The present invention relates to indicia verifiers, such as barcode verifiers. More specifically, the present invention relates to a system and method for indicia verification.
Indicia readers, such as barcode scanners, are typically configured to acquire information from indicia (e.g., barcodes, 1-D barcodes, 2-D barcodes, matrix barcodes, QR codes, etc.) and then decode that information for use in information systems. Businesses, in particular, have come to rely on indicia readers for efficient and reliable data entry. For example, indicia readers are frequently employed in retail stores at the point of sale to enable fast and accurate entry of pricing information into the cash register system. Indicia readers are also prevalent in warehouses and other settings where they are commonly used to track inventory.
Because information systems have grown so dependent upon indicia readers for data entry, the integrity of these information systems greatly depends upon the ability of an indicia reader to quickly and accurately decode indicia. Indicia are commonly printed on an item or its label or packaging. Many factors, including the quality of the printing process and the type of material on which the indicia is printed, can affect the quality of the printed indicia. Poor quality indicia (e.g., poorly printed indicia) can lead to costly and time-consuming mistakes. For example, printing defects can cause light spots (e.g., voids) in areas of a barcode that are supposed to be dark. This can result in the indicia reader mistakenly interpreting the defective area as being a light area instead of a dark area, thereby corrupting the decoding of the indicia. Especially for enterprises that read an extremely large volume of indicia each day, even a very small percentage of indicia misreads can render a given information system unusable.
Because of the importance of reliable data entry, and because of the significant harm that can result from indicia having poor quality, industries typically enforce minimum quality standards for indicia. During the 1980s, for example, an ANSI/ISO grading structure was established for barcode print quality.
Current barcode scanners typically are not equipped with high-resolution image sensors necessary for extracting the fine details of an indicia that are required for performing an indicia verification analysis. Barcode verifiers are specialized devices that have been developed to analyze the quality of barcodes and ensure compliance with minimum quality standards. Barcode verifiers can be used in various settings, but are frequently used by the barcode creator to ensure that the printed barcodes comply with minimum specifications. Before the items bearing indicia are introduced into the stream of commerce, the manufacturer may test all or some (e.g., randomly) of the indicia to ensure that the indicia are continually printed in conformity with established standards.
Although barcode verifiers effectively evaluate the quality of indicia, such as barcodes, reliance on these verification devices does have drawbacks. Barcode verifiers tend to be expensive. In part due to their significant cost, businesses may not be able to invest in enough barcode verifiers to have them placed at all locations where they are needed. This can result in delays in verification or in the neglecting of verification. Furthermore, businesses that use a barcode verifier may have the verifier in a physical location that is not readily accessible in all necessary instances. Ensuring that verification technology is available at all locations where barcode scanning is being conducted would improve a business' ability to verify that barcodes are being properly created and scanned.
Therefore, a need exists for a system for indicia verification that is both portable and relatively inexpensive. A system that harnesses the computing power and imaging capabilities of modern mobile computing devices would allow businesses to conduct indicia verification at a greater number of locations, thereby increasing their ability to ensure the integrity of printed indicia upon which their information systems depend.
Accordingly, in one aspect, the present disclosure embraces an indicia-verification system. The indicia-verification system includes an imaging subsystem for acquiring video and still images. The system also includes an indicia-detection subsystem for analyzing the video acquired by the imaging subsystem to determine whether the video contains an indicia. The system also includes a video-analysis subsystem for analyzing the video acquired by the imaging subsystem to determine whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification. The system also includes a still-image-analysis subsystem for selecting for indicia verification a still image of the indicia that is of sufficient quality to undergo indicia verification. The system also includes an indicia-analysis subsystem for performing indicia verification on the selected still image of the indicia.
In one embodiment, the imaging subsystem comprises an imager and a display device.
In another embodiment, the imager has a field-of-view, and the display device is configured to display video and still images of objects that are within the imager's field-of-view.
In yet another embodiment, the imager comprises a lens assembly and an image sensor.
In yet another embodiment, the determination of whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification includes an analysis of the video's resolution.
