System and method for incrementally transforming and rendering hierarchical data files

Information

  • Patent Grant
  • 7516145
  • Patent Number
    7,516,145
  • Date Filed
    Monday, March 31, 2003
    21 years ago
  • Date Issued
    Tuesday, April 7, 2009
    15 years ago
Abstract
This document describes a system and method that incrementally transforms and renders changes to a hierarchical data file. This system and method allows a user to incrementally see changes that the user has made to the hierarchical data file through entry of data in a rendered form. A hierarchical data processing engine may perform partial transformations of data files and produce partial rendering files of changes made to data files. By so doing, the hierarchical data processing engine improves a user's editing experience by allowing for quicker updating of the rendered form being edited by the user.
Description
TECHNICAL FIELD

This invention relates to incrementally transforming and rendering hierarchical data files.


BACKGROUND

Extensible markup language (XML) is increasingly becoming the preferred format for transferring information. XML is a tag-based hierarchical language that is extremely rich in terms of the information that it can be used to represent. For example, XML can be used to represent information spanning the spectrum from semi-structured information (such as one would find in a word processing document) to generally structured information (such as that which is contained in a table). XML is well-suited for many types of communication including business-to-business and client-to-server communication. For more information on XML, XSLT, and XSD (schemas), the reader is referred to the following documents which are the work of, and available from the W3C (World Wide Web consortium): XML 1.0 second edition specification; XSL Transformations (XSLT) Version 1.0; XML Schema Part 1: Structures; and XML Schema Part 2: Datatypes.


Before information can be transferred, however, it must first be collected. To collect information from a user, an XML data file usually is transformed into a viewable, editable form. This form, called a rendered form, is created by applying a transformation file on the XML data file. This rendered form is typically written in HTML (HyperText Machine Language) or eXtensible HTML (XHTML), and is designed to allow a user to enter data into data-entry fields that map to locations in the XML data file. Thus, the user can enter data into a particular data-entry field and that data will be stored in a particular part (or “node”) of the XML data file.


A transformation file used to transform the XML data file into a rendered form is typically written in XSLT. Applying an XSLT transformation file on an XML data file generates an XHTML rendering file, which, when executed, generates a rendered form.


One of the problems with rendered forms is that, as a user edits the XML data file by editing the XHTML rendered form, the form does not reflect all changes to the data file. Even though the data entered into a data-entry field in the form may appear in that data-entry field (though this is typically done through means other than transforming the data file by applying a transformation file), this to input often affects other parts of the data file and how that data file should be rendered in a rendered form.


By way of example, a XSLT transformation file can be applied on the XML data file and, by so doing, change nodes of the data file other than the node into which data was input. Applying an XSLT transformation file on an XML data file can even change the structure of the data file. Also, by applying the transformation file on the data file, the transformation file may need to access databases to find data to use in computations or to input into a node of the data file, such as a function whereby when a zip code is entered into a data-entry field. Here, transforming the data file by applying the transformation file fills in other nodes of the data file (and thus also the data-entry fields of the rendered form) for the city and state corresponding to the zip code.


The rendered form does not reflect these changes to the data file because XSLT transformations are one-way. In other words, applying an XSLT transformation file to an XML data file creates a rendered form, but as the XML data file changes, the rendered form does not. Thus, the rendered form can be out-of-date with how the data file should be when the data file receives a new input.


To give the user an up-to-date rendered form, the XSLT transformation can be reapplied to the XML data file after each change made to the data file. The result of such a full transformation is a full rendering file, from which a new rendered form can be created. By so doing, the user sees an accurate rendering (sometimes called a “view”) of the current state of the XML data file.


One problem with this, however, is that applying an XSLT transformation to an XML data file can be slow and require extensive computer resources.


Further, while this full transformation can be slow, executing the result of this transformation (a full rendering file), can also take extensive time and resources.


Because of the amount of time and resources required to transform the XML data file and render a full rendering file into a rendered form, a user often cannot efficiently view changes to an XML data file in the rendered form while editing the rendered form. With each edit made by the user, the user has to wait for a new rendered form to be created. Transforming an XML data file to create a new rendering file and then executing the rendering file into a rendered form can take many seconds. Having to wait this long each time the user makes a change inhibits the user from quickly and easily editing an XML data file through a rendered form of that XML data file.


SUMMARY

The following description and figures describe a hierarchical data processing engine for faster and more efficient transformation and rendering of data files. This hierarchical data processing engine enables a user to more quickly and easily edit data files by performing less than a full transformation of a full data file and by reducing the quantity of rendering used to render a change to a rendered form. The hierarchical data processing engine selects among multiple subprocesses, picking among them to transform and render the data file more quickly. In one implementation, the hierarchical data processing engine selects among four subprocesses, picking the subprocess that will accurately and most quickly render a change in a data file.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a system capable of implementing a method for incremental transformation and rendering of hierarchical data files.



FIG. 2 illustrates an exemplary blank, rendered form of a hierarchical data file and an incomplete view of the hierarchical data file.



FIG. 3 illustrates an exemplary rendered form of a hierarchical data file and an incomplete view of the hierarchical data file.



FIG. 4 is a flow diagram of an exemplary process for incrementally transforming and rendering a hierarchical data file.



FIG. 5 is a flow diagram of an exemplary process for analyzing a transformation file for isolatable nodes and isolatable subtree of nodes.



FIG. 6 is a flow diagram of an exemplary process for executing isolation subprocesses for creating a partial rendering file.



FIG. 7 is a flow diagram of an exemplary process for executing full transformation subprocesses.



FIG. 8 is a flow diagram of an exemplary process for determining a difference between a current rendering file for an unchanged data file and a new rendering file for a changed data file.



FIG. 9 is a block diagram of a computer system that is capable of supporting incremental transformation and rendering of hierarchical data files.





The same numbers are used throughout the disclosure and figures to reference like components and features.


DETAILED DESCRIPTION

The following disclosure describes a faster and less resource-intensive way to transform and render data files. If a user enters data into a data file through its rendered form, a system will receive the data and store the data. Once this is done, a hierarchical data processing engine will accurately reflect how this received data changes the data file and a rendered form for the data file. This hierarchical data processing engine can, in a fraction of the time and resources that would be used in transforming the entire data file and rendering the entire result, transform and render the data file to reflect a change. It does so by performing a partial (or no) transformation and/or a partial rendering. How the hierarchical data processing engine is able to do so, and in what circumstances, will be discussed below.


For discussion purposes, the system and method described herein are described in the context of a single computer, a user-input device, and a single display screen. These devices will be described first, followed by a discussion of the techniques in which these and other devices can be used.


Exemplary System


FIG. 1 shows an exemplary system 100 to facilitate incremental transformation and rendering of hierarchical data files.


The system 100 includes a display 102 having a screen 104, user-input device 106, and a computer 108. The user-input device 106 can include any device allowing a computer to receive a user's input, such as a keyboard 110, other devices 112 (such as a touch screen, a voice-activated input device, a track ball, and the like), and a mouse 114. With the user-input device 106, a user can edit a data file by adding or deleting information within a data-entry field on a rendered form, for instance. The user can use the display 102 and its screen 104 to view rendered forms of the data files.


The computer 108 includes a processing unit 116 to execute applications and/or files, and a memory 118 containing applications and files. The memory 118 includes volatile and non-volatile memory, and applications and files, such as an operating system 120 and a hierarchical data processing engine application 122, including a user interface 124. The memory 118 also includes a data file 126, a transformation file 128, a rendering file 130.


A rendered form provides a view and way through which to edit the data file 126 and is depicted on screen 104 through execution of the data file's rendering file 130. To edit the data file 126 in a user-friendly way, the rendered form gives the user a graphical, visual representation of data-entry fields showing previously entered data or blank data-entry fields into which the user can enter data.


Data Files, Transformation Files, Rendering Files, and Rendered Forms


The data file 126, transformation file 128, rendering file 130, and a rendered form work together to allow a user to edit the data file 126. A user can input data into and view data in the data file 126 through the rendered form of the data file. This rendered form is the result of executing the rendering file 130, which is created by applying the transformation file 128 on the data file 126.



FIG. 2 shows a rendered form 200 entitled “Travel Itinerary”, which is generated by executing the rendering file 130. This travel itinerary rendered form 200 contains data-entry fields in which a user can enter data. These data-entry fields map to the data file 126, so that the data entered into the form are retained in the data file 126.


Data input into a particular data-entry field of the rendered form is stored in a particular node of the data file 126. Data-entry fields of the rendered form correlate to nodes of the data file 126 in part because the rendered form is the result of the transformation file 128 being applied on the data file 126. The system 100 can use various ways to detect which data-entry fields correlate to which nodes of the data file 126, including through mapping with XPath expressions.


Also in FIG. 2, a graphical representation of the data file 126 is shown as a data file tree 202. The data file tree 202 shows icons representing nodes of the data file 126. Many of these nodes correlate to data-entry fields shown in the travel itinerary rendered form 200. For instance, a trip start date node 204 correlates to a trip start date data-entry field 206. Thus, data entered by a user into the trip start date data-entry field 206 can be stored in the trip start date node 204 of the data file 126.


The transformation file 128 also correlates to the data file 126. Nodes of the data file 126 correlate to particular parts of the transformation file 128, also called nodes for the purposes of this description. Thus, nodes of the transformation file 128 correlate to nodes of the data file 126. This correlation can arise from nodes of the transformation file 128 being mapped to the nodes of the data file 126, including through XPath expressions, or otherwise.


That certain nodes of the transformation file 128 correlate to certain nodes of the data file 126 is often not enough, however, for the system 100 to accurately reflect a change in a particular node of the data file 126 by simply applying only a particular node of the transformation file 128 on a particular node of the data file 126. A node of the transformation file 128, when applied on a node of the data file 126, may affect many nodes of the data file 126. A node of the transformation file 128 could, for instance, be one that, as part of being applied on a node of the data file 126, is also applied on previously filled-in or as-yet-unfilled-in nodes of the data file 126. This concept is illustrated in FIG. 3.



FIG. 3 shows the rendered form 200, in this case including filled-in data-entry fields. Here the rendered form is generated after data was input by a user into the trip start date data-entry field 206, “03/13/2002”. After the hierarchical data processing engine 122 produced a partial rendering file (discussed below), the system 100 rendered the partial rendering file. In this example, the transformation file 128, when applied, affected other nodes of the data-entry field other than just the trip start date node 204, in this case an event start date node 302. Because the transformation file 128 (or a part thereof) affected the event start date node 302, the rendering file 130 included that change. Thus, when executed, the rendering file 130 produced an updated travel itinerary rendered form 200, including the data shown in an event start date data-entry field 304 in FIG. 3. Here, the transformation file 128 altered the event start date node 302 to include the exact same data entered into the trip start date data-entry field 206 of FIG. 2. A transformation file may perform such an action to make it easier for the user in cases where a future node/data-entry field is likely to have the same data.


Further, the node of the transformation file 128 may direct the system to perform computations or other operations using other resources, like a database. For these and other reasons, the hierarchical data processing engine 122 analyzes the results of nodes of the transformation file 128 being applied on nodes of the data file 126 or nodes of some hypothetical data file, which will be discussed in greater detail below.


