The present invention generally relates to the field of neuromodulation, and more specifically to systems and methods for selectively replicating desired mental states in a human or an animal.
Mental State.
A mental state is a state of mind that a subject is in. Some mental states are pure and unambiguous, while humans are capable of complex states that are a combination of mental representations, which may have in their pure state contradictory characteristics. There are several paradigmatic states of mind that a subject has: love, hate, pleasure, fear, and pain. Mental states can also include a waking state, a sleeping state, a flow (or being in the “zone”), and a mood (an emotional state). A mental state is a hypothetical state that corresponds to thinking and feeling, and consists of a conglomeration of mental representations. A mental state is related to an emotion, though it can also relate to cognitive processes. Because the mental state itself is complex and potentially possess inconsistent attributes, clear interpretation of mental state through external analysis (other than self-reporting) is difficult or impossible. However, a number of studies report that certain attributes of mental state or thought processes may in fact be determined through passive monitoring, such as EEG, with some degree of statistical reliability. In most studies, the characterization of mental state was an endpoint, and the raw signals, after statistical classification or semantic labelling, are superseded and the remaining signal energy treated as noise. Current technology does not permit an accurate or precise abstract encoding or characterization of the full range of mental states based on neural correlates of mental state.
Brain
The brain is a key part of the central nervous system, enclosed in the skull. In humans, and mammals more generally, the brain controls both autonomic processes, as well as cognitive processes. The brain (and to a lesser extent, the spinal cord) controls all volitional functions of the body and interprets information from the outside world. Intelligence, memory, emotions, speech, thoughts, movements and creativity are controlled by the brain. The central nervous system also controls autonomic functions and many homeostatic and reflex actions, such as breathing, heart rate, etc.
The human brain consists of the cerebrum, cerebellum, and brainstem. The brainstem includes the midbrain, the pons, and the medulla oblongata. Sometimes the diencephalon, the caudal part of the forebrain, is included.
The brainstem provides the main motor and sensory innervation to the face and neck via the cranial nerves. Of the twelve pairs of cranial nerves, ten pairs come from the brainstem. This is an extremely important part of the brain, as the nerve connections of the motor and sensory systems from the main part of the brain to the rest of the body pass through the brainstem. This includes the corticospinal tract (motor), the posterior column-medial lemniscus pathway (fine touch, vibration sensation, and proprioception), and the spinothalamic tract (pain, temperature, itch, and crude touch). The brainstem also plays an important role in the regulation of cardiac and respiratory function. It also regulates the central nervous system and is pivotal in maintaining consciousness and regulating the sleep cycle. The brainstem has many basic functions including heart rate, breathing, sleeping, and eating.
The function of the skull is to protect delicate brain tissue from injury. The skull consists of eight fused bones: the frontal, 2 parietal, 2 temporal, sphenoid, occipital and ethmoid. The face is formed by 14 paired bones including the maxilla, zygoma, nasal, palatine, lacrimal, inferior nasal conchae, mandible, and vomer. The bony skull is separated from the brain by the dura, a membranous organ, which in turn contains cerebrospinal fluid. The cortical surface of the brain typically is not subject to localized pressure from the skull. The skull therefore imposes a barrier to electrical access to the brain functions, and in a healthy human, breaching the dura to access the brain is highly disfavored. The result is that electrical readings of brain activity are filtered by the dura, the cerebrospinal fluid, the skull, the scalp, skin appendages (e.g., hair), resulting in a loss of potential spatial resolution and amplitude of signals emanating from the brain. While magnetic fields resulting from brain electrical activity are accessible, the spatial resolution using feasible sensors is also limited.
The cerebrum is the largest part of the brain and is composed of right and left hemispheres. It performs higher functions, such as interpreting inputs from the senses, as well as speech, reasoning, emotions, learning, and fine control of movement. The surface of the cerebrum has a folded appearance called the cortex. The human cortex contains about 70% of the nerve cells (neurons) and gives an appearance of gray color (grey matter). Beneath the cortex are long connecting fibers between neurons, called axons, which make up the white matter.
The cerebellum is located behind the cerebrum and brainstem. It coordinates muscle movements, helps to maintain balance and posture. The cerebellum may also be involved in some cognitive functions such as attention and language, as well as in regulating fear and pleasure responses. There is considerable evidence that the cerebellum plays an essential role in some types of motor learning. The tasks where the cerebellum most clearly comes into play are those in which it is necessary to make fine adjustments to the way an action is performed. There is dispute about whether learning takes place within the cerebellum itself, or whether it merely serves to provide signals that promote learning in other brain structures.
The brain communicates with the body through the spinal cord and twelve pairs of cranial nerves. Ten of the twelve pairs of cranial nerves that control hearing, eye movement, facial sensations, taste, swallowing and movement of the face, neck, shoulder and tongue muscles originate in the brainstem. The cranial nerves for smell and vision originate in the cerebrum.
The right and left hemispheres of the brain are joined by a structure consisting of fibers called the corpus callosum. Each hemisphere controls the opposite side of the body. Not all functions of the hemispheres are shared.
The cerebral hemispheres have distinct structures, which divide the brain into lobes. Each hemisphere has four lobes: frontal, temporal, parietal, and occipital. There are very complex relationships between the lobes of the brain and between the right and left hemispheres: Frontal lobes control judgment, planning, problem-solving, behavior, emotions, personality, speech, self-awareness, concentration, intelligence, body movements; Temporal lobes control understanding of language, memory, organization and hearing; Parietal lobes control interpretation of language; input from vision, hearing, sensory, and motor; temperature, pain, tactile signals, memory, spatial and visual perception; and Occipital lobes interpret visual input (movement, light, color).
Neurons
A neuron is a fundamental unit of the nervous system, which comprises the autonomic nervous system and the central nervous system.
Neurons are electrically excitable cells that receive, process, and transmit information, and based on that information sends a signal to other neurons, muscles, or glands through electrical and chemical signals. These signals between neurons occur via specialized connections called synapses. Neurons can connect to each other to form neural networks. The basic purpose of a neuron is to receive incoming information and, based upon that information send a signal to other neurons, muscles, or glands. Neurons are designed to rapidly send signals across physiologically long distances. They do this using electrical signals called nerve impulses or action potentials. When a nerve impulse reaches the end of a neuron, it triggers the release of a chemical, or neurotransmitter. The neurotransmitter travels rapidly across the short gap between cells (the synapse) and acts to signal the adjacent cell. See www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5AVxCuM5a.
Neurons can receive thousands of inputs from other neurons through synapses. Synaptic integration is a mechanism whereby neurons integrate these inputs before the generation of a nerve impulse, or action potential. The ability of synaptic inputs to effect neuronal output is determined by a number of factors:
Size, shape and relative timing of electrical potentials generated by synaptic inputs;
the geometric structure of the target neuron;
the physical location of synaptic inputs within that structure; and
the expression of voltage-gated channels in different regions of the neuronal membrane.
Neurons within a neural network receive information from, and send information to, many other cells, at specialized junctions called synapses. Synaptic integration is the computational process by which an individual neuron processes its synaptic inputs and converts them into an output signal. Synaptic potentials occur when neurotransmitter binds to and opens ligand-operated channels in the dendritic membrane, allowing ions to move into or out of the cell according to their electrochemical gradient. Synaptic potentials can be either excitatory or inhibitory depending on the direction and charge of ion movement. Action potentials occur if the summed synaptic inputs to a neuron reach a threshold level of depolarization and trigger regenerative opening of voltage-gated ion channels. Synaptic potentials are often brief and of small amplitude, therefore summation of inputs in time (temporal summation) or from multiple synaptic inputs (spatial summation) is usually required to reach action potential firing threshold.
There are two types of synapses: electrical synapses and chemical synapses. Electrical synapses are a direct electrical coupling between two cells mediated by gap junctions, which are pores constructed of connexin proteins—essentially result in the passing of a gradient potential (may be depolarizing or hyperpolarizing) between two cells. Electrical synapses are very rapid (no synaptic delay). It is a passive process where signal can degrade with distance and may not produce a large enough depolarization to initiate an action potential in the postsynaptic cell. Electrical synapses are bidirectional, i.e., postsynaptic ell can actually send messages to the “presynaptic cell.
Chemical synapses are a coupling between two cells through neuro-transmitters, ligand or voltage gated channels, receptors. They are influenced by the concentration and types of ions on either side of the membrane. Among the neurotransmitters, Glutamate, sodium, potassium, and calcium are positively charged. GABA and chloride are negatively charged. Neurotransmitter junctions provide an opportunity for pharmacological intervention, and many different drugs, including illicit drugs, act at synapses.
An excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. An electrical charge (hyperpolarization) in the membrane of a postsynaptic neuron is caused by the binding of an inhibitory neurotransmitter from a presynaptic ell to a postsynaptic receptor. It makes it more difficult for a postsynaptic neuron to generate an action potential. An electrical change (depolarization) in the membrane of a postsynaptic neuron caused by the binding of an excitatory neurotransmitter from a presynaptic ell to a postsynaptic receptor. It makes it more likely for a postsynaptic neuron to generate an action potential. In a neuronal synapse that uses glutamate as receptor, for example, receptors open ion channels that are non-selectively permeable to cations. When these glutamate receptors are activated, both Na+ and K+ flow across the postsynaptic membrane. The reversal potential (Erev) for the post-synaptic current is approximately 0 mV. The resting potential of neurons is approximately −60 mV. The resulting EPSP will depolarize the post synaptic membrane potential, bringing it toward 0 mV.
An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential. An example of inhibitory post synaptic s action is a neuronal synapse that uses gamma-Aminobutyric acid (γ-Aminobutyric acid, or GABA) as its transmitter. At such synapses, the GABA receptors typically open channels that are selectively permeable to Cl—. When these channels open, negatively charged chloride ions can flow across the membrane. The postsynaptic neuron has a resting potential of −60 mV and an action potential threshold of −40 mV. Transmitter release at this synapse will inhibit the postsynaptic cell. Since ECl is more negative than the action potential threshold, e.g., −70 mV, it reduces the probability that the postsynaptic ell will fire an action potential.
Some types of neurotransmitters, such as glutamate, consistently result in EPSPs. Others, such as GABA, consistently result in IPSPs. The action potential lasts about one millisecond (1 msec). In contrast, the EPSPs and IPSPs can last as long as 5 to 10 msec. This allows the effect of one postsynaptic potential to build upon the next and so on.
Membrane leakage, and to a lesser extent, potentials per se, can be influenced by external electrical and magnetic fields. These fields may be generated focally, such as through implanted electrodes, or less specifically, such as through transcranial stimulation. Transcranial stimulation may be subthreshold or superthreshold. In the former case, the external stimulation acts to modulate resting membrane potential, making nerves more or less excitable. Such stimulation may be direct current or alternating current. In the latter case, this will tend to synchronize neuron depolarization with the signals. Superthreshold stimulation can be painful (at least because the stimulus directly excites pain neurons) and must be pulsed. Since this has correspondence to electroconvulsive therapy, superthresold transcranial stimulation is sparingly used.
Neural Correlates
A neural correlate of a mental state is an electro-neuro-biological state or the state assumed by some biophysical subsystem of the brain, whose presence necessarily and regularly correlates with such specific mental state. All properties credited to the mind, including consciousness, emotion, and desires are thought to have direct neural correlates. For our purposes, neural correlates of a mental state can be defined as the minimal set of neuronal oscillations that correspond to the given mental state. Neuroscientists use empirical approaches to discover neural correlates of subjective mental states.
Brainwaves
At the root of all our thoughts, emotions and behaviors is the communication between neurons within our brains, a rhythmic or repetitive neural activity in the central nervous system. The oscillation can be produced by a single neuron or by synchronized electrical pulses from ensembles of neurons communicating with each other. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. The synchronized activity of large numbers of neurons produces macroscopic oscillations, which can be observed in an electroencephalogram. They are divided into bandwidths to describe their purported functions or functional relationships. Oscillatory activity in the brain is widely observed at different levels of organization and is thought to play a key role in processing neural information. Numerous experimental studies support a functional role of neural oscillations. A unified interpretation, however, is still not determined. Neural oscillations and synchronization have been linked to many cognitive functions such as information transfer, perception, motor control and memory. Electroencephalographic (EEG) signals are relatively easy and safe to acquire, have a long history of analysis, and can have high dimensionality, e.g., up to 128 or 256 separate recording electrodes. While the information represented in each electrode is not independent of the others, and the noise in the signals high, there is much information available through such signals that has not been fully characterized to date.
Brain waves have been widely studied in neural activity generated by large groups of neurons, mostly by EEG. In general, EEG signals reveal oscillatory activity in specific frequency bands: alpha (7.5-12.5 Hz) that can be detected from the occipital lobe during relaxed wakefulness and which increases when the eyes are closed; delta (1-4 Hz), theta (4-8 Hz), beta (13-30 Hz), low gamma (30-70 Hz), and high gamma (70-150 Hz) frequency bands, where faster rhythms such as gamma activity have been linked to cognitive processing. Neural oscillations of specific characteristics have been linked to cognitive states, such as awareness and consciousness and different sleep stages. It is a useful analogy to think of brainwaves as musical notes. Like in symphony, the higher and lower frequencies link and cohere with each other through harmonics. Oscillatory activity is observed throughout the central nervous system at all levels of organization. The dominant neuro oscillation frequency determines a mental state.
The functions of brain waves are wide-ranging and vary for different types of oscillatory activity. Neural oscillations also play an important role in many neurological disorders.
In standard EEG recording practice, 19 recording electrodes are placed uniformly on the scalp (the International 10-20 System). In addition, one or two reference electrodes (often placed on earlobes) and a ground electrode (often placed on the nose to provide amplifiers with reference voltages) are required. However, additional electrodes may add minimal useful information unless supplemented by computer algorithms to reduce raw EEG data to a manageable form. When large numbers of electrodes are employed, the potential at each location may be measured with respect to the average of all potentials (the common average reference), which often provides a good estimate of potential at infinity. The common average reference is not appropriate when electrode coverage is sparse (perhaps less than 64 electrodes. Dipole localization algorithms may be useful to determine spatial emission patterns in EEG.
Scalp potential may be expressed as a volume integral of dipole moment per unit volume over the entire brain provided P(r,t) is defined generally rather than in columnar terms. For the important case of dominant cortical sources, scalp potential may be approximated by the following integral over the cortical volume Θ, VS(r,t)=∫∫∫ΘG(r,r′)·P(r′,t)dΘ(r′). If the volume element dΘ(r′) is defined in terms of cortical columns, the volume integral may be reduced to an integral over the folded cortical surface. The time-dependence of scalp potential is the weighted sum of all dipole time variations in the brain, although deep dipole volumes typically make negligible contributions. The vector Green's function G(r,r′) contains all geometric and conductive information about the head volume conductor and weights the integral accordingly. Thus, each scalar component of the Green's function is essentially an inverse electrical distance between each source component and scalp location. For the idealized case of sources in an infinite medium of constant conductivity, the electrical distance equals the geometric distance. The Green's function accounts for the tissue's finite spatial extent and its inhomogeneity and anisotropy. The forward problem in EEG consists of choosing a head model to provide G(r,r′) and carrying out the integral for some assumed source distribution. The inverse problem consists of using the recorded scalp potential distribution VS(r,t) plus some constraints (usual assumptions) on P(r,t) to find the best fit source distribution P(r,t). Since the inverse problem has no unique solution, any inverse solution depends critically on the chosen constraints, for example, only one or two isolated sources, distributed sources confined to the cortex, or spatial and temporal smoothness criteria. High-resolution EEG uses the experimental scalp potential VS(r,t) to predict the potential on the dura surface (the unfolded membrane surrounding the cerebral cortex) VD(r,t). This may be accomplished using a head model Green's function G(r,r′) or by estimating the surface Laplacian with either spherical or 3D splines. These two approaches typically provide very similar dura potentials VD(r,t); the estimates of dura potential distribution are unique subject to head model, electrode density, and noise issues.
In an EEG recording system, each electrode is connected to one input of a differential amplifier (one amplifier per pair of electrodes); a common system reference electrode (or synthesized reference) is connected to the other input of each differential amplifier. These amplifiers amplify the voltage between the active electrode and the reference (typically 1,000-100,000 times, or 60-100 dB of voltage gain). The amplified signal is digitized via an analog-to-digital converter, after being passed through an anti-aliasing filter. Analog-to-digital sampling typically occurs at 256-512 Hz in clinical scalp EEG; sampling rates of up to 20 kHz are used in some research applications. The EEG signals can be captured with open source hardware such as OpenBCI, and the signal can be processed by freely available EEG software such as EEGLAB or the Neurophysiological Biomarker Toolbox. A typical adult human EEG signal is about 10 μV to 100 μV in amplitude when measured from the scalp and is about 10-20 mV when measured from subdural electrodes.
Delta is the frequency range up to 4 Hz. It tends to be the highest in amplitude and the slowest waves. It is normally seen in adults in slow-wave sleep. It is also seen normally in babies. It may occur focally with subcortical lesions and in general distribution with diffuse lesions, metabolic encephalopathy hydrocephalus or deep midline lesions. It is usually most prominent frontally in adults (e.g., FIRDA-frontal intermittent rhythmic delta) and posteriorly in children (e.g., OIRDA-occipital intermittent rhythmic delta).
