System and method for incorporation of post-production operations to a web output from an image transfer device

Information

  • Patent Grant
  • 6243617
  • Patent Number
    6,243,617
  • Date Filed
    Monday, August 17, 1998
    26 years ago
  • Date Issued
    Tuesday, June 5, 2001
    23 years ago
Abstract
A system and method for incorporating, in the production of a continuous stream of images, by an image transfer device upon a moving web, post-production operations upon the web at various locations. Locations of a web, having a plurality of images placed thereon, output from an image transfer device are tracked. Specific operations at various locations upon the web are performed by a post-production device as the web passes through it. The web is directed from the image transfer device to the post-production device. In response to the tracking of locations upon the web, the point when a location has entered the post-production device is determined. In response to this determination, the post-production device is commanded to perform its specific operation at a connect location.
Description




FIELD OF THE INVENTION




This invention relates to a unique system and method for performing a post-production operation upon a web subsequent to its output from an image transfer device.




BACKGROUND OF THE INVENTION




It is often desirable in a printing process involving a continuous stream of images laid down upon a moving paper web to incorporate other post-production processes to the web downstream of the printing process. These post-production processes may include, for example, page or job separation, hole punching, color logo application or folding operations. The problem with performing such post-production processes or operations is that the web transferred between the image and the post-production machines may not contain standard length pages or may otherwise have pages in locations upon the web that are difficult to gauge. Thus, the post-processing device must have some means for accurately locating each page presented to it, and furthermore, once each page location is found, must have a means of distinguishing between each individual page sent to it to determine which page must include a given post-production operation.




An additional problem with keeping track of processed pages as they are transferred to a post-production device is that the two devices may run at unsynchronized speeds, especially where they are discrete and separate units. As such, slack may develop in the transfer loop of web between the two devices, resulting in more images en route than expected and potential misapplication of the post-production operation.




SUMMARY OF THE INVENTION




It is, therefore, an object of the present invention to provide a unique system and method for allowing post-production operations to be performed on a moving web containing images wherein the image production element and the post-production device may not be synchronized in their feeding of the web.




It is another object of this invention to provide a system and method for incorporating post-production operations that accurately locates the point upon the web at which the post-production operation is to be applied.




It is another object of this invention to provide a system and method for incorporating post production operations that allows the tracking of various locations upon a moving web to accurately perform a multiplicity of types of post-production operations at these various locations.




It is yet another object of this invention to provide a system and method for incorporating post-production operations that allows the tracking of pages and images placed upon a moving web wherein the pages and images are of variable length.




This invention provides a system for incorporation, in the production of continuous stream of images by an image transfer device upon a moving web, post-production operations upon the web at various web locations. There are means for tracking locations of a web, having a plurality of images placed thereon, output from an image transfer device. There are post-production means to perform a specific operation at locations of the web upon its passing through the post-production means. There are also means for directing the web from the image transfer device to the post-production means. There are means, responsive to the means for tracking, for determining when the location has entered the post-production means, and there are also means responsive to these determining means for commanding the post-production means to perform its specific operation at the location.




In a preferred embodiment, the means for tracking also includes means for generating a pulse each time a interval of web is output from the image transfer device. This means for generating may include means for combining a plurality of pulses to indicate the output from the image transfer device of a page length of web. The post-production means may include means for creating an electronic mark each time one of the intervals of the web passes through the post-production means. This means for creating may include page identification means that indicates, by means of counting the electronic marks, the passing of the page length or certain image of the web through the post-production means.




The determining means may further include counter means that increments a stored value for each page indicated by the means for combining, and decrements the stored value for each page indicated by the page identification means. This stored value is a total length value equaling the number of page lengths upon the web disposed between the image transfer device and the post-production means when the web is pulled taut with relatively no slack thereon. The determining means may further include a register means, responsive to the counter means, to store first through last data blocks equal in number to at least a current value contained in the counter means. Each of the data blocks directly corresponds to a page length disposed between the image transfer device and the post-production means and each of the data blocks contains a data value representative of a post-production operation to be performed upon the web at the page length. The last of the data blocks contains a data value corresponding to the page length increment currently entering the post-production means. The register means may include a shifting means that adds a new data value, deletes a data value, or moves values in data blocks to correspond directly to the movement of each page length increment upon the web from the image transfer device to the post-production means.