In some implementations, the transformation file 128 is an XSLT (eXtensible Style-sheet Language Transformation) file, which, when applied to an XML data file, generates a XHTML (eXtensible Hyper-Text Machine Language) or HTML (Hyper-Text Machine Language) rendering file (such as the rendering file 130). The transformation file 128 can also be an arbitrary XSLT file, such as a custom-made file or some other W3C-compliant file. XHTML and HTML files can be used to show a view on the screen 104, such as the travel itinerary rendered form 200 of FIG. 2.


Like transformation files, data files can come in various types and styles. Hierarchical data files can be written in XML or some other mark-up language, or can be written in other hierarchical languages. Hierarchical data files also are typically concise and data-centered so that the data they contain can be more easily accessed or manipulated by multiple software applications, including software not typically used in a solution, such as an application that searches for a particular type of data and compiles that data into a report. A non-typical application, for example, could be one that compiles a report of all of the travel itineraries performed by a certain person by searching through and compiling the data entered in travel itinerary data files for a particular person.


The above devices and applications are merely representative, and other known devices and applications may be substituted for or added to those shown in FIG. 1. One example of another known device that can be substituted for those shown in FIG. 1 is the device shown in FIG. 9.


Techniques for Incremental Transformation and Rendering of Hierarchical Data Files

Overview



FIG. 4 shows a process 400 for incrementally transforming and rendering a hierarchical data file. Generally, the processes described herein, including process 400, are illustrated as a series of blocks representing individual operations or acts performed by the system 100. The processes may be implemented in any suitable hardware, software, firmware, or combination thereof. In the case of software and firmware, the process represents a set of operations implemented as computer-executable instructions stored in memory and executable by one or more processors.


The hierarchical data processing engine 122 can make more efficient application of many different types of transformation files, including those not intended to produce rendering files. Thus, the hierarchical data processing engine's 122 ability to more quickly and with fewer resources transform a data file makes it useful beyond transforming a data file to create a partial or full rendering file.


For clarity, however, the below description discusses the hierarchical data processing engine 122 in the context of rendering the data file 126.


Analyzing a Transformation File


At block 402, the system 100, through the hierarchical data processing engine 122, analyzes the transformation file 128 for isolatable nodes and subtrees. An isolatable node is one in which data input into that node affects the rendering file 130 only by changing its corresponding data-entry field(s) by replacing the data within that data-entry field(s) with the data input. An isolatable subtree of nodes depends only on nodes within the subtree. Isolatable nodes and subtrees will be further defined and discussed below.


By analyzing the transformation file 128, the hierarchical data processing engine 122 is attempting to determine how little, if any, of the transformation file 128 can be applied to accurately transform and render a change to a node of a data file. This analysis can be performed later in the process 400, but when performed here can be quicker and more efficient because doing it later may slow down the process of rendering the rendering file 130, thereby possibly bogging down the user's editing experience. The result of this analysis (nodes and subtrees being recorded as isolatable and to what extent) is used by the hierarchical data processing engine 122 in blocks 412, 414, and 418, which will be discussed below.


The transformation file 128 can be analyzed independently of the particular data file on which it will be applied. This independent analysis is useful because the transformation file 128 could be applied on data files containing many different sets of data. Further, when performed at this stage, the hierarchical data processing engine 122 may not know what data will be input into any of the nodes of the data file (such as when it is blank of data). So analyzing the transformation file 128 as if a user input any type of data possible into each node of a data file makes the result of the analysis more robust and more accurate. For purposes of this discussion, a blank version of the data file 126 will be analyzed.


If a particular node or subtree of the transformation file 128 is determined to be isolatable, then its corresponding data file node or subtree is also isolatable. Through this determination, the hierarchical data processing engine 122 will have determined how changing the node of the data file 126 could affect the rendering file 130. In some cases, a node of the data file 126 (and its corresponding node in the transformation file 128) will be isolatable in that changing that node will, once the transformation file 128 is applied, result in only that data file node and its corresponding data-entry field in the rendered form being changed, such as with just the data input in the data-entry field. This isolation from affecting other nodes of the data file 126 means that to accurately transform the data file 126, partial or none of the transformation file 128 need be applied.


In other cases, only nodes within a subtree of the changed node will be affected by changing that particular node, which may allow the hierarchical data processing engine 122 to determine that only a particular subtree of the transformation file 128 need by applied to that particular subtree of nodes of the data file 126 in order for the transformation and resulting rendering file 130 to be accurate.



FIG. 3 sets forth two examples of subtrees of the data file 126, a general trip information subtree 306 and an event subtree 308. In this example, the trip start date node 204 is within the general trip information subtree 306 and the event start date node 302 is within the event subtree 308. The subtrees of the transformation file 128 are not shown.


By so isolating nodes of the data file 126 and nodes of the transformation file 128, the hierarchical data processing engine 122 can reduce the time and resources needed to accurately transform the rendering file 130 for a change made to the data file 126. This increase in speed and efficiency helps the user experience a faster, more pleasant way to edit the data file 126.


How the hierarchical data processing engine 122 determines whether or not a node or subtree of the transformation file 128 and the data file 126 is isolatable is set forth in greater detail in FIG. 5 and its related discussion.


Generating a Rendered Form for a User to View and Edit


In block 404 of FIG. 4, the system 100 applies the transformation file 128 on the data file 126 to produce the rendering file 130. Performing this action can be time consuming, but because it is done at the beginning of the process 400, it does not interfere with the ongoing editing experience of a user.


In block 406, the user interface 124 renders the rendering file 130 to display a rendered form having data-entry fields. The rendered form may appear with a page-like appearance, such as the rendered form 200 of FIGS. 2 and 3. This rendered form 200 contains data-entry fields, such as the trip start date data-entry field 206 and the event start date data-entry field 304 of FIG. 3, though at this stage no data has yet been entered into these data-entry fields. The rendered form 200 is an example of a view (or rendering) of the data file 126. At this stage (unless the data file 126 had data input prior to its being transformed in the above blocks) the rendered form 200 would be blank, as shown in FIG. 2. Later in the process 400 the data-entry fields may contain data, such as shown in the rendered form 200 of FIG. 3. The data-entry fields shown are mappable to nodes of the data file 126, as discussed above.


In block 408, the user interface 124 enables a user to input data into the data-entry fields of a rendered form, such as the blank rendered form 200 of FIG. 2. The user may do so through the user-input device 106, which may include the keyboard 110, the other devices(s) 112, and the mouse 114. The user may, for example, enter “03/13/2002” into the trip start date data-entry field 206, shown in FIG. 3.


Once the user inputs data into a data-entry field, the system 100 retains or stores the data input into the data file node through its corresponding data-entry field (block 410). The data-entry field is mapped to a particular node of the data file 126, and so this data is either retained or stored in that node of the data file 126 or in another location that can later be accessed and associated with that node. In the ongoing example, the user inputs a date in the trip start date data-entry field 206, which is mapped to the trip start date node 204. The characters for this input, “03/13/2002”, may be shown in the rendered form prior to the rendered form being updated to reflect the input. This data may be altered by the transformation file 128 once it is applied on this node of the data file 126, however, as will be discussed below.


Once the user has input the data and wishes either to go on to input data into another data-entry field (indicated by tabbing to the next data-entry field, for instance), wants the rendered form 200 to be updated to reflect the input (by request, for instance), or otherwise, the system 100 updates the rendered form 200.


Before updating the rendered form 200, the system 100 decides how to more efficiently update the rendered form 200.


Efficiently Transforming and/or Rendering a Change to a Data File


In block 412, the system 100 determines whether or not the node or its subtree corresponding to the data-entry field is isolatable. The system can do so simply by checking the result of block 402, where the hierarchical data processing engine determined this. If the data file node or its subtree is isolatable, the system proceeds along the “Yes” route to block 414 and then to block 416. If the data file node (or its subtree) is not isolatable, the system proceeds along the “No” route to block 418 and then to block 416.


In block 414, the system 100 (through the hierarchical data processing engine 122), having determined that the data file node or its subtree is isolatable, will run less than the entire transformation file on less than the entire data file. How much (if any) it will run is based on whether the node, when transformed by the transformation file 128, produces an isolatable change to the rendered form 200 or not, which will be discussed in greater detail below in FIGS. 5 and 6. In either case, the result can be a partial rendering file.


The result of this partial or zero transformation produces a partial rendering file that takes less time and resources for the system 100 to render (discussed in block 416 below) than a full rendering file to update a change to the data file 126. This further improves the user's editing experience because it often significantly reduces the amount of time that the system 100 needs to update the rendered form 200.


To implement the partial rendering file to update the rendered form 200 to reflect the change to the data file 126, the system 100 replaces the out-of-date parts of the current rendering file used to implement the current (out-of-date) rendered form 200 with the new, up-to-date partial rendering file.


If the system 100 has to execute an entirely new rendering file, the system 100 may take too long, thereby inhibiting the user's editing experience. Using a partial rendering file increases the speed and reduces the quantity of resources needed by the system 100, thereby improving the user's editing experience.


With a partial or no transformation and only a partial rendering file to execute, the system 100 often will be able to transform the data file 126 and render the change due to the transformation so fast that the user will not be aware that any process has been performed (except perhaps seeing an update to the rendered form). This enables the user to be able see an accurate depiction of the state of the data file 126 as the user is editing the data file 126.


In block 416, the system 100 performs a subprocess rendering the partial rendering file or another subprocess rendering a full rendering file (created in block 418). It does so to show change(s) made to the data file 126 caused by the user inputting data into data-entry fields and thus, nodes of the data file 126.


In discussion of block 414 above, the hierarchical data processing engine 122 produces a partial rendering file, which the system 100 executes instead of a part of the current rendering file that the system 100 is executing to produce the current rendered form 200. Using the ongoing example, assume a partial rendering file is produced by the hierarchical data processing engine 122 for data input into the trip start date data-entry field 206 (and thus the start date node 204). In this case, the system 100 may only need to execute a small piece of new rendering file-a part that produces the text “03/13/2002” in the trip start date data-entry field 206 and the event start date data-entry field 304, both of FIG. 3. This amount of partial rendering file may be rendered into the current rendered form 200 is significantly less time and with less resources that rendering an entirely new rendering file.


In one implementation, the system 100 ensures that the rendered form 200 is in complete sync or “live” with the current state of the data file 126. Thus, the user has an accurate depiction of the state of the data file 126, even when the user is continuing to edit the data file 126. In this implementation, the rendered form 200 is maintained in a state that it would be in just as if the rendered form 200 were recreated from scratch with a full transformation of the transformation file 128 on the full (updated) data file 126 and execution of the full (updated) rendering file 130. While this full reapplication of the transformation file 128 and a new rendering file would often be prohibitively time-consuming and resource-intensive, the above processes for speeding up transformations and rendering often is not. The hierarchical data processing engine 122 acts to so speed up the process of accurately viewing a changing data file 126, that the user can experience, in most cases, a instantaneous updating of the rendered form.


In some cases, as will be discussed in block 418 below, the system executes a full, new rendering file. This is done when the complexity of the rendering or the transformation is such that the hierarchical data processing engine 122 does so in order to ensure complete accuracy of the rendered form 200. It is done infrequently, however, so that the user's editing experience is as user-friendly as possible.


