This invention relates generally to the field of information handling systems and more specifically to increasing current monitor accuracy.
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems (“information handling systems”). An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
As the ubiquity of information handling systems increases, so does the importance of operating efficiencies. One such operating efficiency may include power consumption. One way in which information handling systems consume power is through the use of resistive elements in current monitoring. However, in order for these elements to monitor current over the greatest possible range, accuracy may be diminished while at the same time increasing the power loss due to higher offset voltages.
In accordance with certain embodiments of the present disclosure, systems and method for increasing current monitor accuracy are disclosed. The systems and methods may include receiving a run-time load value from a current monitor, determining a component parameter value associated with the run-time load value, and communicating the component parameter value to the current monitor.
For a more complete understanding of the present invention and its advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
For the purposes of this disclosure, an information handling system (“information handling system”) may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, entertainment, or other purposes. For example, an information handling system may be a personal computer, a PDA, a consumer electronic device, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system (“IHS”) may include memory, one or more processing resources, such as a central processing unit (CPU) or hardware or software control logic. Additional components or the information handling system may include one or more storage devices, one or more communications ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communication between the various hardware components.
In some embodiments, node manager 102 may be any hardware, software, firmware, and/or combination thereof configured to manage certain performance aspects of information handling system 100. For example, node manager 102 may be a baseboard management controller (“BMC”), and/or other component(s) configured to manage certain performance aspects of information handling system 100.
In some embodiments, node manager 102 may be configured to analyze information received from other components of information handling system 100. For example, node manager 102 may be configured to receive information regarding the current, historical, and/or analyzed data associated with other components of information handling system 100. In the configuration of information handling system 100 depicted in
In some embodiments, node manager 102 may be communicatively coupled to current monitor 104 via bus 112. Node manager 102 may, in some configurations, be configured to be a master of bus 112. In some configurations of information handling system 100, node manager 102 may be configured to communicate commands to current monitor 104 via bus 112, as described in more detail below with reference to
In some embodiments, bus 112 may be a digital bus configured to provide a communication path between node manager 102 and current monitor 104. For example, bus 112 may be a PMBus bus between node manager 102 and current monitor. Although a certain number of components of information handling system 100 are depicted as connect to bus 112 for illustrative purposes, more, fewer, and/or different components may be present for a given configuration of information handling system 100 without departing from the scope of the present disclosure.
In some embodiments, current monitor 104 may be one or more electronic component(s) configured to monitor a current associated with one or more other component(s) of information handling system 100. In some embodiments, current monitor 104 may include one or more adjustable component(s) 114 configured to have one or more adjustable parameter(s) that may be adjusted remotely. For example, current monitor 104 may be a currently available current monitor, e.g., the INA220 from Texas Instruments, that may include (for example) an analog-to-digital converter (“ADC”). The ADC may include a programmable-gain amplifier that may be configured through a digital interface. For example, current monitor 104 may be configured to receive updated parameter(s) for component 114 via bus 112 from node manager 102.
In some embodiments, current monitor 104 may have associated with it one or more sense element(s) 106. For example, sense element 106 may be a resistive element configured to measure one or more current(s) associated with one or more component(s) of information handling system 100. In some configurations, sense element 106 may be configured to measure a current associated with power supply 108 and/or voltage regulators 110.
In some embodiments, current monitor 104 may be further configured to track, store, and analyze historical current values associated with sense element 106. For example, current monitor 104 may be configured to average load values associated with sense element 106 over time in order to dynamically determine an appropriate setting for an adjustable parameter of component 114 of current monitor 104, as described in more detail below with reference to
In some embodiments, power supply 108 may be any known power supply configured to supply power to information handling system 100. In some embodiments, voltage regulator 110 may be any appropriate voltage regulator configured to regulate a voltage associated with one or more component(s) of information handling system 100. For example, voltage regulator 110 may be a processor voltage regulator, a memory voltage regulator, and/or a voltage regulator associated with any other miscellaneous component of information handling system 100.
In operation, node manager 102 may have access to a lookup table, as described in more detail below with reference to
The following example values are provided to aid in illustration and are in no way intended to limit the scope of the present disclosure. As an example configuration of information handling system 100, current monitor 104 may include an INA220 current monitor component from Texas Instruments. Such a current monitor component may have a certain accuracy value for a high power range (e.g., higher sense voltage across sense element), but a second, lower accuracy value for a low power range (e.g., lower sense voltage across sense element). The current monitor component may also include an adjustable component 114 such as an ADC. If the ADC is programmed once (e.g., “static” programming), it may be programmed with a maximum power range value so that it may operate over the maximum range without damage to the ADC. For example, the ADC may have an associated gain value that may be adjustable.
