System and method for improved service chaining

Information

  • Patent Grant
  • 10812378
  • Patent Number
    10,812,378
  • Date Filed
    Friday, January 18, 2019
    5 years ago
  • Date Issued
    Tuesday, October 20, 2020
    3 years ago
Abstract
An apparatus having logic elements to receive an incoming packet associated with a first service function chain; identify a next hop service function for the incoming packet as a non-reactive service function; create a duplicate packet; forward the duplicate packet to the non-reactive service function; and forward the incoming packet to a next reactive service function. An apparatus having logic to receive an incoming packet associated with a first service function chain (SFC), having a first service path identifier (SPI); determine that the incoming packet has a first service index (SI), and that a next-hop SI identifies a non-reactive service function (NRSF); receive a duplicate packet of the incoming packet; rewrite a service header of the duplicate packet to identify a second SFC having a second SPI; and alter the first SI of the incoming packet to identify a next reactive service function in the first SFC.
Description
FIELD OF THE SPECIFICATION

This disclosure relates in general to the field of computer networking, and more particularly, though not exclusively to, a system and method for improved service chaining.


BACKGROUND

In an example contemporary computer architecture, functions such as firewalls, deep packet inspection (DPI), antivirus, load balancing, and network address translation (NAT) to name just a few, may be provided via network function virtualization (NFV). In NFV, each network node may be virtualized into a single-function virtual machine (VM), and several such single-function VMs may be provided on a single physical computer node, such as a rack-mount or blade server. Instances of virtual network functions (VNFs) may be “spun up” as needed to meet demand, and then “spun down” when demand decreases.


The path that a packet follows as it traverses the virtual network may be referred to as a “service function chain” (SFC). For example, if a packet is to be first inspected by a firewall, then by a DPI, and finally sent to a NAT, before finally being forwarded to the workload (WL) server, the service chain (starting from an edge router (ER)) may include ER→FW→DPI→NAT→WL.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not necessarily drawn to scale, and are used for illustration purposes only. Where a scale is shown, explicitly or implicitly, it provides only one illustrative example. In other embodiments, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1 is a block diagram of a network architecture according to one or more examples of the present Specification.



FIG. 2 is a block diagram of a computing device, according to one or more examples of the present Specification.



FIG. 3 is a block diagram of a packet header according to one or more examples of the present Specification.



FIG. 4 is a block diagram of a service chain according to one or more examples of the present Specification.



FIG. 5 is a block diagram of a service chain according to one or more examples of the present Specification.



FIGS. 6A and 6B are block diagrams of a service forwarding method according to one or more examples of the present Specification.



FIG. 7 is a flow chart of a method according to one or more examples of the present Specification.





SUMMARY

There is disclosed an apparatus having logic elements to: receive an incoming packet associated with a first service function chain; identify a next hop service function for the incoming packet as a non-reactive service function; create a duplicate packet; forward the duplicate packet to the non-reactive service function; and forward the incoming packet to a next reactive service function. There is also disclosed an apparatus having logic to: receive an incoming packet associated with a first service function chain (SFC), having a first service path identifier (SPI); determine that the incoming packet has a first service index (SI), and that a next-hop SI identifies a non-reactive service function (NRSF); receive a duplicate packet of the incoming packet; rewrite a service header of the duplicate packet to identify a second SFC having a second SPI, wherein the second SPI is different from the first SPI; and alter the first SI of the incoming packet to identify a next reactive service function in the first SFC.


EMBODIMENTS OF THE DISCLOSURE

The following disclosure provides many different embodiments, or examples, for implementing different features of the present disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. Furthermore, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Different embodiments may have different advantages, and no particular advantage is necessarily required of any embodiment.


In an example service function chain (SFC), a set of service functions (SF) may be applied in a linear or sequential fashion. For example, from a classifier at an ER to an egress interface at a WL server, the path may include Classifier→SF1→SF2→SF3→SF4 Egress. Some service functions are required, in certain embodiments, to be applied in a particular manner. For example, in some embodiments, NAT must be applied after DPI to avoid assigning an address to a flow that will end up being marked as “Spam” and dropped by the DPI. But in other embodiments, it is practical to apply certain service functions in parallel.


For example, a non-reactive service function (NRSF) includes any function that does not, or in the context of the specific network, cannot modify a packet. NRSFs may include, for example, traffic monitoring functions, accounting or billing functions, transparent cache functions, and lawful intercept functions by way of nonlimiting example. In some cases, NRSFs may include “testbed” SFs that are intended to be reactive SFs in the future, but that are currently undergoing testing and thus should not be permitted to modify “live” flows. Rather, they may simply perform “dummy” operations on duplicate flows and log the results so that the function can be evaluated. Thus, while these functions may be intended to modify packets in a general sense, in the context of the specific network, they may not be permitted to modify a packet.


In the case where an NRSF is a midpoint in a service chain, it may internally perform work based on the content of the packet, but from the perspective of the service chain, its only function is to forward the packet to the next hop in the service chain. If the NRSF is a terminal in the service chain, its only function (again, from the perspective of the service chain) is to drop the packet.


In the example above, the SFC includes SFs like firewall, DPI, and NAT in addition to non-reactive service function like monitoring. In that case, there may be no compelling need for a packet to be processed by a NRSF before it is passed on to a reactive SF. This may be true even if the NRSF is the last function in the SFC. But like any SF, NRSFs may result in performance penalties. For example:


If there is any performance issue in the NRSF (like packet drop or delay/jitter), end-to-end traffic may suffer a corresponding performance issue.


If there is any performance issue (like packet loss, delay/jitter) in path from SF1 (firewall) to SF2 (NRSF), end-to-end traffic may suffer a corresponding performance issue.


If the NRSF is a testbed service function, it may be unproven, and may introduce delays or errors into service function flows.


In a general sense, the foregoing possibilities may be true of any given SF. However, NRSFs present a special case because from the perspective of the SFC, it performs no “work.” Thus, the risk of any delay or error presented by an NRSF has no corresponding tradeoff (i.e., a useful or necessary function performed) for the SFC.


Embodiments of the present Specification describe an extension of existing SFC topologies that make it possible for a network administrator to identify and mark NRSFs in an SFC. When the SFC encounters the NRSF, rather than forwarding the original packet and risking an unnecessary bottleneck, a duplicate packet is created with a rewritten network services header (NSH) (or corresponding metadata). The modified NSH identifies a new SFC, which contains only one or more NRSFs. This duplicate packet is forwarded to the new chain, and the one or more NRSFs receive the packet and perform their function. In the meantime, the “service index” (SI) field in the NSH of the original packet is incremented by one or more (corresponding to the number of NRSFs “skipped” in this step), and is forwarded in parallel to the next reactive SF in the chain. This ensures that the one or more NRSFs receive the packets in the service chain, but that they cannot become a bottleneck, regardless of whether they function correctly or efficiently.


In some cases, the foregoing methods may be provided within a software-defined network (SDN), with management of the service chaining performed by an SDN controller (SDN-C), including an SDN-C engine, which may include a service-chaining engine. In one example, the SDN-C engine may instantiate an industry-standard platform, such as OpenDaylight, which supports open standards to provide an open source framework and platform for SDN control. Note however that SDN and SD-C are provided only as nonlimiting, illustrative examples. Any suitable network structure may be provided, with the service chaining engine residing on any suitable hardware, firmware, and/or software platform.


A system and method for improved service chaining will now be described with more particular reference to the attached FIGURES. It should be noted that throughout the FIGURES, certain reference numerals may be repeated to indicate that a particular device or block is wholly or substantially consistent across the FIGURES. This is not, however, intended to imply any particular relationship between the various embodiments disclosed. In certain examples, a genus of elements may be referred to by a particular reference numeral (“widget 10”), while individual species or examples of the genus may be referred to by a hyphenated numeral (“first specific widget 10-1” and “second specific widget 10-2”).



FIG. 1 is a network-level diagram of a networked enterprise 100 according to one or more examples of the present Specification. Enterprise 100 may be any suitable enterprise, including a business, agency, nonprofit organization, school, church, family, or personal network, by way of non-limiting example. In the example of FIG. 1A, a plurality of users 120 operate a plurality of endpoints or client devices 110. Specifically, user 120-1 operates desktop computer 110-1. User 120-2 operates laptop computer 110-2. And user 120-3 operates mobile device 110-3.


Each computing device may include an appropriate operating system, such as Microsoft Windows, Linux, Android, Mac OSX, Unix, or similar Some of the foregoing may be more often used on one type of device than another. For example, desktop computer 110-1, which in one embodiment may be an engineering workstation, may be more likely to use one of Microsoft Windows, Linux, Unix, or Mac OSX. Laptop computer 110-2, which is usually a portable off-the-shelf device with fewer customization options, may be more likely to run Microsoft Windows or Mac OSX. Mobile device 110-3 may be more likely to run Android or iOS. However, these examples are for illustration only, and are not intended to be limiting.


Client devices 110 may be communicatively coupled to one another and to other network resources via enterprise network 170. Enterprise network 170 may be any suitable network or combination of one or more networks operating on one or more suitable networking protocols, including for example, a local area network, an intranet, a virtual network, a wide area network, a wireless network, a cellular network, or the Internet (optionally accessed via a proxy, virtual machine, or other similar security mechanism) by way of nonlimiting example. Enterprise network 170 may also include one or more servers, firewalls, routers, switches, security appliances, antivirus servers, or other useful network devices, along with appropriate software. In this illustration, enterprise network 170 is shown as a single network for simplicity, but in some embodiments, enterprise network 170 may include a more complex structure, such as one or more enterprise intranets connected to the Internet. Enterprise network 170 may also provide access to an external network 172, such as the Internet. External network 172 may similarly be any suitable type of network.


Networked enterprise 100 may encounter a variety of “network objects” on the network. A network object may be any object that operates on, interacts with, or is conveyed via enterprise network 170. In one example, objects may be broadly divided into hardware objects, including any physical device that communicates with or operates via the network, software objects, and other logical objects.


Networked enterprise 100 may communicate across enterprise boundary 104 with external network 172. Enterprise boundary 104 may represent a physical, logical, or other boundary. External network 172 may include, for example, websites, servers, network protocols, and other network-based services. In one example, network objects on external network 172 include a wireless base station 130, an application repository 182, an external endpoint 180, and an attacker 190. It may be a goal for enterprise 100 to provide access to desirable services, such as application repository 182 and external endpoint 180, while excluding malicious objects such as attacker 190.


In some cases, networked enterprise 100 may be configured to provide services to external endpoint 180. For example, networked enterprise 100 may provide a website that its customers access via external endpoint 180. The website may be an important means for distributing key information to users and customers. In other examples, networked enterprise 100 may provide services such as webmail, file transfer protocol (FTP), file hosting or sharing, cloud backup, or managed hosting to clients operating external endpoint 180. Thus, in some cases, enterprise network 172 provides business-critical customer-facing network services. Enterprise network 172 may also provide business-critical services to enterprise users 120, such as an intranet, file server, database server, middleware, or other enterprise services.