Theta is the frequency range from 4 Hz to 7 Hz. Theta is normally seen in young children. It may be seen in drowsiness or arousal in older children and adults; it can also be seen in meditation. Excess theta for age represents abnormal activity. It can be seen as a focal disturbance in focal subcortical lesions; it can be seen in generalized distribution in diffuse disorder or metabolic encephalopathy or deep midline disorders or some instances of hydrocephalus. On the contrary, this range has been associated with reports of relaxed, meditative, and creative states.
Alpha is the frequency range from 7 Hz to 14 Hz. This was the “posterior basic rhythm” (also called the “posterior dominant rhythm” or the “posterior alpha rhythm”), seen in the posterior regions of the head on both sides, higher in amplitude on the dominant side. It emerges with the closing of the eyes and with relaxation and attenuates with eye opening or mental exertion. The posterior basic rhythm is actually slower than 8 Hz in young children (therefore technically in the theta range). In addition to the posterior basic rhythm, there are other normal alpha rhythms such as the sensorimotor, or mu rhythm (alpha activity in the contralateral sensory and motor cortical areas) that emerges when the hands and arms are idle; and the “third rhythm” (alpha activity in the temporal or frontal lobes). Alpha can be abnormal; for example, an EEG that has diffuse alpha occurring in coma and is not responsive to external stimuli is referred to as “alpha coma.”
Beta is the frequency range from 15 Hz to about 30 Hz. It is usually seen on both sides in symmetrical distribution and is most evident frontally. Beta activity is closely linked to motor behavior and is generally attenuated during active movements. Low-amplitude beta with multiple and varying frequencies is often associated with active, busy or anxious thinking and active concentration. Rhythmic beta with a dominant set of frequencies is associated with various pathologies, such as Dup15q syndrome, and drug effects, especially benzodiazepines. It may be absent or reduced in areas of cortical damage. It is the dominant rhythm in patients who are alert or anxious or who have their eyes open.
Gamma is the frequency range approximately 30-100 Hz. Gamma rhythms are thought to represent binding of different populations of neurons together into a network to carry out a certain cognitive or motor function.
Mu range is 8-13 Hz and partly overlaps with other frequencies. It reflects the synchronous firing of motor neurons in a rest state. Mu suppression is thought to reflect motor mirror neuron systems, because when an action is observed, the pattern extinguishes, possibly because of the normal neuronal system and the mirror neuron system “go out of sync” and interfere with each other. (en.wikipedia.org/wiki/Electroencephalography)
Neurodynamics
Neurodynamics is the mobilization of the nervous system as an approach to physical treatment. The method relies on influencing pain and other neural physiology via mechanical treatment of neural tissues and the non-neural structures surrounding the nervous system. The body presents the nervous system with a mechanical interface via the musculoskeletal system. With movement, the musculoskeletal system exerts non-uniform stresses and movement in neural tissues, depending on the local anatomical and mechanical characteristics and the pattern of body movement. This activates an array of mechanical and physiological responses in neural tissues. These responses include neural sliding, pressurization, elongation, tension and changes in intraneural microcirculation, axonal transport and impulse traffic.
EEG and qEEG
EEG (electroencephalography) and MEG (magnetoencephalography) are available technologies to monitor brain electrical activity. Each generally has sufficient temporal resolution to follow dynamic changes in brain electrical activity. Electroencephalography (EEG) and quantitative electroencephalography (qEEG) are electrophysiological monitoring methods that analyze the electrical activity of the brain to measure and display patterns that correspond to cognitive states and/or diagnostic information. It is typically noninvasive, with the electrodes placed on the scalp, although invasive electrodes are also used in some cases. EEG signals may be captured and analyzed by a mobile device, often referred as “brain wearables”. There are a variety of “brain wearables” readily available on the market today. EEGs can be obtained with a non-invasive method where the aggregate oscillations of brain electric potentials are recorded with numerous electrodes attached to the scalp of a person. Most EEG signals originate in the brain's outer layer (the cerebral cortex), believed largely responsible for our thoughts, emotions, and behavior. Cortical synaptic action generates electrical signals that change in the 10 to 100-millisecond range. Transcutaneous EEG signals are limited by the relatively insulating nature of the skull surrounding the brain, the conductivity of the cerebrospinal fluid and brain tissue, relatively low amplitude of individual cellular electrical activity, and distances between the cellular current flows and the electrodes. EEG is characterized by: (1) Voltage; (2) Frequency; (3) Spatial location; (4) Inter-hemispheric symmetries; (5) Reactivity (reaction to state change); (6) Character of waveform occurrence (random, serial, continuous); and (7) Morphology of transient events. EEGs can be separated into two main categories. Spontaneous EEG which detect brainwaves that occur in the absence of specific sensory stimuli and evoked potentials (EPs) which are associated with sensory stimuli like repeated light flashes, auditory tones, finger pressure or mild electric shocks. The latter is recorded for example by time averaging to remove effects of spontaneous EEG. Non-sensory triggered potentials are also known. EP's typically are time synchronized with the trigger, and thus have an organization principle. Event-related potentials (ERPs) provide evidence of a direct link between cognitive events and brain electrical activity in a wide range of cognitive paradigms. It has generally been held that an ERP is the result of a set of discrete stimulus-evoked brain events. Event-related potentials (ERPs) are recorded in the same way as EPs, but occur at longer latencies from the stimuli and are more associated with an endogenous brain state.
EEG-based studies of emotional specificity at the single-electrode level demonstrated that asymmetric activity at the frontal site, especially in the alpha (8-12 Hz) band, is associated with emotion. Voluntary facial expressions of smiles of enjoyment produce higher left frontal activation. Decreased left frontal activity is observed during the voluntary facial expressions of fear. In addition to alpha band activity, theta band power at the frontal midline (Fm) has also been found to relate to emotional states. Pleasant (as opposed to unpleasant) emotions are associated with an increase in frontal midline theta power. Many studies have sought to utilize pattern classification, such as neural networks, statistical classifiers, clustering algorithms, etc., to differentiate between various emotional states reflected in EEG.
Detecting different emotional states by EEG may be more appropriate using EEG-based functional connectivity. There are various ways to estimate EEG-based functional brain connectivity: correlation, coherence and phase synchronization indices between each pair of EEG electrodes had been used. The assumption is that a higher correlation map indicates a stronger relationship between two signals. Coherence gives information similar to correlation, but also includes the covariation between two signals as a function of frequency. The assumption is that higher correlation indicates a stronger relationship between two signals. Phase synchronization among the neuronal groups estimated based on the phase difference between two signals is another way to estimate the EEG-based functional connectivity among brain areas.
A number of groups have examined emotional specificity using EEG-based functional brain connectivity. When emotional states become more negative at high room temperatures, correlation coefficients between the channels in temporal and occipital sites increase. Coherence decreases in the alpha band during sadness, compared to happiness. EEG coherence between the prefrontal cortex and the posterior cortex increases while viewing highly emotionally arousing (i.e., threatening) images, compared to viewing neutral images. A synchronization index may be applied to detect interaction in different brain sites under different emotional states. Test results showed an overall increase in the synchronization index among frontal channels during emotional stimulation, particularly during negative emotion (i.e., sadness). Furthermore, phase synchronization patterns were found to differ between positive and negative emotions. Sadness was more synchronized than happiness at each frequency band and was associated with a wider synchronization both between the right and left frontal sites and within the left hemisphere. In contrast, happiness was associated with a wider synchronization between the frontal and occipital sites.
Different connectivity indices are sensitive to different characteristics of EEG signals. Correlation is sensitive to phase and polarity, but is independent of amplitudes. Changes in both amplitude and phase lead to a change in coherence. The phase synchronization index is only sensitive to a change in phase. A number of studies have tried to classify emotional states by means of recording and statistically analyzing EEG signals from the central nervous systems.
These emotional states are based on the dimensional theory of emotion, which asserts that there are neutral, positive, and negative emotional states, because numerous studies have suggested that the responses of the central nervous system correlate with emotional valence and arousal. EEG-based functional connectivity change is found to be significantly different among emotional states of neutral, positive, or negative. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis.
To assess a user's state of mind, a computer may be used to analyze the EEG signals produced by the brain of the user. However, the emotional states of a brain are complex, and the brain waves associated with specific emotions seem to change over time. Machine learning may be used to reliably identify the emotional brain states. A set of patterns may be defined that clearly distinguish positive, negative, and neutral emotions.