In block 418, the system performs one or two subprocesses if the node or its subtree is not isolatable In the first subprocess, it creates only a portion of a rendering file that reflects a particular change in the data file 126. In the second subprocess, it creates a new rendering file. The system can determine if the node or its subtree is isolatable simply by checking the result of block 412, where the hierarchical data processing engine 122 determined this.


Thus, in block 418 the system 100 executes a full transformation subprocess, producing either a full or partial rendering file. When the node of the data file 126 corresponding to the current data-entry field is not isolated (or partially isolated) by the hierarchical data processing engine 122, the system executes a full transformation. This full transformation involves applying the full transformation file 128 on the full data file 126 (which contains the new data). The interim result is a full rendering file 130, which may or may not be the final result.


The system 100 (with the hierarchical data processing engine 122) attempts to reduce the amount of the interim full (new) rendering file 130 needed to be executed by the user interface 124 in block 416. It does so in order to speed up the updating process for the user, as rendering a partial rendering file takes less time and resources than rendering a full rendering file. For clarity and ease of discussion, how it does so is set forth in FIGS. 7 and 8 below.


The process 400 involves the hierarchical data processing engine 122 in the context of transforming the data file 126 to produce the rendering file 130. Transformations performed by the hierarchical data processing engine 122, however, can also perform other actions and create other results. The hierarchical data processing engine 122 can, for instance, perform computations that make substantial changes to the data file 126.


Exemplary Technique for Determining if a Node or its Subtree is Isolatable



FIG. 5 shows a process 500 for determining whether nodes or subtrees of a data file are isolatable by analyzing a transformation file for the data file. The process 500 is an exemplary process for performing the block 402 of FIG. 4.


Determining if a particular node or subtree of the date file 126 is isolatable can be difficult. When a user inputs data into a node of the data file 126, for instance, the transformation file 128 may add new data-entry fields, change current data-entry fields, present options to the user, access an outside source for information (like a database), perform complex computations, and the like. In so doing, the nodes of the transformation file 128 correlating to the node of the data file 126 may have to access outside sources. These outside sources can be accessed by the transformation file 128 during the process of transforming the node of the data file 126. This accessing of outside sources may directly or indirectly cause other parts of the transformation file 128 to be executed that do not appear to correlate to the node of the data file 126. Thus, isolating particular parts of the transformation file 128 includes ensuring that the isolated parts are all that is needed to transform the node of the data file 126.


In block 502, the hierarchical data processing engine 122 determines, for a node of the data file 126, if possible inputs into that node require only a simple change to the rendered form. In this block the hierarchical data processing engine 122 assesses if the node is isolatable. Here the hierarchical data processing engine 122 extrapolates what will happen for possible inputs into the node in question. The node is question is isolatable if possible inputs into the node cause only a simple change to data-entry fields when the transformation file 128 is applied on the data file 126. A simple change, for example, is one in which data rendered in one data-entry field is the data input into the node.


An example of an isolatable node is the event start date node 204 of FIGS. 2 and 3. In this example, data input into this node 204 (through the trip start date data-entry field 206) causes only an isolatable change to two data-entry fields of the rendered form 200 of FIG. 3. Entering a date, such as the date “03/13/2002” causes only the data input “03/13/2002” to be stored in the event start date node 204 (and not in another node of the data file 126) and be viewed only in two data-entry fields, the trip start date data-entry field 206 and the event start date data-entry field 304. Thus, the change made to the rendering file is, when executed, rendered in the rendered form 200 to show these characters in these two data-entry fields.


Also, because no other node of the data file 126 is affected by the input into the event start date node 204, no transformation is needed (if the data input is stored in the data file 126 when entered). In this way the hierarchical data processing engine 122 increases the speed and efficiency of rendering changes to the data file 126 in the rendered form 200 because it alleviates the system 100 from needing to apply even a part of the transformation file 128 on the data file 126. The system 100 also does not need to create a full rendering file. The amount of rendering file used is that amount that will allow the system 100 to show the characters “03/13/2002” in those two data-entry fields.


In one implementation, the hierarchical data processing engine 122 determines if a node is isolatable by determining that 1) for parts of the transformation file 128 that are executed for the node in question, there are no non-predictable variables; 2) there is no need to include or import operations or code from outside these parts of the transformation file 128; and 3) mapping expressions between the parts of the transformation file 128 and the node of the data file 126 do not include complex functions or expressions.


In block 504, the hierarchical data processing engine 122 proceeds along the “Yes” path to block 506 if the node is isolatable, and along the “No” path to block 508 if it is not isolatable.


In block 506 the hierarchical data processing engine 122 records that the node in question is isolatable. This record of the status of the node can be used by the hierarchical data processing engine 122 or the system 100 to determine how to render a change to this node. This record can also include information instructing the hierarchical data processing engine 122 as to which element(s) of a potential rendering file should be changed for an input to this node.


In block 508, the hierarchical data processing engine 122 determines whether the subtree is isolatable. The hierarchical data processing engine 122 does so by determining if a subtree of the transformation file 128 is sufficient to accurately transform and render a change to the data file node.


The hierarchical data processing engine 122 can do so by comparing rendering files for potential changes to the node. These compared rendering files include those created by performing a full transformation 128 on the full data file 126 and a subtree of the transformation file 128 on a subtree of the data file 126. If the result of this comparison shows that applying the subtree of the transformation file 128 on the subtree of the data file 126 produces the same change in the rendering file 130 as a full transformation does versus the version without the node changed, it may be isolatable.


For example, assume that data input into the event start date data-entry field 304 is stored in the event start date node 302. Assume also that another piece of the hierarchical data processing engine 122 modifies the data file 126 such that an event end date node 310 is transformed to include the next calendar day following the date input into the event start date node 302. Also, that the full rendering file 130 shows this change to the event end date node 310 in an event end date data-entry field 312. Thus, in this example the full application of the transformation file 128 on the full data file 126 produces a change to the rendered form 200 of FIG. 3 of “03/13/2002” in the event start date data-entry field 304 and “03/14/2002” in the event end date data-entry field 312. This change is shown for clarity, but a particular input into the node in question is not needed for the hierarchical data processing engine 122 to analyze whether the subtree is isolatable.


Continuing the example, the question remains whether or not a subtree of the transformation file 128 when applied to a subtree including the node in question will produce the same change in the data file 126 and the rendering file 130. Here the hierarchical data processing engine 122 analyzes the event subtree 308 and a subtree in the transformation file 128 correlating to the event subtree 308. In this case assume that the hierarchical data processing engine 122 determines that the only change made to the data file 126 was rendering the date input into the event start date node 302 and adding the next day to the event end date node 310 and its corresponding rendering. The renderings in this example comprise the “03/13/2002” in the event start date data-entry field 304 and the “03/14/2002” in the event end date data-entry field 312.


To test the accuracy of the partial transformation file 128 applied to the partial data file 126 (both subtrees), the hierarchical data processing engine 122 applies the transformation file 128 to the data file 126. The hierarchical data processing engine 122, if it determines that the resulting change to the data file 126 is the same, as is the change to the rendering file 130, the hierarchical data processing engine 122 will consider it isolatable for those subtrees.


Applying a part of the transformation file 128 on a part of the data file 126 is quicker and more efficient than apply the whole transformation file 128 on the whole data file 126. In this example, the event subtree 308 could include applying many nodes of the transformation file 128 on many nodes of the data file 126, but this would still take less time and resources than a full reapply. Also, the result of this partial reapply is a much smaller rendering file to be rendered. Executing a part of the rendering file 130 (the new part) can take significantly less time and resources than executing the entire rendering file 130.


In one implementation, determining whether the subtree of each of the data file 126 and the transformation file 128 is isolatable includes determining that there are no references in the transformation file 128 subtree to nodes of the data file 126 outside of the data file 126's subtree for the node in question.


In this implementation, the hierarchical data processing engine 122 records the subtree in question as isolatable if no mapping expressions (such as XPaths) in the subtrees of the transformation file 128 and the data file 126 refer to nodes outside of these subtrees.


Also in this implementation, the hierarchical data processing engine 122 records the subtree in question as isolatable if also there are no calls to apply templates inside the subtrees and the data file 126 subtree does not contain any nested subtrees.


In another implementation, the hierarchical data processing engine 122 determines if a subtree is isolatable by determining that 1) for parts of the transformation file 128 that are executed for the node in question, there are no non-predictable variables; 2) there is no need to include or import operations or code from outside these parts of the transformation file 128; and 3) mapping expressions between the parts of the transformation file 128 and the node of the data file 126 do not include complex functions or expressions.


The hierarchical data processing engine 122 can continue to test the transformation file 128 subtrees (smaller ones if the current subtree is isolatable, larger if it is not) to determine a subtree that is isolatable for the data file 126 node in question. Once the hierarchical data processing engine 122 determines whether there are subtrees in the data file 126 and the transformation file 128 for the node in question (and what they are), the hierarchical data processing engine 122 can proceed to the next block, block 510.


In block 510, the hierarchical data processing engine 122 proceeds along the “Yes” path to block 512 if the subtree is isolatable, and along the “No” path to block 514 if it is not.


In block 512 the hierarchical data processing engine 122 records that the subtree in question is isolatable. In so doing, it can also record the location of the subtrees for the transformation file 128 and the data file 126. Also, it can record how a partial rendering file created with this partial transformation maps to parts of a rendering file that the new partial rendering file is to replace. This record of the status (and other information therein) of the node can be used by the hierarchical data processing engine 122 or the system 100 to determine how to transform and render a change to this node.


In block 514 the hierarchical data processing engine 122 records that the node in question is not isolatable. In one implementation, the hierarchical data processing engine 122 records that the node in question is not suitable for a partial rendering due to the complexity of the rendering needed. This information can be used by the hierarchical data processing engine 122 or the system 100 when deciding whether or not to analyze whether or not a change to the node can be partially rendered.


Exemplary Technique for Executing an Isolation Subprocess



FIG. 6 shows a process 600 for executing one of multiple isolation subprocesses. The process 600 is an exemplary process for performing the block 414 of FIG. 4.


In block 602, the hierarchical data processing engine 122 accesses a record for the node receiving the input. This record is one created by the hierarchical data processing engine 122 as part of block 402. This record shows that the node is isolatable or its subtree is isolatable. If the node is isolatable, the hierarchical data processing engine 122 proceeds along the “Node Isolatable” path to blocks 604 and 606. If the node is not isolatable but the subtree is, it proceeds along the “Subtree Isolatable” path to block 608.


In block 604, the hierarchical data processing engine 122 determines which elements of the current rendering file correspond to changes made to the node of the data file 126. In the isolatable-node case, application of the transformation file 128 is not needed. Rather, the hierarchical data processing engine 122 simply determines which areas (elements), such as data-entry fields, of the current rendered form are to be altered with the characters input into the node in question. To do so, the hierarchical data processing engine 122 determines which particular elements of the current rendering file 130 need to be changed. This information can be accessed from the record for the node created by the hierarchical data processing engine 122 in block 402, or determined in a like manner as that set forth in block 402.


For each node causing an isolatable change to the rendering file 130 by the node changing, the hierarchical data processing engine 122 maps to it those elements of the rendering file 130 that render the input made to that node.


The characters, text, rich text, and the like that are input into the node are built into a partial rendering file (block 606). This partial rendering file, when executed by the user interface 124, replaces the elements of the current rendered form that are out-of-date with the data input into the node.