Wireless base station 130 may provide mobile network services to one or more mobile devices 110, both within and without enterprise boundary 104.


Application repository 182 may represent a Windows or Apple “App Store” or update service, a Unix-like repository or ports collection, or other network service providing users 120 the ability to interactively or automatically download and install applications, patches, or other software on client devices 110.



FIG. 2 is a block diagram of computing device such as a router 200 according to one or more examples of the present Specification. Router 200 may be any suitable computing device. In various embodiments, a “computing device” may be or comprise, by way of non-limiting example, a computer, workstation, server, mainframe, virtual machine (whether emulated or on a “bare-metal” hypervisor), embedded computer, embedded controller, embedded sensor, personal digital assistant, laptop computer, cellular telephone, IP telephone, smart phone, tablet computer, convertible tablet computer, computing appliance, network appliance, receiver, wearable computer, handheld calculator, or any other electronic, microelectronic, or microelectromechanical device for processing and communicating data. Any computing device may be designated as a host on the network. Each computing device may refer to itself as a “local host,” while any computing device external to it may be designated as a “remote host.”


Router 200 is disclosed by way of nonlimiting example to illustrate a suitable hardware and software platform for providing a software-defined networking controller (SDN-C) engine 224 and/or a virtualization manager. It should be noted that SDN-C 224 and virtualization manager 226 may be provided on the same hardware platform, or on different hardware platforms, each of which may include some or all of the hardware and logical structures disclosed herein, separately or in combination. The hardware platform providing zero, one, or both of these engines may function as a router within the network, such as enterprise network 170, or may be some other kind of hardware. In a general sense, it should be understood that in a world where many network functions can be virtualized on many different kinds of platforms, many different configurations are possible, all of which would fall well within the spirit and scope of the appended claims.


In this example, router 200 includes a processor 210 connected to a memory 220, having stored therein executable instructions for providing an operating system 222 and at least software portions of a SDN-C engine 224. Other components of router 200 include a storage 250, and network interface 260. This architecture is provided by way of example only, and is intended to be non-exclusive and non-limiting. Furthermore, the various parts disclosed are intended to be logical divisions only, and need not necessarily represent physically separate hardware and/or software components. Certain computing devices provide main memory 220 and storage 250, for example, in a single physical memory device, and in other cases, memory 220 and/or storage 250 are functionally distributed across many physical devices. In the case of virtual machines or hypervisors, all or part of a function may be provided in the form of software or firmware running over a virtualization layer to provide the disclosed logical function. In other examples, a device such as a network interface 260 may provide only the minimum hardware interfaces necessary to perform its logical operation, and may rely on a software driver to provide additional necessary logic. Thus, each logical block disclosed herein is broadly intended to include one or more logic elements configured and operable for providing the disclosed logical operation of that block. As used throughout this Specification, “logic elements” may include hardware, external hardware (digital, analog, or mixed-signal), software, reciprocating software, services, drivers, interfaces, components, modules, algorithms, sensors, components, firmware, microcode, programmable logic, or objects that can coordinate to achieve a logical operation.


In an example, processor 210 is communicatively coupled to memory 220 via memory bus 270-3, which may be for example a direct memory access (DMA) bus by way of example, though other memory architectures are possible, including ones in which memory 220 communicates with processor 210 via system bus 270-1 or some other bus. Processor 210 may be communicatively coupled to other devices via a system bus 270-1. As used throughout this Specification, a “bus” includes any wired or wireless interconnection line, network, connection, bundle, single bus, multiple buses, crossbar network, single-stage network, multistage network or other conduction medium operable to carry data, signals, or power between parts of a computing device, or between computing devices. It should be noted that these uses are disclosed by way of non-limiting example only, and that some embodiments may omit one or more of the foregoing buses, while others may employ additional or different buses.


In various examples, a “processor” may include any combination of logic elements operable to execute instructions, whether loaded from memory, or implemented directly in hardware, including by way of non-limiting example a microprocessor, digital signal processor, field-programmable gate array, graphics processing unit, programmable logic array, application-specific integrated circuit, or virtual machine processor. In certain architectures, a multi-core processor may be provided, in which case processor 210 may be treated as only one core of a multi-core processor, or may be treated as the entire multi-core processor, as appropriate. In some embodiments, one or more co-processors may also be provided for specialized or support functions.


Processor 210 may be connected to memory 220 in a DMA configuration via DMA bus 270-3. To simplify this disclosure, memory 220 is disclosed as a single logical block, but in a physical embodiment may include one or more blocks of any suitable volatile or non-volatile memory technology or technologies, including for example DDR RAM, SRAM, DRAM, cache, L1 or L2 memory, on-chip memory, registers, flash, ROM, optical media, virtual memory regions, magnetic or tape memory, or similar. In certain embodiments, memory 220 may comprise a relatively low-latency volatile main memory, while storage 250 may comprise a relatively higher-latency non-volatile memory. However, memory 220 and storage 250 need not be physically separate devices, and in some examples may represent simply a logical separation of function. It should also be noted that although DMA is disclosed by way of non-limiting example, DMA is not the only protocol consistent with this Specification, and that other memory architectures are available.


Storage 250 may be any species of memory 220, or may be a separate device. Storage 250 may include one or more non-transitory computer-readable mediums, including by way of non-limiting example, a hard drive, solid-state drive, external storage, redundant array of independent disks (RAID), network-attached storage, optical storage, tape drive, backup system, cloud storage, or any combination of the foregoing. Storage 250 may be, or may include therein, a database or databases or data stored in other configurations, and may include a stored copy of operational software such as operating system 222 and software portions of SDN-C engine 224. Many other configurations are also possible, and are intended to be encompassed within the broad scope of this Specification.


Network interface 260 may be provided to communicatively couple router 200 to a wired or wireless network. A “network,” as used throughout this Specification, may include any communicative platform operable to exchange data or information within or between computing devices, including by way of non-limiting example, an ad-hoc local network, an internet architecture providing computing devices with the ability to electronically interact, a plain old telephone system (POTS), which computing devices could use to perform transactions in which they may be assisted by human operators or in which they may manually key data into a telephone or other suitable electronic equipment, any packet data network (PDN) offering a communications interface or exchange between any two nodes in a system, or any local area network (LAN), metropolitan area network (MAN), wide area network (WAN), wireless local area network (WLAN), virtual private network (VPN), intranet, or any other appropriate architecture or system that facilitates communications in a network or telephonic environment.


SDN-C engine 224, in one example, is operable to carry out computer-implemented methods as described in this Specification. SDN-C engine 224 may include one or more tangible non-transitory computer-readable mediums having stored thereon executable instructions operable to instruct a processor to provide an SDN-C engine 224. As used throughout this Specification, an “engine” includes any combination of one or more logic elements, of similar or dissimilar species, operable for and configured to perform one or more methods provided by the engine. Thus, SDN-C engine 224 may comprise one or more logic elements configured to provide methods as disclosed in this Specification. In some cases, SDN-C engine 224 may include a special integrated circuit designed to carry out a method or a part thereof, and may also include software instructions operable to instruct a processor to perform the method. In some cases, SDN-C engine 224 may run as a “daemon” process. A “daemon” may include any program or series of executable instructions, whether implemented in hardware, software, firmware, or any combination thereof, that runs as a background process, a terminate-and-stay-resident program, a service, system extension, control panel, bootup procedure, BIOS subroutine, or any similar program that operates without direct user interaction. In certain embodiments, daemon processes may run with elevated privileges in a “driver space,” or in ring 0, 1, or 2 in a protection ring architecture. It should also be noted that SDN-C engine 224 may also include other hardware and software, including configuration files, registry entries, and interactive or user-mode software by way of non-limiting example.


In one example, SDN-C engine 224 includes executable instructions stored on a non-transitory medium operable to perform a method according to this Specification. At an appropriate time, such as upon booting router 200 or upon a command from operating system 222 or a user 120, processor 210 may retrieve a copy of the instructions from storage 250 and load it into memory 220. Processor 210 may then iteratively execute the instructions of SDN-C engine 224 to provide the desired method. SDN-C engine 224 may be configured to provide service chaining, including for example the service chaining architecture disclosed in FIGS. 4 and 5.


In this embodiment, SDN-C engine 224 provides a service-chaining engine. Note however that the service-chaining engine is shown within SDN-C engine 224 by way of non-limiting example only. In a more general sense, the service-chaining engine may be any engine according to the present disclosure. The service-chaining engine may be configured to carry out methods according to this Specification, including for example the methods illustrated in FIGS. 6a, 6b, and 7.


Further in this example, on the same, shared, or on separate hardware, a virtualization manager 226 is shown. Virtualization manager 226 may be an engine according to the present disclosure. Non-limiting examples of virtualization managers include VMware ESX (or enhancements thereof, such as vSphere), Citrix XenServer, or Microsoft Hyper-V. The foregoing are all examples of “type 1” hypervisors, but it should be noted that other types of virtualization managers may be used, including type 2 hypervisors, or other virtualization solutions.



FIG. 3 is a simplified block diagram illustrating an example service overlay packet format according to an embodiment of the present Specification. The example service overlay packet format may include NSH 338, transport header 340 and payload 342. In this example, NSH 338 includes four 32-bit context headers (e.g., service shared context, service platform context, network shared context, and network platform context), and an additional header 360 comprising the 24-bit service path identifier (SPI) 362 and 8-bit service index (SI) 364. In this example, SPI 362 is a numeric designator that identifies a particular SFC that payload 342 is to traverse. This identifier may be stored in a table accessible by SDN-C engine 224. SI 364 identifies the hop in the SFC that the packet currently is on.


In an embodiment where parallel handling of NRSFs is not provided, a service node may receive an incoming packet, perform its function, and then increment SI 364 of NSH 338. Thus, when the service function sends the packet back out to the network, it is delivered to the next hop in the SFC.


In embodiments of the present Specification wherein parallel handling of NRSFs is provided, SI 364 may be incremented according to method 700 of FIG. 7.