MEG
Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers. Arrays of SQUIDs (superconducting quantum interference devices) are currently the most common magnetometer, while the SERF (spin exchange relaxation-free) magnetometer is being investigated. MEGs seek to detect the magnetic dipole emission from an electrical discharge in cells, e.g., neural action potentials. Typical sensors for MEGs are superconducting quantum interference devices (SQUIDs). These currently require cooling to liquid nitrogen or liquid helium temperatures and, therefore, are currently suitable only for laboratory environments. However, the development of room temperature, or near room temperature superconductors, and miniature cryocoolers, may permit field deployments and portable or mobile detectors. Because MEGs are less influenced by medium conductivity and dielectric properties, and because they inherently detect the magnetic field vector, MEG technology permits volumetric mapping of brain activity and distinction of complementary activity that might suppress detectable EEG signals. MEG technology also supports vector mapping of fields, since magnetic emitters are inherently dipoles, and therefore a larger amount of information is inherently available.
Functional near infrared spectroscopy (fNIRS)
fNIR is a non-invasive imaging method involving the quantification of chromophore concentration resolved from the measurement of near infrared (NIR) light attenuation or temporal or phasic changes. NIR spectrum light takes advantage of the optical window in which skin, tissue, and bone are mostly transparent to NIR light in the spectrum of 700-900 nm, while hemoglobin (Hb) and deoxygenated-hemoglobin (deoxy-Hb) are stronger absorbers of light. Differences in the absorption spectra of deoxy-Hb and oxy-Hb allow the measurement of relative changes in hemoglobin concentration through the use of light attenuation at multiple wavelengths. Two or more wavelengths are selected, with one wavelength above and one below the isosbestic point of 810 nm at which deoxy-Hb and oxy-Hb have identical absorption coefficients. Using the modified Beer-Lambert law (mBLL), relative concentration can be calculated as a function of total photon path length. Typically the light emitter and detector are placed ipsilaterally on the subjects skull so recorded measurements are due to back-scattered (reflected) light following elliptical pathways. The use of fNIR as a functional imaging method relies on the principle of neuro-vascular coupling also known as the hemodynamic response or blood-oxygen-level dependent (BOLD) response. This principle also forms the core of fMRI techniques. Through neuro-vascular coupling, neuronal activity is linked to related changes in localized cerebral blood flow. fNIR and fMRI are sensitive to similar physiologic changes and are often comparative methods. Studies relating fMRI and fNIR show highly correlated results in cognitive tasks. fNIR has several advantages in cost and portability over fMRI, but cannot be used to measure cortical activity more than 4 cm deep due to limitations in light emitter power and has more limited spatial resolution. fNIR includes the use of diffuse optical tomography (DOT/NIRDOT) for functional purposes. Multiplexing fNIRS channels can allow 2D topographic functional maps of brain activity (e.g. with Hitachi ETG-4000 or Artinis Oxymon) while using multiple emitter spacings may be used to build 3D tomographic maps.
Neuromodulation/Neuroenhancement
Neuromodulation is the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body. It is carried out to normalize—or modulate—nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space (intrathecal drug delivery). Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation. Neuromodulation, whether electrical or magnetic, employs the body's natural biological response by stimulating nerve cell activity that can influence populations of nerves by releasing transmitters, such as dopamine, or other chemical messengers such as the peptide Substance P, that can modulate the excitability and firing patterns of neural circuits. There may also be more direct electrophysiological effects on neural membranes as the mechanism of action of electrical interaction with neural elements. The end effect is a “normalization” of a neural network function from its perturbed state. Presumed mechanisms of action for neurostimulation include depolarizing blockade, stochastic normalization of neural firing, axonal blockade, reduction of neural firing keratosis, and suppression of neural network oscillations. Although the exact mechanisms of neurostimulation are not known, the empirical effectiveness has led to considerable application clinically.
Neuroenhancement refers to the targeted enhancement and extension of cognitive and affective abilities based on an understanding of their underlying neurobiology in healthy persons who do not have any mental illness. As such, it can be thought of as an umbrella term that encompasses pharmacological and non-pharmacological methods of improving cognitive, affective, and motor functionality, as well as the overarching ethico-legal discourse that accompanies these aims. Critically, for any agent to qualify as a neuroenhancer, it must reliably engender substantial cognitive, affective, or motor benefits beyond normal functioning in healthy individuals, whilst causing few side effects: at most at the level of commonly used comparable legal substances or activities, such as caffeine, alcohol, and sleep-deprivation. Pharmacological neuroenhancement agents include the well-validated nootropics, such as racetam, vinpocetine, and phosphatidylserine, as well as other drugs used for treating patients suffering from neurological disorders. Non-pharmacological measures include non-invasive brain stimulation, which has been employed to improve various cognitive and affective functions, and brain-machine interfaces, which hold much potential to extend the repertoire of motor and cognitive actions available to humans.
Brain-to-Brain Interface
A brain-brain interface is a direct communication pathway between the brain of one animal and the brain of another animal. Brain to brain interfaces have been used to help rats collaborate with each other. When a second rat was unable to choose the correct lever, the first rat noticed (not getting a second reward), and produced a round of task-related neuron firing that made the second rat more likely to choose the correct lever. Human studies have also been conducted. In 2013, researcher from the University of Washington were able to use electrical brain recordings and a form of magnetic stimulation to send a brain signal to a recipient, which caused the recipient to hit the fire button on a computer game. In 2015, researchers linked up multiple brains, of both monkeys and rats, to form an “organic computer.” It is hypothesized that by using brain-to-brain interfaces (BTBIs) a biological computer, or brain-net, could be constructed using animal brains as its computational units. Initial exploratory work demonstrated collaboration between rats in distant cages linked by signals from cortical microelectrode arrays implanted in their brains. The rats were rewarded when actions were performed by the “decoding rat” which conformed to incoming signals and when signals were transmitted by the “encoding rat” which resulted in the desired action. In the initial experiment the rewarded action was pushing a lever in the remote location corresponding to the position of a lever near a lighted LED at the home location. About a month was required for the rats to acclimate themselves to incoming “brainwaves.”
Brain-to-Computer Interface
A brain-computer interface (BCI), sometimes called a neural-control interface (NCI), mind-machine interface (MMI), direct neural interface (DNI), or brain-machine interface (BMI), is a direct communication pathway between an enhanced or wired brain and an external device. BCl differs from neuromodulation in that it allows for bidirectional information flow. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions.
Brain Entrainment
Brainwave entrainment, also referred to as brainwave synchronization and neural entrainment, refers to the capacity of the brain to naturally synchronize its brainwave frequencies with the rhythm of periodic external stimuli, most commonly auditory, visual, or tactile. It is hypothesized that listening to these beats of certain frequencies one can induce a desired state of consciousness that corresponds with specific neural activity. It is widely accepted that patterns of neural firing, measured in Hz, correspond with states of alertness such as focused attention, deep sleep, etc.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli. The functional role of neural oscillations is still not fully understood; however, they have been shown to correlate with emotional responses, motor control, and a number of cognitive functions including information transfer, perception, and memory. Specifically, neural oscillations, in particular theta activity, are extensively linked to memory function, and coupling between theta and gamma activity is considered to be vital for memory functions, including episodic memory. Electroencephalography (EEG) has been most widely used in the study of neural activity generated by large groups of neurons, known as neural ensembles, including investigations of the changes that occur in electroencephalographic profiles during cycles of sleep and wakefulness. EEG signals change dramatically during sleep and show a transition from faster frequencies to increasingly slower frequencies, indicating a relationship between the frequency of neural oscillations and cognitive states including awareness and consciousness.
The term ‘entrainment’ has been used to describe a shared tendency of many physical and biological systems to synchronize their periodicity and rhythm through interaction. This tendency has been identified as specifically pertinent to the study of sound and music generally, and acoustic rhythms specifically. The most ubiquitous and familiar examples of neuromotor entrainment to acoustic stimuli is observable in spontaneous foot or finger tapping to the rhythmic beat of a song. Exogenous rhythmic entrainment, which occurs outside the body, has been identified and documented for a variety of human activities, which include the way people adjust the rhythm of their speech patterns to those of the subject with whom they communicate, and the rhythmic unison of an audience clapping. Even among groups of strangers, the rate of breathing, locomotive and subtle expressive motor movements, and rhythmic speech patterns have been observed to synchronize and entrain, in response to an auditory stimulus, such as a piece of music with a consistent rhythm. Furthermore, motor synchronization to repetitive tactile stimuli occurs in animals, including cats and monkeys as well as humans, with accompanying shifts in electroencephalogram (EEG) readings. Examples of endogenous entrainment, which occurs within the body, include the synchronizing of human circadian sleep-wake cycles to the 24-hour cycle of light and dark. and the synchronization of a heartbeat to a cardiac pacemaker.
