1. Field of the Invention
In general, the present invention relates to counterbalance systems for windows that prevent open window sashes from moving under the force of their own weight. More particularly, the present invention system relates to the brake shoe component of the counterbalance systems for tilt-in windows.
2. Description of the Prior Art
There are many types and styles of windows. One of the most common types of window is the double-hung window. Double-hung windows are the window of choice for most home construction. A double-hung window consists of an upper window sash and a lower window sash. Either the upper window sash or the lower window sash can be selectively opened and closed by a person sliding the sash up and down within the window frame.
A popular variation of the double-hung window is the tilt-in double-hung window. Tilt-in double-hung windows have sashes that can be selectively moved up and down. Additionally, the sashes can be selectively tilted into the home so that the exterior of the sashes can be cleaned from within the home.
The sash of a double-hung window has a weight that depends upon the materials used to make the window sash and the size of the window sash. Since the sashes of a double-hung window are free to move up and down within the frame of a window, some counterbalancing system must be used to prevent the window sashes from always moving to the bottom of the window frame under the force of their own weight.
For many years counterbalance weights were hung next to the window frame in weight wells. The weights were attached to the window sash using a string or chain that passed over a pulley at the top of the window frame. The weights counterbalanced the weight of the window sashes. As such, when the sashes were moved in the window frame, they had a neutral weight and friction would hold them in place.
The use of weight wells, however, prevents insulation from being packed tightly around a window frame. Furthermore, the use of counterbalance weights on chains or strings cannot be adapted well to tilt-in double-hung windows. Accordingly, as tilt-in windows were being developed, alternative counterbalance systems were developed that were contained within the confines of the window frame and did not interfere with the tilt action of the tilt-in windows.
Modern tilt-in double-hung windows are primarily manufactured in one of two ways. There are vinyl frame windows and wooden frame windows. In the window manufacturing industry, different types of counterbalance systems are traditionally used for vinyl frame windows and for wooden frame windows. The present invention is mainly concerned with the structure of vinyl frame windows. As such, the prior art concerning vinyl frame windows is herein addressed.
Vinyl frame, tilt-in, double-hung windows are typically manufactured with guide tracks along the inside of the window frame. Brake shoe assemblies, commonly known as “shoes” in the window industry, are placed in the guide tracks and ride up and down within the guide tracks. Each sash of the window has two tilt pins or tilt posts that extend into the shoes and cause the shoes to ride up and down in the guide tracks as the window sashes are opened or closed.
In prior art counterbalance systems, the shoes serve more than one purpose. The shoes contain a brake mechanism that is activated by the tilt post of the window sash when the window sash is tilted inwardly away from the window frame. The shoe therefore locks the tilt post in place and prevents the base of the sash from moving up or down in the window frame once the sash is tilted open. Second, the shoes engage curl springs. Curl springs are constant force coil springs that supply the counterbalance force to the weight of the window sash.
Single curl springs are used on windows with light sashes. Multiple curl springs are used on windows with heavy sashes. The curl springs provide the counterbalance force to the window sashes needed to maintain the sashes in place. The counterbalance force of the curl springs is transferred to the window sashes through the structure of the shoes and the tilt posts that extend from the window sash into the shoes.
Prior art shoes that contain braking mechanisms and engage counterbalance curl springs are exemplified by U.S. Pat. No. 6,378,169 to Batten, entitled Mounting Arrangement For Constant Force Spring Balance; U.S. Pat. No. 5,463,793 to Westfall, entitled Sash Shoe System For Curl Spring Window Balance; and U.S. Pat. No. 5,353,548 to Westfall, entitled Curl Spring Shoe Based Window Balance System.
Prior art shoes for curl spring counterbalance systems are typically complex assemblies. The shoes must contain a brake mechanism strong enough to lock a sash in place. Furthermore, the shoes must engage at least one strong curl spring. In modern tilt-in window construction, curl springs are made from flat bands of spring steel that are rolled into tight coils. The ends of the curl springs typically attach to the brake shoes at an off-center point. As a result, although the curl springs bias the brake shoes upwardly in the window frame track, the curl springs also apply a torque force to the brake shoes. The torque force tends to cock or rotate the brake shoe within the window track. The shoe binds in the guide track and the window becomes so difficult to open and close that it cannot be considered functional. This cocked orientation also causes the brake shoe to wear against the window track in an uneven manner. Over time, it often becomes more difficult for the oddly worn shoes to move up and down.
A need therefore exists in the field of vinyl, tilt-in, double-hung windows, for a counterbalance system that eliminates the uneven wear of brake shoes caused by the spring torque. A need also exists in the field of vinyl, tilt-in double-hung windows for a counterbalance system that provides inexpensive, easily installed brake shoes that are highly reliable. These needs are met by the present invention as described and claimed below.
The present invention is a brake shoe assembly used within a counterbalance system for a tilt-in window. The brake shoe assemblies ride in guide tracks within the frame of the window along the sides of the window sashes. Tilt posts extend from the sashes into the brake shoe assemblies, wherein the brake shoe assemblies guide the movement of the tilt posts up and down in the guide tracks.
