SYSTEM AND METHOD FOR IMPROVING TOUCH SCREEN DISPLAY USE UNDER VIBRATION AND TURBULENCE

Information

  • Patent Application
  • 20120127115
  • Publication Number
    20120127115
  • Date Filed
    November 23, 2010
    14 years ago
  • Date Published
    May 24, 2012
    12 years ago
Abstract
A method and system for improving touch screen display use during vibration and turbulence conditions is provided. The system includes a sensor configured to transmit a first input signal relative to a measured parameter of the vehicle, a touch screen input and display system configured to transmit a second input signal relative to a manual input by a user. The touch screen input and display system includes a planar input and viewing surface having a plurality of edges and a bezel at least partially surrounding the surface proximate at least some of the plurality of edges. The bezel includes a surface configured to engage one or more digits of one or more hands of a user and is formed of an elastomeric material. The system also includes an input unit configured to receive the transmitted first and second input signals.
Description
BACKGROUND OF THE INVENTION

The field of the invention relates generally to input devices, and more specifically, to a method and systems for improving touch screen display use during vibration and turbulence conditions.


At least some known touch screens with single- and multi-touch capability have enjoyed great success in consumer products, lending intuitive gesture-based control to functions like scrolling, panning, and zooming. However, their use in vehicles, such as on a flight deck of an aircraft is hampered by vibration and turbulence, which makes precise, accurate, and rapid finger and hand movements extremely difficult. Moreover, most aircraft displays must be anchored to the flight deck, transmitting vibration and turbulence directly to the display without any damping. Current generation cursor control devices have incorporated a turbulence hump for resting a wrist on the user during turbulence in an attempt to stabilize the user's hand. However, these current generation displays are not designed for hand stabilization appropriate for use in multi-touch operations.


BRIEF DESCRIPTION OF THE INVENTION

In one embodiment, a system for improving touch screen display use during vibration and turbulence conditions includes a sensor configured to transmit a first input signal relative to a measured parameter of the vehicle, a touch screen input and display system configured to transmit a second input signal relative to a manual input by a user. The touch screen input and display system includes a planar input and viewing surface having a plurality of edges and a bezel at least partially surrounding the surface proximate at least some of the plurality of edges. The bezel includes a surface configured to engage one or more digits of one or more hands of a user and is formed of an elastomeric material. The system also includes an input unit configured to receive the transmitted first and second input signals.


In another embodiment, a method of improving touch screen display use during vibration and turbulence conditions includes landing at least one digit of at least one hand of a user on a bezel at least partially surrounding a touch screen input and display device and engaging a touch activated area of the touch screen input and display device with at least one other digit of the at least one hand. The method further includes determining an amount of motion influence of the at least one hand is due to at least one of vibration, shock, and turbulence associated with at least one of the touch screen input and display device and the hand and adjusting the touch-activated area using the determined amount of motion influence.


In yet another embodiment, a touch screen input and display system includes a touch screen including a planar input and viewing surface having a plurality of edges and a bezel at least partially surrounding the surface proximate at least some of the plurality of edges, the bezel including a surface configured to engage one or more digits or one or more hands of a user, the surface formed of an elastomeric material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 show exemplary embodiments of the method and system described herein.



FIG. 1 is a schematic block diagram of a vehicle control system in accordance with an exemplary embodiment of the present invention; and



FIG. 2 is a cross-sectional view of the bezel shown in FIG. 1 taken along the lines 2-2 also shown in FIG. 1 in accordance with an exemplary embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description illustrates embodiments of the invention by way of example and not by way of limitation. It is contemplated that the invention has general application to improving touch screen display use during vibration and turbulence conditions in industrial, commercial, and residential applications.


As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.


In an embodiment of the present invention an ergonomic physical stabilization edge is formed in the bezel of a touch screen display such that one or both hands can be stabilized while using the touch screen.


In another embodiment, a relatively thin touchpad is formed in the stabilization edge of the bezel to determine number of fingers being used for stabilization, movement due to turbulence, and a range of appropriate GUI and cursor control actions based on hand position.



FIG. 1 is a schematic block diagram of a vehicle control system 100 in accordance with an exemplary embodiment of the present invention. In the exemplary embodiment, vehicle control system 100 includes a sensor 102 configured to transmit a first input signal relative to a measured parameter of the vehicle and a touch screen input and display system 104 configured to transmit a second input signal relative to a manual input by a user. Touch screen input and display system 104 includes a planar input and viewing surface 106 having a plurality of edges 108 and a bezel 110 at least partially surrounding planar input and viewing surface 106 proximate at least some of edges 108. Bezel 110 includes a surface 112 configured to engage one or more digits 114 of one or more hands 116 of a user. In the exemplary embodiment, surface 112 is formed of an elastomeric material, for example, but not limited to, neoprene and synthetic rubber. Vehicle control system 100 also includes an input unit 118 configured to receive the transmitted first and second input signals for use by a processor 119 for further processing and/or transmission to other processes.