Brainwaves, or neural oscillations, share the fundamental constituents with acoustic and optical waves, including frequency, amplitude and periodicity. The synchronous electrical activity of cortical neural ensembles can synchronize in response to external acoustic or optical stimuli and also entrain or synchronize their frequency and phase to that of a specific stimulus. Brainwave entrainment is a colloquialism for such ‘neural entrainment’, which is a term used to denote the way in which the aggregate frequency of oscillations produced by the synchronous electrical activity in ensembles of cortical neurons can adjust to synchronize with the periodic vibration of an external stimuli, such as a sustained acoustic frequency perceived as pitch, a regularly repeating pattern of intermittent sounds, perceived as rhythm, or of a regularly rhythmically intermittent flashing light.
Changes in neural oscillations, demonstrable through electroencephalogram (EEG) measurements, are precipitated by listening to music, which can modulate autonomic arousal ergotropically and trophotropically, increasing and decreasing arousal respectively. Musical auditory stimulation has also been demonstrated to improve immune function, facilitate relaxation, improve mood, and contribute to the alleviation of stress.
The Frequency following response (FFR), also referred to as Frequency Following Potential (FFP), is a specific response to hearing sound and music, by which neural oscillations adjust their frequency to match the rhythm of auditory stimuli. The use of sound with intent to influence cortical brainwave frequency is called auditory driving, by which frequency of neural oscillation is ‘driven’ to entrain with that of the rhythm of a sound source.
Neurofeedback
Neurofeedback (NFB), also called neurotherapy or neurobiofeedback, is a type of biofeedback that uses real-time displays of brain activity—most commonly electroencephalography (EEG), to teach self-regulation of brain function. Typically, sensors are placed on the scalp to measure activity, with measurements displayed using video displays or sound. The feedback may be in various other forms as well. Typically, the feedback is sought to be presented through primary sensory inputs, but this is not a limitation on the technique.
The applications of neurofeedback to enhance performance extend to the arts in fields such as music, dance, and acting. A study with conservatoire musicians found that alpha-theta training benefitted the three music domains of musicality, communication, and technique. Historically, alpha-theta training, a form of neurofeedback, was created to assist creativity by inducing hypnagogia, a “borderline waking state associated with creative insights”, through facilitation of neural connectivity. Alpha-theta training has also been shown to improve novice singing in children. Alpha-theta neurofeedback, in conjunction with heart rate variability training, a form of biofeedback, has also produced benefits in dance by enhancing performance in competitive ballroom dancing and increasing cognitive creativity in contemporary dancers. Additionally, neurofeedback has also been shown to instill a superior flow state in actors, possibly due to greater immersion while performing.
Transcranial Stimulation
Non-invasive brain stimulation (NIBS) bypasses the correlative approaches of other imaging techniques, making it possible to establish a causal relationship between cognitive processes and the functioning of specific brain areas. NIBS can provide information about where a particular process occurs. NIBS offers the opportunity to study brain mechanisms beyond process localization, providing information about when activity in a given brain region is involved in a cognitive process, and even how it is involved. When using NIBS to explore cognitive processes, it is important to understand not only how NIBS functions but also the functioning of the neural structures themselves. Non-invasive brain stimulation (NIBS) methods, which include transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES), are used in cognitive neuroscience to induce transient changes in brain activity and thereby alter the behavior of the subject. The application of NIBS aims at establishing the role of a given cortical area in an ongoing specific motor, perceptual or cognitive process. Physically, NIBS techniques affect neuronal states through different mechanisms. In TMS, a solenoid (coil) is used to deliver a strong and transient magnetic field, or “pulse,” to induce a transitory electric current at the cortical surface beneath the coil. The pulse causes the rapid and above-threshold depolarization of cell membranes affected by the current, followed by the transynaptic depolarization or hyperpolarization of interconnected neurons. Therefore, TMS induces a current that elicits action potentials in neurons. A complex set of coils can deliver a complex 3D excitation field. By contrast, in tES techniques, the stimulation involves the application of weak electrical currents directly to the scalp through a pair of electrodes. As a result, tES induces a subthreshold polarization of cortical neurons that is too weak to generate an action potential. However, by changing the intrinsic neuronal excitability, tES can induce changes in the resting membrane potential and the postsynaptic activity of cortical neurons. This, in turn, can alter the spontaneous firing rate of neurons and modulate their response to afferent signals, leading to changes in synaptic efficacy. The typical application of NIBS involves different types of protocols: TMS can be delivered as a single pulse (spTMS) at a precise time, as pairs of pulses separated by a variable interval, or as a series of stimuli in conventional or patterned protocols of repetitive TMS (rTMS). In tES, different protocols are established by the electrical current used and by its polarity, which can be direct (anodal or cathodal transcranial direct current stimulation: tDCS), alternating at a fixed frequency (transcranial alternating current stimulation: tACS) or at random frequencies (transcranial random noise stimulation: tRNS). In general, the final effects of NIBS on the central nervous system depend on a lengthy list of parameters (e.g., frequency, temporal characteristics, intensity, geometric configuration of the coil/electrode, current direction), when it is delivered before (off-line) or during (on-line) the task as part of the experimental procedure. In addition, these factors interact with several variables related to the anatomy (e.g., properties of the brain tissue and its location), as well as physiological (e.g., gender and age) and cognitive states of the stimulated area/subject. The entrainment hypothesis, suggests the possibility of inducing a particular oscillation frequency in the brain using an external oscillatory force (e.g., rTMS, but also tACS). The physiological basis of oscillatory cortical activity lies in the timing of the interacting neurons; when groups of neurons synchronize their firing activities, brain rhythms emerge, network oscillations are generated, and the basis for interactions between brain areas may develop. Because of the variety of experimental protocols for brain stimulation, limits on descriptions of the actual protocols employed, and limited controls, consistency of reported studies is lacking, and extrapolability is limited. Thus, while there is various consensus in various aspects of the effects of extra cranial brain stimulation, the results achieved have a degree of uncertainty dependent on details of implementation. On the other hand, within a specific experimental protocol, it is possible to obtain statistically significant and repeatable results. This implies that feedback control might be effective to control implementation of the stimulation for a given purpose; however, studies that employ feedback control are lacking.
Changes in the neuronal threshold result from changes in membrane permeability, which influence the response of the task-related network. The same mechanism of action may be responsible for both tES methods and TMS, i.e., the induction of noise in the system. However, the neural activity induced by tES will be highly influenced by the state of the system because it is a neuromodulatory method, and its effect will depend on the activity of the stimulated area. Therefore, the final result will depend strongly on the task characteristics, the system state and the way in which tES will interact with such a state. In TMS, the magnetic pulse causes the rapid and above-threshold depolarization of cell membranes affected by the current, leading to the trans-synaptic depolarization or hyperpolarization of connected cortical neurons. Therefore, TMS activates a neural population that, depending on several factors, can be congruent (facilitate) or incongruent (inhibit) with task execution. tES induces a polarization of cortical neurons at a subthreshold level that is too weak to evoke an action potential. However, by inducing a polarity shift in the intrinsic neuronal excitability, tES can alter the spontaneous firing rate of neurons and modulate the response to afferent signals. In this sense, tES-induced effects are even more bound to the state of the stimulated area that is determined by the emotion conditions. In short, NIBS leads to a stimulation-induced modulation of mood that can be substantially defined as noise induction. Induced noise will not be just random activity, but will depend on the interaction of many parameters, from the characteristics of the stimulation to the emotion. The noise induced by NIBS will be influenced by the state of the neural population of the stimulated area. Although the types and number of neurons “triggered” by NIBS are theoretically random, the induced change in neuronal activity is likely to be correlated with ongoing emotion-relevant activity, yet even if we are referring to a non-deterministic process, the noise introduced will not be a totally random element. Because it will be partially determined by the experimental variables, the level of noise that will be introduced by the stimulation and by the emotion can be estimated, as well as the interaction between the two levels of noise (stimulation and emotion). Known transcranial stimulation does not permit stimulation with a focused and highly targeted signal to a clearly defined area of the brain to establish a unique brain-behavior relationship; therefore, the known introduced stimulus activity in the brain stimulation is ‘noise.’
Transcranial Direct Current Stimulation (tDCS) tDCS.
Cranial electrotherapy stimulation (CES) is a form of non-invasive brain stimulation that applies a small, pulsed electric current across a person's head to treat a variety of conditions such as anxiety, depression and insomnia. See, en.wikipedia.org/wiki/Cranial electrotherapy stimulation. Transcranial direct current stimulation (tDCS) is a form of neurostimulation that uses constant, low current delivered to the brain area of interest via electrodes on the scalp. It was originally developed to help patients with brain injuries or psychiatric conditions like major depressive disorder. tDCS appears to have some potential for treating depression. See, en.wikipedia.org/wiki/Transcranial_direct-current_stimulation.
tES (tDCS, tACS, and tRNS) is a noninvasive method of cortical stimulation, using weak direct currents to polarize target brain regions. The most used and best-known method is tDCS, as all considerations for the use of tDCS have been extended to the other tES methods. The hypotheses concerning the application of tDCS in cognition are very similar to those of TMS, with the exception that tDCS was never considered a virtual lesion method. tDCS can increase or decrease cortical excitability in the stimulated brain regions and facilitate or inhibit behavior accordingly. tES does not induce action potentials but instead modulates the neuronal response threshold so that it can be defined as subthreshold stimulation.