In yet another embodiment, the determination of whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification includes an analysis of the position of the indicia in the video, wherein the position of the indicia includes the distance of the indicia from the imaging subsystem's lens assembly and the orientation of the indicia with respect to the imaging subsystem's lens assembly.
In yet another embodiment, the determination of whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification includes an analysis of the contrast of the video.
In yet another embodiment, the determination of whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification includes an analysis of the video's motion blur.
In yet another embodiment, the determination of whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification includes an analysis of (i) the video's resolution, (ii) the position of the indicia in the video, wherein the position of the indicia includes the distance of the indicia from the imaging subsystem's lens assembly and the orientation of the indicia with respect to the imaging subsystem's lens assembly, and (iii) the contrast of the video.
In yet another embodiment, the imaging subsystem is configured to acquire still images at a substantially higher resolution than the video acquired by the imaging subsystem.
In yet another embodiment, when the video-analysis subsystem determines that the video of the indicia is of sufficient quality to merit the initiation of indicia verification, the imaging-subsystem stops acquiring video and acquires a still image of the indicia.
In yet another embodiment, the imaging system continuously acquires a new still image of the indicia until the still-image-analysis subsystem selects a still image that is of sufficient quality to undergo indicia verification.
In yet another embodiment, the video-analysis subsystem comprises a user-feedback module for providing the user with feedback for improving the video of the indicia.
In yet another embodiment, the feedback provided by the user-feedback module includes instructions to move the indicia either closer to or farther from the imaging subsystem.
In yet another embodiment, the feedback provided by the user-feedback module includes a targeting graphic.
In yet another embodiment, the feedback provided by the user-feedback module includes audible instructions.
In another aspect, the present disclosure embraces an indicia-verification system that includes an imaging subsystem for acquiring video and still images. The system also includes an indicia-detection subsystem for analyzing the video acquired by the imaging subsystem to determine whether the video contains an indicia. The system also includes a video-analysis subsystem for analyzing the video acquired by the imaging subsystem to determine whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification. The system also includes a still-image-analysis subsystem for selecting for indicia verification a still image of the indicia that is of sufficient quality to undergo indicia verification. The system also includes an indicia-analysis subsystem for (i) acquiring the selected still image of the indicia from the still-image-analysis subsystem; (ii) transmitting the selected still image via a communications network to a remote server configured to perform indicia verification on the selected still image; and (iii) receiving from the remote server via the communications network the results of the indicia verification.
In one embodiment, the indicia-analysis subsystem is configured for displaying the results of the indicia verification on a display device.
In another aspect, the present disclosure embraces an indicia-verification method. Video is analyzed to determine whether the video contains an indicia. If the video contains an indicia, the video is analyzed to determine whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification. If the video of the indicia is of sufficient quality to merit the initiation of indicia verification, a still image of the indicia is acquired. The still image of the indicia is analyzed to determine if the still image is of sufficient quality to undergo indicia verification. If the still image of the indicia is of sufficient quality to undergo indicia verification, indicia verification is performed on the still image.
In one embodiment, the results of the indicia verification are displayed on a display device.
In another embodiment, still images of the indicia are continuously acquired until a still image is acquired that is of sufficient quality to undergo indicia verification.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the disclosure, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present disclosure embraces a system for indicia verification. As used in this disclosure, the term indicia is intended to refer broadly to various types of machine-readable indicia, including barcodes, QR codes, matrix codes, 1D codes, and 2D codes, machine-readable characters, etc. The indicia are typically graphical representations of information (e.g., data) such as product numbers, package-tracking numbers, or personnel identification numbers. Indicia readers are used to decode indicia (e.g., convert the graphical information into the alphanumerical data that the graphical information represents). The use of indicia readers to input data into a system, rather than manual data entry, results in generally faster and more reliable data entry. An indicia reader may embrace various kinds of devices used to read indicia, such as handheld barcode scanners (e.g., barcode readers), fixed-position omni-directional barcode scanners, pen-type readers, laser scanners, CCD readers, imaging scanners, and mobile devices like smartphones that are equipped to read indicia, and similar devices.