In the illustrative configuration using the INA220, the ADC gain may be adjusted from a maximum value (e.g., 320 mV), to a minimum value (e.g., 40 mV). In a configuration in which the ADC gain is statically programmed, efficiencies associated with information handling system 100 may be lost and/or reduced. For example, system 100 may operate most of the time at a medium- to low-power level. At a lower power level, accuracy of the current monitor component may be reduced due to a low sense voltage across the associated sense element 106. This may be exacerbated by a comparatively high offset voltage associated with the ADC (e.g., an offset voltage set high so that the ADC may handle higher sense voltages at higher power levels). For example, setting an ADC to operate in a range of 0-320 A, an inaccuracy associated with the ADC may be in the range of 3% due to a 100 μA offset voltage. However, setting the ADC to operate in the range of 0-40 A, the inaccuracy associated with the ADC may be in the range of 1.75% due to a lower, 50 μA offset voltage.
To improve accuracy at lower power settings, while maintaining the ability to monitor current at higher power settings, information handling system 100 may be configured to dynamically program an adjustable component 114 of current monitor 104, as described in more detail above and below with reference to
In some embodiments, table 300 may include a plurality of load range values 302. For example, table 300 may include values for the load ranges of: 0-40 A, 41-160 A, and 161-330 A. Table 300 may also include a corresponding plurality of parameter values 304. For example, table 300 may include parameter values “PGA1,” “PGA3,” and “PGA3.” As described in more detail above with reference to
As described in more detail above with reference to
It may be appreciated by one of ordinary skill in the art, that a greater or lesser granularity in accuracy may be necessary or desired in a given configuration of information handling system 100 without departing from the scope of the present disclosure. Therefore, table 300 and/or diagram 400 may include more, fewer, or different regions, ranges, and/or values. Further, table 300 may have a plurality of values generally corresponding to a range of diagram 400, depending on the given configuration of information handling system 100.
For ease of comparison between the full-range coverage depicted in
According to one embodiment, method 600 may begin at step 602. Teachings of the present disclosure may be implemented in a variety of configurations. As such, the preferred initialization point for method 600 and the order of steps 6602-610 comprising method 600 may depend on the implementation chosen.
At step 602, method 600 may initialize an adjustable parameter of an adjustable component 114 of current monitor 104, as described in more detail above with reference to
At step 604, method 600 may analyze data associated with actual load values associated with information handling system 100, as described in more detail above with reference to
At step 606, method 600 may compare the analyzed load data with an existing scale for the adjustable parameter, as described in more detail above with reference to
At step 608, method 600 may determine whether to change the value of the adjustable parameter, as described in more detail above with reference to
At step 610, method 600 may change the parameter value associated with adjustable component 114 of current monitor 104, as described in more detail above with reference to
Although
This application is a continuation of U.S. patent application Ser. No. 13/861,224 filed Apr. 11, 2013, the contents of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4710747 | Holland | Dec 1987 | A |
5920189 | Fisher | Jul 1999 | A |
5923269 | Shuey | Jul 1999 | A |
6980124 | Kong | Dec 2005 | B2 |
8896334 | Woodley | Nov 2014 | B2 |
9063178 | Woelfel | Jun 2015 | B2 |
9240718 | Lokere | Jan 2016 | B2 |
9547354 | Das | Jan 2017 | B2 |
9568504 | Cabot | Feb 2017 | B2 |
9650264 | Fayle | May 2017 | B2 |
20040030328 | Eggers | Feb 2004 | A1 |
20050092939 | Coss, Jr. | May 2005 | A1 |
20050105165 | Emori | May 2005 | A1 |
20070183352 | Muhammad | Aug 2007 | A1 |
20080183407 | Yeh | Jul 2008 | A1 |
20110012542 | Inamura | Jan 2011 | A1 |
20110221405 | Tang | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
2218185 | Apr 2009 | EP |
2009055217 | Apr 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20170090550 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13861224 | Apr 2013 | US |
Child | 15373968 | US |