FIG. 4 is a simplified block diagram illustrating a communication system 400 for distributed service chaining in a network environment according to one or more examples of the present Specification. FIG. 4 illustrates a network 180 (generally indicated by an arrow) comprising a distributed virtual switch (DVS) 414, which is provided as a non-limiting example of a platform for providing a service-chaining network. DVS 414 can include a service controller 416, which may be an SDN-C controller, such as the one provided by router 200 of FIG. 2, or any other suitable platform. A plurality of service nodes (SN) 418 (e.g., SNs 418(1)-418(5)) may provide various network services to packets entering or leaving network 180. A plurality of virtual machines (VMs) may provide respective workloads (WLs) 420 (e.g., WL 420(1)-420(5)) on DVS 414, for example, by generating or receiving packets through DVS 414. One or more virtual Ethernet modules (VEMs) 422 (e.g., VEMs 422(1)-422(3)) may facilitate packet forwarding by DVS 414. In various embodiments, DVS 414 may execute in one or more hypervisors in one or more servers (or other computing and networking devices) in network 180. Each hypervisor may be embedded with one or more VEMs 422 that can perform various data plane functions such as advanced networking and security, switching between directly attached virtual machines, and uplinking to the rest of the network. Each VEM 422(1)-422(3) may include respective service function paths (SFPs) 424(1)-424(3) that can redirect traffic to SNs 418 before DVS 414 sends the packets into WLs 420.


Note that although only a limited number of SNs 418, WLs 420, VEMs 422, and SFPs 424 are provided in the FIGURE for ease of illustration, any number of service nodes, workloads, VEMs and SFPs may be included in communication system 400 within the broad scope of the embodiments. Moreover, the service nodes and workloads may be distributed within network 180 in any suitable configuration, with various VEMs and SFPs to appropriately steer traffic through DVS 414.


Embodiments of communication system 400 can facilitate distributed service chaining in network 180. As used herein, the term “service chain” includes an ordered sequence of a plurality of services provided by one or more SNs (e.g., applications, virtual machines, network appliances, and other network elements that are configured to provide one or more network services) in the network. A “service” may include a feature that performs packet manipulations over and beyond conventional packet forwarding. Examples of services include encryption, decryption, intrusion management, firewall, load balancing, wide area network (WAN) bandwidth optimization, application acceleration, network based application recognition (NBAR), cloud services routing (CSR), virtual interfaces (VIPs), security gateway (SG), network analysis, deep packet inspection (DPI), and data and accounting services, by way of non-limiting example. The service may be considered an optional function performed in a network that provides connectivity to a network user. The same service may be provided by one or more SNs within the network.


According to some embodiments, a user (e.g., network administrator) can configure the service chain and provision it directly at an applicable workload 420 (e.g., WL 420(1)). In some cases, this may include identifying and configuring non-reactive service functions (NRSFs).


Service controller 416 may segment the user configured service chain in DVS 414. According to various embodiments, VEMs 422(1)-422(3) may generate headers for forwarding packets according to the configured service chain such that substantially all services in the service chain may be provided in a single service loop irrespective of the number of services, with respective VEMs 422(1)-422(3) making independent decisions (e.g., without referring to other VEMs or other network elements) about the next hop decisions in the service chain packet forwarding. As used herein, the term “service loop” refers to a path of the packet from a starting point (e.g., WL 420(1)) through various service nodes (e.g., SN 418(2), SN 418(4), SN 418(5)) of the service chain until termination at the starting point (e.g., WL 420(1)). The service chain traffic may be steered over network 180 in a service overlay 426. Note that it is not always necessary to terminate the starting point, so that this may not necessarily be a “loop.” It is intended for “service loop” to encompass the operation in either case.


As used herein, the term “service controller” includes an engine that can provision services at one or more service nodes according to preconfigured settings. The preconfigured settings may be provided at the service controller by a user through an appropriate command line interface, graphical user interface, script, or other suitable means. The term “VEM” includes one or more network interfaces, at least some portions of switching hardware and associated firmware and software, and one or more processes managing the one or more network interfaces to facilitate packet switching in a switch, including a distributed virtual switch (e.g., DVS 414). VEMs may be named as service VEMs when they provide connectivity to service nodes, and as classifier VEMs when they provide connectivity to the workloads that function as the initial node in a service chain. In certain embodiments, one or more VEMs may be provided in an instance of a Cisco® unified computing system (UCS) rack server.


Service overlay 426 encompasses a level of indirection, or virtualization, allowing a packet (e.g., unit of data communicated in the network) destined to a specific workload to be diverted transparently (e.g., without intervention or knowledge of the workloads) to other service nodes as appropriate. Service overlay 426 includes a logical network built on top of existing network 180 (the underlay). Packets are encapsulated or tunneled to create the overlay network topology. For example, service overlay 426 can include a suitable header (e.g., a network service header (NSH)), with corresponding source and destination addresses relevant to the service nodes in the service chain.


For purposes of illustrating the techniques of communication system 400, it is important to understand the communications that may be traversing the system. The following foundational information may be viewed as a basis from which the present disclosure may be properly explained. Such information is offered earnestly for purposes of explanation only and, accordingly, should not be construed in any way to limit the broad scope of the present disclosure and its potential applications.


Service chaining involves steering traffic through multiple services in a specific order. The traffic may be steered through an overlay network, including an encapsulation of the packet to forward it to appropriate service nodes.


Service chains are orchestrated in a centralized fashion in the network infrastructure. Each VEM 422(1)-422(3) may serve as an originator of respective network service headers (NSHs) for service overlay 426. As used herein, the term “network service header” includes a data plane header (e.g., metadata) added to frames/packets (see, e.g., FIG. 3). The NSH contains information required for service chaining, and metadata added and consumed by SNs 418 and WLs 420. (Examples of metadata include classification information used for policy enforcement and network context for forwarding post service delivery). According to embodiments of communication system 400, each NSH may include a service path identifier identifying the service chain to which a packet belongs, and a location of the packet on the service chain, which can indicate the service hop (NSH aware node to forward the packet) on service overlay 426. The service path identifier and the location of the packet can comprise any suitable text, number or combination thereof. In an embodiment, the service path identifier is a 24-bit number, and the location may be specified by an 8-bit number. In appropriate circumstances, service chains may include both agentful and agentless nodes.


According to various embodiments, a user may configure (e.g., provision, arrange, organize, construct, etc.) the service chains at service controller 416. Service controller 416 may discover the location of service nodes 418(1)-418(5). In some embodiments, the service chain may be provisioned by service controller 416 in a port profile at respective SFPs 424(1)-424(3) associated with specific workloads 420 that instantiate the service chains, thereby binding the service policy including the service chain with the network policy included in the port profile. In other embodiments, when service chains are instantiated at classifier VEM 422(1), associated with the initiating workload 420(2), service controller 416 may be notified of the service chain instantiation. Service controller 416 may assign a path identifier to each instantiated service chain. Service controller 416 may populate service forwarding table entries indicating the next service hop for respective service chains identified by corresponding path identifiers. Service controller 416 may program service-forwarding tables at appropriate VEMs 422 based on service node discovery information.


Merely for illustrative purposes, and not as a limitation, assume a service chain 1 provisioned at WL 420(2) as follows: WL2→SN2→SN4→SN5. In other words, a packet originating at WL 420(2) may be steered to SN 418(2), serviced accordingly, then to SN 418(4), then to SN 418(5), and finally returned to WL 420(2). VEM 422(1) may generate an NSH including the Internet Protocol (IP) or Media Access Control (MAC) address of VEM 422(1) at which WL 420(2) is located as a source address, and an IP/MAC address of SN 418(2) as the next service hop. Destination VEM 422(2), at which SN 418(2) is located may inspect the NSH and take suitable actions.


According to various embodiments, after the packet is suitably serviced at SN 418(2), VEM 422(2) may intercept the packet and lookup the next service hop. The NSH may be updated to indicate the next service hop as SN 418(4) (rather than WL 420(2), for example). The packet may be forwarded on service overlay 426 to the next service hop, where VEM 422(3) may intercept the packet, and proceed appropriately.


Embodiments of communication system 400 may decentralize the service forwarding decisions, with each VEM 422 making appropriate next service hop decisions. Any kind of network (e.g., enterprise, service provider, etc.) may implement embodiments of communication system 400 as appropriate.


Further, the service forwarding decision at any of VEMs 422(1)-422(3) may be limited to the next-hop of the service chain, rather than all hops of the service chain. For example, the next service hop decision at the classifier VEM (e.g., VEM 422(1)) may determine the first SN (e.g., SN 418(2)) in the service chain and may send the traffic on service overlay 426 to the first SN (e.g., SN 418(2)). The NSH may be written to indicate the source as VEM 422(1) and next service hop as SN 418(2): <overlay: source=VEM1), destination=SN2>. The service VEM (e.g., VEM 422(2)) at SN 418(2) may simply allow the traffic on service overlay 426 to pass through to SN 418(2).


After the service is delivered at the SN (e.g., SN 418(2)), the SN (e.g., SN 418(2)) may simply send the serviced traffic back on service overlay 426 to where traffic came from (e.g., WL 420(2), or VEM 422(1)). For example, SN 418(2) may write the NSH to indicate the source as SN 418(2) and destination as VEM 422(1): <overlay: source=SN2, destination=VEM1>. The return traffic may be intercepted by the service VEM (e.g., VEM 422(2)) next (or closest) to the SN (e.g., SN 418(2)). The intercepting service VEM (e.g., VEM 422(2)) may make the service forwarding decision, determining the next SN (e.g., SN 418(4)) in the service chain and re-originating the NSH to the next SN (e.g., SN 418(4)). The NSH may be rewritten to indicate the source as VEM 422(2) and destination as SN 418(4): <overlay: source=VEM2, destination=SN4>.


The process of service forwarding can continue from VEMs 422 to SNs 418 until all SNs in the service chain deliver services. The forwarding decision may be based on the presence or absence of an agent at SN 418. For example, assume that SN 418(4) is agentless, VEM 422(3) may notice that NSH indicates a destination of SN 418(4), which is agentless. VEM 422(3) may terminate service overlay 426 and perform translation to send the traffic to SN 418(4). After SN 418(4) delivers the service, it may simply send the original payload packet out, which may be received by VEM 422(3) for translation back onto service overlay 426. VEM 422(3) may intercept SN 418(4)'s traffic and determine the next service hop as SN 418(5) (which, for example purposes, may be agentful and on the same VEM as SN 418(4)). VEM 422(3) may re-originate NSH to SN 418(5): <overlay: source=VEM3, destination=SN5>. After the service is applied, SN 418(5) may simply re-originate the NSH back to VEM 422(3): <overlay: source=SN5, destination=VEM3>.


The service VEM (e.g., VEM 422(3)) intercepting the return traffic from the last SN (e.g., SN 418(5)) in the service chain may determine the end of service chain. If the last VEM (e.g., VEM 422(3)) is capable of forwarding the payload traffic, it may simply forward it on the underlay network (e.g., network 180). If on the other hand, the payload traffic can only be forwarded by classifier VEM (e.g., VEM 422(1)), the NSH may be re-originated by the last VEM (e.g., VEM 422(3)) back to the classifier VEM (e.g., VEM 422(1)). VEM 422(1) may receive the serviced packet on service overlay 426 and may determine that all services on the service chain are delivered. VEM 422(1) may forward the original payload packet, serviced by the service chain, natively or on the underlay network (e.g., network 180), as appropriate.