The recent proliferation of mobile computing devices, such as smartphones and tablet computers, provides an opportunity to leverage the imaging and computing power of these devices to allow for simplified barcode verification in more locations. Because these mobile computing devices are relatively inexpensive, deployment of barcode-verification-capable mobile computing devices at all critical areas of an enterprise is generally more feasible than distribution of expensive barcode verifiers that are commonly used in business today. The indicia-verification system according to the present disclosure is configured to utilize the computing and imaging power available on a typical modern smartphone, for example, to provide an effective and efficient barcode verification solution.
Referring now to
In one embodiment, the imaging subsystem 15 includes an imager 16 for acquiring video and still images in the form of digital electronic files (e.g., digital video and digital still images). The imager 16 may be a digital camera that includes a lens assembly 18 for focusing light onto an image sensor 19 such as a charged-couple device (CCD) or complementary metal-oxide-semiconductor (CMOS) image sensor. The image sensor 19 converts the optical signal received through the lens assembly 18 (e.g., light reflected from objects within the imager's field of view to the lens assembly) into a digital signal capable of being processed by the indicia-verification system 10.
The indicia-verification system 10 according to the present disclosure also includes an indicia-detection subsystem 20. The indicia-detection subsystem 20 is configured for analyzing the video acquired by the imaging subsystem 15 to determine whether the video contains an indicia. Typically, the indicia-detection subsystem 20 utilizes image processing software to analyze one or more video frames from the video acquired by the imaging subsystem 15. For example, the image processing software may analyze the raster of pixels to determine whether there is a pattern that matches the expected pattern for an indicia. Typically, the image processing software is stored on a computer-readable storage medium (e.g., computer memory) and is executed by a computer processor (e.g., central processing unit (CPU)).
The indicia-verification system 10 according to the present disclosure also includes a video-analysis subsystem 25. The video-analysis subsystem 25 analyzes the video acquired by the imaging subsystem 15 to determine whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification (e.g., indicia verification processing). Factors that the video-analysis subsystem 25 may analyze in determining whether the video of the indicia is of sufficient quality typically include image resolution, video contrast, lighting, and position of the indicia within the video frame. The position of the indicia includes the distance of the indicia from the imaging subsystem's lens assembly 18 as well as the orientation (e.g., rotated, skewed, etc.) of the indicia with respect to the imaging subsystem's lens assembly 18. The video-analysis subsystem 25 may also detect and analyze image blur (e.g., motion blur) as part of a blur analysis. Blurring of the image can occur when there is relative motion between the imaging subsystem 15 and the object(s) being videoed. The relative motion results in blurring artifacts, or a blurring or smearing along the direction of relative motion. In this way, the system 10 according to the present disclosure uses the substantially real-time video feed acquired by the imaging subsystem 15 to determine when an indicia is within the imaging subsystem's field-of-view under conditions (e.g., proper positioning, proper lighting, etc.) that are likely to allow for the successful performance of indicia verification.
Although the acquired video affords an efficient and convenient way to determine the presence of an indicia, conducting an analysis of the video for the purposes of indicia verification is not ideal because video is typically not captured at a sufficiently-high resolution. Indicia verification typically requires a high-resolution image that can, for instance, clearly distinguish between light and dark areas in an image (e.g., between black bars and white spaces of a barcode). Consequently, when the video-analysis subsystem 25 determines that the video of the indicia is of sufficient quality to merit the initiation of indicia verification, the imaging subsystem 15 acquires a still image. To conserve computing and/or power resources, the imaging subsystem 15 typically stops acquiring video prior to transitioning to still image capture.
In general, the imaging subsystem 15 is configured to acquire still images at a substantially higher resolution than the video acquired by the imaging subsystem 15. For example, the still image would typically be at a resolution greater than about 200 pixels per inch (ppi) (e.g., 300 ppi), whereas the video would typically be captured at a resolution of less than about 100 pixels per inch (ppi). Furthermore, the still image is typically acquired by the imaging subsystem 15 within milliseconds (e.g., less than about 50 milliseconds) of the determination by the video-analysis subsystem 25 that the video of the indicia is of sufficient quality. As a result, in situations where the imager and/or the indicia is not in a fixed position, the indicia will generally continue to be within the field-of-view of the imaging subsystem 15; and the indicia will typically continue to be in substantially the same position and orientation in the still image that it was in the latest video. In other words, the still image that is acquired (e.g., captured) by the imaging subsystem 15 is likely to contain an indicia, and the indicia is likely to be in a position and orientation that is favorable for indicia verification.