Planar input and viewing surface 106 comprises a touch activated area 120 configured to receive a manual input from a digit 114, for example, a finger or thumb of the user.



FIG. 2 is a cross-sectional view of bezel 110 taken along lines 2-2 (shown in FIG. 1) in accordance with an exemplary embodiment of the present invention. In the exemplary embodiment, bezel 110 comprises a trough 202 configured to engage one or more digits 114 of one or more hands 116 of the user. In another embodiment, bezel 110 comprises a protrusion 204 configured to engage one or more digits 114, for example, fingers and/or thumb of one or more hands 116 of the user.


In a physical embodiment, bezel 110 is designed for finger and thumb stabilization, intended movement, and comfort during operations using planar input and viewing surface 106. Bezel 110 provides trough 202 or protrusion 204 as fingernails along left, right, and top edges 108 primarily, and further a thumbrail along the bottom edge 108 to permit a pinch grip while scrolling left and right. Bezel 110 permits finger protrusion aft from planar input and viewing surface 106, and may use a curved background surface behind planar input and viewing surface 106 to conform to first link of digits 114 to permit finger protrusion via limited opening behind the planar input and viewing surface 106 to permit heavy turbulence lockdown stabilization. Bezel 110 provides several options for surface 112 including a soft thermoplastic elastomer for damping turbulence and increasing comfort. Surface 112 may also include a textured portion to increase friction, adjacent to a smooth nylon portion used to permit smooth sliding coupled with on-screen interaction. The textured portion may be formed in distal trough 202 while the smooth surface is formed on a proximal side planar surface 208.


In various embodiments, bezel 110 comprises a sensor 206 configured to detect at least one of vibration, shock, and turbulence. Sensor 206 may be formed integrally with bezel 110, for example, but not limited to, embedded on or within surface 112 proximate trough 202 or protrusion 204. In an alternate embodiment, sensor 206 may be positioned in another location. Sensor 206 is configured to generate an output relative to a motion component between touch screen input and display system 104 and the user resulting from the at least one of vibration, shock, and turbulence. Sensor 206 is configured to determine a number and placement of the one or more digits 114 using at least one of capacitance, proximity, acceleration, force, and a combination thereof.


Touch activated area 120 is configured to be at least one of relocated and resized on planar input and viewing surface 106 based on an input from sensor 206, which is configured to determine a motion influence due to at least one of vibration, shock, and turbulence.


Planar input and viewing surface 106 may alternatively be sized for use by a range of human anthropometric dimensions, allowing two stabilized hands to permit touching thumbs proximate a center of planar input and viewing surface 106. Different line replaceable bezel widths may be used for different hand and finger sizes.


In an interactive embodiment, bezel 110 is an active user-interface incorporating a thin, bezel-integrated touchpad 210 extending around an outside edge 212 of bezel 110. Touchpad 210 may be used to identify an intended graphical focus area on planar input and viewing surface 106, to control vertical and/or horizontal scroll bars, for increasing or decreasing quantitative or graphical displays, for panning, zooming, or rotating the screen, for determining finger positions for GUI behavior, and for determining turbulence input and damping its effects as the pilot interacts with the screen.


System 100 determines a position of hand 116 and a number of digits 114 that are being used to interact with touch screen input and display system 104 and, in one embodiment, further determines an unintended digit anchor point movement based on a measured turbulence via, for example, but not limited to, rapid up/down movement of a digit anchor point, and adjusts the sensed finger or thumb input on touch screen input and display system 104 in direction opposite to the unintended anchor point movement. System 100 thus determines and corrects unintended digit touch point movement based on measured turbulence and movement of the digit touch point.


The term processor, as used herein, refers to central processing units, microprocessors, microcontrollers, reduced instruction set circuits (RISC), application specific integrated circuits (ASIC), logic circuits, and any other circuit or processor capable of executing the functions described herein.


As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by processor 119, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.


As will be appreciated based on the foregoing specification, the above-described embodiments of the disclosure may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect is reducing unintentional hand and finger movement when using a touch screen in vibration and turbulence conditions. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the discussed embodiments of the disclosure. The computer-readable media may be, for example, but is not limited to, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), and/or any transmitting/receiving medium such as the Internet or other communication network or link. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.


The above-described embodiments of a method and system of improving touch screen display use under vibration and turbulence provides a cost-effective and reliable means of bringing intuitive aspects of multi-touch touch screens to flight deck applications in a method that is usable by a pilot operating under vibration or turbulence. As a result, the methods and systems described herein facilitate operating vehicles, such as, aircraft in a cost-effective and reliable manner.


