Centrifugal pumps are used in a wide variety of applications, including well related applications. For example, centrifugal pumps are used in electric submersible pumping systems deployed in wellbores to produce or otherwise move fluids in the wellbore. Centrifugal pumps are constructed with stacks of alternating impellers and diffusers that cause fluid to flow from an inlet of the pump to an outlet. The impellers are rotated by a shaft and impart motion to the pumped fluid via pump impeller vanes. As fluid passes from each impeller flow passage, the fluid is routed through a diffuser passage to the next impeller and ultimately to the outlet.
Many centrifugal pump designs have inefficiencies due to significant fluid separation losses. For example, centrifugal pumps with radial vane configurations suffer from excessive diffusion in the ducts connecting vaned passages. Excessive diffusion can occur in the flow passages between the diffuser blades or impeller blades, but the excessive diffusion also can occur in the transition region from the trailing edge of the diffuser to the duct leading to the exit of the diffuser. Another location susceptible to excessive diffusion is the transition region from the entrance of the impeller inlet duct to the leading edge of the impeller blade.
In some radial type stages, the trailing edge of the diffuser blade has been formed as a thick, blunt member to control excessive diffusion within the diffuser flow passage, however this approach leads to large amounts of diffusion and separation losses in the duct just downstream of the diffuser trailing edge. An alternative approach has been to form the trailing edge of the diffuser as a relatively thin member to minimize the area change at the duct transition, however this approach leads to excessive diffusion of the flow in the diffuser passage.
In general, the present invention provides a system and method for improving the efficiency of a centrifugal pump. The centrifugal pump comprises diffusers that optimize the area schedule through the diffuser to diffuse the total fluid velocity and recover dynamic head while minimizing flow separation. Each diffuser comprises at least one diffuser blade having a trailing edge that extends through at least thirty degrees into a diffuser discharge duct. The transition into the diffuser discharge duct removes any abrupt changes in area and reduces fluid separation which, in turn, improves the efficiency of the pump. In some embodiments, each impeller comprises at least one impeller blade that extends through at least thirty degrees into an impeller inlet duct. This impeller transition also reduces fluid separation and improves the efficiency of the pump.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention generally relates to a centrifugal pump that can be utilized in a variety of applications. The centrifugal pump is constructed with diffusers and/or impellers that are less susceptible to excessive diffusion and the resultant fluid separation. By way of example, the centrifugal pump may be in the form of a submersible pump used in well related applications. For example, the centrifugal pump can be employed in an electric submersible pumping system used to pump fluids within a wellbore. The unique design of the pump diffusers and/or impellers reduces fluid separation losses and improves the efficiency of the centrifugal pump in submersible and other applications.
An example of a centrifugal pump 30 deployed in a well related application is illustrated in
In the embodiment illustrated, submersible pumping system 32 is designed for deployment in a well 38 within a geological formation 40 that may contain desirable production fluids, such as hydrocarbon based fluids. Formation 40 may be accessed by a wellbore 42 that is drilled into formation 40 and extends downwardly from a wellhead 44. The wellbore 42 may be lined by a wellbore casing 46 which is perforated with a plurality of perforations 48 to enable flow of fluids between the surrounding formation 40 and the wellbore 42.
Submersible pumping system 32 is deployed in wellbore 42 by a conveyance system 50 that may have a variety of configurations. For example, conveyance system 50 may comprise a tubing 52, e.g. coiled tubing or production tubing, connected to the submersible pumping system 32 through an appropriate connector 54. Power is provided to the at least one submersible motor 34 via a power cable 56 that extends downwardly along conveyance system 50 and submersible pumping system 32 for connection with submersible motor 34. The submersible motor 34, in turn, powers centrifugal pump 30 which can be used to draw in fluid through a pump intake 58. Within centrifugal pump 30, a plurality of impellers is rotated to pump, e.g. produce, fluid through tubing 52 to a desired location, such as a collection location at a surface 60 of the earth. However, a variety of other components and system configurations can be utilized for performance of many types of pumping operations.