In one embodiment, the system 10 acquires multiple still images. Although the preliminary use of video increases the likelihood of obtaining a suitable still image, the system 10 does not assume that the first acquired still image will be suitable for indicia verification. To increase the likelihood of successful indicia verification, the system 10 is configured to continuously acquire still images until the system acquires a still image that is suitable for indicia verification.
To ensure that the still image captured by the imaging subsystem 15 is suitable, the system 10 includes a still-image-analysis subsystem 30. The still-image-analysis subsystem 30 is configured to select for indicia verification a still image of the indicia that is of sufficient quality to undergo indicia verification. Typically, the still-image-analysis subsystem 30 employs image processing techniques to determine the quality of the still image. More particularly, the still-image-analysis subsystem 30 typically utilizes image processing software stored in memory and executed by a computer processor for analyzing the still image(s). The analysis performed by the still-image-analysis subsystem 30 typically considers factors such as image resolution, contrast, lighting, motion blur and the position of the indicia within the still image. The still-image-analysis subsystem 30 may analyze multiple still images until a suitable still image is acquired, at which time the still-image-analysis subsystem 30 selects the suitable still image for indicia verification processing.
The still-image-analysis subsystem 30 may be configured to provide user feedback (e.g., via the display device 17) regarding the quality of the last-acquired still image. The user feedback regarding the still image is intended to provide the user with instructions on how to improve the quality of the still image so as to obtain the highest-possible-quality image for verification processing. For example, the user feedback may provide information regarding image focus, flash, exposure, ISO settings, and any other camera parameter that would be ideally adjusted based on the initial feedback to provide the highest quality image for verification.
The system 10 also includes an indicia-analysis subsystem 35. Once the still-image-analysis subsystem 30 selects a suitable still image as described above, the indicia-analysis subsystem 35 performs indicia verification on the selected still image of the indicia. Typically, the indicia-analysis subsystem 35 employs image processing techniques to analyze the still image of the indicia to verify the indicia. More typically, the indicia-analysis subsystem 35 utilizes image processing software executed on a computer processor to verify the indicia depicted in the still image.
The indicia-analysis subsystem 35 may, for example, use an ANSI/ISO grading structure (e.g., ISO 15415 and 15416) or USPS Merlin standards, or customized standards, to verify the indicia. When verifying an indicia, the indicia-analysis subsystem 35 may consider multiple factors. First, the analysis may focus on obtaining information about the physical characteristics of the indicia. Generally, the indicia-analysis subsystem 35 evaluates the physical characteristics of the indicia based upon standards promulgated by the International Standards Organization (ISO) and the American National Standards Institute (ANSI). The physical characteristics of the indicia that may be evaluated by the verification subsystem 40 include edge determination, minimum reflectance, symbol contrast, minimum edge contrast, modulation, printing defects, quiet zone, and decodability.
In evaluating edge determination, the indicia-analysis subsystem 35 detects, in the case of a barcode, for example, whether the appropriate number of bars and spaces are present. A test of the minimum reflectance examines the difference in reflectance between the darkest bar and the background (usually white). For example, the indicia-analysis subsystem 35 may require that the darkest bar have a reflectance that is less than half of the background reflectance. Symbol contrast evaluates the color contrast between the darkest bars and the whitest spaces. Higher contrast is desirable to allow the indicia reader to more easily distinguish between dark bars and white spaces. A modulation test may reveal problems involving ink spread, where the ink bleeds from dark areas into light areas. The indicia-analysis subsystem 35 may identify printing defects that generally fall into one of two categories: voids and spots. Voids are light areas within dark bars. Spots are dark areas in the white spaces. These types of printing defects can lead to decoding errors when the indicia reader mistakenly identifies a dark bar as a white space due to the presence of a void. The indicia-analysis subsystem 35 may also evaluate if the indicia complies with quiet zone requirements. Standards for the creation of UPC symbols, for example, require that the UPC symbol have a quiet zone, or area of uniform light contrast, adjacent to the outer edges of the left and right guard bars.
