The present disclosure relates to systems and method for controlling wheel slip and vehicle acceleration for motor vehicles, and more particularly to a real time system that controls wheel slip of each slipping wheel of a vehicle, while independently and explicitly controlling vehicle acceleration provided by each non-slipping wheel to thus simultaneously improve stability and acceleration of the vehicle.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Historically both ABS (antilock braking system) and TCS (traction control system) implemented in cars and trucks started with the goal of addressing two fundamental tasks: 1) preventing excessive wheel slip for stability and steerability of the vehicle; and 2) maximizing the vehicle acceleration/deceleration potential to meet the operator's driving requirements. (The rest of the disclosure will refer to acceleration/deceleration simply as acceleration with the understanding that acceleration is a mathematical quantity with signs.) Over time many ABS/TCS systems have evolved to include additional requirements in addition to these tasks. For example, when an electronic stability control (ESC) system activates, a wheel may need to be controlled to a large slip target to momentarily cause a reduction in lateral force generated by that particular wheel. Another example, during split μ ABS (where “μ” is the coefficient of friction between the vehicle's tires and the road surface), the high μ wheel's braking force must increase in a controlled manner when trying to maximize the vehicle deceleration.
Conventionally, the controllable quantities from available actuators on the vehicle are 1) brake torque for each wheel; and 2) engine torque for the driven axle of the vehicle. These quantities combine to affect the wheel dynamics and vehicle acceleration in a complicated and non-linear manner. For situations involving the ABS system, the effect of the engine can be neglected in most cases, making this mechanism easier to analyze and control. In TCS situations, the engine is always a significant factor, and this complication is unavoidable.
Traditionally it has often been difficult to simultaneously accomplish both the task of wheel slip control and the task of vehicle acceleration control in their respective desirable ways, especially for TCS (because of the above discussed complication).
In one aspect, the present disclosure relates to a system for real time control of a wheel slip of each slipping wheel of a pair of wheels associated with a first axle of a motor vehicle, simultaneously and independently with real time explicit control of said motor vehicle's acceleration provided by each non-slipping wheel associated with the first axle. The system may comprise a coordinated wheel controller (CWC) subsystem having a first total controller and a first asymmetric controller which are both associated with the first axle, and a distributor subsystem to resolve the coordinated wheel controller subsystem's outputs into targets for the available actuators for the axle.
The first total controller and the first asymmetric controller each further comprise a feedback and a feed forward control element, and are further configured to allow flexible augmentations of the feedback and feed forward elements.
In another aspect, the present disclosure relates to a system for real time control of a wheel slip of each slipping wheel of a pair of wheels associated with a first axle of a motor vehicle, simultaneously and independently with real time explicit control of said motor vehicle's acceleration provided by each non-slipping wheel associated with the first axle. The system may comprise a coordinated wheel controller (CWC) subsystem having a first total controller and a first asymmetric controller, both operating independently of one another and being associated with the first axle. Both the first total controller and the first asymmetric controller have a feedback and a feed forward control element. The system may also include a control deviation module for determining a control region that each wheel is operating in (i.e. whether each wheel is slipping or stable), which is used by the CWC subsystem to facilitate the augmentation of the feedback and feed forward elements of the first total controller and the first asymmetric controller. The control deviation module is also used for calculating wheel speed targets and deviations for both positive slip and negative slip control regions, which are used as inputs to the feedback elements of the controllers' in the CWC subsystem. The system may also include a direct torque management (DTM) subsystem for determining a rate of change of torque outputs from each of the first total controller and the first asymmetric controller that are required to induce a desired rate of change of the vehicle's acceleration. The determined rate of change of torque outputs from the first total controller and the first asymmetric controller are to be used as inputs to the feed forward elements of the controllers. A distributor subsystem may be included, which is responsive to the CWC subsystem for generating drive and brake torque targets for each wheel of the first axle.