In one implementation, another application shows text as it is typed into the data-entry field. In this case, the system 100 verifies that this text shown in the data-entry field matches what would be rendered from a partial rendering file, rather than executing the partial rendering file.


The elements changed can be simple, such as a very small (and partial) rendering file containing rendering code indicating, for instance, that the characters “03/13/2002” should be rendered in two data-entry fields of the current rendered form (such as the rendered form 200 of FIG. 2).


Because of the speed and resource savings of not having to perform a full transformation (or any transformation) and rendering just a small, partial rendering file, the user's editing experience is sped up and made more user friendly. The user experiences an incremental, accurate, and quick updating of the rendered form for the data file 126.


At block 608, the hierarchical data processing engine 122 applies a subtree of the transformation file 128 on a subtree of the data file 126. The location of these subtrees (within the full files) is set forth in a record previously made by the hierarchical data processing engine 122 in block 402. This record maps subtrees of the transformation file 128, the data file 126, and the rendering file 130 to each other. With this information, the hierarchical data processing engine 122 applies the subtree of the transformation file 128 on the subtree of the data file 126 for the node that was changed. The result of this application is a partial rendering file, which maps to a subtree of the current rendering file 130, allowing the user interface 124 to replace the subtree of the current rendering file 130 with this partial rendering file.


Thus, the result of this partial reapply is a partial rendering file. This partial rendering file is later executed by the user interface in place of the out-of-date rendering portion of the current rendering file 130.


Technique for Producing a Partial Rendering File from a Full Transformation



FIG. 7 shows a process 700 for creating a partial rendering file from a difference between a new and a current rendering file. The process 700 is an exemplary process for performing the block 418 of FIG. 4.


At block 702, the hierarchical data processing engine 122 applies a full transformation file on a full, changed data file (the data file 126 after a transformation is applied to the data file 126 with a node changed) to produce a new rendering file. This new rendering file is an interim file, which may or may not be executed. It is also up-to-date, containing change(s) caused by the input into the node. The system 100 could simply execute this new, up-to-date rendering file to create an up-to-date rendered form. Doing so, however, is often prohibitively slow. Executing that part of the up-to-date rendering file that is different from the current, out-of-date rendering file requires less time and fewer resources.


To reduce the amount of a new rendering file that is executed to view a change to the data file 126, the hierarchical data processing engine 122 determines the difference between the current rendering file and the new rendering file (block 704). This difference is a part(s) of the new rendering file that, when executed, will present a rendering of the change to the current data file 126.


This difference can be determined by performing a hierarchical differential analysis, which though correct, is less efficient than a linear analysis. This analysis compares the new and current rendering files and produces a result showing the difference. This can also be determined by a linear analysis, which is set forth in greater detail in the exemplary process set forth in FIG. 8 and discussed below.


At block 706, the hierarchical data processing engine 122 attempts to map the difference on the current rendering file 130. By so doing, the hierarchical data processing engine 122 attempts to map up-to-date parts of the new rendering file to those parts of the current rendering file 130 that are to be replaced by the new parts. That way, when the system 100 attempts to reflect the change to the data file 126, the system 100 will have less new code to render. This reduction can speed up the process of rendering changes to the data file 126, improving the editing experience of the user.


This mapping can include instructions describing what parts of the current, out-of-date rendering file 130 are to be replaced with the difference. These mapping instructions can be included with the difference within a partial rendering file.


To ensure that the difference is properly mapped to the out-of-date parts of the rendering file 130, the hierarchical data processing engine 122 tests the mapping instructions (block 708). If the mapping instructions accurately describe what parts of the current rendering file 130 are to be replaced to accurately render the change to the data file 126, the hierarchical data processing engine 122 proceeds along the “Yes” path to block 710. If they do not, the hierarchical data processing engine 122 proceeds along the “No” path to block 712.


If the mapping is successful, the hierarchical data processing engine 122 produces a partial rendering file based on the difference (block 710). This partial rendering file includes the new, up-to-date part of the new rendering file that the system 100 (through the user interface 124) can execute to render the change to the data file 126. This partial rendering file can also include mapping instructions showing those parts of the current data file 126 that are inaccurate or not necessary to execute. With these mapping instructions, the current rendered form can be made up-to-date through execution of a partial, rather than full, rendering file (block 416 of FIG. 4).


If the mapping is not successful, the hierarchical data processing engine 122 simply produces the new, full rendering file (block 712). Executing this new, full rendering file often takes substantially more time and resources to execute than a partial rendering file. This operation is included, however, as a fail-safe to insure that the rendered form accurately reflects the change in the data file 126.


Exemplary Technique for Determining a Difference between Two Rendering Files



FIG. 8 shows a process 800 for determining the difference between a new and a current rendering file. The process 800 is an exemplary process for performing the block 704 of FIG. 7.


In block 802, the hierarchical data processing engine 122 creates linear text files for the new and current rendering files. By creating a linear, rather than hierarchical or otherwise structured file, the hierarchical data processing engine 122 can more easily compare the new and current rendering files.


In block 804, the hierarchical data processing engine 122 determines the linear difference between the linear text files for the new and current rendering files. This determination can be much quicker to execute and require fewer resources than a non-linear analysis, thereby further speeding up and improving the user's editing experience. This linear difference is a linear text file which is not, on its own, executable in the same way as the original, non-linear rendering file (such as the rendering file 130).


In block 806, the hierarchical data processing engine 122 converts this linear difference file into a non-linear difference, possibly increasing the scope of the difference. This difference is a hierarchical file of a structure similar to the structure of the new and current rendering files. In one implementation this difference represents differences between rendering files that are arranged into a tree structure.


While the hierarchical data processing engine 122 creates linear files and then converts another linear difference file to a structured file, the time and resources to do so is often more than compensated for by the reduced time of executing a linear, rather than non-linear comparison, thereby more quickly updating a change to the rendered form.


A Computer System


FIG. 9 shows an exemplary computer system that can be used to implement the processes described herein. Computer 942 includes one or more processors or processing units 944, a system memory 946, and a bus 948 that couples various system components including the system memory 946 to processors 944. The bus 948 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. The system memory 946 includes read only memory (ROM) 950 and random access memory (RAM) 952. A basic input/output system (BIOS) 954, containing the basic routines that help to transfer information between elements within computer 942, such as during start-up, is stored in ROM 950.


Computer 942 further includes a hard disk drive 956 for reading from and writing to a hard disk (not shown), a magnetic disk drive 958 for reading from and writing to a removable magnetic disk 960, and an optical disk drive 962 for reading from or writing to a removable optical disk 964 such as a CD ROM or other optical media. The hard disk drive 956, magnetic disk drive 958, and optical disk drive 962 are connected to the bus 948 by an SCSI interface 966 or some other appropriate interface. The drives and their associated computer-readable media provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for computer 942. Although the exemplary environment described herein employs a hard disk, a removable magnetic disk 960 and a removable optical disk 964, it should be appreciated by those skilled in the art that other types of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, random access memories (RAMs), read only memories (ROMs), and the like, may also be used in the exemplary operating environment.


A number of program modules may be stored on the hard disk 956, magnetic disk 960, optical disk 964, ROM 950, or RAM 952, including an operating system 970, one or more application programs 972 (such as the hierarchical data processing engine application 122), other program modules 974, and program data 976. A user may enter commands and information into computer 942 through input devices such as a keyboard 978 and a pointing device 980. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are connected to the processing unit 944 through an interface 982 that is coupled to the bus 948. A monitor 984 or other type of display device is also connected to the bus 948 via an interface, such as a video adapter 986. In addition to the monitor, personal computers typically include other peripheral output devices (not shown) such as speakers and printers.


Computer 942 commonly operates in a networked environment using logical connections to one or more remote computers, such as a remote computer 988. The remote computer 988 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 942. The logical connections depicted in FIG. 9 include a local area network (LAN) 990 land a wide area network (WAN) 992. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.


When used in a LAN networking environment, computer 942 is connected to the local network through a network interface or adapter 994. When used in a WAN networking environment, computer 942 typically includes a modem 996 or other means for establishing communications over the wide area network 992, such as the Internet. The modem 996, which may be internal or external, is connected to the bus 948 via a serial port interface 968. In a networked environment, program modules depicted relative to the personal computer 942, or portions thereof, may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.


Generally, the data processors of computer 942 are programmed by means of instructions stored at different times in the various computer-readable storage media of the computer. Programs and operating systems are typically distributed, for example, on floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable storage media when such media contain instructions or programs for implementing the blocks described below in conjunction with a microprocessor or other data processor. The invention also includes the computer itself when programmed according to the methods and techniques described herein.


For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.


CONCLUSION

The above-described system and method incrementally transforms and/or renders hierarchical data files. In so doing, it improves the editing experience for a user editing a hierarchical data file by more quickly and with less resources rendering incremental changes made to the data file. Although the system and method have been described in language specific to structural features and/or methodological acts, it is to be understood that the system and method defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed invention.