High-Definition-tDCS
High-Definition transcranial Direct Current Stimulation (HD-tDCS) was invented at The City University of New York with the introduction of the 4×1 HD-tDCS montage. The 4×1 HD-tDCS montage allows precise targeting of cortical structures. The region of current flow is circumscribed by the area of the 4× ring, such that decreasing ring radius increases focality. 4×1 HD-tDCS allows for unifocal stimulation, meaning the polarity of the center 1× electrode will determine the direction of neuromodulation under the ring. This is in contrast to conventional tDCS where the need for one anode and one cathode always produces bidirectional modulation (even when an extra-cephalic electrode is used). 4×1 HD-tDCS thus provides the ability not only to select a cortical brain region to target, but to modulate the excitability of that brain region with a designed polarity without having to consider return counter-electrode flow.
Transcranial Alternative Current Stimulation (tACS)
Transcranial alternating current stimulation (tACS) is a noninvasive means by which alternating electrical current applied through the skin and skull entrains in a frequency-specific fashion the neural oscillations of the underlying brain. See, en.wikipedia.org/wiki/Transcranial_alternating_current_stimulation.
Transcranial Magnetic Stimulation (TMS)
Transcranial magnetic stimulation (TMS) is a method in which a changing magnetic field is used to cause electric current to flow in a small region of the brain via electromagnetic induction. During a TMS procedure, a magnetic field generator, or “coil”, is placed near the head of the person receiving the treatment. The coil is connected to a pulse generator, or stimulator, that delivers a changing electric current to the coil. TMS is used diagnostically to measure the connection between the central nervous system and skeletal muscle to evaluate damage in a wide variety of disease states, including stroke, multiple sclerosis, amyotrophic lateral sclerosis, movement disorders, and motor neuron diseases. Evidence is available suggesting that TMS is useful in treating neuropathic pain, major depressive disorder, and other conditions.
Low Energy Neurofeedback System (LENS)
The LENS, or Low Energy Neurofeedback System, uses a very low power electromagnetic field, to carry feedback to the person receiving it. The feedback travels down the same wires carrying the brain waves to the amplifier and computer. Although the feedback signal is weak, it produces a measurable change in the brainwaves without conscious effort from the individual receiving the feedback. The system is software controlled, to receive input from EEG electrodes, to control the stimulation through the scalp. Neurofeedback uses a feedback frequency that is different from, but correlates with, the dominant brainwave frequency. When exposed to this feedback frequency, the EEG amplitude distribution changes in power. Most of the time the brain waves reduce in power; but at times they also increase in power. In either case the result is a changed brainwave state, and much greater ability for the brain to regulate itself.
Binaural Beats
Binaural beats are auditory brainstem responses which originate in the superior olivary nucleus of each hemisphere. They result from the interaction of two different auditory impulses, originating in opposite ears, below 1000 Hz and which differ in frequency between one and 30 Hz. For example, if a pure tone of 400 Hz is presented to the right ear and a pure tone of 410 Hz is presented simultaneously to the left ear, an amplitude modulated standing wave of 10 Hz, the difference between the two tones, is experienced as the two wave-forms mesh in and out of phase within the superior olivary nuclei. This binaural beat is not heard in the ordinary sense of the word (the human range of hearing is from 20-20,000 Hz). It is perceived as an auditory beat and theoretically can be used to entrain specific neural rhythms through the frequency-following response (FFR)—the tendency for cortical potentials to entrain to or resonate at the frequency of an external stimulus. Thus, it is theoretically possible to utilize a specific binaural-beat frequency as a consciousness management technique to entrain a specific cortical rhythm. The binaural-beat appears to be associated with an electroencephalographic (EEG) frequency-following response in the brain.
Uses of audio with embedded binaural beats that are mixed with music or various pink or background sound are diverse. They range from relaxation, meditation, stress reduction, pain management, improved sleep quality, decrease in sleep requirements, super learning, enhanced creativity and intuition, remote viewing, telepathy, and out-of-body experience and lucid dreaming. Audio embedded with binaural beats is often combined with various meditation techniques, as well as positive affirmations and visualization.
When signals of two different frequencies are presented, one to each ear, the brain detects phase differences between these signals. “Under natural circumstances a detected phase difference would provide directional information. The brain processes this anomalous information differently when these phase differences are heard with stereo headphones or speakers. A perceptual integration of the two signals takes place, producing the sensation of a third “beat” frequency. The difference between the signals waxes and wanes as the two different input frequencies mesh in and out of phase. As a result of these constantly increasing and decreasing differences, an amplitude-modulated standing wave—the binaural beat—is heard. The binaural beat is perceived as a fluctuating rhythm at the frequency of the difference between the two auditory inputs. Evidence suggests that the binaural beats are generated in the brainstem's superior olivary nucleus, the first site of contralateral integration in the auditory system. Studies also suggest that the frequency-following response originates from the inferior colliculus. This activity is conducted to the cortex where it can be recorded by scalp electrodes. Binaural beats can easily be heard at the low frequencies (<30 Hz) that are characteristic of the EEG spectrum.
Synchronized brain waves have long been associated with meditative and hypnogogic states, and audio with embedded binaural beats has the ability to induce and improve such states of consciousness. The reason for this is physiological. Each ear is “hardwired” (so to speak) to both hemispheres of the brain. Each hemisphere has its own olivary nucleus (sound-processing center) which receives signals from each ear. In keeping with this physiological structure, when a binaural beat is perceived there are actually two standing waves of equal amplitude and frequency present, one in each hemisphere. So, there are two separate standing waves entraining portions of each hemisphere to the same frequency. The binaural beats appear to contribute to the hemispheric synchronization evidenced in meditative and hypnogogic states of consciousness. Brain function is also enhanced through the increase of cross-collosal communication between the left and right hemispheres of the brain.
Isochronic Tones
Isochronic tones are regular beats of a single tone that are used alongside monaural beats and binaural beats in the process called brainwave entrainment. At its simplest level, an isochronic tone is a tone that is being turned on and off rapidly. They create sharp, distinctive pulses of sound.
Light Stimulation
The functional relevance of brain oscillations in the alpha frequency range (8-13 Hz) has been repeatedly investigated through the use of rhythmic visual stimulation. There are two hypotheses on the origin of steady-state visual evoked potential (SSVEP) measured in EEG during rhythmic stimulation: entrainment of brain oscillations and superposition of event-related responses (ERPs). The entrainment but not the superposition hypothesis justifies rhythmic visual stimulation as a means to manipulate brain oscillations, because superposition assumes a linear summation of single responses, independent from ongoing brain oscillations. Participants stimulated with rhythmic flickering light of different frequencies and intensities, and entrainment was measured by comparing the phase coupling of brain oscillations stimulated by rhythmic visual flicker with the oscillations induced by arrhythmic littered stimulation, varying the time, stimulation frequency, and intensity conditions. Phase coupling was found to be more pronounced with increasing stimulation intensity as well as at stimulation frequencies closer to each participant's intrinsic frequency. Even in a single sequence of an SSVEP, non-linear features (intermittency of phase locking) were found that contradict the linear summation of single responses, as assumed by the superposition hypothesis. Thus, evidence suggests that visual rhythmic stimulation entrains brain oscillations, validating the approach of rhythmic stimulation as a manipulation of brain oscillations. See, Notbohm A, Kurths J, Herrmann C S, Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses, Front Hum Neurosci. 2016 February 3; 10:10. doi: 10.3389/fnhum.2016.00010. eCollection 2016.
It is also known that periodic visual stimulation can trigger epileptic seizures.