As mentioned, in one embodiment the imaging subsystem 15 includes an imager 16, which may be the digital camera component of a smartphone. The imager 16 has a field-of-view. The imaging subsystem 15 typically also includes a display device 17. The display device 17 is in communication (e.g., electronic communication) with the imager 16 such that the display device 17 can display (e.g., show) images acquired by the imager 16. In other words, the display device 17 is configured to display video and still images of objects that are within the imager's field-of-view. The display device 17 is particularly useful for displaying, substantially in real-time, the video acquired by the imager 16. This real-time video display may assist the system user in positioning and orienting the imager 16 relative to the indicia. The user may monitor the video on the display device 17 to determine when the indicia comes into the field-of-view, and to manipulate the system 10 and/or indicia (e.g., object bearing the indicia) to obtain the best quality capture of the indicia.
Referring now to
The user feedback may be in the form of audible instructions (e.g., sound generated from speakers). The audible instructions may be in the form of tones (e.g., a pre-defined tone played when the indicia is positioned optimally with respect to the imaging subsystem 15). Alternatively, the audible instructions may be in the form of speech (e.g., pre-recorded audio stating, for example, “move the imager closer to the indicia”).
The user feedback generated by the user-feedback module 26 may also be in the form of text. Typically, the text is advantageously displayed on the display device 17 so that the user may view the text feedback while simultaneously viewing the substantially real-time video acquired by the imaging subsystem 15. The user-feedback module 26 may, for instance, display text that advises the user to increase the lighting.
The user feedback generated by the user-feedback module 26 may also be in the form of a targeting graphic. Typically, the targeting graphic is a graphic displayed on the display device 17 that indicates the optimal placement of the indicia within the imaging subsystem's field-of-view. For example, the targeting graphic may be a rectangle displayed in the center of the display device 17, and the user is to manipulate the system 10 and/or the indicia until the indicia appears substantially within the boundaries of the targeting graphic.
Referring now to
The disclosure has referred to the functionality of the system 10 in terms of indicia verification. It will be understood by a person of ordinary skill in the art that the system 10 may also be used for purposes of indicia validation.
Referring now to
Video (e.g., real-time or live video) is analyzed to determine whether the video contains an indicia 52. If the analysis determines that the video contains an indicia, the video is further analyzed to determine whether the video of the indicia is of sufficient quality to merit the initiation of indicia verification 54. If the video of the indicia is of sufficient quality to merit the initiation of indicia verification, a still image of the indicia is acquired 56. The still image of the indicia is analyzed to determine if the still image is of sufficient quality to undergo indicia verification 58. If the still image of the indicia is of sufficient quality to undergo indicia verification, indicia verification is performed on the still image 60.
In one embodiment of the method 50 according to the present disclosure, the results of the indicia verification are displayed on a display device such as an LCD screen. In another exemplary embodiment, still images of the indicia are continuously acquired until a still image is acquired that is of sufficient quality to undergo indicia verification.