In still another aspect, the present disclosure relates to a method for real time control of a wheel slip of each slipping wheel of a pair of wheels associated with a first axle of a motor vehicle, simultaneously and independently with real time explicit control of said motor vehicle's acceleration provided by each non-slipping wheel associated with the first axle. The method may comprise using a first total controller associated with the first axle of the vehicle for generating a torque signal TTC based on an augmentation of the controller's feedback and feed forward control elements. The method may also involve using a first asymmetric controller associated with the first axle of the vehicle for generating a torque signal TAC based on an augmentation of the controller's feedback and feed forward control elements. The first total controller and the first asymmetric controller may also be used to detect a real time operating condition of each wheel which includes a wheel slip condition and a wheel non-slip (stable) condition, and based on the condition, to determine the augmentation of their respective feedback and feed forward elements in order to provide improved stability and acceleration of the vehicle. The method may also involve using a distributor to resolve the two said controllers' outputs TTC and TAC into targets for three actuators available on the axle TD, TBL and TBR in accordance with the following two formulas:
TTC=TD−TBL−TBR
TAC=TBLTBR
where TD=drive torque applied to the first axle;
TBL=brake torque applied to left wheel of the first axle; and
TBR=brake torque applied to right wheel of the first axle.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
The present disclosure describes a system 10, shown in
It is also an important advantage of the system 10 that it uses the same sensor set as conventional ABS/TCS systems (e.g., wheel speed sensors, brake master cylinder pressure sensor, etc.). The system 10 also commands the same actuators (e.g., engine, brake hydraulic control unit, etc.), thus allowing the system 10 to be implemented in a conventional brake control system architecture.
With brief reference to
Surface torque (TS) is also an important variable that is considered by the system 10. With reference to
{right arrow over (T)}S={right arrow over (r)}·{right arrow over (F)}S (Eq. 2)
FS does not appear in wheel dynamics but it is responsible for vehicle acceleration (ΣFS=Ma, where “M” is the vehicle mass and “a” is the vehicle acceleration). Surface torque (TS) is a direct result of surface force (FS) and does directly affect wheel dynamics as shown in Equation 1 above.
Due to the location of surface force (FS) application, FS and TS always have opposite effects on vehicle acceleration and wheel acceleration.
TS=f(Slip): Slipping Wheel
TS>>TD−TB: Stable Wheel (Eq. 3)
Positive Slip→Positive FS→Positive TS
Negative Slip→Negative FS→Negative TS
The system 10 further uses approximations of vehicle axle dynamics by using the following formulas:
Total Dynamics (Non-driven axle)—treated as a special case of Eq. 4
Asymmetric Dynamics
Referring again to
The control deviation subsystem 12 calculates the targets and deviations for both the positive wheel slip and the negative wheel slip control regions (regions R1+ and R1− in
The CWC subsystem 14 includes a total controller 20 having an integrator 20a and an asymmetric controller 22 having an integrator 22a. Both controllers are used for independently controlling a pair of wheels associated with a first axle of the vehicle. A second total controller 24 having an integrator 24a and a second asymmetric controller 26 having an integrator 26a are used for independently controlling a pair of wheels associated with a second axle of the vehicle. An initialization/saturation module 28 is used for monitoring the actuation outputs and driver commands (e.g., drive torque target vs. driver intended drive torque etc.), as well as for performing calculations needed to support the initialization and reset of the integrators 20a-26a associated with each of the controllers 20-26 when actuator saturation is detected (e.g., integrator wind-up reset).
The DTM subsystem 16 includes a DTM wheel control module 30 for determining an explicit rate of change of surface torque (TS) for each stable wheel (dTs_ij, “ij” being wheel index—FL, FR, RL, RR), which is desirable based on the real time conditions being detected. This rate of change can be positive or negative. Both directions can be applied in acceleration, deceleration or coasting modes. For example, a positive dTS when the wheel is providing vehicle acceleration (TS is positive) means to increase acceleration provided by the wheel; a positive dTS when TS is negative means to decrease deceleration that is provided by the wheel. A DTM motion control handling module 32 is used to receive DTM commands (e.g., wheel torque targets) from a motion control subsystem such as an electronic stability control (ESC) system (not shown). The DTM motion control handling module 32 checks if the wheels receiving the DTM commands are stable, and if so, calculates the rate of change of surface torque for each stable wheel (dTs_ij) which are needed to execute the motion control subsystem's commands. A DTM arbiter module 34 is included which arbitrates the signals (dTs_ij) received from the DTM wheel control module 30 and the DTM motion control handling module 32. For each axle of the vehicle, the DTM arbiter 34 calculates (according to Eq. 10 below) the rates of change of torque outputs (dTTC and dTAC) from the CWC subsystem 14 that are required to induce the dTSL and dTSR as a result of the arbitration.