Principal Component Analysis
Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. If there are n observations with p variables, then the number of distinct principal components is min(n−1,p). This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the original variables. PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can be thought of as revealing the internal structure of the data in a way that best explains the variance in the data. If a multivariate dataset is visualized as a set of coordinates in a high-dimensional data space (1 axis per variable), PCA can supply the user with a lower-dimensional picture, a projection of this object when viewed from its most informative viewpoint. This is done by using only the first few principal components so that the dimensionality of the transformed data is reduced. PCA is closely related to factor analysis. Factor analysis typically incorporates more domain specific assumptions about the underlying structure and solves eigenvectors of a slightly different matrix. PCA is also related to canonical correlation analysis (CCA). CCA defines coordinate systems that optimally describe the cross-covariance between two datasets while PCA defines a new orthogonal coordinate system that optimally describes variance in a single dataset. See, en.wikipedia.org/wiki/Principal_component_analysis
A general model for confirmatory factor analysis is expressed as x=α+κξ+ε. The covariance matrix is expressed as E[(x−μ)(x−μ)′]=ΛΦΛ′+Θ. If residual covariance matrix Θ=0 and correlation matrix among latent factors Φ=I, then factor analysis is equivalent to principal component analysis and the resulting covariance matrix is simplified to Σ=ΛΛ′. When there are p number of variables and all p components (or factors) are extracted, this covariance matrix can alternatively be expressed into Σ=DΛD′, or Σ=ΔDAD′, where D=n×p orthogonal matrix of eigenvectors, and Λ=λA, p×p matrix of eigenvalues, where λ is a scalar and A is a diagonal matrix whose elements are proportional to the eigenvalues of Σ. The following three components determine the geometric features of the observed data: λ parameterizes the volume of the observation, D indicates the orientation, and A represents the shape of the observation.
When population heterogeneity is explicitly hypothesized as in model-based cluster analysis, the observed covariance matrix is decomposed into the following general form
Σk=λkDkAkDkT,
where λk parameterizes the volume of the kth cluster, Dk indicates the orientation of that cluster, and Ak represents the shape of that cluster. The subscript k indicates that each component (or cluster) can have different volume, shape, and orientation.
Assume a random vector X, taking values in m, has a mean and covariance matrix of μX and ΣX, respectively. λ1>λ2> . . . λm>0 are ordered eigenvalues of ΣX, such that the i-th eigenvalue of ΣX means the i-th largest of them. Similarly, a vector αi is the i-th eigenvector of ΣX when it corresponds to the i-th eigenvalue of ΣX. To derive the form of principal components (PCs), consider the optimization problem of maximizing var[α1T X]=α1T ΣX α1, subject to α1T α1=1. The Lagrange multiplier method is used to solve this question.
Because −ϕ1 is the eigenvalue of ΣX, with α1 being the corresponding normalized eigenvector, var[α1T X] is maximized by choosing α1 to be the first eigenvector of ΣX. In this case, z1=α1T X is named the first PC of X, α1 is the vector of coefficients for z1, and var(z1)=λ1.
To find the second PC, z2=α2T X, we need to maximize var[α2T X]=α2T ΣX α2 subject to z2 being uncorrelated with z1. Because cov(α1T X,α2T X)=0⇒α1T ΣX α2=0⇒α1T α2=0, this problem is equivalently set as maximizing α2T ΣX α2, subject to α1T α2=0, and α2T α2=1. We still make use of the Lagrange multiplier method.
Because −ϕ2 is the eigenvalue of ΣX, with α2 being the corresponding normalized eigenvector, var[α2T X] is maximized by choosing α2 to be the second eigenvector of ΣX. In this case, z2=α2T X is named the second PC of X, α2 is the vector of coefficients for z2, and var(z2)=λ2. Continuing in this way, it can be shown that the i-th PC zi=αiT X is constructed by selecting αi to be the i-th eigenvector of ΣX, and has variance of λi. The key result in regards to PCA is that the principal components are the only set of linear functions of original data that are uncorrelated and have orthogonal vectors of coefficients.
For any positive integer p≤m, let B=[β1, β2, . . . , βp] be an real m×p matrix with orthonormal columns, i.e., βiT βj=δij, and Y=BT X. Then the trace of covariance matrix of Y is maximized by taking B=[α1, α2, . . . , αp], where αi is the i-th eigenvector of ΣX. Because ΣX is symmetric with all distinct eigenvalues, so {α1, α2, . . . , αm} is an orthonormal basis with αi being the i-th eigenvector of ΣX, and we can represent the columns of B as
i=1, . . . , p, So we have B=PC, where P=[α1, . . . , αm], C={cij} is an m×p matrix. Then, PT ΣX P=Λ, with Λ being a diagonal matrix whose k-th diagonal element is λk, and the covariance matrix of Y is, ΣY=BT ΣX B=CT PT ΣX PC=CT ΛC=λ1c1c1T+ . . . +λmcmcmT, where ciT is the i-th row of C. So,
Because CT C=BT PPT B=BT B=I, so
and the columns of C are orthonormal. By the Gram-Schmidt method, C can expand to D, such that D has its columns as an orthonormal basis of m and contains C as its first P columns. D is square shape, thus being an orthogonal matrix and having its rows as another orthonormal basis of
m. One row of C is a part of one row of D, so
i=1, . . . , m. Considering the constraints
and the objective
We derive that trace(ΣY) is maximized if
for i=1, . . . p, and
for i=p+1, . . . , m. When B=[α1, α2, . . . , αp], straightforward calculation yields that C is an all-zero matrix except cii=1, i=1, . . . , p. This fulfills the maximization condition. Actually, by taking B=[γ1, γ2, . . . , γp], where {γ1, γ2, . . . , γp} is any orthonormal basis of the subspace of span {α1, α2, . . . , αp}, the maximization condition is also satisfied, thus yielding the same trace of covariance matrix of Y.
Suppose that we wish to approximate the random vector X by its projection onto a subspace spanned by columns of B, where B=[β1, β2, . . . , βp] is a real m×p matrix with orthonormal columns, i.e., βiT βj=δij. If σi2 is the residual variance for each component of X, then
is minimized if B=[α1, α2, . . . , αp], where {α1, α2, . . . , αp} are the first P eigenvectors of ΣX. In other words, the trace of covariance matrix of X−BBT X is minimized if B=[α1, α2, . . . , αp]. When E(X)=0, which is a commonly applied preprocessing step in data analysis methods, this property is saying that E∥X−BBT X∥2 is minimized if B=[α1, α2, . . . , αp].
The projection of a random vector X onto a subspace spanned by columns of B is {circumflex over (X)}=BBT X. Then the residual vector is ε=X−BBT X, which has a covariance matrix Σε=(I−BBT)ΣX(I−BBT). Then,
Also, we know
trace(ΣXBBT)=trace(BBTΣX)=trace(BTΣXB)
trace(BBTΣXBBT)=trace(BTΣXBBTB)=trace(BTΣXB).
The last equation comes from the fact that B has orthonormal columns. So,
To minimize
it suffices to maximize trace(BT ΣX B). This can be done by choosing B=[α1, α2, . . . , αp], where {α1, α2, . . . , αp} are the first P eigenvectors of ΣX, as above.
See, Pietro Amenta, Luigi D'Ambra, “Generalized Constrained Principal Component Analysis with External Information,” (2000). We assume that data on K sets of explanatory variables and S criterion variables of n statistical units are collected in matrices Xk (k=1, . . . , K) and Ys (s=1, . . . , S) of orders (n×p1), . . . , (n×pK) and (n×q1), . . . , (n×qS), respectively. We suppose, without loss of generality, identity matrices for the metrics of the spaces of variables of Xk and Ys with Dn=diag(1/n), weight matrix of statistical units. We assume, moreover, that Xk's and Ys's are centered as to the weights Dn.
Let X=[X1| . . . |XK] and Y=[Y1| . . . |YS], respectively, be K and S matrices column linked of orders (n×Σk pk) and (n×Σsqs). Let be, also, WY=YY′ while we denote vk the coefficients vector (pk, 1) of the linear combination for each Xk such that zk=Xkvk. Let Ck be the matrix of dimension pk×m (m≤pk), associated to the external information explanatory variables of set k.
Generalized CPCA (GCPCA) (Amenta, D'Ambra, 1999) with external information consists in seeking for K coefficients vectors vk (or, in same way, K linear combinations zk) subject to the restriction C′kvk=0 simultaneously, such that:
or, in equivalent way,
where A=Y′X, B=diag(X′1X1, . . . , X′KXK), C′=[C′1| . . . |C′k], v′=(v1′| . . . |vk′) and f=B0.5 v, with
The constrained maximum problem (1) turns out to be an extension of criterion supΣzi, zk
(Sabatier, 1993) with more sets of criterion variables with external information. The solution of this constrained maximum problem leads to solve the eigen-equation
(PX−PXB
where g=Xv, PX−PXBn
n=Im(PX−PXB
with PX
(PX
(which is obtained from the expression I−PC)X′WYg=λBv) the coefficients vectors vk and the linear combinations zk=Xkvk maximizing (1) can be given by the relations
respectively.
The solution eigenvector gun be written, according to (2) and (3), as sum of the linear combinations zk:g=Σk Xk vk. Notice that the eigenvalues associated to the eigen-system (2) are, according to the Sturm theorem, lower or equal than those of GCPCA eigen-system: Σk=1KPX
Spatial Principal Component Analysis
We introduce the following notation. Let J(t, i; α,s) be the current density in voxel i, as estimated by LORETA, in condition α at t time-frames after stimulus onset for subject s. Let area:Voxel→fBA be a function, which assigns to each voxel i∈Voxel the corresponding fBA b∈fBA. In a first pre-processing step, we calculate for each subject s the value of the current density averaged over each Fba
where Nb is the number of voxels in the fBA b, in condition α for subject s.