Referring generally to
Each pump stage 62 comprises a diffuser 74 and an impeller 76. In this embodiment, centrifugal pump 30 is a radial style pump having radial style impellers and diffusers. (Radial style impellers and diffusers are constructed so the major direction of fluid flow is a substantially radial flow direction relative to the pump axis of rotation.) Generally, impellers 76 rotate with shaft 70 and may be rotationally affixed to shaft 70 by, for example, a key and key way. The rotating impellers 76 impart motion to fluid flowing through centrifugal pump 30 and move the fluid from one stage 62 to the next until the fluid is discharged through outlet flow passages 78 at first pump end 66. The diffusers 74 are rotationally stationary within outer housing 64 and serve to guide the fluid from one impeller 76 to the next.
In
The diffuser blade trailing edge 86 defines a diffuser passage trailing edge transition 90 that turns or arcs toward the diffuser discharge duct 88. The design of diffuser passage trailing edge transition 90 creates a shape that results in minimal change in area moving from trailing edge 86 of diffuser blade 82 to the diffuser discharge duct 88. This eliminates excessive diffusion and the consequent fluid separation as fluid flows through trailing edge transition 90 and into diffuser discharge duct 88. Additionally, each diffuser blade 82 is designed to provide a controlled diffusion as fluid flows through the passage. Accordingly, diffuser 74 is able to diffuse the total fluid velocity and recover dynamic head while minimizing flow separation.
Diffuser passage trailing edge transition 90 of trailing edge 86 is formed with an arc region 92 that enables each diffuser passage 80 to arc or turn toward the diffuser discharge duct 88 to eliminate any substantial change in area. As shown by an area schedule 94, illustrated graphically in
As described above, the reduction of excessive diffusion and resultant fluid separation can be achieved by constructing diffusers 74 with trailing edges that arc/turn to the diffuser discharge duct 88 so as to reduce area change in this transition region. A desired reduction in fluid separation can be achieved by constructing each diffuser 74 so the trailing edge 86 of each diffuser blade 82 arcs or otherwise extends through at least thirty degrees into the corresponding diffuser discharge duct 88, as indicated by angle 98 in
With reference to
Each impeller blade 104 comprises a leading edge 108 through which fluid is received and a trailing edge 110 along which fluid is discharged to the next adjacent diffuser. In the embodiment illustrated, the leading edge 108 of impeller blade 104 is designed to transition along an arc toward impeller inlet duct 106. This ensures a much smaller area increase from the impeller inlet duct 106 into the leading edge 108 of each impeller blade. As with diffuser 74, significant reductions in fluid separation can be achieved by constructing each impeller 76 so the leading edge 108 of each impeller blade 104 arcs or otherwise extends through at least thirty degrees into the corresponding impeller inlet duct 102, as indicated by angle 112 in
The design of diffusers 74 and/or impellers 76 reduces excessive diffusion in pump regions that otherwise would incur fluid separation and resultant losses in pump efficiency. However, the specific size, construction, materials, and configuration of both the diffusers and impellers can be adjusted according to the design of the overall pumping system, the fluid pumped, the environment in which the pumping system is utilized, and other design parameters. Furthermore, the more efficient centrifugal pump can be used in a variety of pumping systems, such as electric submersible pumping systems, and in a variety of applications.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Such modifications are intended to be included within the scope of this invention as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4307995 | Catterfeld | Dec 1981 | A |
4741668 | Bearden | May 1988 | A |
5207560 | Urban | May 1993 | A |
5207810 | Sheth | May 1993 | A |
5344285 | O'Sullivan et al. | Sep 1994 | A |
6394183 | Schrenkel et al. | May 2002 | B1 |
6398493 | Chien et al. | Jun 2002 | B1 |
6564874 | Narvaez | May 2003 | B2 |
6723158 | Brown et al. | Apr 2004 | B2 |
6779965 | Pessin et al. | Aug 2004 | B2 |
6811382 | Buchanan et al. | Nov 2004 | B2 |
6971848 | Watson | Dec 2005 | B2 |
6974246 | Arribau et al. | Dec 2005 | B2 |
6979174 | Watson et al. | Dec 2005 | B2 |
7133325 | Kotsonis et al. | Nov 2006 | B2 |
20050074330 | Watson et al. | Apr 2005 | A1 |
20070116560 | Eslinger | May 2007 | A1 |
Number | Date | Country |
---|---|---|
05071490 | Mar 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20090092478 A1 | Apr 2009 | US |