As shown in
A principal advantage of the system 10 is the use of two controllers (i.e., controllers 20/22 or 24/26) for each axle of the vehicle, which can independently control the dynamics of both wheels on a given axle, as well as of a drivetrain potentially connected to the given axle, in all operational situations without needing additional controllers. The total controller (20 or 24) has an output TTC to be actuated by the combination of (TD−TBL−TBR) or by (−TBL−TBR) if no engine control is available. Each asymmetric controller (22 or 26) produces an output TAC to be actuated by the combination (−TBL+TBR). These controllers 20-26 use all available actuators and control all existing dynamics on an axle as described above in Equations 4-6.
Having an element of PID feedback control for both controllers (20/22 or 24/26) can control any wheel slip with good transient and steady state characteristics, provided the following is true:
Having an element of feed forward control for both above mentioned controllers can explicitly induce changes in a wheel's (or a pair of wheels) TS, and therefore vehicle acceleration, if:
Having a detection of a wheel's control region based on its slip as shown in
Thus, the system 10 implements, for each axle of the vehicle, controllers 20 or 24, which are each a PID (proportional Integral Derivative) feedback controller with wheel speed feedback and torque output to control the total dynamics, and one for the asymmetric dynamics (i.e., controllers 22 and 26). The system 10 has feed forward inputs that come from direct torque management 16 to both of the controllers' integrators (20a/22a and 24a/26a) and detects the control region (stable or slipping) of each wheel on the axle, and depending on the two wheels' control regions configures the augmentations of the feedback and feed forward elements of both controllers. The system 10 also distributes both controllers 20/22 and 24/26 outputs into two brake torque signals and one drive torque signal. The system 10 applies the same design as above to all ABS/TCS situations and to handle the ESC's wheel slip and wheel torque targets, even if slip targets of opposite signs are received for two wheels on an axle.
Referring further to
transforming individual wheel speed targets to Axle Total and Axle Asymmetric Targets, for a given axle, using the following equation:
transforming the feedback associated with individual wheels on a given axle to Axle Total and Axle Asymmetric Feedback using the following equation:
calculating the Axle Total and Axle Asymmetric Control Deviation using the following equation:
wherein:
With further reference to
With further reference to
Referring now to
For each axle, the equations below are what the distributor subsystem 18 need to satisfy:
To satisfy the above equation set, the distributor subsystem 18 calculates a desirable combination of the outputs based on conditions. For example, to do so in a very efficient manner, the distributor uses the equations below:
TD_Tgt=TTC+|TAC|
TTC_BrkTgt=TTC−TD_Est
TBL_Tgt=−(TTC_BrkTgt+TAC)/2
TBR_Tgt=−(TTC_BrkTgt−TAC)/2
The term TD_Est is the estimated drive torque received by system 10. It should be clarified at this point that TBL_Tgt/TBR_Tgt in this equation set are the same as TBL/TBR in Eq. 11 and elsewhere in this document. The abbreviation “Tgt” (target) is only added here to signify the fact that these are the final outputs from the system 10 and will be transmitted as targets for execution to a downstream subsystem in the overall brake control system (not described by present disclosure). Furthermore, when this calculation is applied to an axle this generic name changes to a more specific name. For example, when applied to the front axle, TBL_Tgt simply becomes TB_FL (where TB stands for Brake Torque and FL stands for Front Left), as used herein.
With brief reference to
At operation 108 the DTM arbiter module 34 is used to first arbitrate the final rate of change of surface torque for each stable wheel dTSL and dTSR, and then to determine the instantaneous rates of change of torque outputs from the CWC subsystem 14 required to induce the final dTSL and dTSR. At operations 110 and 112 the inputs for the total controller 20 are obtained (operation 110) and the inputs for the asymmetric controller 22 are obtained (operation 112). It will be appreciated that if the wheels on two different axles are being controlled by the system 10, then the inputs obtained will be for both total controllers 20/24 and both asymmetric controllers 22/26.