Claims
  • 1. A computer-readable medium comprising computer-executable instructions that perform the following when executed by a computer: producing a first rendering file of a hierarchical data file by applying a full transformation file on the hierarchical data file;rendering the first rendering file to show a rendered form;enabling a user to input data into a first node of the hierarchical data file through the rendered form;changing the hierarchical data file by retaining the data in the first node of the hierarchical data file;determining whether applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to a difference between the first rendering file and a second rendering file created by applying the full transformation file on the changed hierarchical data file;applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference; andenabling the user to input data into a second node of the hierarchical data file.
  • 2. The computer-readable medium of claim 1, wherein the applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference, is performed on only a portion of the changed hierarchical data file.
  • 3. The computer-readable medium of claim 1, wherein the applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference, is performed prior to the enabling the user to input data into the second node.
  • 4. The computer-readable medium of claim 1, wherein the hierarchical data file is written in XML and the transformation file is written in XSLT.
  • 5. The computer-readable medium of claim 1, wherein the applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference, produces a rendering file and further comprising rendering the rendering file to produce a rendered form having first and second data-entry fields corresponding to the first node and the second node.
  • 6. The computer-readable medium of claim 1, wherein the applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference, produces a partial rendering file and further comprising rendering the partial rendering file to produce a partial rendered form having a first data-entry field corresponding to the first node.
  • 7. The computer-readable medium of claim 1, wherein the applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference, produces a partial rendering file and further comprising rendering the partial rendering file to produce a partial rendered form that represents the change made to the hierarchical data file.
  • 8. The computer-readable medium claim 1, wherein the applying a partial transformation file on the changed hierarchical data file responsive to determining that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference, produces a partial rendering file written in XHTML, and further comprising rendering the partial rendering file to produce a partial rendered form written in XHTML that represents the change made to the hierarchical data file.
  • 9. A computer-readable medium comprising computer-executable instructions that perform the following when executed by a computer: applying a transformation file on a hierarchical data file to produce a first rendering file;rendering the first rendering file to produce a rendered form;enabling a user to input data into a first node of the hierarchical data file through the rendered form;changing the hierarchical data file by retaining the data in the first node of the hierarchical data file;applying the transformation file on the changed hierarchical data file to produce a second rendering file;determining a difference between the first rendering file and the second rendering file;attempting to map the difference on the first rendering file;producing a third rendering file, the third rendering file comprising a partial rendering file based on the difference if the map is successful and comprising a full rendering file if the map is not successful;rendering the third rendering file to update the rendered form; andenabling the user to input data into a second node of the hierarchical data file through the updated rendered form.
  • 10. The computer-readable medium of claim 9, wherein the applying the transformation file on the changed hierarchical data file is performed on only a portion of the changed hierarchical data file.
  • 11. The computer-readable medium of claim 9, wherein the applying the transformation file on the changed hierarchical data file is performed immediately after the data is input and retained.
  • 12. The computer-readable medium of claim 9, wherein the applying the transformation file on the changed hierarchical data file is performed prior to the enabling the user to input data into the second node.
  • 13. The computer-readable medium of claim 9, wherein the hierarchical data file is written in XML and the transformation file is written in XSLT.
  • 14. A method comprising: producing a first rendering file of a hierarchical data file having first and second nodes by applying a full transformation file on the hierarchical data file;rendering the first rendering file to show a rendered form having a first data-entry field associated with the first node of the hierarchical data file and a second data-entry field associated with the second node of the hierarchical data file;enabling a user to input data into the first data-entry field;changing the hierarchical data file by retaining the data in the first node of the hierarchical data file;determining whether applying a partial transformation file on the changed hierarchical data file will produce a rendering file equivalent to a difference between the first rendering file and a second rendering file created by applying the full transformation on the changed hierarchical data file;producing a third rendering file of the changed hierarchical data file, the third rendering file comprising a partial rendering file based on the difference if it is determined that applying a partial transformation file on the changed hierarchical data file will produce a rendering file equivalent to the difference and the third rendering file comprising a full rendering file if it is determined that applying a partial transformation file on the changed hierarchical data file will not produce a rendering file equivalent to the difference;rendering the third rendering file to show a second rendered form reflecting the change to the hierarchical data file; andenabling the user to input data into the second data-entry field.
  • 15. The method of claim 14, wherein the producing the third rendering file and the rendering the third rendering file is imperceptible to the user.
  • 16. The method of claim 14, wherein the first, second, and third rendering files are written in XHTML.
  • 17. The method of claim 14, wherein the hierarchical data file is written in XML.
  • 18. A computer-readable medium comprising computer-executable instructions that perform the method of claim 14 when executed by a computer.
  • 19. A method comprising: applying a transformation file on a hierarchical data file having first and second nodes to produce a first rendering file;rendering the first rendering file to show a rendered form having a first data-entry field associated with the first node of the hierarchical data file and a second data-entry field associated with the second node of the hierarchical data file;enabling a user to input data into the first data-entry field;changing the hierarchical data file by retaining the data in the first node of the hierarchical data file;applying the transformation file on the changed hierarchical data file to produce a second rendering file;determining a difference between the first rendering file and the second rendering file;attempting to map the difference on the first rendering file;producing a third rendering file, the third rendering file comprising a partial rendering file based on the difference if the map is successful and comprising a full rendering file if the map is not successful;rendering the third rendering file to show a second rendered form reflecting the change to the hierarchical data file; andenabling the user to input data into the second data-entry field.
  • 20. The method of claim 19, wherein the act of applying the transformation file on the changed hierarchical data file to produce a second rendering file is imperceptible to the user.
  • 21. The method of claim 19, wherein the first, second, and third rendering files are written in XHTML.
  • 22. The method of claim 19, wherein the hierarchical data file is written in XML.
  • 23. The method of claim 19, wherein the transformation file is written in XSLT.
  • 24. A computer-readable medium comprising computer-executable instructions that perform the method of claim 19 when executed by a computer.
  • 25. A method comprising: producing a first rendering file of a hierarchical data file;changing a node of the hierarchical data file, thereby making a part of the first rendering file out-of-date with respect to the changed node of the hierarchical data file;producing an interim rendering file by applying an XSLT transformation file on the changed hierarchical data file;determining a difference between the interim rendering file and the first rendering file;attempting to map the difference to the out-of-date part of the first rendering file; andproducing a partial rendering file based on the difference if the map is successful and producing a full rendering file if the map is not successful.
  • 26. The method of claim 25, wherein producing the partial rendering file is performed by applying part of the XSLT transformation file on a subtree of nodes including the changed node of the hierarchical data file.
  • 27. The method of claim 25, wherein producing the partial rendering file is performed by applying a subtree of the XSLT transformation file on a corresponding subtree of nodes including the changed node of the hierarchical data file.
  • 28. The method of claim 25, wherein the hierarchical data file is written in XML and the first, interim, partial, and full rendering files are written in XHTML.
  • 29. A computer-readable medium comprising computer-executable instructions that perform the method of claim 25 when executed by a computer.