The brake shoe assemblies have housings with opposing face sections and rear sections that are disposed within a periphery of a first curved side edge, a second curved side edge and a bottom edge. The brake shoe attaches to a coil spring that cocks the brake shoe in the guide track. The first curved side edge and the second curved side edge contact the guide track at a tangent when the brake housing is cocked. The tangential contact minimizes wear and prevents the brake shoe housing from binding.
The brake shoe assemblies also contain an internal brake mechanism that acts to spread the face section of the brake shoe housing from the rear section along at least one edge when the sash of the window is tilted. As the brake shoe housing is spread apart, it interferes with the guide track and becomes locked in place until the window sash is tilted upright to its operational position.
For a better understanding of the present invention, reference is made to the following description of an exemplary embodiment thereof, considered in conjunction with the accompanying drawings, in which:
Referring to
Referring to
The curl spring 24 rotates and unwinds from a hub that is anchored high in the guide track 18. The free end of the curl spring 24 is affixed to the brake shoe assembly 22. Accordingly, the curl spring 24 applies an upward counterbalance force to each sash 11 that counteracts the weight of each sash 11.
Referring to
The first and second curved side edges 30, 31 of the brake shoe housing 26 have complex curvatures. Both the first curved side edge 30 and the second curved side edge 31 have upper sections and lower sections of dissimilar curvature. The lower section 33 of the first curved side edge 30 and the lower section 35 of the second curved side edge 31 both share the same mild radius of curvature, wherein the radius of curvature is greater than two inches. However, the upper section 37 of the first curved side surface 30 and the upper section 39 of the second curved side surface 31 both have a tighter radius of curvature, wherein the radius of curvature is less than one inch. The radius of curvature for the upper section 37 of the first curved side edge 30 is about double that of the radius of curvature for the upper section 39 of the second curved side edge 31. As a consequence, the upper section 37 of the first curved side edge 30 curves less than the upper section 39 of the second curved side edge 31 and terminates at a height that is higher than the height of the second side edge 31.
On the first curved side edge 30, the lower section 33 and the upper section 37 meet at a curve transition point P1. Likewise, on the second curved side edge 31, the lower section 35 and the upper section 39 meet at a curve transition point P2. The distance D1 between the first curve transition point P1 and the second curve transition point P2 is the widest part of the brake shoe housing 26, being at least five percent longer than the length L1 of the bottom edge 29.
A spring attachment slot 42 is formed in the brake shoe housing 26. The spring attachment slot 42 separates the upper section 37 of the first curved side edge 30 from the upper section 39 of the second curved side edge 31. The slot 42 has an enlarged opening 43 at its distal end. The shape of the slot 42 and its enlarged opening 43 creates a large hook projection 45.
Referring to
The curl spring 24 is attached to the brake shoe 22 within the guide track 18. The curl spring 24 is essentially a two-dimensional ribbon having a wide face surface and a very narrow side edge. The curl spring 24 is oriented so that the face surface of the curl spring 24 lay at a perpendicular to the rear wall of the guide track 18 between the two opposing vertical walls 48.
A hole 47 is formed through the curl spring 24 near its free end. When the free end of the curl spring 24 is inserted into the slot 42 on the brake shoe 22, the hook projection 45 engages the hole 47 in the curl spring 24 and prevents the curl spring 24 from being inadvertently pulled out of the slot 42. It will therefore be understood that the engagement of the hook projection 45 with the hole 47 in the curl spring 24 mechanically interconnects the brake shoe housing 26 and the curl spring 24.
The brake shoe housing 26 is shown with an imaginary centerline 32 extending down the center of the brake shoe housing 26 between the first and second curved side edges 30, 31. The imaginary centerline 32 lays perpendicular to the bottom edge 29 of the brake shoe housing 26. For the purposes of this specification, the brake shoe housing 26 is considered to be in a “straight” orientation when the imaginary centerline 32 is vertical and the bottom edge 29 is horizontal.
A brake mechanism 34 is contained within the brake shoe housing 26. The brake mechanism 34 includes a cam actuator 36. The cam actuator 36 rotates within the brake shoe housing 26, as will later be explained. A portion of the cam actuator 36 extends through an access hole in the face surface 27 of the brake shoe housing 26. A recess 38 is formed within the exposed portion of the cam actuator 36. The recess 38 receives the horizontal tilt post 21 (
Referring to
As the brake shoe assembly 22 tilts within the guide track 18, the upper portion 37 of the first curved side edge 30 and the lower portion 35 of the second curved side edge 31 contact the opposing vertical walls 48 of the guide track 18. Since the side vertical walls 48 are flat, the walls 48 contact the first and second curved side edges 30, 31 at a tangent to those curved surfaces.