In some embodiments, for example, as in a service provider network environment that represents a non-homogeneous environment, the network infrastructure, including DVS 414 may be owned and operated by the provider; WLs 420 may belong to the tenants of the provider; and SNs 418 may be hosted by the provider on behalf of the tenant or hosted by the tenants themselves, or by other third parties. In some embodiments, for example, wherein the service provider hosts SNs 418 on behalf of the tenant, NSH of service overlay 426 may use the IP/MAC addresses of VEMs 422 and SNs 418 for source and destination addresses.


Within the infrastructure of communication system 400, the network topology can include any number of servers, virtual machines, switches (including distributed virtual switches), routers, and other nodes inter-connected to form a large and complex network.


VEMs 420 can include virtual interfaces (e.g., virtual equivalent of physical network access ports) that maintain network configuration attributes, security, and statistics across mobility events, and may be dynamically provisioned within virtualized networks based on network policies stored in DVS 414 as a result of VM provisioning operations by a hypervisor management layer. VEMs 422 may follow virtual network interface cards (vNICs) when VMs move from one physical server to another. The movement can be performed while maintaining port configuration and state, including NetFlow, port statistics, and any Switched Port Analyzer (SPAN) session. By virtualizing the network access port with DPs 424(2)-424(6), transparent mobility of VMs across different physical servers and different physical access-layer switches within an enterprise network may be possible. SFPs 424(1)-424(3) may provide intelligent traffic steering (e.g., flow classification and redirection), and fast path offload for policy enforcement of flows. SFPs 424(1)-424(3) may be configured for multi-tenancy, providing traffic steering and fast path offload on a per-tenant basis. Although only three SFPs 424(1)-424(3) are illustrated in FIG. 4, any number of SFPs may be provided within the broad scope of the embodiments of communication system 400.



FIG. 5 is a simplified block diagram illustrating example details that may be associated with an embodiment of communication system 400. An example service chain is illustrated in the figure, starting at WL 420(2), proceeding to SN 418(2), then to SN 418(3), then to SN 418(4), then to SN 418(5), and lastly, to WL 420(5): WL2→SN2→SN3→SN4→SN5→WL5. Service controller 416 may program service forwarding tables 530(1)-530(3) at respective VEMs 422(1)-422(3). Each service forwarding table 530(1)-530(3) may include an SPI 362 and an SI 364. Some SNs 418 may include an agent 32. Note that the configuration described herein is merely for example purposes, and is not intended to be a limitation of embodiments of communication system 400.


The packet from WL 420(2) may be encapsulated with the NSH at classifier VEM 422(1) based on information in service forwarding table 530(1). The packet may be forwarded on service overlay 426 to the next service hop, namely SN 418(2). VEM 422(2) may decapsulate the NSH, and forward the packet through interface 534(1) to SN 418(2). SN 418(2) may service the packet, and rewrite the packet header to indicate the destination address of VEM 422(1) and send the packet out through interface 534(2). VEM 422(2) may intercept the packet, and re-originate the NSH based on information in service forwarding table 530(2). The destination may be written to be the IP/MAC address of SN 418(3). After being serviced, the packet may be returned to VEM 422(2) via interface 534(3). VEM 422(2) may intercept the packet, and re-originate the NSH based on information in service forwarding table 530(2). The destination may be written to be the IP/MAC address of SN 418(4) and the packet forwarded to VEM 422(3) on service overlay 426.


VEM 422(3) may decapsulate the packet, and forward the packet to SN 418(4) over interface 534(4). SN 418(4) may service the packet appropriately, and attempt to return it to VEM 422(1) over interface 534(5). VEM 422(3) may intercept the packet, and re-originate the NSH based on information in service forwarding table 530(3). The destination may be written to be the IP/MAC address of SN 418(5) and the packet forwarded to SN 418(5) over interface 534(6). SN 418(5) may service the packet appropriately, and attempt to return it to VEM 422(1) over interface 534(7). VEM 422(3) may intercept the packet, and re-originate the NSH based on information in service forwarding table 530(3). In some embodiments, the destination may be written to be the IP/MAC address of WL 420(5) and the packet forwarded to WL 420(5) over network 180, or the appropriate interface. In other embodiments, the destination may be written to be the IP/MAC address of classifier VEM 422(1) and the packet forwarded to WL 420(2) on service overlay 426 as appropriate.



FIGS. 6A and 6B illustrate simplified aspects of a network 400. It should be noted that network 400 as illustrated in FIG. 6A could be the same network as is illustrated in FIGS. 4 and 5, or could be a different or separate network. The diagram of FIG. 6A is simplified to more closely focus on aspects of the disclosure that relate specifically to optimizing service chaining, such as in cases where an NRSF resides in the service chain, and it is desirable to ensure that the NRSF cannot become a bottleneck or point of failure that could affect other nodes in the service chain.


It should be noted that in the examples of FIGS. 6A and 6B, service chaining may be accomplished substantially as illustrated in FIGS. 4 and 5, with the exceptions illustrated in these FIGURES.


In FIG. 6A, SDN-C 416 may instantiate an SPI 362 for each SFF 422. For some SFFs 422, SDN-C 416 may also instantiate a replicate (R) flag, indicating that the next SFF 422 is a NRSF. Note that an SFF 422 need not be non-reactive en grosse. Rather, some SFFs 422 may be non-reactive with respect to certain types of packets, and reactive with respect to other types of packets. Thus, a particular SFF 422 may be reactive with respect to a first service chain, and non-reactive with respect to a second service chain. Note that it is the responsibility of the network administrator, as a design decision, to designate which SFFs 422 are nonreactive with respect to each service chain.


Alternatively, the network administrator may designate an entire service chain as non-reactive, and thus keep all non-reactive functions in a separate service chain.


When an SFF 422 encounters a packet and, examining the SFP table, determines that the next SFF 422 is non-reactive (as designated by the R flag), may perform the following:


Replicate the packet and rewrite the NSH header (in case of new SPI 362), or decrement SI 364 and forward to next SFF 422.


Rewrite the SI 364 and forward to the next SFF 422 in the SFC.


For example, in FIG. 6A, SF2 (hosted on SFF2 422(4)) is identified as non-reactive with respect to the present flow, and thus can be processed in parallel. Thus, as illustrated in FIG. 6B, SDN-C 416 populates the SFC table by marking SI=2 with an “R” flag for the service chain identified as SPI=100.


Later, when SFF1 receives the packet back from SF1 (with SI=2), it notes the “R” flag in table and replicates the packet. SF1 then rewrites the original packet with SI incremented, and forwards the packet to SFF2 and SFF3 in parallel. SFF3 now receives the packet as though it had already passed through SFF2, and proceeds with the service chain as normal.


SFF2, for its part, forwards the packet to SFF2. SFF2 forwards the packet to SF2. Once SF2 processes the packet, it returns the packet to SFF2. Because SFF2 notes that SF2 is the terminal node in the modified “parallel” service chain, there is nothing more to do with the packet, and SFF2 silently drops the packet.


Additional details are visible in FIG. 6B. As can be seen, SF2 (hosted in SFF2) is an NRSF. According to a configuration by the network administrator, SDN-C 416 programs SFF2 with SPI=200. SPI=200 may be a special-purpose non-reactive service function chain (NRSFC), which contains only one or more NRSFs. In this example, SF2 is the only function in SPI=200. Thus, the “next” action (after processing by SF2) is “drop.”


Thus, when SFF1 on SI=1 of SPI=100 notes that the next-hope (SI=2) has an “R” flag, SDN-C 416 may populate the new SPI=200 table as illustrated.


On receiving the packet back from SF1, SFF1 matches the “R” flag and replicates the packet. The replica may receive the new, rewritten SPI 632 (e.g., SPI=200). This packet is forwarded to SFF2. The original has its SI 634 incremented (e.g., SI=3), and then it is forwarded to SFF3. From the perspective of SFF3, the packet has already successfully passed through SFF2.


If the packet “stalls” at SFF2, the rest of the service chain is not affected. Stated otherwise, within SPI=100, the action for SFF2 is to replicate the packet, assign it to SPI=200, and forward it. With that task complete, from the perspective of SPI=100, SF2 is successfully complete. This is a logical result, because SF2 is non-reactive, thus, the rest of the service chain does not care about the result of SF2—all that matters is that the packet (or a duplicate packet) was sent to SF2. Note that in some cases, a plurality of NRSFs may be provided, in which case all of the NRSFs may be chained into SPI=200. In that case, the logical fiction that each of the NRSFs has been successfully completed breaks down somewhat, as it is possible that one NRSF could drop the packet or otherwise fail, in which case the other NRSFs will not receive the packet. Thus, if it is important to maintain the logical fiction that all NRSFs have successfully “completed” (i.e., it is desirable to ensure that each packet is at least delivered to each NRSF), each NRSF may be the subject of its own one-hop SFC. However, this may not always be the case. Some NRSFs are less important, and dropped packets are not an issue, in which case they can be chained behind more-important NRSFs. In other examples, a first NRSFs may actually be at least partially dependent on a second NRSF, meaning that the second NRSFs could be considered “locally reactive.” For example, it may be desirable to pass traffic to an experimental NRSF, if and only if, it is successfully logged by an accounting function. In that case, the experimental NRSF can be chained behind the accounting function in a special NRSFC.



FIG. 7 is a flow chart of a method 700 according to one or more examples of the present Specification.


In block 702, a network device, such as an SFF 422 receives an incoming packet, as illustrated in FIG. 6A.


In block 704, the network device parses the service chain. For example, this may comprise isolating the NSH and reading a value for an SPI 362. Note however that NSH is used by way of nonlimiting example only.


In decision block 706, the network device determines whether the next hop in the SFC is an NRSF as described in this Specification.


In block 716, if this is not an NRSF, then no special processing is needed. The network device simply forwards the packet to the next-network device, such as the SF 418 that is to perform the service function. Thereafter, SF 418 performs its work, and the flow continues as normal.


In block 708, if the next-hop SF is an NRSF, then the network device replicates the packet.


In block 710, the network device rewrites the SPI portion of the NSH (or other appropriate header) with a new SPI 362. For example, if the original SPI is SPI=100 (indicating the original SFC), the rewritten SPI may be SPI=200, indicating the special-purpose service chain established for this NRSF (or for a string of NRSFs). The network device may also provide an appropriate SI 364.


In block 712, the network device forwards the packet to the NRSF, which continues to handle it according to normal service chain functionality.


In block 714, the network device decrements the SI 364 of the original packet. Control then passes back to decision block 706. Now, the next-hop SF will not be an NRSF. Rather, it will now point to the next reactive SF in the chain. Thus, control will pass to block 716.


In block 799, the method is done.


