus, the efficiency associated with using a more concentrated beam 504 continuously directed at aperture 510 as collimator 508 and anode 502 rotate, allows for using a smaller anode with a less powerful beam. In turn, the smaller anode allows the dimensions of the X-ray tube to also be reduced, because of the lower size and power requirements.
By directing beam 504 continuously at aperture 510 during an imaging operation also allows for complete circumferential beam coverage to cover a larger area of inspection with a larger field of view. Alternatively, X-ray beam 504 may be made to obtain a more concentrated X-ray at a particular location.
Although the system and method of the present disclosure are described with reference to a flying spot X-ray system (backscatter and transmission), those skilled in the art will recognize that the principles and teachings described herein may also be applied to conventional transmission X-ray systems and X-ray tomography systems.
In this embodiment, oscillating anode 602 increases the X-ray photon lobe angle without reducing the total number of photons per square centimeter. X-ray beam 608 is then emitted from oscillating anode 602 generating an X-ray fan area 610, such that X-ray beam 608 is made to sweep across an object continuously to the endpoints of the oscillation.
Beneficially, oscillating anode 602 allows for an instantaneous increase or decrease in the field-of-view (as represented by X-ray fan area 610), depending on the angle of oscillation α, which may be as large as 120°. Oscillating anode 602 is oscillated using any conventional oscillation means, such as an optical gimbal or galvometer provided inside of the X-ray tube.
Those skilled in the art will recognize that the principles and teachings described herein may be applied to a variety of structures and/or systems, such as aircraft, spacecraft, ground and ocean-going vehicles, complex facilities such as power generation for both commercial and government applications, power plants, processing plants, refineries, military applications, and transportation systems, including, but not limited to, automobiles, ships, helicopters, and trains. Furthermore, the present disclosure may be used for homeland security, as a personnel inspection system (portal) to look for hidden weapons under clothing or in luggage, borescopic applications, such as inspection work where the area to be inspected is inaccessible by other means and in the medical field or where a 360° field of view is required. The X-ray tube can penetrate very large objects, such as vehicles, by going inside the engine compartment or fuel tank which a normal X-ray imaging system cannot access due to size.
Although exemplary embodiments of the disclosure have been described above by way of example only, it will be understood by those skilled in the field that modifications may be made to the disclosed embodiment without departing from the scope of the disclosure, which is defined by the appended claims.
This application claims the benefit and priority to provisional patent application Ser. No. 60/746,481, filed on May 4, 2006, and to application, Ser. No. 11/352,118, filed on Feb. 10, 2006, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60746481 | May 2006 | US |