In an alternative embodiment, the determining means may including storage register means having a number of storage locations to each store a data value corresponding to the number of intervals between each of the locations upon which the specific post-production operation is to be performed. This storage register means may also include means for monitoring the total number of intervals of the web currently disposed between the image transfer device and the post-production means.




In yet another embodiment, a storage register means may also have a number of storage locations to consecutively store first through last data values corresponding to the number of page length increments between each of the locations upon which a specific post-production operation is to be performed. This storage register may also include a means for structuring a number of storage locations; equal to the maximum number of page lengths upon the web that may be disposed between the image transfer device and the post-production means. This storage register may further include a means for comparing a last data value stored in the storage register to the number of pages successively indicated by the page identification means. This allows the means for comparing to indicate when a correct location has entered the post-production means. There may be a means for moving data values, in response to the comparing means, within the storage register means to add a new data value to the storage register and to delete last data values from the storage register. This means for structuring may include a means for calculating the number of page lengths on the web currently disposed between the image transfer device and the post-production means.




The post-production means may generally include, among other devices, a folder, job separator, printing device, hole punching device, or web cutting device. Additionally, the image transfer device may include among its elements an electronic printer such as a laser, impact or other type capable of the production of variable page length images.




A method for incorporating, in the production of a continuous stream of images by an image transfer device upon a moving continuous web, post-production operations upon the web at various locations is also provided. Such a method would generally include the steps of tracking the locations of a web, having a plurality of images placed thereon, output from the image transfer device. There would also be provided a step of performing, with a post-production means, a specific operation at each of the locations on the web upon its passing through the post-production means. In another step, the web is then directed from the image transfer device to the post-production means. In response to the tracking step, the time when a correct location has entered the post-production means is then determined. The method further includes the step of commanding the post-production means, in response to the determination of the point when the correct location has entered the post-production means, to perform its specific operation at the correct location.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing objects and advantages of the present invention will be more clearly understood in connection with the accompanying drawings in which:





FIG. 1

is a schematic diagram of a system for incorporating post-production operations to a printed web according to this invention;





FIG. 2

is a block diagram showing the calculation of the number of pages in the intermediate loop for the post-production page pass through determination system of

FIG. 1

;





FIG. 3

is a sequence of three sequential diagrams of a shifting operation for the shift register used in the post-production page pass through determination system of

FIG. 1

;





FIG. 4

is a block diagram of the shifting control process for the shift register of

FIG. 3

;





FIG. 5

is a sequence of three sequential diagrams of an alternative incremental distance storage register system for use with the post-production page pass through determination system of

FIG. 1.

;





FIG. 6

is a sequence of three sequential diagrams of an alternative absolute distance storage register for use with the post-production page pass through determination system of

FIG. 1

;





FIG. 7

is a schematic diagram of the electronic interval detector in the image transfer device of

FIG. 1

; and





FIG. 8

is a schematic diagram of the electronic interval detector of the post-production device of FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A system for incorporating a post-production operation to a printed web is depicted in FIG.


1


. The system consists of a source of web


20


that is, for example, a paper material upon which printing is to be transferred. The web is thus fed to an image transfer device


40


that performs the printing process. A loop of web material


74


exits the image transfer device and enters a desired post-production device


48


. This post-production device


48


performs an operation upon the web at various locations. This specific operation may be, for example, one of folding, cutting, application of further printing or hole punching. The length of web, when disposed tautly between the image transfer device and the post-production device, is known as the taut distance


50


. This taut distance can be characterized in terms of predetermined intervals


72


of length as small as ⅛″, or in terms of a given number of page lengths


70


. Each page length generally corresponds to a given number of intervals


72


.