To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. Nos. 6,832,725; 7,128,266; 7,159,783; 7,413,127; 7,726,575; 8,294,969; 8,317,105; 8,322,622; 8,366,005; 8,371,507; 8,376,233; 8,381,979; 8,390,909; 8,408,464; 8,408,468; 8,408,469; 8,424,768; 8,448,863; 8,457,013; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,523,076; 8,528,818; 8,544,737; 8,548,242; 8,548,420; 8,550,335; 8,550,354; 8,550,357; 8,556,174; 8,556,176; 8,556,177; 8,559,767; 8,599,957; 8,561,895; 8,561,903; 8,561,905; 8,565,107; 8,571,307; 8,579,200; 8,583,924; 8,584,945; 8,587,595; 8,587,697; 8,588,869; 8,590,789; 8,596,539; 8,596,542; 8,596,543; 8,599,271; 8,599,957; 8,600,158; 8,600,167; 8,602,309; 8,608,053; 8,608,071; 8,611,309; 8,615,487; 8,616,454; 8,621,123; 8,622,303; 8,628,013; 8,628,015; 8,628,016; 8,629,926; 8,630,491; 8,635,309; 8,636,200; 8,636,212; 8,636,215; 8,636,224; 8,638,806; 8,640,958; 8,640,960; 8,643,717; 8,646,692; 8,646,694; 8,657,200; 8,659,397; 8,668,149; 8,678,285; 8,678,286; 8,682,077; 8,687,282; 8,692,927; 8,695,880; 8,698,949; 8,717,494; 8,717,494; 8,720,783; 8,723,804; 8,723,904; 8,727,223; D702,237; International Publication No. 2013/163789; International Publication No. 2013/173985; International Publication No. 2014/019130; U.S. Patent Application Publication No. 2008/0185432; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2011/0202554; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0138685; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2013/0175341; U.S. Patent Application Publication No. 2013/0175343; U.S. Patent Application Publication No. 2013/0200158; U.S. Patent Application Publication No. 2013/0214048; U.S. Patent Application Publication No. 2013/0256418; U.S. Patent Application Publication No. 2013/0257744; U.S. Patent Application Publication No. 2013/0257759; U.S. Patent Application Publication No. 2013/0270346; U.S. Patent Application Publication No. 2013/0278425; U.S. Patent Application Publication No. 2013/0287258; U.S. Patent Application Publication No. 2013/0292474; U.S. Patent Application Publication No. 2013/0292475; U.S. Patent Application Publication No. 2013/0292477; U.S. Patent Application Publication No. 2013/0293539; U.S. Patent Application Publication No. 2013/0293540; U.S. Patent Application Publication No. 2013/0306728; U.S. Patent Application Publication No. 2013/0306730; U.S. Patent Application Publication No. 2013/0306731; U.S. Patent Application Publication No. 2013/0306734; U.S. Patent Application Publication No. 2013/0307964; U.S. Patent Application Publication No. 2013/0308625; U.S. Patent Application Publication No. 2013/0313324; U.S. Patent Application Publication No. 2013/0313325; U.S. Patent Application Publication No. 2013/0313326; U.S. Patent Application Publication No. 2013/0327834; U.S. Patent Application Publication No. 2013/0341399; U.S. Patent Application Publication No. 2013/0342717; U.S. Patent Application Publication No. 2014/0001267; U.S. Patent Application Publication No. 2014/0002828; U.S. Patent Application Publication No. 2014/0008430; U.S. Patent Application Publication No. 2014/0008439; U.S. Patent Application Publication No. 2014/0021256; U.S. Patent Application Publication No. 2014/0025584; U.S. Patent Application Publication No. 2014/0027518; U.S. Patent Application Publication No. 2014/0034723; U.S. Patent Application Publication No. 2014/0034734; U.S. Patent Application Publication No. 2014/0036848; U.S. Patent Application Publication No. 2014/0039693; U.S. Patent Application Publication No. 2014/0042814; U.S. Patent Application Publication No. 2014/0049120; U.S. Patent Application Publication No. 2014/0049635; U.S. Patent Application Publication No. 2014/0061305; U.S. Patent Application Publication No. 2014/0061306; U.S. Patent Application Publication No. 2014/0061307; U.S. Patent Application Publication No. 2014/0063289; U.S. Patent Application Publication No. 2014/0066136; U.S. Patent Application Publication No. 2014/0067692; U.S. Patent Application Publication No. 2014/0070005; U.S. Patent Application Publication No. 2014/0071840; U.S. Patent Application Publication No. 2014/0074746; U.S. Patent Application Publication No. 2014/0075846; U.S. Patent Application Publication No. 2014/0076974; U.S. Patent Application Publication No. 2014/0078341; U.S. Patent Application Publication No. 2014/0078342; U.S. Patent Application Publication No. 2014/0078345; U.S. Patent Application Publication No. 2014/0084068; U.S. Patent Application Publication No. 2014/0086348; U.S. Patent Application Publication No. 2014/0097249; U.S. Patent Application Publication No. 2014/0098284; U.S. Patent Application Publication No. 2014/0098792; U.S. Patent Application Publication No. 2014/0100774; U.S. Patent Application Publication No. 2014/0100813; U.S. Patent Application Publication No. 2014/0103115; U.S. Patent Application Publication No. 2014/0104413; U.S. Patent Application Publication No. 2014/0104414; U.S. Patent Application Publication No. 2014/0104416; U.S. Patent Application Publication No. 2014/0104451; U.S. Patent Application Publication No. 2014/0106594; U.S. Patent Application Publication No. 2014/0106725; U.S. Patent Application Publication No. 2014/0108010; U.S. Patent Application Publication No. 2014/0108402; U.S. Patent Application Publication No. 2014/0108682; U.S. Patent Application Publication No. 2014/0110485; U.S. Patent Application Publication No. 2014/0114530; U.S. Patent Application Publication No. 2014/0124577; U.S. Patent Application Publication No. 2014/0124579; U.S. Patent Application Publication No. 2014/0125842; U.S. Patent Application Publication No. 2014/0125853; U.S. Patent Application Publication No. 2014/0125999; U.S. Patent Application Publication No. 2014/0129378;