The foregoing outlines features of several embodiments so that those skilled in the art may better understand various aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.


All or part of any hardware element disclosed herein may readily be provided in a system-on-a-chip (SoC), including central processing unit (CPU) package. An SoC represents an integrated circuit (IC) that integrates components of a computer or other electronic system into a single chip. Thus, for example, router 200 may be, in whole or in part, in an SoC. The SoC may contain digital, analog, mixed-signal, and radio frequency functions, all of which may be provided on a single chip substrate. Other embodiments may include a multi-chip-module (MCM), with a plurality of chips located within a single electronic package and configured to interact closely with each other through the electronic package. In various other embodiments, the computing functionalities disclosed herein may be implemented in one or more silicon cores in Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), and other semiconductor chips.


Note also that in certain embodiment, some of the components may be omitted or consolidated. In a general sense, the arrangements depicted in the figures may be more logical in their representations, whereas a physical architecture may include various permutations, combinations, and/or hybrids of these elements. It is imperative to note that countless possible design configurations can be used to achieve the operational objectives outlined herein. Accordingly, the associated infrastructure has a myriad of substitute arrangements, design choices, device possibilities, hardware configurations, software implementations, and equipment options.


In a general sense, any suitably configured processor, such as processor 210, can execute any type of instructions associated with the data to achieve the operations detailed herein. Any processor disclosed herein could transform an element or an article (for example, data) from one state or thing to another state or thing. In another example, some activities outlined herein may be implemented with fixed logic or programmable logic (for example, software and/or computer instructions executed by a processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (for example, a field programmable gate array (FPGA), an erasable programmable read only memory (EPROM), an electrically erasable programmable read only memory (EEPROM)), an ASIC that includes digital logic, software, code, electronic instructions, flash memory, optical disks, CD-ROMs, DVD ROMs, magnetic or optical cards, other types of machine-readable mediums suitable for storing electronic instructions, or any suitable combination thereof.


In operation, a storage such as storage 250 may store information in any suitable type of tangible, non-transitory storage medium (for example, random access memory (RAM), read only memory (ROM), field programmable gate array (FPGA), erasable programmable read only memory (EPROM), electrically erasable programmable ROM (EEPROM), etc.), software, hardware (for example, processor instructions or microcode), or in any other suitable component, device, element, or object where appropriate and based on particular needs. Furthermore, the information being tracked, sent, received, or stored in a processor could be provided in any database, register, table, cache, queue, control list, or storage structure, based on particular needs and implementations, all of which could be referenced in any suitable timeframe. Any of the memory or storage elements disclosed herein, such as memory 220 and storage 250, should be construed as being encompassed within the broad terms ‘memory’ and ‘storage,’ as appropriate. A non-transitory storage medium herein is expressly intended to include any non-transitory special-purpose or programmable hardware configured to provide the disclosed operations, or to cause a processor such as processor 210 to perform the disclosed operations.


Computer program logic implementing all or part of the functionality described herein is embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, machine instructions or microcode, programmable hardware, and various intermediate forms (for example, forms generated by an assembler, compiler, linker, or locator). In an example, source code includes a series of computer program instructions implemented in various programming languages, such as an object code, an assembly language, or a high-level language such as OpenCL, Fortran, C, C++, JAVA, or HTML for use with various operating systems or operating environments, or in hardware description languages such as Spice, Verilog, and VHDL. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form, or converted to an intermediate form such as byte code. Where appropriate, any of the foregoing may be used to build or describe appropriate discrete or integrated circuits, whether sequential, combinatorial, state machines, or otherwise.


In one example embodiment, any number of electrical circuits of the FIGURES may be implemented on a board of an associated electronic device. The board can be a general circuit board that can hold various components of the internal electronic system of the electronic device and, further, provide connectors for other peripherals. More specifically, the board can provide the electrical connections by which the other components of the system can communicate electrically. Any suitable processor and memory can be suitably coupled to the board based on particular configuration needs, processing demands, and computing designs. Other components such as external storage, additional sensors, controllers for audio/video display, and peripheral devices may be attached to the board as plug-in cards, via cables, or integrated into the board itself. In another example, the electrical circuits of the FIGURES may be implemented as stand-alone modules (e.g., a device with associated components and circuitry configured to perform a specific application or function) or implemented as plug-in modules into application specific hardware of electronic devices.


Note that with the numerous examples provided herein, interaction may be described in terms of two, three, four, or more electrical components. However, this has been done for purposes of clarity and example only. It should be appreciated that the system can be consolidated or reconfigured in any suitable manner Along similar design alternatives, any of the illustrated components, modules, and elements of the FIGURES may be combined in various possible configurations, all of which are within the broad scope of this Specification. In certain cases, it may be easier to describe one or more of the functionalities of a given set of flows by only referencing a limited number of electrical elements. It should be appreciated that the electrical circuits of the FIGURES and its teachings are readily scalable and can accommodate a large number of components, as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad teachings of the electrical circuits as potentially applied to a myriad of other architectures.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 (pre-AIA) or paragraph (f) of the same section (post-AIA), as it exists on the date of the filing hereof unless the words “means for” or “steps for” are specifically used in the particular claims; and (b) does not intend, by any statement in the specification, to limit this disclosure in any way that is not otherwise expressly reflected in the appended claims.


Example Implementations

There is disclosed in one example, a network computing apparatus, comprising: one or more logic elements, including at least one hardware logic element, comprising a service chain engine to: receive an incoming packet associated with a first service function chain; identify a next hop service function for the incoming packet as a non-reactive service function; create a duplicate packet; forward the duplicate packet to the non-reactive service function; and forward the incoming packet to a next reactive service function.


There is further disclosed an example, wherein forwarding the duplicate packet to the non-reactive service function comprises sending the packet to a non-reactive service function chain.


There is further disclosed an example, wherein the non-reactive service function chain includes only a single service function.


There is further disclosed an example, wherein the single service function is followed by a “drop” action.


There is further disclosed an example, wherein the non-reactive service function chain includes a plurality of non-reactive service functions.


There is further disclosed an example, wherein the plurality of non-reactive service functions includes at least one service function that is locally reactive.


There is further disclosed an example, wherein the plurality of non-reactive service functions is followed by a “drop” action.


There is further disclosed in an example, a network computing apparatus comprising: one or more logic elements, including at least one hardware logic element, comprising a software-defined networking controller engine to: receive an incoming packet associated with a first service function chain (SFC), having a first service path identifier (SPI); determine that the incoming packet has a first service index (SI), and that a next-hop SI identifies a non-reactive service function (NRSF); receive a duplicate packet of the incoming packet; rewrite a service header of the duplicate packet to identify a second SFC having a second SPI, wherein the second SPI is different from the first SPI; and alter the first SI of the incoming packet to identify a next reactive service function in the first SFC.


There is further disclosed an example, wherein the second SFC is a non-reactive service function chain (NRSFC).


There is further disclosed an example, wherein the NRSFC includes only a single service function.


There is further disclosed an example, wherein the single service function is followed by a “drop” action.


There is further disclosed an example, wherein the NRSFC includes a plurality of non-reactive service functions.


There is further disclosed an example, wherein the plurality of non-reactive service functions includes at least one service function that is locally reactive.


There is further disclosed an example, wherein the plurality of non-reactive service functions is followed by a “drop” action.


There is further disclosed in an example, one or more tangible, non-transitory computer-readable storage mediums having stored thereon executing instructions for providing a service chain engine to: receive an incoming packet associated with a first service function chain; identify a next hop service function for the incoming packet as a non-reactive service function; create a duplicate packet; forward the duplicate packet to the non-reactive service function; and forward the incoming packet to a next reactive service function.


There is further disclosed an example, wherein forwarding the duplicate packet to the non-reactive service function comprises sending the packet to a non-reactive service function chain.


There is further disclosed an example, wherein the non-reactive service function chain includes only a single service function.


There is further disclosed an example, wherein the single service function is followed by a “drop” action.


There is further disclosed in an example, one or more tangible, non-transitory computer-readable mediums having stored thereon executable instructions for providing a software-defined networking controller engine to: receive an incoming packet associated with a first service function chain (SFC), having a first service path identifier (SPI); determine that the incoming packet has a first service index (SI), and that a next-hop SI identifies a non-reactive service function (NRSF); receive a duplicate packet of the incoming packet; rewrite a service header of the duplicate packet to identify a second SFC having a second SPI, wherein the second SPI is different from the first SPI; and alter the first SI of the incoming packet to identify a next reactive service function in the first SFC.


There is further disclosed an example, wherein the second SFC is a non-reactive service function chain (NRSFC).


There is further disclosed an example, wherein the NRSFC includes only a single service function.


There is further disclosed an example, wherein the single service function is followed by a “drop” action.


There is further disclosed an example of one or more tangible, non-transitory computer-readable storage mediums having stored thereon executable instructions for instructing one or more processors for providing a service chain engine or software-defined networking controller engine operable for performing any or all of the operations of the preceding examples.


There is further disclosed an example of a method of providing a service chain engine or software-defined networking controller engine comprising performing any or all of the operations of the preceding examples.


There is further disclosed an example of an apparatus comprising means for performing the method.


There is further disclosed an example wherein the means comprise a processor and a memory.


There is further disclosed an example wherein the means comprise one or more tangible, non-transitory computer-readable storage mediums.


There is further disclosed an example wherein the apparatus is a computing device.