The image transfer device


40


contains an image transfer element


180


and contains a distance measurement device


200


, as shown in

FIG. 7

, that measures the intervals


72


of length passing out of the image transfer device. These intervals of length are converted into corresponding electronic pulses or marks that are transmitted to a mark combiner


42


.




This mark combiner translates the marks into a quantifiable increment, generally the length of a, page, and outputs data


54


indicating a page each time enough marks are combined to designate a page length of web passing through the image transfer device


40


. The system quantifies measurements to page size to lessen the effects of rounding and truncation errors potentially resulting from discrete interval measurements.




After the web is fed from the image transfer device, it is carried over an intermediate loop


74


before again traveling into and out of the post-production device


48


. Thus, a means for hand-shaking the operation of the image transfer device and the post-production device must be utilized if a page from the image transfer device is to be accurately processed by the post-production device. This hand-shake means is the system symbolized by the post-production pass through determination block


44


in FIG.


1


. This determination system


44


is fed data


52


indicating which page should contain a post-production operation. The data


52


may be synchronized with data


53


controlling the image transfer device


40


. When a page passes through the image transfer device


40


and a simultaneous signal for post-production


52


is sent to the determination system


44


, the system


44


internally flags that page for a post-production operation.




The post-production device also reads pages passing through itself, as shown by the distance measuring element


220


in FIG.


8


. The determination system


44


has the taut distance


50


programmed into it, so it determines how many pages must pass through the post-production device


48


for the flagged page from the image transfer device to reach the post-production device. It then counts off pages passing through the post-production device, using the post-production output indicator signal


56


, to determine when the flagged page is present at the post-production device. At this point, the determination device transfers a post-production command


76


to the post-production device


48


to instruct the post-production device operational element


194


, as shown in

FIG. 8

to perform its operation.




As illustrated, one important variable that must be known for the determination system


44


to accurately command an operation is the number of pages in the intermediate loop


74


. If the image transfer device


40


and the post-production device


48


are initiated with a loop that is relatively taut and with both running at synchronized rates of web transfer, then the number of page lengths in the loop remain equal to the taut distance


50


. However, it is sometimes the case, especially where independent and removable post-production units are utilized, that the two devices will run at slightly offset speeds. To account for this,

FIG. 2

depicts a counter unit


82


that receives the taut distance value 80 and continually increments 88 or decrements 90 this initial value 80 based, respectively, upon each time a page is output by the image transfer device


84


or passed through the post-production device


86


. In this way, an ongoing real-time calculation of total pages in the loop


92


is achieved.




Using this loop page number figure, the determination system


44


accurately gauges when a page arrives at the post-production device.




The actual storage of post-production signals for pages disposed in the intermediate loop is depicted in three time frames in FIG.


3


. The storage means consists of a shift register shown in a relative starting time frame


94


. The shift register contains a number of shift locations equal to the number of pages in the loop


100


. In the starting state


115


, this number of pages


100


should equal the taut distance. In a simple embodiment, where one post-production device is utilized, each page in order of its appearance in the left-to-right loop from the image transfer device to the post-production device contains a number equal to either zero or one. Zero may represent no operation by the post-production device for that page location, while one represents that a post-production operation is to be performed.




The register


96


depicts the second time frame for the shift register in which a new page


116


has been added to the loop from the image transfer device. This new page holds a zero value, meaning no post-production operation is to be performed to it. At the same time, the post-production device has relatively synchronously transferred out a completed page. This page is shown in the previous time frame register having a one value


108


at the register end position. The determination system has read the last end value and commanded the post-production device to operate upon the page. The new end value


110


of the register


96


of the second time frame contains a zero value and, thus, shall have no post-production operation performed to it. All other zeros and ones in the register have been shifted one space. This process continues indefinitely, until all web images have been processed.