  • 30. A method comprising: analyzing a subtree of transformation-file nodes of a transformation file to determine if a hierarchical data file can be accurately transformed for possible changes to a data-file node of the hierarchical data file by applying the subtree of transformation-file nodes on a subtree of data-file nodes including the data-file node;changing data in the data file node of the hierarchical data file; andtransforming the subtree of data-file nodes including the data-file node by applying the subtree of transformation-file nodes on the subtree of data-file nodes including the data-file node, wherein the transforming the subtree of the data-file nodes produces a second rendering file identical to a difference between a first rendering file produced by applying all of the transformation file on all of the hierarchical data file before the change to the data-file node and a third rendering file produced by applying all of the transformation file on all of the hierarchical data file after the change to the data-file node.
  • 31. The method of claim 30, wherein the transforming the subtree of the data-file nodes produces a resulting change to the hierarchical data file identical to a change produced by applying all of the transformation file on all of the hierarchical data file.
  • 32. The method of claim 30, wherein the hierarchical data file is written in XML and the transformation file is written in XSLT.
  • 33. A computer-readable medium comprising computer-executable instructions that perform the method of claim 30 when executed by a computer.
  • 34. A method comprising: applying a full transformation file on a hierarchical data file containing a node, thereby producing a first rendering file;determining one or more elements of the rendering file that can change for possible changes of the node;changing the hierarchical data file by changing the node;creating a second rendering file by applying a full transformation file on the changed hierarchical data file;determining a difference between the first rendering file and the second rendering file;attempting to map the difference on the first rendering file; andproducing a third rendering file, the third rendering file comprising a partial rendering file based on the difference if the map is successful and comprising a full rendering file if the map is not successful.
  • 35. The method of claim 34, further comprising: rendering the first rendering file to create a rendered form having a data-entry field corresponding to the node of the hierarchical data file;receiving data input into the node through the data-entry field; andrendering the third rendering file to change the data-entry field of the rendered form to show the data.
  • 36. The method of claim 34, wherein the first rendering file is written in XHTML and the hierarchical data file is written in XML.
  • 37. A computer-readable medium comprising computer-executable instructions that perform the method of claim 34 when executed by a computer.
  • 38. A method comprising: applying a transformation file on a hierarchical data file containing a node to produce a first result;applying a transformation file subtree of the transformation file on a data file subtree containing the node of the hierarchical data file for a range of possible changes to the node to produce a second result;applying the transformation file on the hierarchical data file with the node having the range of possible changes to produce a third result;determining if the first result in conjunction with the second result is equal to the third result; andrecording the data file subtree of the hierarchical data file to be isolatable if the determining is true.
  • 39. The method of claim 38, wherein the first result, second result, and third result are rendering files.
  • 40. The method of claim 38, wherein the first result, second result, and third result are rendered forms.
  • 41. A computer-readable medium comprising computer-executable instructions that perform the method of claim 38 when executed by a computer.
  • 42. A method comprising: determining, for a change to a node of a hierarchical data file subtree, whether applying a partial transformation file subtree corresponding to the hierarchical data file subtree will produce a third rendering file equivalent to a difference between a first rendering file created by applying a full transformation file on a full hierarchical data file prior to the change to the node and a second rendering file created by applying the full transformation file on the full hierarchical data file after the change to the node; andproducing the third rendering file by applying a partial transformation file when it is determined that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference.
  • 43. The method of claim 42, wherein the determining includes finding that there are no references in the partial transformation file subtree to parts outside of those subtrees.
  • 44. The method of claim 42, wherein the determining includes finding that there are no methods in the partial transformation file subtree or the hierarchical data file subtree to perform actions other than those performed by applying the partial transformation file subtree.
  • 45. The method of claim 42, wherein the determining includes finding that there are no nested subtrees within the partial transformation file subtree or the hierarchical data file subtree.
  • 46. A method comprising: applying a transformation file on a hierarchical data file containing a node, thereby producing a first rendering file;changing data within the node, thereby changing the hierarchical data file;applying the transformation file on the changed hierarchical data file thereby producing a second rendering file;determining a difference between the first rendering file and the second rendering file; andintegrating the difference into the first rendering file to produce a third rendering file equal to the second rendering file.
  • 47. The method of claim 46, wherein the determining is performed by comparing the first rendering file and the second rendering file while those files are arranged in a non-linear structure.
  • 48. The method of claim 46, wherein the determining is performed by comparing the first rendering file and the second rendering file while those files are arranged in a linear structure.
  • 49. The method of claim 46, wherein the determining is performed by: creating a first linear text file of the first rendering file;creating a second linear text file of the second rendering file;comparing the first linear text file with the second linear text file to produce a linear difference between the first and second text files;and converting the linear difference into a hierarchical difference.
  • 50. The method of claim 46, wherein the difference is a difference rendering file of shorter length than the second rendering file.
  • 51. The method of claim 46, wherein the determining includes mapping the difference to portions of the first rendering file that are out-of-date and the integrating includes using the mapping to replace the out-of-date portions of the first rendering file with the difference.
  • 52. A computer-readable medium comprising computer-executable instructions that perform the method of claim 46 when executed by a computer.
  • 53. An apparatus comprising: means for producing a first rendering file of a hierarchical data file;means for rendering the first rendering file to show a rendered form;means for enabling a user to input data into a first node of the hierarchical data file;means for storing the data in the first node of the hierarchical data file;means for determining whether applying a partial transformation file on the hierarchical data file after data is stored in the first node file will produce a third rendering file equivalent to a difference between the first rendering file and a second rendering file created by applying a full transformation file on the changed hierarchical data file after data is stored in the first node;means for applying a partial transformation file on the hierarchical data file after data is stored in the first node to produce the third rendering file when it is determined that applying a partial transformation file on the changed hierarchical data file will produce a third rendering file equivalent to the difference;means for accurately viewing the change in the hierarchical data file in the rendered form by rendering the third rendering file; andmeans for enabling the user to input data into a second node of the hierarchical data file.
US Referenced Citations (677)
Number Name Date Kind
4201978 Nally May 1980 A
4498147 Agnew et al. Feb 1985 A
4514800 Gruner et al. Apr 1985 A
4564752 Lepic et al. Jan 1986 A
4641274 Swank Feb 1987 A
4674040 Barker et al. Jun 1987 A
4723211 Barker et al. Feb 1988 A
4739477 Barker et al. Apr 1988 A
4815029 Barker et al. Mar 1989 A
4847749 Collins et al. Jul 1989 A
4910663 Bailey Mar 1990 A
4933880 Borgendale et al. Jun 1990 A
4962475 Hernandez et al. Oct 1990 A
5025484 Yamanari et al. Jun 1991 A
5072412 Henderson, Jr. et al. Dec 1991 A
5179703 Evans Jan 1993 A
5182709 Makus Jan 1993 A
5187786 Densmore et al. Feb 1993 A
5191645 Carlucci et al. Mar 1993 A
5195183 Miller et al. Mar 1993 A
5204947 Bernstein et al. Apr 1993 A
5206951 Khoyi et al. Apr 1993 A
5218672 Morgan et al. Jun 1993 A
5220649 Forcier Jun 1993 A
5222160 Sakai et al. Jun 1993 A
5228100 Takeda et al. Jul 1993 A
5237680 Adams et al. Aug 1993 A
5249275 Srivastava Sep 1993 A
5274803 Dubin et al. Dec 1993 A
5297249 Bernstein et al. Mar 1994 A
5297283 Kelly, Jr. et al. Mar 1994 A
5313631 Kao May 1994 A
5313646 Hendricks et al. May 1994 A
5317686 Salas et al. May 1994 A
5333317 Dann Jul 1994 A
5339423 Beitel et al. Aug 1994 A
5339424 Fushimi Aug 1994 A
5341478 Travis, Jr. et al. Aug 1994 A
5369766 Nakano et al. Nov 1994 A
5369778 San Soucie et al. Nov 1994 A
5371675 Greif et al. Dec 1994 A
5377323 Vasudevan Dec 1994 A
5379419 Heffeman et al. Jan 1995 A
5381547 Flug et al. Jan 1995 A
5390325 Miller Feb 1995 A
5396623 McCall et al. Mar 1995 A
5408665 Fitzgerald Apr 1995 A
5410646 Tondevold et al. Apr 1995 A
5410688 Williams et al. Apr 1995 A
5412772 Monson May 1995 A
5434975 Allen Jul 1995 A
5436637 Gayraud et al. Jul 1995 A
5438659 Notess et al. Aug 1995 A
5440744 Jacobson et al. Aug 1995 A
5446842 Schaeffer et al. Aug 1995 A
5455875 Chevion et al. Oct 1995 A
5459865 Heninger et al. Oct 1995 A
5481722 Skinner Jan 1996 A
5497489 Menne Mar 1996 A
5504898 Klein Apr 1996 A
5517655 Collins et al. May 1996 A
5535389 Elder et al. Jul 1996 A
5542070 LeBlanc et al. Jul 1996 A
5550976 Henderson et al. Aug 1996 A
5551035 Arnold et al. Aug 1996 A
5555325 Burger Sep 1996 A
5566330 Sheffield Oct 1996 A
5572643 Judson Nov 1996 A
5572648 Bibayan Nov 1996 A
5577252 Nelson et al. Nov 1996 A