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090212113 | Chiu et al. | Aug 2009 | A1 |
20090294539 | Kim | Dec 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120138685 | Qu et al. | Jun 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193407 | Barten | Aug 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130056285 | Meagher | Mar 2013 | A1 |
20130070322 | Fritz et al. | Mar 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200158 | Feng et al. | Aug 2013 | A1 |
20130214048 | Wilz | Aug 2013 | A1 |
20130256418 | Havens et al. | Oct 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130278425 | Cunningham et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292474 | Xian et al. | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306730 | Brady et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130306734 | Xian et al. | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130313326 | Ehrhart | Nov 2013 | A1 |
20130327834 | Hennick et al. | Dec 2013 | A1 |
20130341399 | Xian et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008430 | Soule et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140021256 | Qu et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140027518 | Edmonds et al. | Jan 2014 | A1 |
20140034723 | Van Horn et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061305 | Nahill et al. | Mar 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140061307 | Wang et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140075846 | Woodburn | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140084068 | Gillet et al. | Mar 2014 | A1 |
20140086348 | Peake et al. | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098284 | Oberpriller et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140160329 | Ren et al. | Jun 2014 | A1 |
20150113068 | Boudville | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
Entry |
---|
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages. |
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); 26 pages. |
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages. |
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages. |
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages. |
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages. |
U.S. Appl. No. 13/902,242 for a System for Providing a Continuous Communication Link With a Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages. |
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages. |
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages. |
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages. |
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages. |
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages. |
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages. |
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages. |
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages. |
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages. |
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages. |
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages. |
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages. |
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages. |
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control, filed Oct. 7, 2013 (Jovanovski et al.); 32 pages. |
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages. |
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages. |
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages. |
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages. |
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages. |
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages. |
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages. |
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination, filed Mar. 19, 2014 (Ouyang); 19 pages. |
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages. |
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages. |
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages. |
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages. |
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages. |
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages. |
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion, filed Mar. 4, 2014 (Lui et al.); 25 pages. |
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board, filed Mar. 4, 2014 (Liu et al.); 27 pages. |
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode, filed Apr. 21, 2014, (Barber et al.), 67 pages. |
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications, filed Mar. 7, 2014 (Feng et al.); 42 pages. |
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter, filed Jan. 28, 2014 (Lu et al.); 29 pages. |
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages. |
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers, filed Apr. 29, 2014, (Ackley et al.), 39 pages. |
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator, filed Mar. 31, 2014 (Feng et al.); 92 pages. |
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data, filed Mar. 24, 2014 (Smith et al.); 30 pages. |
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering, filed Apr. 1, 2014 (Van Horn et al.); 36 pages. |
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages. |
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages. |
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages. |
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages. |
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages. |
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages. |
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
Number | Date | Country | |
---|---|---|---|
20160019406 A1 | Jan 2016 | US |