In the final time frame


98


of

FIG. 3

, another new page


104


has been added to the front of the register having a zero, non-post-production, value. However, the post-production device has not yet received and processed the last page designated by a zero in the end register


110


. Thus, a slack


102


has developed in the loop. The counter means depicted in

FIG. 2

will, therefore, be incremented without a nearly simultaneous decrement due to a page leaving the post-production device. The shift register then gains a value holding the new page instruction at the front of the register


106


. When the post-production device again passes through a sheet, decrementing the counter, the shift register will disable the front location as the simultaneous shifting of all values in the register occurs.




A general flow chart depicting this block adding operation of the shift register of

FIG. 3

is shown in FIG.


4


. The current number of pages in the loop


142


is input to a decision block


144


in response to the output of an image page by the image transfer unit


140


. If the number of pages has increased


146


, then a block is added to the shift register for storage of the new page data


150


and no shift occurs. Similarly, if the number of pages has not changed


148


, then all blocks will be shifted down, and the new image page data, when ready, is added to the first block


152


.




The above embodiment generally involves the storage of a piece of data corresponding to each page in the intermediate loop


74


between the image transfer device


40


and the post-production device


48


. As each page is shifted down the loop, the data of the shift register means is also shifted with new page data added at the front and old page data read for commands and dropped off at the rear of the register, just as the pages in the loop themselves enter and leave. An alternative means for storage of data corresponding to pages in the loop is depicted in FIG.


5


. This means stores the number of pages disposed between the post-production pages rather than a single data value for each page. The last storage block


162


in the register


160


at the exemplified starting state depicts nine pages until the next post-production page will appear at the post-production means. Once nine pages have moved through the post-production unit, the operation will then be performed to that ninth page. All the storage blocks will then be shifted, as shown by the second register


170


, such that the second-to-last block


164


in the starting register


160


is now the new last end block upon which the determining system


44


bases its count of identified pages


56


from the post-production unit for the next post-production operation


168


. In this exemplified register


170


, the number of pages until the next post-production operation is seven.




At a point in time when a new post-production page enters the loop, based upon signals


52


and


53


shown in

FIG. 1

, the next incremental page distance value


174


is placed at the front of the storage register. Generally, this system requires fewer storage blocks than the shift register system of the embodiment of FIG.


3


. However, it is possible that, if a post-production operation must be performed it each page within the loop, as many storage locations are required as for the shift register system of FIG.


3


. The creation of additional storage blocks may be accomplished in this type of system with a counter that detects pages in the loop.




An advantage of the second storage embodiment is more clearly prevalent in FIG.


6


. Here, absolute distance consisting of the number of pulses between post-production operations is stored rather than numbers of pages. This system depicts a storage register


210


at a starting time and then at a time


212


after 30 pulses have been counted off by the post-production device wherein a shift


214


has occurred and a new distance of 14 pulses has been added to the front of the register


216


. An advantage of using pulses directly from the distance measuring devices


200


of

FIG. 7 and 220

of

FIG. 8

is that post-production operations can be more accurately pinpointed to specific variable locations upon each page as designated by a specified number of pulses, rather than simply at the page. Furthermore, since post-production operations are located relative to an absolute distance measurement rather than an arbitrary preprogrammed page measurement, pages of varying length may be easily included in the same web. Note that

FIG. 8

includes a pair of drive rollers


224


that rotate (arrows


226


) to drive the web


74


through the post-production device


48


.




In any of the above embodiments, several post-production devices may be included and a multiplicity of types signals may be shifted by the storage means in order to perform one or more selectable types of post-production operations. These different operations may each be performed upon the same or upon differing pages within the web.




It should be understood that the preceding is merely a detailed description of a preferred embodiment. It will be obvious to those skilled in the art that various modifications can be made without departing from the spirit or scope of the invention. The preceding description is meant to describe only a preferred embodiment and not to limit the scope of the invention.