5581686 Koppolu et al. Dec 1996 A
5581760 Atkinson et al. Dec 1996 A
5600789 Parker et al. Feb 1997 A
5602996 Powers, III et al. Feb 1997 A
5608720 Biegel et al. Mar 1997 A
5625783 Ezekiel et al. Apr 1997 A
5627979 Chang et al. May 1997 A
5630126 Redpath May 1997 A
5634121 Tracz et al. May 1997 A
5634124 Khoyi et al. May 1997 A
5640544 Onodera et al. Jun 1997 A
5644738 Goldman et al. Jul 1997 A
5649099 Theimer et al. Jul 1997 A
5659729 Nielsen Aug 1997 A
5664178 Sinofsky Sep 1997 A
5668966 Ono et al. Sep 1997 A
5669005 Curbow et al. Sep 1997 A
5682536 Atkinson et al. Oct 1997 A
5689667 Kurtenbach Nov 1997 A
5689703 Atkinson et al. Nov 1997 A
5704029 Wright, Jr. Dec 1997 A
5706501 Horikiri et al. Jan 1998 A
5717939 Bricklin et al. Feb 1998 A
5721824 Taylor Feb 1998 A
5740439 Atkinson et al. Apr 1998 A
5742504 Meyer et al. Apr 1998 A
5745683 Lee et al. Apr 1998 A
5745712 Turpin et al. Apr 1998 A
5748807 Lopresti et al. May 1998 A
5758184 Lucovsky et al. May 1998 A
5758358 Ebbo May 1998 A
5761408 Kolawa et al. Jun 1998 A
5761683 Logan et al. Jun 1998 A
5764984 Loucks Jun 1998 A
5764985 Smale Jun 1998 A
5778372 Cordell et al. Jul 1998 A
5778402 Gipson Jul 1998 A
5784555 Stone Jul 1998 A
5790796 Sadowsky Aug 1998 A
5798757 Smith Aug 1998 A
5801701 Koppolu et al. Sep 1998 A
5802304 Stone Sep 1998 A
5806079 Rivette et al. Sep 1998 A
5815830 Anthony Sep 1998 A
5826265 Van Huben et al. Oct 1998 A
5835777 Staelin Nov 1998 A
5838906 Doyle et al. Nov 1998 A
5842018 Atkinson et al. Nov 1998 A
5845077 Fawcett Dec 1998 A
5845090 Collins, III et al. Dec 1998 A
5854630 Nielsen Dec 1998 A
5859973 Carpenter et al. Jan 1999 A
5862372 Morris et al. Jan 1999 A
5862379 Rubin et al. Jan 1999 A
5864819 De Armas et al. Jan 1999 A
5907704 Gudmundson et al. May 1999 A
5910895 Proskauer et al. Jun 1999 A
5911776 Guck Jun 1999 A
5915112 Boutcher Jun 1999 A
5922072 Hutchinson et al. Jul 1999 A
5928363 Ruvolo Jul 1999 A
5929858 Shibata et al. Jul 1999 A
5940075 Mutschler, III et al. Aug 1999 A
5950010 Hesse et al. Sep 1999 A
5956481 Walsh et al. Sep 1999 A
5960199 Brodsky et al. Sep 1999 A
5963964 Nielsen Oct 1999 A
5973696 Agranat et al. Oct 1999 A
5974454 Apfel et al. Oct 1999 A
5982370 Kamper Nov 1999 A
5983348 Ji Nov 1999 A
5987480 Donohue et al. Nov 1999 A
5991710 Papineni et al. Nov 1999 A
5991731 Colon et al. Nov 1999 A
5991877 Luckenbaugh Nov 1999 A
5995103 Ashe Nov 1999 A
5999740 Rowley Dec 1999 A
6005570 Gayraud et al. Dec 1999 A
6014135 Fernandes Jan 2000 A
6016520 Facq et al. Jan 2000 A
6018743 Xu Jan 2000 A
6026379 Haller et al. Feb 2000 A
6026416 Kanerva et al. Feb 2000 A
6031989 Cordell Feb 2000 A
6035297 Van Huben et al. Mar 2000 A
6035309 Dauerer et al. Mar 2000 A
6044205 Reed et al. Mar 2000 A
6052531 Waldin et al. Apr 2000 A
6052710 Saliba et al. Apr 2000 A
6054987 Richardson Apr 2000 A
6070184 Blount et al. May 2000 A
6072870 Nguyen et al. Jun 2000 A
6078326 Kilmer et al. Jun 2000 A
6078327 Liman et al. Jun 2000 A
6078924 Ainsbury et al. Jun 2000 A
6081610 Dwork et al. Jun 2000 A
6084585 Kraft et al. Jul 2000 A
6088708 Burch et al. Jul 2000 A
6091417 Lefkowitz Jul 2000 A
6094657 Hailpern et al. Jul 2000 A
6097382 Rosen et al. Aug 2000 A
6098081 Heidorn et al. Aug 2000 A
6108637 Blumenau Aug 2000 A
6108783 Krawczyk et al. Aug 2000 A
6115646 Fiszman et al. Sep 2000 A
6121965 Kenney et al. Sep 2000 A
6122647 Horowitz et al. Sep 2000 A
6144969 Inokuchi et al. Nov 2000 A
6151624 Teare et al. Nov 2000 A
6154128 Wookey et al. Nov 2000 A
6163772 Kramer et al. Dec 2000 A
6167521 Smith et al. Dec 2000 A
6167523 Strong Dec 2000 A
6182094 Humpleman et al. Jan 2001 B1
6182095 Leymaster et al. Jan 2001 B1
6188401 Peyer Feb 2001 B1
6191797 Politis Feb 2001 B1
6192367 Hawley et al. Feb 2001 B1
6195661 Filepp et al. Feb 2001 B1
6199204 Donohue Mar 2001 B1
6209128 Gerard et al. Mar 2001 B1
6216152 Wong et al. Apr 2001 B1
6219698 Iannucci et al. Apr 2001 B1
6225996 Gibb et al. May 2001 B1
6235027 Herzon May 2001 B1
6253366 Mutschler, III Jun 2001 B1
6253374 Dresevic et al. Jun 2001 B1
6263313 Milsted et al. Jul 2001 B1
6266810 Tanaka et al. Jul 2001 B1
6268852 Lindhorst et al. Jul 2001 B1
6272506 Bell Aug 2001 B1
6275227 DeStefano Aug 2001 B1
6275599 Adler et al. Aug 2001 B1
6279042 Ouchi Aug 2001 B1
6281896 Alimpich et al. Aug 2001 B1
6282711 Halpern et al. Aug 2001 B1
6286033 Kishinsky et al. Sep 2001 B1
6292897 Gennaro et al. Sep 2001 B1
6297819 Furst Oct 2001 B1
6300948 Geller et al. Oct 2001 B1
6307955 Zank et al. Oct 2001 B1
6308179 Petersen et al. Oct 2001 B1
6308273 Goertzel et al. Oct 2001 B1
6311271 Gennaro et al. Oct 2001 B1
6314415 Mukherjee Nov 2001 B1
6321259 Ouellette et al. Nov 2001 B1
6321334 Jerger et al. Nov 2001 B1
6327628 Anuff et al. Dec 2001 B1
6331864 Coco et al. Dec 2001 B1
6343149 Motoiwa Jan 2002 B1
6343302 Graham Jan 2002 B1
6345256 Milsted et al. Feb 2002 B1
6345278 Hitchcock et al. Feb 2002 B1
6345361 Jerger et al. Feb 2002 B1
6347323 Garber et al. Feb 2002 B1
6349408 Smith Feb 2002 B1
6351574 Yair et al. Feb 2002 B1
6353851 Anupam et al. Mar 2002 B1
6353926 Parthesarathy et al. Mar 2002 B1
6356906 Lippert et al. Mar 2002 B1
6357038 Scouten Mar 2002 B1
6366907 Fanning et al. Apr 2002 B1
6366912 Wallent et al. Apr 2002 B1
6367013 Bisbee et al. Apr 2002 B1
6369840 Barnett et al. Apr 2002 B1
6374402 Schmeidler et al. Apr 2002 B1
6381742 Forbes et al. Apr 2002 B2
6381743 Mutschler, III Apr 2002 B1
6389434 Rivette et al. May 2002 B1
6393456 Ambler et al. May 2002 B1
6396488 Simmons et al. May 2002 B1
6405221 Levine et al. Jun 2002 B1
6405238 Votipka Jun 2002 B1
6408311 Baisley et al. Jun 2002 B1
6414700 Kurtenbach et al. Jul 2002 B1
6421070 Ramos et al. Jul 2002 B1
6421656 Cheng et al. Jul 2002 B1
6425125 Fries et al. Jul 2002 B1
6429885 Saib et al. Aug 2002 B1
6434563 Pasquali et al. Aug 2002 B1
6434564 Ebert Aug 2002 B2
6442563 Bacon et al. Aug 2002 B1
6442755 Lemmons et al. Aug 2002 B1
6446110 Lection et al. Sep 2002 B1
6449617 Quinn et al. Sep 2002 B1
6457009 Bollay Sep 2002 B1
6460058 Koppolu et al. Oct 2002 B2
6463419 Kluss Oct 2002 B1
6470349 Heninger et al. Oct 2002 B1
6473800 Jerger et al. Oct 2002 B1
6476828 Burkett et al. Nov 2002 B1
6476833 Moshfeghi Nov 2002 B1
6477544 Bolosky et al. Nov 2002 B1
6480860 Monday Nov 2002 B1
6487566 Sundaresan Nov 2002 B1
6490601 Markus et al. Dec 2002 B1
6493702 Adar et al. Dec 2002 B1
6501864 Eguchi et al. Dec 2002 B1
6502101 Verprauskus et al. Dec 2002 B1
6502103 Frey et al. Dec 2002 B1
6505200 Ims et al. Jan 2003 B1
6505230 Mohan et al. Jan 2003 B1
6505300 Chan et al. Jan 2003 B2
6507856 Chen et al. Jan 2003 B1
6516322 Meredith Feb 2003 B1
6519617 Wanderski et al. Feb 2003 B1
RE38070 Spies et al. Apr 2003 E
6546546 Van Doorn Apr 2003 B1
6549221 Brown et al. Apr 2003 B1
6549878 Lowry et al. Apr 2003 B1
6549922 Srivastava et al. Apr 2003 B1
6553402 Makarios et al. Apr 2003 B1
6560616 Garber May 2003 B1
6560620 Ching May 2003 B1
6560640 Smethers May 2003 B2
6563514 Samar May 2003 B1
6571253 Thompson et al. May 2003 B1
6578144 Gennaro et al. Jun 2003 B1
6581061 Graham Jun 2003 B2
6584469 Chiang et al. Jun 2003 B1
6584548 Bourne et al. Jun 2003 B1
6585778 Hind et al. Jul 2003 B1
6589290 Maxwell et al. Jul 2003 B1
6594686 Edwards et al. Jul 2003 B1
6598219 Lau Jul 2003 B1
6603489 Edlund et al. Aug 2003 B1
6604099 Chung et al. Aug 2003 B1
6606606 Starr Aug 2003 B2
6609200 Anderson et al. Aug 2003 B2
6611822 Beams et al. Aug 2003 B1
6611840 Baer et al. Aug 2003 B1
6611843 Jacobs Aug 2003 B1
6613098 Sorge et al. Sep 2003 B1
6615276 Mastrianni et al. Sep 2003 B1
6629109 Koshisaka Sep 2003 B1
6631357 Perkowski Oct 2003 B1
6631379 Cox Oct 2003 B2
6631497 Jamshidi et al. Oct 2003 B1
6631519 Nicholson et al. Oct 2003 B1
6632251 Rutten et al. Oct 2003 B1
6635089 Burkett et al. Oct 2003 B1
6636845 Chau et al. Oct 2003 B2
6643633 Chau et al. Nov 2003 B2
6643652 Helgeson et al. Nov 2003 B2
6643684 Malkin et al. Nov 2003 B1
6651217 Kennedy et al. Nov 2003 B1
6654737 Nunez Nov 2003 B1
6654932 Bahrs et al. Nov 2003 B1
6658417 Stakutis et al. Dec 2003 B1
6658622 Aiken et al. Dec 2003 B1
6661920 Skinner Dec 2003 B1
6668369 Krebs et al. Dec 2003 B1
6671805 Brown et al. Dec 2003 B1
6675202 Perttunen Jan 2004 B1
6678717 Schneider Jan 2004 B1
6681370 Gounares et al. Jan 2004 B2
6691230 Bardon Feb 2004 B1
6691281 Sorge et al. Feb 2004 B1
6697944 Jones et al. Feb 2004 B1
6701434 Rohatgi Mar 2004 B1
6701486 Weber et al. Mar 2004 B1
6704906 Yankovich et al. Mar 2004 B1
6711679 Guski et al. Mar 2004 B1
6720985 Lapstun et al. Apr 2004 B1
6725426 Pavlov Apr 2004 B1
6728755 de Ment Apr 2004 B1
6735721 Morrow et al. May 2004 B1
6745367 Bates et al. Jun 2004 B1
6748385 Rodkin et al. Jun 2004 B1
6751777 Bates et al. Jun 2004 B2
6754874 Richman Jun 2004 B1
6757826 Paltenghe Jun 2004 B1
6757868 Glaser et al. Jun 2004 B1
6760723 Oshinsky et al. Jul 2004 B2
6763343 Brooke et al. Jul 2004 B1
6772139 Smith, III Aug 2004 B1
6772165 O'Carroll Aug 2004 B2
6774926 Ellis et al. Aug 2004 B1
6779154 Nussbaum et al. Aug 2004 B1
6781609 Barker et al. Aug 2004 B1
6782144 Bellavita et al. Aug 2004 B2
6799299 Li et al. Sep 2004 B1
6801929 Donoho et al. Oct 2004 B1
6816849 Halt, Jr. Nov 2004 B1
6828992 Freeman et al. Dec 2004 B1
6845380 Su et al. Jan 2005 B2
6847387 Roth Jan 2005 B2
6848078 Birsan et al. Jan 2005 B1
6850895 Brodersen et al. Feb 2005 B2
6871220 Rajan et al. Mar 2005 B1
6874130 Baweja et al. Mar 2005 B1
6876996 Czajkowski et al. Apr 2005 B2
6889359 Conner et al. May 2005 B1
6901403 Bata et al. May 2005 B1
6915454 Moore et al. Jul 2005 B1
6931532 Davis et al. Aug 2005 B1
6941510 Ozzie et al. Sep 2005 B1
6941511 Hind et al. Sep 2005 B1
6941521 Lin et al. Sep 2005 B2
6948129 Loghmani Sep 2005 B1
6948133 Haley Sep 2005 B2
6948135 Ruthfield et al. Sep 2005 B1
6950980 Malcolm Sep 2005 B1
6961897 Peel, Jr. et al. Nov 2005 B1
6963875 Moore Nov 2005 B2
6968503 Chang et al. Nov 2005 B1
6968505 Stoll et al. Nov 2005 B2
6993714 Kaler et al. Jan 2006 B2
6996776 Makely et al. Feb 2006 B1
6996781 Myers et al. Feb 2006 B1
7000179 Yankovich et al. Feb 2006 B2
7002560 Graham Feb 2006 B2
7003722 Rothchiller et al. Feb 2006 B2
7010580 Fu et al. Mar 2006 B1
7020869 Abriari et al. Mar 2006 B2
7024417 Russakovsky et al. Apr 2006 B1
7032170 Poulose et al. Apr 2006 B2
7036072 Sulistio et al. Apr 2006 B1
7039875 Khalfay et al. May 2006 B2
7043687 Knauss et al. May 2006 B2
7051273 Holt et al. May 2006 B1
7058663 Johnston et al. Jun 2006 B2
7062764 Cohen et al. Jun 2006 B2
7065493 Homsi Jun 2006 B1
7076728 Davis et al. Jul 2006 B2
7080083 Kim et al. Jul 2006 B2
7080325 Treibach-Heck et al. Jul 2006 B2