Claims
  • 1. A network computing apparatus comprising: one or more processors configured to: receive an incoming packet associated with a first service function chain;parse the first service function chain to determine whether a next hop service function for the incoming packet is a non-reactive service function;when the next hop service function is identified as the non-reactive service function, modify the incoming packet to include a replicate flag, create a duplicate packet, and forward the duplicate packet to the non-reactive service function, the replicate flag indicating the next hop service function is the non-reactive service function; andwhen the next hop service function is not identified as the non-reactive service function, forward the incoming packet to the next service function.
  • 2. The network computing apparatus of claim 1, wherein forwarding the duplicate packet to the non-reactive service function includes sending the incoming packet to a non-reactive service function chain.
  • 3. The network computing apparatus of claim 2, wherein the non-reactive service function chain includes only a single service function.
  • 4. The network computing apparatus of claim 2, wherein the non-reactive service function chain includes a plurality of non-reactive service functions.
  • 5. The network computing apparatus of claim 4, wherein the plurality of non-reactive service functions includes at least one service function that is locally reactive.
  • 6. The network computing apparatus of claim 1, wherein identifying the next hop service function as the non-reactive service function includes matching the replicate flag via a table.
  • 7. The network computing apparatus of claim 1, wherein parsing the first service function chain to determine whether the next hop service function for the incoming packet is the non-reactive service function includes reading a value associated with a service path identifier.
  • 8. A method comprising: receiving an incoming packet associated with a first service function chain;parsing the first service function chain to determine whether a next hop service function for the incoming packet is a non-reactive service function;when the next hop service function is identified as the non-reactive service function, modifying the incoming packet to include a replicate flag, creating a duplicate packet, and forwarding the duplicate packet to the non-reactive service function, the replicate flag indicating the next hop service function is the non-reactive service function; andwhen the next hop service function is not identified as the non-reactive service function, forwarding the incoming packet to the next service function.
  • 9. The method of claim 8, wherein the forwarding of the duplicate packet to the non-reactive service function includes sending the incoming packet to a non-reactive service function chain.
  • 10. The method of claim 9, wherein the non-reactive service function chain includes only a single service function.
  • 11. The method of claim 9, wherein the non-reactive service function chain includes a plurality of non-reactive service functions.
  • 12. The method of claim 11, wherein the plurality of non-reactive service functions includes at least one service function that is locally reactive.
  • 13. The method of claim 8, wherein identifying the next hop service function as the non-reactive service function includes matching the replicate flag via a table.
  • 14. One or more tangible, non-transitory computer-readable storage mediums having stored thereon executing instructions for providing one or more processors configured to: receive an incoming packet associated with a first service function chain;parse the first service function chain to determine whether a next hop service function for the incoming packet is a non-reactive service function;when the next hop service function is identified as the non-reactive service function, modify the incoming packet to include a replicate flag, create a duplicate packet, and forward the duplicate packet to the non-reactive service function, the replicate flag indicating the next hop service function is the non-reactive service function; andwhen the next hop service function is not identified as the non-reactive service function, forward the incoming packet to the next service function.
  • 15. The one or more tangible, non-transitory computer-readable storage mediums of claim 14, wherein forwarding the duplicate packet to the non-reactive service function includes sending the incoming packet to a non-reactive service function chain.
  • 16. The one or more tangible, non-transitory computer-readable storage mediums of claim 15, wherein the non-reactive service function chain includes only a single service function.
  • 17. The one or more tangible, non-transitory computer-readable storage mediums of claim 16, wherein the single service function is followed by a “drop” action.
  • 18. The one or more tangible, non-transitory computer-readable storage mediums of claim 15, wherein the non-reactive service function chain includes a plurality of non-reactive service functions.
  • 19. The one or more tangible, non-transitory computer-readable storage mediums of claim 18, wherein the plurality of non-reactive service functions includes at least one service function that is locally reactive or the plurality of non-reactive service functions is followed by a “drop” action.
  • 20. The one or more tangible, non-transitory computer-readable storage mediums of claim 14, wherein identifying the next hop service function as the non-reactive service function includes matching the replicate flag via a table.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/080,493, filed on Mar. 24, 2016, the content of which is incorporated herein by reference in its entirety.