The tangential contact between the first and second curved side edges 30, 31 of the brake shoe housing 26 and the opposing vertical walls 48 of the guide track 18 provide very little frictional resistance to the movement of the brake shoe assembly 22 within the guide track 18. Furthermore, since the first and second curved side edges 30, 31 bend toward one another, there are no salient points on the brake shoe housing 26 that can wear into the vertical walls 48 of the guide track 18 and bind the brake shoe assembly 22. The result is a brake shoe assembly 22 that is more reliable and is less likely to bind than traditional prior art devices.
Referring to
The first and second lateral grooves 50, 52 thin the material of the brake shoe housing 26 in the face section 54 and the rear section 56. The first and second lateral grooves 50, 52 therefore create living hinges that allow the face section 54 and the rear section 56 of the brake shoe housing 26 to be selectively spread apart by the application of a spreading force.
In
Inside the brake shoe housing 26, the face section 54 of the housing 26 and the rear section 56 of the housing 26 are separated by a severance space 62. The severance space 62 is narrow below the level of the first and second lateral grooves 50, 52. However, just above the first and second lateral grooves 50, 52 there is an enlarged area 64.
When the sash of a window is in its functional, non-tilted position, the tilt-post 21 of the window orients the cam actuator 36 so that the cam arm 60 is positioned within the enlarged area 64 of the severance space 62. Such an orientation is shown in
The distance between the face surface 27 of the brake shoe assembly 22 and the rear surface 49 of the brake shoe assembly 22 is smaller than the distance in between a forward wall 65 and a rearward wall 66 of the window frame guide track 18. The brake shoe assembly 22 is therefore free to move within the window frame guide track 18 uninhibited.
Referring now to
The face section 54 and the rear section 56 hinge about the first and second lateral grooves 50, 52 as they spread. As such, the distance between the face surface 54 and the rear surface 56 increases and is at its maximum proximate the bottom edge 29. As the face section 54 and the rear section 56 spread, both sections 54, 56 contact, and are biased against, the forward wall 65 and rearward wall 66 of the window frame guide track 18. This causes the brake shoe assembly 22 to bind within the window frame guide track 18 and lock into place. It will therefore be understood that once a window sash is tilted and the cam actuator 36 is caused to turn, the brake shoe housing 26 spreads and the brake shoe assembly 22 locks in place within the window frame guide track 18.
Once the window sash is rotated back to its functional position, the cam arm 60 on the cam actuator 36 rotates back to the enlarged area 64 of the severance space 62. The bias force separating the face section 54 and the rear section 56 of the brake shoe housing 26 is removed. The face section 54 and the rear section 56 then converge back toward each other until the brake shoe assembly 22 is again free to move up and down within the confines of the window frame guide track 18.
It will be understood that the embodiment of the present invention counterbalance system that is described and illustrated herein is merely exemplary and a person skilled in the art can make many variations to the embodiment shown without departing from the scope of the present invention. All such variations, modifications and alternate embodiments are intended to be included within the scope of the present invention as defined by the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/072,122, entitled ROUNDED SHOE AND POSITION BRAKE ASSEMBLY FOR THE COUNTERBALANCE SYSTEM OF A TILT-IN WINDOW, filed Mar. 7, 2005 now U.S. Pat. No. 7,966,770.
Number | Name | Date | Kind |
---|---|---|---|
1097524 | Brownjohn | May 1914 | A |
3184784 | Peters | May 1965 | A |
3429071 | Phillips | Feb 1969 | A |
3724131 | Schnormeier | Apr 1973 | A |
4718194 | FitzGibbon et al. | Jan 1988 | A |
5027557 | May | Jul 1991 | A |
5099963 | Alchin | Mar 1992 | A |
5353548 | Westfall | Oct 1994 | A |
5463793 | Westfall | Nov 1995 | A |
5661927 | Polowinczak et al. | Sep 1997 | A |
6041475 | Nidelkoff | Mar 2000 | A |
6058653 | Slocomb et al. | May 2000 | A |
6151832 | Opielski et al. | Nov 2000 | A |
6378169 | Batten et al. | Apr 2002 | B1 |
6658794 | Hansel et al. | Dec 2003 | B1 |
6763550 | Regnier | Jul 2004 | B2 |
6886295 | Annes et al. | May 2005 | B2 |
7194839 | O'Donnell et al. | Mar 2007 | B2 |
7966770 | Kunz | Jun 2011 | B1 |
20030145523 | Annes et al. | Aug 2003 | A1 |
20040206002 | Kunz et al. | Oct 2004 | A1 |
20050160676 | Pettit | Jul 2005 | A1 |
20050183340 | O'Donnell et al. | Aug 2005 | A1 |
20050188620 | Malek et al. | Sep 2005 | A1 |
20060230682 | Ifko | Oct 2006 | A1 |
20070151157 | O'Donnell et al. | Jul 2007 | A1 |
20070220706 | Wellman et al. | Sep 2007 | A1 |
20080178424 | Tuller | Jul 2008 | A1 |
20090064589 | Tyler | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11072122 | Mar 2005 | US |
Child | 12717934 | US |