7086009 Resnick et al. Aug 2006 B2
7086042 Abe et al. Aug 2006 B2
7088374 David et al. Aug 2006 B2
7100147 Miller et al. Aug 2006 B2
7103611 Murthy et al. Sep 2006 B2
7106888 Silverbrook et al. Sep 2006 B1
7107282 Yalamanchi Sep 2006 B1
7107521 Santos Sep 2006 B2
7120863 Wang Oct 2006 B1
7130885 Chandra et al. Oct 2006 B2
7143341 Kohli Nov 2006 B1
7146564 Kim et al. Dec 2006 B2
7152205 Day et al. Dec 2006 B2
7168035 Bell et al. Jan 2007 B1
7178166 Taylor et al. Feb 2007 B1
7190376 Tonisson Mar 2007 B1
7191394 Ardeleanu et al. Mar 2007 B1
7200816 Falk et al. Apr 2007 B2
7213200 Abe et al. May 2007 B2
7236982 Zlatanov et al. Jun 2007 B2
7249328 Davis Jul 2007 B1
7272789 O'Brien Sep 2007 B2
7281018 Begun et al. Oct 2007 B1
7284208 Matthews Oct 2007 B2
7287218 Knotz et al. Oct 2007 B1
7296017 Larcheveque et al. Nov 2007 B2
7313758 Kozlov Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7318237 Moriconi et al. Jan 2008 B2
7334178 Stanciu et al. Feb 2008 B1
7337391 Clarke et al. Feb 2008 B2
7337392 Lue Feb 2008 B2
7346610 Ruthfield et al. Mar 2008 B2
7346840 Ravishankar et al. Mar 2008 B1
7346848 Ruthfield et al. Mar 2008 B1
7350141 Kotler et al. Mar 2008 B2
7373595 Jones et al. May 2008 B2
7412649 Emek et al. Aug 2008 B2
7424671 Elza et al. Sep 2008 B2
7428699 Kane et al. Sep 2008 B1
20010007109 Lange Jul 2001 A1
20010022592 Alimpich et al. Sep 2001 A1
20010024195 Hayakawa Sep 2001 A1
20010037345 Kiernan Nov 2001 A1
20010054004 Powers Dec 2001 A1
20010056429 Moore et al. Dec 2001 A1
20010056460 Sahota et al. Dec 2001 A1
20020010700 Wotring et al. Jan 2002 A1
20020010743 Ryan et al. Jan 2002 A1
20020010746 Jilk et al. Jan 2002 A1
20020010855 Reshef et al. Jan 2002 A1
20020013788 Pennell et al. Jan 2002 A1
20020019941 Chan et al. Feb 2002 A1
20020023113 Hsing et al. Feb 2002 A1
20020026441 Kutay Feb 2002 A1
20020026461 Kutay et al. Feb 2002 A1
20020032590 Anand et al. Mar 2002 A1
20020032692 Suzuki et al. Mar 2002 A1
20020032706 Perla et al. Mar 2002 A1
20020032768 Voskuil Mar 2002 A1
20020035579 Wang et al. Mar 2002 A1
20020035581 Reynar et al. Mar 2002 A1
20020040469 Pramberger Apr 2002 A1
20020054126 Gamon May 2002 A1
20020057297 Grimes et al. May 2002 A1
20020065798 Bostleman et al. May 2002 A1
20020065847 Furukawa et al. May 2002 A1
20020070973 Croley Jun 2002 A1
20020078074 Cho et al. Jun 2002 A1
20020078103 Gorman et al. Jun 2002 A1
20020083318 Larose Jun 2002 A1
20020099952 Lambert et al. Jul 2002 A1
20020100027 Binding et al. Jul 2002 A1
20020112224 Cox Aug 2002 A1
20020129056 Conant et al. Sep 2002 A1
20020133484 Chau et al. Sep 2002 A1
20020152222 Holbrook Oct 2002 A1
20020152244 Dean et al. Oct 2002 A1
20020156772 Chau et al. Oct 2002 A1
20020156846 Rawat et al. Oct 2002 A1
20020156929 Hekmatpour Oct 2002 A1
20020169752 Kusama et al. Nov 2002 A1
20020169789 Kutay Nov 2002 A1
20020174147 Wang et al. Nov 2002 A1
20020174417 Sijacic et al. Nov 2002 A1
20020178380 Wolf et al. Nov 2002 A1
20020184219 Preisig et al. Dec 2002 A1
20020188597 Kern et al. Dec 2002 A1
20020188613 Chakraborty et al. Dec 2002 A1
20020194219 Bradley et al. Dec 2002 A1
20020196281 Audleman et al. Dec 2002 A1
20020196288 Emrani Dec 2002 A1
20020198891 Li et al. Dec 2002 A1
20020198935 Crandall, Sr. et al. Dec 2002 A1
20030004951 Chokshi Jan 2003 A1
20030007000 Carlson et al. Jan 2003 A1
20030014397 Chau et al. Jan 2003 A1
20030018668 Britton et al. Jan 2003 A1
20030020746 Chen et al. Jan 2003 A1
20030023641 Gorman et al. Jan 2003 A1
20030025732 Prichard Feb 2003 A1
20030026507 Zlotnick Feb 2003 A1
20030028550 Lee et al. Feb 2003 A1
20030037303 Bodlaender et al. Feb 2003 A1
20030043986 Creamer Mar 2003 A1
20030046665 Ilin Mar 2003 A1
20030048301 Menninger Mar 2003 A1
20030051243 Lemmons et al. Mar 2003 A1
20030055811 Stork et al. Mar 2003 A1
20030055828 Koch et al. Mar 2003 A1
20030056198 Al-Azzawe Mar 2003 A1
20030061386 Brown Mar 2003 A1
20030061567 Brown et al. Mar 2003 A1
20030084424 Reddy et al. May 2003 A1
20030093755 O'Carroll May 2003 A1
20030110443 Yankovich et al. Jun 2003 A1
20030120578 Newman Jun 2003 A1
20030120651 Bernstein et al. Jun 2003 A1
20030120659 Sridhar Jun 2003 A1
20030120671 Kim et al. Jun 2003 A1
20030120686 Kim et al. Jun 2003 A1
20030126555 Aggarwal et al. Jul 2003 A1
20030128196 Lapstun et al. Jul 2003 A1
20030135825 Gertner et al. Jul 2003 A1
20030140132 Champagne et al. Jul 2003 A1
20030142072 Lapstun et al. Jul 2003 A1
20030149934 Worden Aug 2003 A1
20030158897 Ben-Natan et al. Aug 2003 A1
20030163285 Nakamura et al. Aug 2003 A1
20030167277 Hejlsberg et al. Sep 2003 A1
20030182268 Lal Sep 2003 A1
20030182327 Ramanujam et al. Sep 2003 A1
20030187756 Klivington et al. Oct 2003 A1
20030187930 Ghaffar et al. Oct 2003 A1
20030188260 Jensen et al. Oct 2003 A1
20030189593 Yarvin Oct 2003 A1
20030192008 Lee Oct 2003 A1
20030200506 Abe et al. Oct 2003 A1
20030204511 Brundage Oct 2003 A1
20030204814 Elo et al. Oct 2003 A1
20030205615 Marappan Nov 2003 A1
20030212664 Breining et al. Nov 2003 A1
20030212902 van der Made Nov 2003 A1
20030217053 Bachman et al. Nov 2003 A1
20030220930 Milleker et al. Nov 2003 A1
20030225469 DeRemer et al. Dec 2003 A1
20030225768 Chaudhuri Dec 2003 A1
20030225829 Pena et al. Dec 2003 A1
20030226111 Wirts et al. Dec 2003 A1
20030226132 Tondreau et al. Dec 2003 A1
20030233374 Spinola et al. Dec 2003 A1
20030233644 Cohen et al. Dec 2003 A1
20030236859 Vaschillo et al. Dec 2003 A1
20030236903 Piotrowski Dec 2003 A1
20030237046 Parker et al. Dec 2003 A1
20030237047 Borson Dec 2003 A1
20040002939 Arora Jan 2004 A1
20040002950 Brennan et al. Jan 2004 A1
20040003031 Brown et al. Jan 2004 A1
20040003353 Rivera et al. Jan 2004 A1
20040003389 Reynar et al. Jan 2004 A1
20040010752 Chan et al. Jan 2004 A1
20040024842 Witt Feb 2004 A1
20040030991 Hepworth et al. Feb 2004 A1
20040039990 Bakar et al. Feb 2004 A1
20040039993 Kougiouris et al. Feb 2004 A1
20040044961 Pesenson Mar 2004 A1
20040044965 Toyama et al. Mar 2004 A1
20040054966 Busch et al. Mar 2004 A1
20040059754 Barghout et al. Mar 2004 A1
20040073565 Kaufman et al. Apr 2004 A1
20040073868 Easter et al. Apr 2004 A1
20040078756 Napper et al. Apr 2004 A1
20040083426 Sahu Apr 2004 A1
20040088647 Miller et al. May 2004 A1
20040088652 Abe et al. May 2004 A1
20040093596 Koyano May 2004 A1
20040107367 Kisters Jun 2004 A1
20040117769 Lauzon et al. Jun 2004 A1
20040123277 Schrader et al. Jun 2004 A1
20040146199 Berkner et al. Jul 2004 A1
20040148178 Brain Jul 2004 A1
20040163041 Engel Aug 2004 A1
20040172442 Ripley Sep 2004 A1
20040181711 Johnson et al. Sep 2004 A1
20040186762 Beaven et al. Sep 2004 A1
20040189708 Larcheveque et al. Sep 2004 A1
20040189716 Paoli et al. Sep 2004 A1
20040194035 Chakraborty Sep 2004 A1
20040205473 Fisher et al. Oct 2004 A1
20040205525 Murren et al. Oct 2004 A1
20040205534 Koelle Oct 2004 A1
20040205571 Adler et al. Oct 2004 A1
20040205592 Huang Oct 2004 A1
20040205605 Adler et al. Oct 2004 A1
20040205653 Hadfield et al. Oct 2004 A1
20040205671 Sukehiro et al. Oct 2004 A1
20040210599 Friedman et al. Oct 2004 A1
20040210645 Kouznetsov et al. Oct 2004 A1
20040221238 Cifra et al. Nov 2004 A1
20040221245 Chickles et al. Nov 2004 A1
20040237030 Malkin Nov 2004 A1
20040260593 Abraham-Fuchs et al. Dec 2004 A1
20040261019 Imamura et al. Dec 2004 A1
20040268229 Paoli et al. Dec 2004 A1
20050004893 Sangroniz Jan 2005 A1
20050005248 Rockey et al. Jan 2005 A1
20050015279 Rucker Jan 2005 A1
20050015732 Vedula et al. Jan 2005 A1
20050022115 Baumgartner et al. Jan 2005 A1
20050027757 Kiessig et al. Feb 2005 A1
20050028073 Henry et al. Feb 2005 A1
20050033728 James Feb 2005 A1
20050038711 Marlelo Feb 2005 A1
20050055627 Lloyd et al. Mar 2005 A1
20050060324 Johnson et al. Mar 2005 A1
20050060721 Choudhary et al. Mar 2005 A1
20050065933 Goering Mar 2005 A1
20050065936 Goering Mar 2005 A1
20050066287 Tattrie et al. Mar 2005 A1
20050071752 Marlatt Mar 2005 A1
20050076049 Qubti et al. Apr 2005 A1
20050091285 Krishnan et al. Apr 2005 A1
20050091305 Lange et al. Apr 2005 A1
20050097536 Bernstein et al. May 2005 A1
20050102370 Lin et al. May 2005 A1
20050102612 Allan et al. May 2005 A1
20050108104 Woo May 2005 A1
20050108624 Carrier May 2005 A1
20050114757 Sahota et al. May 2005 A1
20050132043 Wang et al. Jun 2005 A1
20050132196 Dietl Jun 2005 A1
20050138031 Wefers Jun 2005 A1
20050138086 Pecht-Seibert Jun 2005 A1
20050138539 Bravery et al. Jun 2005 A1
20050149375 Wefers Jul 2005 A1
20050160398 Bjornson et al. Jul 2005 A1
20050171746 Thalhammer-Reyero Aug 2005 A1
20050198086 Moore Sep 2005 A1
20050198125 Beck et al. Sep 2005 A1
20050198247 Perry et al. Sep 2005 A1
20050210263 Levas et al. Sep 2005 A1
20050223063 Chang et al. Oct 2005 A1
20050223320 Brintzenhofe et al. Oct 2005 A1
20050246304 Knight et al. Nov 2005 A1
20050262112 Moore Nov 2005 A1
20050268222 Cheng Dec 2005 A1
20060020586 Prompt et al. Jan 2006 A1
20060026534 Ruthfield et al. Feb 2006 A1
20060031757 Vincent, III Feb 2006 A9
20060036995 Chickles et al. Feb 2006 A1
20060041838 Khan Feb 2006 A1
20060059107 Elmore et al. Mar 2006 A1
20060059434 Boss et al. Mar 2006 A1
20060069605 Hatoun Mar 2006 A1
20060069985 Friedman et al. Mar 2006 A1
20060080657 Goodman Apr 2006 A1
20060085409 Rys et al. Apr 2006 A1
20060101037 Brill et al. May 2006 A1
20060101051 Carr et al. May 2006 A1
20060129583 Catorcini et al. Jun 2006 A1
20060129978 Abriani et al. Jun 2006 A1
20060143220 Spencer Jun 2006 A1
20060161559 Bordawekar et al. Jul 2006 A1
20060173865 Fong Aug 2006 A1
20060200754 Kablesh et al. Sep 2006 A1
20070036433 Teutsch et al. Feb 2007 A1
20070050719 Lui et al. Mar 2007 A1
20070061467 Essey et al. Mar 2007 A1
20070061706 Cupala et al. Mar 2007 A1
20070074106 Ardeleanu et al. Mar 2007 A1
20070094589 Paoli et al. Apr 2007 A1
20070100877 Paoli et al. May 2007 A1
20070101280 Paoli et al. May 2007 A1
20070118803 Walker et al. May 2007 A1
20070130504 Betancourt et al. Jun 2007 A1
20070186157 Walker et al. Aug 2007 A1
20070208606 MacKay et al. Sep 2007 A1
20070208769 Boehm et al. Sep 2007 A1
20080028340 Davis Jan 2008 A1
Foreign Referenced Citations (20)
Number Date Country
0 841 615 May 1998 EP
0 961 197 Dec 1999 EP
1 076 290 Feb 2001 EP
1221661 Jul 2002 EP
63085960 Apr 1988 JP
401173140 Jul 1989 JP
3191429 Aug 1991 JP
4225466 Aug 1992 JP
5314152 Nov 1993 JP
406014105 Jan 1994 JP
6139241 May 1994 JP
6180697 Jun 1994 JP
6180698 Jun 1994 JP
2000132436 May 2000 JP
2002183652 Jun 2002 JP
2003173288 Jun 2003 JP
WO 9924945 May 1999 WO
WO 9956207 Nov 1999 WO
WO 0144934 Jun 2001 WO
WO0157720 Sep 2006 WO
Related Publications (1)
Number Date Country
20040193661 A1 Sep 2004 US