US Referenced Citations (350)
Number Name Date Kind
3629512 Yuan Dec 1971 A
4769811 Eckberg, Jr. et al. Sep 1988 A
5408231 Bowdon Apr 1995 A
5491690 Alfonsi et al. Feb 1996 A
5557609 Shobatake et al. Sep 1996 A
5600638 Bertin et al. Feb 1997 A
5687167 Bertin et al. Nov 1997 A
6115384 Parzych Sep 2000 A
6167438 Yates et al. Dec 2000 A
6400681 Bertin et al. Jun 2002 B1
6661797 Goel et al. Dec 2003 B1
6687229 Kataria et al. Feb 2004 B1
6799270 Bull et al. Sep 2004 B1
6888828 Partanen et al. May 2005 B1
6993593 Iwata Jan 2006 B2
7027408 Nabkel et al. Apr 2006 B2
7062567 Benitez et al. Jun 2006 B2
7095715 Buckman et al. Aug 2006 B2
7096212 Tribble et al. Aug 2006 B2
7139239 Mcfarland et al. Nov 2006 B2
7165107 Pouyoul et al. Jan 2007 B2
7197008 Shabtay et al. Mar 2007 B1
7197660 Liu et al. Mar 2007 B1
7209435 Kuo et al. Apr 2007 B1
7227872 Biswas et al. Jun 2007 B1
7231462 Berthaud et al. Jun 2007 B2
7333990 Thiagarajan et al. Feb 2008 B1
7443796 Albert et al. Oct 2008 B1
7458084 Zhang et al. Nov 2008 B2
7472411 Wing et al. Dec 2008 B2
7486622 Regan et al. Feb 2009 B2
7536396 Johnson et al. May 2009 B2
7552201 Areddu et al. Jun 2009 B2
7558261 Arregoces et al. Jul 2009 B2
7567504 Darling et al. Jul 2009 B2
7571470 Arregoces et al. Aug 2009 B2
7573879 Narad et al. Aug 2009 B2
7610375 Portolani et al. Oct 2009 B2
7643468 Arregoces et al. Jan 2010 B1
7644182 Banerjee et al. Jan 2010 B2
7647422 Singh et al. Jan 2010 B2
7657898 Sadiq Feb 2010 B2
7657940 Portolani et al. Feb 2010 B2
7668116 Wijnands et al. Feb 2010 B2
7684321 Muirhead et al. Mar 2010 B2
7738469 Shekokar et al. Jun 2010 B1
7751409 Carolan Jul 2010 B1
7793157 Bailey et al. Sep 2010 B2
7814284 Glass et al. Oct 2010 B1
7831693 Lai Nov 2010 B2
7852785 Lund et al. Dec 2010 B2
7860095 Forissier et al. Dec 2010 B2
7860100 Khalid et al. Dec 2010 B2
7895425 Khalid et al. Feb 2011 B2
7899012 Ho et al. Mar 2011 B2
7899861 Feblowitz et al. Mar 2011 B2
7907595 Khanna et al. Mar 2011 B2
7908480 Firestone et al. Mar 2011 B2
7983174 Monaghan et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
8000329 Fendick et al. Aug 2011 B2
8018938 Fromm et al. Sep 2011 B1
8094575 Vadlakonda et al. Jan 2012 B1
8095683 Balasubramaniam Chandra Jan 2012 B2
8116307 Thesayi et al. Feb 2012 B1
8166465 Feblowitz et al. Apr 2012 B2
8180909 Hartman et al. May 2012 B2
8191119 Wing et al. May 2012 B2
8195774 Lambeth et al. Jun 2012 B2
8280354 Smith et al. Oct 2012 B2
8281302 Durazzo et al. Oct 2012 B2
8291108 Raja et al. Oct 2012 B2
8305900 Bianconi Nov 2012 B2
8311045 Quinn et al. Nov 2012 B2
8316457 Paczkowski et al. Nov 2012 B1
8355332 Beaudette et al. Jan 2013 B2
8442043 Sharma et al. May 2013 B2
8451817 Cheriton May 2013 B2
8464336 Wei et al. Jun 2013 B2
8473981 Gargi Jun 2013 B1
8479298 Keith et al. Jul 2013 B2
8498414 Rossi Jul 2013 B2
8520672 Guichard et al. Aug 2013 B2
8601152 Chou Dec 2013 B1
8605588 Sankaran et al. Dec 2013 B2
8612612 Dukes et al. Dec 2013 B1
8627328 Mousseau et al. Jan 2014 B2
8645952 Biswas et al. Feb 2014 B2
8676965 Gueta et al. Mar 2014 B2
8676980 Kreeger et al. Mar 2014 B2
8700892 Bollay et al. Apr 2014 B2
8724466 Kenigsberg et al. May 2014 B2
8730980 Bagepalli et al. May 2014 B2
8743885 Khan et al. Jun 2014 B2
8751420 Hjelm et al. Jun 2014 B2
8762534 Hong et al. Jun 2014 B1
8762707 Killian et al. Jun 2014 B2
8792490 Jabr et al. Jul 2014 B2
8793400 Mcdysan et al. Jul 2014 B2
8812730 Vos et al. Aug 2014 B2
8819419 Carlson et al. Aug 2014 B2
8825070 Akhtar et al. Sep 2014 B2
8830834 Sharma et al. Sep 2014 B2
8904037 Haggar et al. Dec 2014 B2
8984284 Purdy, Sr. et al. Mar 2015 B2
9001827 Appenzeller Apr 2015 B2
9071533 Hui et al. Jun 2015 B2
9077661 Andreasen et al. Jul 2015 B2
9088584 Feng et al. Jul 2015 B2
9130872 Kumar et al. Sep 2015 B2
9143438 Khan et al. Sep 2015 B2
9160797 Mcdysan Oct 2015 B2
9178812 Guichard Nov 2015 B2
9189285 Ng et al. Nov 2015 B2
9203711 Agarwal et al. Dec 2015 B2
9253274 Quinn et al. Feb 2016 B2
9300579 Frost et al. Mar 2016 B2
9300585 Kumar et al. Mar 2016 B2
9311130 Christenson et al. Apr 2016 B2
9319324 Beheshti-Zavareh et al. Apr 2016 B2
9325565 Yao et al. Apr 2016 B2
9338097 Anand et al. May 2016 B2
9344337 Kumar et al. May 2016 B2
9374297 Bosch et al. Jun 2016 B2
9379931 Bosch et al. Jun 2016 B2
9385950 Quinn et al. Jul 2016 B2
9398486 La Roche, Jr. et al. Jul 2016 B2
9407540 Kumar Aug 2016 B2
9413655 Shatzkamer et al. Aug 2016 B2
9424065 Singh et al. Aug 2016 B2
9436443 Chiosi et al. Sep 2016 B2
9444675 Guichard et al. Sep 2016 B2
9473570 Bhanujan et al. Oct 2016 B2
9479443 Bosch et al. Oct 2016 B2
9491094 Patwardhan et al. Nov 2016 B2
9537836 Maller et al. Jan 2017 B2
9558029 Behera et al. Jan 2017 B2
9559970 Kumar et al. Jan 2017 B2
9571405 Pignataro et al. Feb 2017 B2
9608896 Kumar et al. Mar 2017 B2
9614739 Kumar et al. Apr 2017 B2
9660909 Guichard et al. May 2017 B2
9723106 Shen et al. Aug 2017 B2
9774533 Zhang et al. Sep 2017 B2
9794379 Kumar et al. Oct 2017 B2
9882776 Aybay et al. Jan 2018 B2
9929945 Schultz et al. Mar 2018 B2
10003530 Zhang Jun 2018 B2
20010023442 Masters Sep 2001 A1
20020085562 Hufferd et al. Jul 2002 A1
20020131362 Callon Sep 2002 A1
20020156893 Pouyoul et al. Oct 2002 A1
20020167935 Nabkel et al. Nov 2002 A1
20030023879 Wray Jan 2003 A1
20030026257 Xu et al. Feb 2003 A1
20030037070 Marston Feb 2003 A1
20030088698 Singh et al. May 2003 A1
20030110081 Tosaki et al. Jun 2003 A1
20030120816 Berthaud et al. Jun 2003 A1
20030214913 Kan et al. Nov 2003 A1
20030226142 Rand Dec 2003 A1
20040109412 Hansson et al. Jun 2004 A1
20040148391 Shannon, Sr. et al. Jul 2004 A1
20040199812 Earl Oct 2004 A1
20040213160 Regan et al. Oct 2004 A1
20040264481 Darling et al. Dec 2004 A1
20040268357 Joy et al. Dec 2004 A1
20050044197 Lai Feb 2005 A1
20050058118 Davis Mar 2005 A1
20050060572 Kung Mar 2005 A1
20050086367 Conta et al. Apr 2005 A1
20050120101 Nocera Jun 2005 A1
20050152378 Bango et al. Jul 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050160180 Rabje et al. Jul 2005 A1
20050204042 Banerjee et al. Sep 2005 A1
20050210096 Bishop et al. Sep 2005 A1
20050257002 Nguyen Nov 2005 A1
20050281257 Yazaki et al. Dec 2005 A1
20050286540 Hurtta et al. Dec 2005 A1
20050289244 Sahu et al. Dec 2005 A1
20060005240 Sundarrajan et al. Jan 2006 A1
20060031374 Lu et al. Feb 2006 A1
20060045024 Previdi et al. Mar 2006 A1
20060074502 Mcfarland Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060095960 Arregoces et al. May 2006 A1
20060112400 Zhang et al. May 2006 A1
20060155862 Kathi et al. Jul 2006 A1
20060168223 Mishra et al. Jul 2006 A1
20060233106 Achlioptas et al. Oct 2006 A1
20060233155 Srivastava Oct 2006 A1
20070061441 Landis et al. Mar 2007 A1
20070067435 Landis et al. Mar 2007 A1
20070094397 Krelbaum et al. Apr 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070237147 Quinn et al. Oct 2007 A1
20070250836 Li et al. Oct 2007 A1
20080056153 Liu Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080080517 Roy et al. Apr 2008 A1
20080170542 Hu Jul 2008 A1
20080177896 Quinn et al. Jul 2008 A1
20080181118 Sharma et al. Jul 2008 A1
20080196083 Parks et al. Aug 2008 A1
20080209039 Tracey et al. Aug 2008 A1
20080219287 Krueger et al. Sep 2008 A1
20080225710 Raja et al. Sep 2008 A1
20080291910 Tadimeti et al. Nov 2008 A1
20090003364 Fendick et al. Jan 2009 A1
20090006152 Timmerman et al. Jan 2009 A1
20090037713 Khalid et al. Feb 2009 A1
20090094684 Chinnusamy et al. Apr 2009 A1
20090204612 Keshavarz-nia et al. Aug 2009 A1
20090271656 Yokota et al. Oct 2009 A1
20090300207 Giaretta et al. Dec 2009 A1
20090305699 Deshpande et al. Dec 2009 A1
20090328054 Paramasivam et al. Dec 2009 A1
20100058329 Durazzo et al. Mar 2010 A1
20100063988 Khalid Mar 2010 A1
20100080226 Khalid Apr 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191612 Raleigh Jul 2010 A1
20100211658 Hoogerwerf et al. Aug 2010 A1
20110023090 Asati et al. Jan 2011 A1
20110032833 Zhang et al. Feb 2011 A1
20110055845 Nandagopal et al. Mar 2011 A1
20110131338 Hu Jun 2011 A1
20110137991 Russell Jun 2011 A1
20110142056 Manoj Jun 2011 A1
20110161494 Mcdysan et al. Jun 2011 A1
20110222412 Kompella Sep 2011 A1
20110255538 Srinivasan et al. Oct 2011 A1
20110267947 Dhar et al. Nov 2011 A1
20120131662 Kuik et al. May 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120324442 Barde Dec 2012 A1
20120331135 Alon et al. Dec 2012 A1
20130003735 Chao et al. Jan 2013 A1
20130003736 Szyszko et al. Jan 2013 A1
20130040640 Chen et al. Feb 2013 A1
20130044636 Koponen et al. Feb 2013 A1
20130121137 Feng et al. May 2013 A1
20130124708 Lee et al. May 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130163606 Bagepalli et al. Jun 2013 A1
20130238806 Moen Sep 2013 A1
20130272305 Lefebvre et al. Oct 2013 A1
20130311675 Kancherla Nov 2013 A1
20130329584 Ghose et al. Dec 2013 A1
20140010083 Hamdi et al. Jan 2014 A1
20140010096 Kamble et al. Jan 2014 A1
20140036730 Nellikar et al. Feb 2014 A1
20140050223 Foo et al. Feb 2014 A1
20140067758 Boldyrev et al. Mar 2014 A1
20140105062 McDysan et al. Apr 2014 A1
20140181267 Wadkins et al. Jun 2014 A1
20140254603 Banavalikar et al. Sep 2014 A1
20140259012 Nandlall et al. Sep 2014 A1
20140279863 Krishnamurthy et al. Sep 2014 A1
20140280836 Kumar et al. Sep 2014 A1
20140317261 Shatzkamer et al. Oct 2014 A1
20140321459 Kumar et al. Oct 2014 A1
20140334295 Guichard et al. Nov 2014 A1
20140344439 Kempf et al. Nov 2014 A1
20140362682 Guichard Dec 2014 A1
20140369209 Khurshid et al. Dec 2014 A1
20140376558 Rao et al. Dec 2014 A1
20150003455 Haddad et al. Jan 2015 A1
20150012584 Lo et al. Jan 2015 A1
20150012988 Jeng et al. Jan 2015 A1
20150029871 Frost et al. Jan 2015 A1
20150032871 Allan et al. Jan 2015 A1
20150052516 French et al. Feb 2015 A1
20150071285 Kumar Mar 2015 A1
20150074276 DeCusatis et al. Mar 2015 A1
20150082308 Kiess et al. Mar 2015 A1
20150085635 Wijnands et al. Mar 2015 A1
20150085870 Narasimha et al. Mar 2015 A1
20150089082 Patwardhan et al. Mar 2015 A1
20150092564 Aldrin Apr 2015 A1
20150103827 Quinn et al. Apr 2015 A1
20150117308 Kant Apr 2015 A1
20150124622 Kovvali et al. May 2015 A1
20150131484 Aldrin May 2015 A1
20150131660 Shepherd et al. May 2015 A1
20150156035 Foo et al. Jun 2015 A1
20150180725 Varney et al. Jun 2015 A1
20150180767 Tam et al. Jun 2015 A1
20150181309 Shepherd et al. Jun 2015 A1
20150188949 Mahaffey et al. Jul 2015 A1
20150195197 Yong et al. Jul 2015 A1
20150222516 Deval et al. Aug 2015 A1
20150222533 Birrittella et al. Aug 2015 A1
20150236948 Dunbar et al. Aug 2015 A1
20150319078 Lee et al. Nov 2015 A1
20150319081 Kasturi et al. Nov 2015 A1
20150326473 Dunbar et al. Nov 2015 A1
20150333930 Aysola et al. Nov 2015 A1
20150334027 Bosch et al. Nov 2015 A1
20150341285 Aysola et al. Nov 2015 A1
20150365495 Fan et al. Dec 2015 A1
20150381465 Narayanan et al. Dec 2015 A1
20150381557 Fan et al. Dec 2015 A1
20160028604 Chakrabarti et al. Jan 2016 A1
20160028640 Zhang Jan 2016 A1
20160043952 Zhang et al. Feb 2016 A1
20160050117 Voellmy et al. Feb 2016 A1
20160050132 Zhang Feb 2016 A1
20160080263 Park et al. Mar 2016 A1
20160099853 Nedeltchev et al. Apr 2016 A1
20160119159 Zhao et al. Apr 2016 A1
20160119253 Kang Apr 2016 A1
20160127139 Tian et al. May 2016 A1
20160134518 Callon et al. May 2016 A1
20160134535 Callon May 2016 A1
20160139939 Bosch et al. May 2016 A1
20160164776 Biancaniello Jun 2016 A1
20160165014 Nainar et al. Jun 2016 A1