At operation 114 the total controller(s) (20 and/or 22) is/are used to determine total torque to be applied to a given axle (or axles), depending on the real time control region that each wheel on the axle(s) is operating in and on the pre-determined augmentation of feedback and feed forward control elements. Similarly, at operation 116 the asymmetric controller(s) (22 and/or 26) is/are used to determine asymmetric torque to be applied to the axle(s) according to the pre-determined augmentation of feedback and feed forward controls. At operation 118 the distributor subsystem is used to determine first a desired drive torque (TD_Tgt), then a pair of desired brake torque (TBS and TBR) for each axle, which should best satisfy the outputs of the CWC subsystem. At this point operations 102-118 may be repeated. Again, it will be appreciated that the determinations and calculations performed in the operations of flowchart 100 are performed in real time to take into account real time wheel operating slippage conditions.
The present system 10 and method of the present disclosure thus makes use of two controllers (20/22 and 24/26), each having feedback and feed forward control elements for each axle of the vehicle, one of which provides for a torque output to control the total dynamics associated with the wheels of a given axle and other components attached to the axle, and the other to control the asymmetric dynamics. The system 10 is able to detect the control region (e.g., slipping or not slipping) that each wheel of the vehicle is operating in, to augment the usage of the feedback and feed forward elements of the two controllers according to the control region detection, and to apply the appropriate actuators of the vehicle to control the dynamics of the wheels of a given axle. The use of a pair of controllers with each axle allows the system 10 to control the dynamics of all slipping wheels and other components attached to the two axles of a vehicle, and of the vehicle acceleration provided by all stable wheels attached to the two axles of the vehicle, without needing additional controllers, and by using those actuators that already exist on the vehicle.
While various embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the present disclosure. The examples illustrate the various embodiments and are not intended to limit the present disclosure. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.
Number | Name | Date | Kind |
---|---|---|---|
4933857 | Hashiguchi | Jun 1990 | A |
4940293 | Burckhardt et al. | Jul 1990 | A |
4981190 | Nakayama | Jan 1991 | A |
5002148 | Miyake et al. | Mar 1991 | A |
5015043 | Resch | May 1991 | A |
5026124 | Resch | Jun 1991 | A |
5103928 | Danner | Apr 1992 | A |
5137105 | Suzuki et al. | Aug 1992 | A |
5261730 | Steiner et al. | Nov 1993 | A |
5519617 | Hughes et al. | May 1996 | A |
6059065 | Takeda et al. | May 2000 | A |
6549840 | Mikami et al. | Apr 2003 | B1 |
20020198646 | Bedner et al. | Dec 2002 | A1 |
20030130782 | Check et al. | Jul 2003 | A1 |
20040176899 | Hallowell | Sep 2004 | A1 |
20090024294 | Ishida | Jan 2009 | A1 |
20090107747 | Luehrsen et al. | Apr 2009 | A1 |
20090255746 | Boesch | Oct 2009 | A1 |
20100161188 | Turski et al. | Jun 2010 | A1 |
20100211278 | Craig et al. | Aug 2010 | A1 |
20110209521 | Shiozawa | Sep 2011 | A1 |
20140379220 | Lee | Dec 2014 | A1 |
20150203117 | Kelly | Jul 2015 | A1 |
20150298666 | Liu | Oct 2015 | A1 |
20160090095 | Momose | Mar 2016 | A1 |
20170057515 | Kelly | Mar 2017 | A1 |
20170137027 | Farahani | May 2017 | A1 |
20170158201 | Fairgrieve | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
0240174 | Oct 1987 | EP |
2799417 | Apr 2001 | FR |
2277813 | Nov 1994 | GB |
1239158 | Sep 1993 | IT |
1239159 | Sep 1993 | IT |
1240751 | Dec 1993 | IT |
1254131 | Sep 1995 | IT |
H03213638 | Sep 1991 | JP |
H1044801 | Feb 1998 | JP |
505085 | Jun 1997 | SE |
03024758 | Mar 2003 | WO |
2007074718 | Jul 2007 | WO |
2007107576 | Sep 2007 | WO |
Entry |
---|
International Search Report and Written Opinion, ISA/US, corresponding to International Application No. PCT/US2016/060433, dated Jan. 30, 2017. |
Number | Date | Country | |
---|---|---|---|
20170174192 A1 | Jun 2017 | US |