Claims
  • 1. A system for tracking a web moving in a downstream direction in web loop from a first web utilization device to a second web utilization device, the loop having a variable length, the system comprising:a first movement sensor for sensing movement of predetermined length increments of web passing through the first web utilization device; a second movement sensor for sensing movement of predetermined length increments of web passing through the second web utilization device; a storage register that stores a plurality of values in a sequence from a sequence beginning to a sequence end relative to and in order of a number of predetermined increments of web in the loop frown an upstream location to a downstream location, the values each corresponding to a predetermined operation on the web to be performed by the second web utilization device; a controller, being constructed and arranged to place values corresponding to predetermined operations on the web by the second utilization device in the storage register at the sequence end as predetermined length increments of web pass through the first web utilization device, and being constructed and arranged to read a beginning of the sequence to determine the value stored therein as predetermined length increments of web pass through the second web utilization device; and the controller being further constructed and arranged to move the beginning of the sequence to an adjacent, upstream value in the storage register when the predetermined length increments pass through the second web utilization device so that a value corresponding to a next location on the web loop is read when the next location enters the second web utilization device.
  • 2. The system as set forth in claim 1 wherein the register comprises a shift register that stores discrete values corresponding to selected operations by the second web utilization device.
  • 3. A method for tracking a web moving in a downstream direction in web loop from a first web utilization device to a second web utilization device, the web loop having a variable length, the method comprising:sensing movement of predetermined length increments of web passing through the first web utilization device; sensing movement of predetermined length increments web passing through the second web utilization device; storing a plurality of values in a sequence from a sequence beginning to a sequence end relative to and in order of a number of the length increments of web in the loop from an upstream location to a downstream location, the values each corresponding to a predetermined operation on the web to be performed by the second web utilization device; placing values corresponding to predetermined operations on the web by the second utilization device in a storage register at the sequence end as predetermined length increments of web pass through the first web utilization device, and reading a beginning of the sequence to determine the value stored therein as predetermined length increments of web pass through the second web utilization device; and moving the beginning of the sequence to an adjacent, upstream value in the storage register when the predetermined length increments pass through the second web utilization device so that a value corresponding to a next location on the web loop is read when the next location enters the second web utilization device.
  • 4. The method as set forth in claim 3 wherein the step of placing values corresponding to predetermined operations on the web by the second utilization device in the storage register comprises placing the values in a shift register that stores discrete values corresponding to selected operations by the second web utilization device.
RELATED APPLICATIONS

This is a continuation of copending U.S. patent application Ser. No. 08/481,740, filed Jun. 7, 1995, now U.S. Pat. No. 5,794,830, which is a divisional of copending U.S. patent application Ser. No. 08/296,127, filed Aug. 25, 1994, now U.S. Pat. No. 5,538,171, which is a division of copending U.S. patent application Ser. No. 07/848,039, filed Mar. 9, 1992, now U.S. Pat. No. 5,344,057, which is a division of copending U.S. patent application Ser. No. 07/560,127, filed Jul. 31, 1990, now U.S. Pat. No. 5,193,727.

US Referenced Citations (22)
Number Name Date Kind
3650205 Wybrow et al. Mar 1972
3908542 Anderson Sep 1975
4025025 Bartel et al. May 1977
4027142 Paup et al. May 1977
4485982 St. John et al. Dec 1984
4532596 Pugsley Jul 1985
4633395 Kuefuss Dec 1986
4677551 Suganuma Jun 1987
4757930 Ditto Jul 1988
4768410 Wood Sep 1988
4843959 Rendell Jul 1989
4898094 Duomoto et al. Feb 1990
4903600 Long Feb 1990
4945252 Lerner et al. Jul 1990
4982887 Takahashi Jan 1991
5067835 Yamamoto et al. Nov 1991
5076718 Sugino Dec 1991
5193727 Crowley Mar 1993
5216444 Noguchi et al. Jun 1993
5344057 Crowley Sep 1994
5538171 Crowley Jul 1996
5794830 Crowley Aug 1998
Foreign Referenced Citations (7)
Number Date Country
3833731 Apr 1990 DE
0067957 Dec 1982 EP
0264347 Apr 1988 EP
0308984 Mar 1989 EP
1044535 Oct 1966 GB
59-00578 Apr 1984 JP
PCT9119957 Dec 1991 WO
Continuations (1)
Number Date Country
Parent 08/481740 Jun 1995 US
Child 09/135281 US