20160173373 Guichard et al. Jun 2016 A1
20160173464 Wang et al. Jun 2016 A1
20160182336 Doctor et al. Jun 2016 A1
20160182342 Singaravelu et al. Jun 2016 A1
20160182684 Connor Jun 2016 A1
20160212017 Li et al. Jul 2016 A1
20160226742 Apathotharanan et al. Aug 2016 A1
20160248685 Pignataro et al. Aug 2016 A1
20160277250 Maes Sep 2016 A1
20160285720 Mäenpää et al. Sep 2016 A1
20160323165 Boucadair et al. Nov 2016 A1
20160352629 Wang Dec 2016 A1
20160380966 Gunnalan et al. Dec 2016 A1
20170019303 Swamy et al. Jan 2017 A1
20170031804 Ciszewski et al. Feb 2017 A1
20170078175 Xu et al. Mar 2017 A1
20170093658 Ryan Mar 2017 A1
20170187609 Lee Jun 2017 A1
20170208000 Bosch et al. Jul 2017 A1
20170214627 Zhang Jul 2017 A1
20170237656 Gage Aug 2017 A1
20170250917 Ruckstuhl et al. Aug 2017 A1
20170272470 Gundamaraju et al. Sep 2017 A1
20170279712 Nainar et al. Sep 2017 A1
20170310611 Kumar et al. Oct 2017 A1
20170331741 Fedyk et al. Nov 2017 A1
20180013841 Nainar et al. Jan 2018 A1
20180026884 Nainar et al. Jan 2018 A1
20180026887 Nainar et al. Jan 2018 A1
20180041470 Schultz et al. Feb 2018 A1
20180062991 Nainar et al. Mar 2018 A1
Foreign Referenced Citations (10)
Number Date Country
103716123 Apr 2014 CN
103716137 Apr 2014 CN
3160073 Apr 2017 EP
2016149686 Aug 2016 JP
WO 2011029321 Mar 2011 WO
WO 2012056404 May 2012 WO
WO 2015180559 Dec 2015 WO
WO 2015187337 Dec 2015 WO
WO 2016004556 Jan 2016 WO
WO 2016058245 Apr 2016 WO
Non-Patent Literature Citations (60)
Entry
Aldrin, S., et al. “Service Function Chaining Operation, Administration and Maintenance Framework,” Internet Engineering Task Force, Oct. 26, 2014, 13 pages.
Alizadeh, Mohammad, et al., “CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,” SIGCOMM '14, Aug. 17-22, 2014, 12 pages.
Author Unknown, “ANSI/SCTE 35 2007 Digital Program Insertion Cueing Message for Cable,” Engineering Committee, Digital Video Subcommittee, American National Standard, Society of Cable Telecommunications Engineers, © Society of Cable Telecommunications Engineers, Inc. 2007 All Rights Reserved, 140 Philips Road, Exton, PA 19341; 42 pages.
Author Unknown, “AWS Lambda Developer Guide,” Amazon Web Services Inc., May 2017, 416 pages.
Author Unknown, “CEA-708,” from Wikipedia, the free encyclopedia, Nov. 15, 2012; 16 pages http://en.wikipedia.org/w/index.php?title=CEA-708&oldid=523143431.
Author Unknown, “Cisco and Intel High-Performance VNFs on Cisco NFV Infrastructure,” White Paper, Cisco and Intel, Oct. 2016, 7 pages.
Author Unknown, “Cloud Functions Overview,” Cloud Functions Documentation, Mar. 21, 2017, 3 pages; https://cloud.google.com/functions/docs/concepts/overview.
Author Unknown, “Cloud-Native VNF Modelling,” Open Source Mano, © ETSI 2016, 18 pages.
Author Unknown, “Digital Program Insertion,” from Wikipedia, the free encyclopedia, Jan. 2, 2012; 1 page http://en.wikipedia.org/w/index.php?title=Digital_Program_Insertion&oldid=469076482.
Author Unknown, “Dynamic Adaptive Streaming over HTTP,” from Wikipedia, the free encyclopedia, Oct. 25, 2012; 3 pages, http://en.wikipedia.org/w/index.php?title=Dynannic_Adaptive_Streanning_over_HTTP&oldid=519749189.
Author Unknown, “GStreamer and in-band metadata,” from RidgeRun Developer Connection, Jun. 19, 2012, 5 pages https://developersidgerun.conn/wiki/index.php/GStreanner_and_in-band_nnetadata.
Author Unknown, “IEEE Standard for the Functional Architecture of Next Generation Service Overlay Networks, IEEE Std. 1903-2011,” IEEE, Piscataway, NJ, Oct. 7, 2011; 147 pages.
Author Unknown, “ISO/IEC JTC 1/SC 29, Information Technology—Dynamic Adaptive Streaming over HTTP (DASH)—Part 1: Media Presentation Description and Segment Formats,” International Standard © ISO/IEC 2012—All Rights Reserved; Jan. 5, 2012; 131 pages.
Author Unknown, “M-PEG 2 Transmission,” © Dr. Gorry Fairhurst, 9 pages [Published on or about Jan. 12, 2012] http://www.erg.abdn.ac.uk/future-net/digital-video/mpeg2-trans.html.
Author Unknown, “MPEG Transport Stream,” from Wikipedia, the free encyclopedia, Nov. 11, 2012; 7 pages, http://en.wikipedia.org/w/index.php?title=MPEG_transport_streann&oldid=522468296.
Author Unknown, “Network Functions Virtualisation (NFV); Use Cases,” ETSI, GS NFV 001 v1.1.1, Architectural Framework, © European Telecommunications Standards Institute, Oct. 2013, 50 pages.
Author Unknown, “OpenNebula 4.6 User Guide,” Jun. 12, 2014, opennebula.org, 87 pages.
Author Unknown, “Understanding Azure, A Guide for Developers,” Microsoft Corporation, Copyright © 2016 Microsoft Corporation, 39 pages.
Author Unknown, “3GPP TR 23.803 V7.0.0 (Sep. 2005) Technical Specification: Group Services and System Aspects; Evolution of Policy Control and Charging (Release 7),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Val bonne—France, Sep. 2005; 30 pages.
Author Unknown, “3GPP TS 23.203 V8.9.0 (Mar. 2010) Technical Specification: Group Services and System Aspects; Policy and Charging Control Architecture (Release 8),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Val bonne—France, Mar. 2010; 116 pages.
Author Unknown, “3GPP TS 23.401 V13.5.0 (Dec. 2015) Technical Specification: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 13),” 3GPP, 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Dec. 2015, 337 pages.
Author Unknown, “3GPP TS 23.401 V9.5.0 (Jun. 2010) Technical Specification: Group Services and Systems Aspects; General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access (Release 9),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Jun. 2010; 259 pages.
Author Unknown, “3GPP TS 29.212 V13.1.0 (Mar. 2015) Technical Specification: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control (PCC); Reference points (Release 13),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Mar. 2015; 230 pages.
Author Unknown, “Service-Aware Network Architecture Based on SDN, NFV, and Network Intelligence,” 2014, 8 pages.
Baird, Andrew, et al. “AWS Serverless Multi-Tier Architectures; Using Amazon API Gateway and AWS Lambda,” Amazon Web Services Inc., Nov. 2015, 20 pages.
Bi, Jing, et al., “Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center,” 2010 IEEE 3rd International Conference on Cloud Computing, Jul. 5, 2010, pp. 370-377, IEEE Computer Society.
Bitar, N., et al., “Interface to the Routing System (I2RS) for the Service Chaining: Use Cases and Requirements,” draft-bitar-i2rs-service-chaining-01, Feb. 14, 2014, pp. 1-15.
Boucadair, Mohamed, et al., “Differentiated Service Function Chaining Framework,” Network Working Group Internet Draft draft-boucadair-network-function-chaining-03, Aug. 21, 2013, 21 pages.
Bremler-Barr, Anat, et al., “Deep Packet Inspection as a Service,” CoNEXT '14, Dec. 2-5, 2014, pp. 271-282.
Cisco Systems, Inc. “Cisco NSH Service Chaining Configuration Guide,” Jul. 28, 2017, 11 pages.
Cisco Systems, Inc. “Cisco VN-LINK: Virtualization-Aware Networking,” 2009, 9 pages.
Dunbar, et al., “Architecture for Chaining Legacy Layer 4-7 Service Functions,” IETF Network Working Group Internet Draft, draft-dunbar-sfc-legacy-14-17-chain-architecture-03.txt, Feb. 10, 2014; 17 pages.
Ersue, Mehmet, “ETSI NFV Management and Orchestration—An Overview,” Presentation at the IETF#88 Meeting, Nov. 3, 2013, 14 pages.
Farrel, A., et al., “A Path Computation Element (PCE)—Based Architecture,” RFC 4655, Network Working Group, Aug. 2006, 40 pages.
Fayaz, Seyed K., et al., “Efficient Network Reachability Analysis using a Succinct Control Plane Representation,” 2016, ratul.org, pp. 1-16.
Halpern, Joel, et al., “Service Function Chaining (SFC) Architecture,” Internet Engineering Task Force (IETF), Cisco, Oct. 2015, 32 pages.
Hendrickson, Scott, et al. “Serverless Computation with OpenLambda,” Elastic 60, University of Wisconson, Madison, Jun. 20, 2016, 7 pages, https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf.
Jiang, Y., et al., “An Architecture of Service Function Chaining,” IETF Network Working Group Internet Draft, draft-jiang-sfc-arch-01.txt, Feb. 14, 2014; 12 pages.
Jiang, Yuanlong, et al., “Fault Management in Service Function Chaining,” Network Working Group, China Telecom, Oct. 16, 2015, 13 pages.
Katsikas, Goergios P., et al., “Profiling and accelerating commodity NFV service chains with SCC,” The Journal of Systems and Software, vol. 127, Jan. 2017, pp. 12-27.
Kumar, Surendra, et al., “Service Function Path Optimization: draft-kumar-sfc-sfp-optimization-00.txt,” Internet Engineering Task Force, IETF; Standard Working Draft, May 10, 2014, 14 pages.
Kumbhare, Abhijit, et al., “Opendaylight Service Function Chaining Use-Cases,” Oct. 14, 2014, 25 pages.
Li, Hongyu, “Service Function Chaining Use Cases”, IETF 88 Vancouver, Nov. 7, 2013, 7 pages.
Mortensen, A., et al., “Distributed Denial of Service (DDoS) Open Threat Signaling Requirements,” DOTS, Mar. 18, 2016, 16 pages; https://tools.ietf.org/pdf/draft-ietf-dots-requirements-01.pdf.
Newman, David, “Review: FireEye fights off multi-stage malware,” Network World, May 5, 2014, 7 pages.
Nguyen, Kim-Khoa, et al. “Distributed Control Plane Architecture of Next Generation IP Routers,” IEEE, 2009, 8 pages.
Penno, Reinaldo, et al. “Packet Generation in Service Function Chains,” draft-penno-sfc-packet-03, Apr. 29, 2016, 25 pages.
Penno, Reinaldo, et al. “Services Function Chaining Traceroute,” draft-penno-sfc-trace-03, Sep. 30, 2015, 9 pages.
Pierre-Louis, Marc-Arhtur, “OpenWhisk: A quick tech preview,” DeveloperWorks Open, IBM, Feb. 22, 2016, modified Mar. 3, 2016, 7 pages; https://developer.ibm.com/open/2016/02/22/openwhisk-a-quick-tech-preview/.
Pujol, Pua Capdevila, “Deployment of NFV and SFC scenarios,” EETAC, Master Thesis, Advisor: David Rincon Rivera, Universitat Politecnica De Catalunya, Feb. 17, 2017, 115 pages.
Quinn, P., et al., “Network Service Header,” Network Working Group, Mar. 24, 2015, 42 pages; https://tools.ietf.org/pdf/draft-ietf-sfc-nsh-00.pdf.
Quinn, P., et al., “Network Service Chaining Problem Statement,” draft-quinn-nsc-problem-statement-03.txt, Aug. 26, 2013, 18 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group, draft-quinn-sfc-nsh-02.txt, Feb. 14, 2014, 21 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group, draft-quinn-nsh-00.txt, Jun. 13, 2013, 20 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group Internet Draft draft-quinn-nsh-01, Jul. 12, 2013, 20 pages.
Quinn, Paul, et al., “Service Function Chaining (SFC) Architecture,” Network Working Group Internet Draft draft-quinn-sfc-arch-05.txt, May 5, 2014, 31 pages.
Quinn, Paul, et al., “Service Function Chaining: Creating a Service Plane via Network Service Headers,” IEEE Computer Society, 2014, pp. 38-44.
Wong, Fei, et al., “SMPTE-TT Embedded in ID3 for HTTP Live Streaming, draft-smpte-id3-http-live-streaming-00,” Informational Internet Draft, Jun. 2012, 7 pages http://tools.ietf.org/htnnl/draft-snnpte-id3-http-live-streaming-00.
Yadav, Rishi, “What Real Cloud-Native Apps Will Look Like,” Crunch Network, posted Aug. 3, 2016, 8 pages; https://techcrunch.com/2016/08/03/what-real-cloud-native-apps-will-look-like/.
Zhang, Ying, et al. “StEERING: A Software-Defined Networking for Inline Service Chaining,” IEEE, 2013, IEEE, p. 10 pages.
Related Publications (1)
Number Date Country
20190158398 A1 May 2019 US
Continuations (1)
Number Date Country
Parent 15080493 Mar 2016 US
Child 16252036 US