This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims
  • 1. A vehicle control system comprising: a sensor configured to transmit a first input signal relative to a measured parameter of the vehicle;a touch screen input and display system configured to transmit a second input signal relative to a manual input by a user, said touch screen input and display system comprising a planar input and viewing surface having a plurality of edges and a bezel at least partially surrounding said surface proximate at least some of said plurality of edges, said bezel comprising a surface configured to engage one or more digits of one or more hands of a user, said surface formed of an elastomeric material; andan input unit configured to receive the transmitted first and second input signals.
  • 2. A system in accordance with claim 1, wherein said bezel comprises at least one of vibration, shock, and turbulence sensor configured to generate an output relative to a motion component between said touch screen and a user resulting from the at least one of vibration, shock, and turbulence.
  • 3. A system in accordance with claim 1, wherein said sensor is configured to determine a number and placement of the one or more digits using at least one of capacitance, proximity, acceleration, force, and a combination thereof.
  • 4. A system in accordance with claim 1, wherein said touch screen comprises a touch activated area configured to receive a manual input from a digit, said touch screen area configured to be at least one of relocated and resized on said touch screen based on an input from a sensor configured to use at least one of capacitance, proximity, acceleration, force, and a combination thereof to determine a motion influence due to at least one of vibration, shock, and turbulence.
  • 5. A system in accordance with claim 1, wherein said bezel comprises at least one of a trough and a protrusion configured to engage one or more digits of one or more hands of a user.
  • 6. A method of improving touch screen display use during vibration and turbulence conditions comprising: landing at least one digit of at least one hand of a user on a bezel at least partially surrounding a touch screen input and display device;engaging a touch activated area of the touch screen input and display device with at least one other digit of the at least one hand;determining an amount of motion influence of the at least one hand is due to at least one of vibration, shock, and turbulence associated with at least one of the touch screen input and display device and the hand; andadjusting the touch-activated area using the determined amount of motion influence.
  • 7. A method in accordance with claim 6, wherein landing at least one digit of at least one hand of a user on a bezel comprises landing at least one digit of at least one hand of a user in a trough formed in a surface of the bezel and sized to receive the at least one digit.
  • 8. A method in accordance with claim 7, wherein landing at least one digit of at least one hand of a user on a bezel comprises landing at least one digit of at least one hand of a user on a surface of protrusion extending from the trough, the protrusion formed of an elastomeric material.
  • 9. A method in accordance with claim 6, wherein landing at least one digit of at least one hand of a user on a bezel comprises landing at least one digit of at least one hand of a user on a resilient surface of the bezel.
  • 10. A method in accordance with claim 6, wherein landing at least one digit of at least one hand of a user on a bezel comprises landing at least one digit of at least one hand of a user on the bezel formed of elastomeric material.
  • 11. A method in accordance with claim 6, wherein determining an amount of motion influence comprises measuring an amount of movement of the at least one digit with respect to the bezel.
  • 12. A method in accordance with claim 6, wherein determining an amount of motion influence comprises measuring an amount of movement of the at least one digit with respect to the bezel using at least one of a capacitance parameter and a proximity parameter.
  • 13. A method in accordance with claim 6, wherein determining an amount of motion influence comprises measuring an amount of movement of the at least one digit with respect to the bezel using at least one of an acceleration parameter and a force parameter.
  • 14. A method in accordance with claim 6, wherein engaging a touch activated area comprises touching the touch activated area using a thumb of the hand.
  • 15. A method in accordance with claim 6, wherein adjusting the touch-activated area comprises at least one of relocating the touch-activated area and enlarging the touch-activated area to facilitate said engaging during the at least one of vibration, shock, and turbulence based on the determined amount of motion influence.
  • 16. A touch screen input and display system comprising: a touch screen comprising a planar input and viewing surface having a plurality of edges; anda bezel at least partially surrounding said surface proximate at least some of said plurality of edges, said bezel comprising a surface configured to engage one or more digits of one or more hands of a user, said surface formed of an elastomeric material.
  • 17. A system in accordance with claim 16, wherein said bezel comprises at least one of vibration, shock, and turbulence sensor configured to generate an output relative to a motion component between said touch screen and a user resulting from the at least one of vibration, shock, and turbulence.
  • 18. A system in accordance with claim 16, wherein said sensor is configured to determine a number and placement of the one or more digits using at least one of capacitance, proximity, acceleration, force, and a combination thereof.
  • 19. A system in accordance with claim 16, wherein said touch screen comprises a touch activated area configured to receive a manual input from a digit, said touch screen area configured to be at least one of relocated and resized on said touch screen based on an input from a sensor configured to use at least one of capacitance, proximity, acceleration, force, and a combination thereof to determine a motion influence due to at least one of vibration, shock, and turbulence.
  • 20. A system in accordance with claim 16, wherein said bezel comprises at least one of a trough and a protrusion configured to engage one or more digits of one or more hands of a user.