In the second analysis stage, the mean current density x(t,b;α,s) from each fBA b, for every subject s and condition α, was subjected to spatial PCA analysis of the correlation matrix and varimax rotation
In the present study the spatial PCA uses the above-defined fBAs as variables sampled along the time epoch for which EEG has been sampled (0-1000 ms; 512 time-frames), and the inverse solution was estimated. Spatial matrices (each matrix was sized b xt=36×512 elements) for every subject and condition were collected, and subjected to PCA analyses, including the calculation of the covariance matrix; eigenvalue decomposition and varimax rotation, in order to maximize factor loadings. In other words, in the spatial PCA analysis we approximate the mean current density for each subject in each condition as
where here x(t;α,s)∈R36 is a vector, which denotes the time-dependent activation of the fBAs, x0(α,s) is their mean activation, and xk(α,s) and ck are the principal components and their corresponding coefficients (factor loadings) as computed using the principal component analysis.
EEG analysis approaches have emerged, in which event-related changes in EEG dynamics in single event-related data records are analyzed. See Allen D. Malony et al., Computational Neuroinformatics for Integrated Electromagnetic Neuroimaging and Analysis, PAR-99-138. Pfurtscheller, reported a method for quantifying the average transient suppression of alpha band (circa 10-Hz) activity following stimulation. Event-related desynchronization (ERD, spectral amplitude decreases), and event-related synchronization (ERS, spectral amplitude increases) are observed in a variety of narrow frequency bands (4-40 Hz) which are systematically dependent on task and cognitive state variables as well as on stimulus parameters. Makeig (1993) reported event-related changes in the full EEG spectrum, yielding a 2-D time/frequency measure he called the event-related spectral perturbation (ERSP). This method avoided problems associated with analysis of a priori narrow frequency bands, since bands of interest for the analysis could be based on significant features of the complete time/frequency transform. Rappelsburger et al. introduced event-related coherence (ERCOH).
A wide variety of other signal processing measures have been tested for use on EEG and/or MEG data, including dimensionality measures based on chaos theory and the bispectrum. Use of neural networks has also been proposed for EEG pattern recognition applied to clinical and practical problems, though usually these methods have not been employed with an aim of explicitly modeling the neurodynamics involved.
The availability of and interest in larger and larger numbers of EEG (and MEG) channels led immediately to the question of how to combine data from different channels. Donchin advocated the use of linear factor analysis methods based on principal component analysis (PCA) for this purpose. Temporal PCA assumes that the time course of activation of each derived component is the same in all data conditions. Because this is unreasonable for many data sets, spatial PCA (usually followed by a component rotation procedure such as Varimax or Promax) is of potentially greater interest. To this end, several variants of PCA have been proposed for ERP decomposition.
Bell and Sejnowski published an iterative algorithm based on information theory for decomposing linearly mixed signals into temporally independent by minimizing their mutual information. First approaches to blind source separation minimized third and fourth-order correlations among the observed variables and achieved limited success in simulations. A generalized approach uses a simple neural network algorithm that used joint information maximization or ‘infomax’ as a training criterion. By using a compressive nonlinearity to transform the data and then following the entropy gradient of the resulting mixtures, ten recorded voice and music sound sources were unmixed. A similar approach was used for performing blind deconvolution, and the ‘infomax’ method was used for decomposition of visual scenes.
The first applications of blind decomposition to biomechcal time series analysis applied the infomax independent component analysis (ICA) algorithm to decomposition of EEG and event-related potential (ERP) data and reported the use of ICA to monitor alertness. This separated artifacts, and EEG data into constituent components defined by spatial stability and temporal independence. ICA can also be used to remove artifacts from continuous or event-related (single-trial) EEG data prior to averaging. Vigario et al. (1997), using a different ICA algorithm, supported the use of ICA for identifying artifacts in MEG data. Meanwhile, widespread interest in ICA has led to multiple applications to biomechcal data as well as to other fields (Jung et al., 2000b). Most relevant to EEG/MEG analysis, ICA is effective in separating functionally independent components of functional magnetic resonance imaging (fMRI) data
Since the publication of the original infomax ICA algorithm, several extensions have been proposed. Incorporation of a ‘natural gradient’ term avoided matrix inversions, greatly speeding the convergence of the algorithm and making it practical for use with personal computers on large data EEG and fMRI data sets. An initial ‘sphering’ step further increased the reliability of convergence of the algorithm. The original algorithm assumed that sources have ‘sparse’ (super-Gaussian) distributions of activation values. This restriction has recently been relaxed in an ‘extended-ICA’ algorithm that allows both super-Gaussian and sub-Gaussian sources to be identified. A number of variant ICA algorithms have appeared in the signal processing literature. In general, these make more specific assumptions about the temporal or spatial structure of the components to be separated, and typically are more computationally intensive than the infomax algorithm.
Since individual electrodes (or magnetic sensors) each record a mixture of brain and non-brain sources, spectral measures are difficult to interpret and compare across scalp channels. For example, an increase in coherence between two electrode signals may reflect the activation of a strong brain source projecting to both electrodes, or the deactivation of a brain generator projecting mainly to one of the electrodes. If independent components of the EEG (or MEG) data can be considered to measure activity within functionally distinct brain networks, however, event-related coherence between independent components may reveal transient, event-related changes in their coupling and decoupling (at one or more EEG/MEG frequencies). ERCOH analysis has been applied to independent EEG components in a selective attention task.
Nonlinear Dimensionality Reduction
High-dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lie on an embedded non-linear manifold within the higher-dimensional space. If the manifold is of low enough dimension, the data can be visualized in the low-dimensional space. Non-linear methods can be broadly classified into two groups: those that provide a mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa), and those that just give a visualization. In the context of machine learning, mapping methods may be viewed as a preliminary feature extraction step, after which pattern recognition algorithms are applied. Typically, those that just give a visualization are based on proximity data—that is, distance measurements. Related Linear Decomposition Methods include Independent component analysis (ICA), Principal component analysis (PCA) (also called Karhunen-Loève transform—KLT), Singular value decomposition (SVD), and Factor analysis.
The self-organizing map (SOM, also called Kohonen map) and its probabilistic variant generative topographic mapping (GTM) use a point representation in the embedded space to form a latent variable model based on a non-linear mapping from the embedded space to the high-dimensional space. These techniques are related to work on density networks, which also are based around the same probabilistic model.
Principal curves and manifolds give the natural geometric framework for nonlinear dimensionality reduction and extend the geometric interpretation of PCA by explicitly constructing an embedded manifold, and by encoding using standard geometric projection onto the manifold. How to define the “simplicity” of the manifold is problem-dependent, however, it is commonly measured by the intrinsic dimensionality and/or the smoothness of the manifold. Usually, the principal manifold is defined as a solution to an optimization problem. The objective function includes a quality of data approximation and some penalty terms for the bending of the manifold. The popular initial approximations are generated by linear PCA, Kohonen's SOM or autoencoders. The elastic map method provides the expectation-maximization algorithm for principal manifold learning with minimization of quadratic energy functional at the “maximization” step.
An autoencoder is a feed-forward neural network which is trained to approximate the identity function. That is, it is trained to map from a vector of values to the same vector. When used for dimensionality reduction purposes, one of the hidden layers in the network is limited to contain only a small number of network units. Thus, the network must learn to encode the vector into a small number of dimensions and then decode it back into the original space. Thus, the first half of the network is a model which maps from high to low-dimensional space, and the second half maps from low to high-dimensional space. Although the idea of autoencoders is quite old, training of deep autoencoders has only recently become possible through the use of restricted Boltzmann machines and stacked denoising autoencoders. Related to autoencoders is the NeuroScale algorithm, which uses stress functions inspired by multidimensional scaling and Sammon mappings (see below) to learn a non-linear mapping from the high-dimensional to the embedded space. The mappings in NeuroScale are based on radial basis function networks.
Gaussian process latent variable models (GPLVM) are probabilistic dimensionality reduction methods that use Gaussian Processes (GPs) to find a lower dimensional non-linear embedding of high dimensional data. They are an extension of the Probabilistic formulation of PCA. The model is defined probabilistically and the latent variables are then marginalized and parameters are obtained by maximizing the likelihood. Like kernel PCA they use a kernel function to form a nonlinear mapping (in the form of a Gaussian process). However, in the GPLVM the mapping is from the embedded(latent) space to the data space (like density networks and GTM) whereas in kernel PCA it is in the opposite direction. It was originally proposed for visualization of high dimensional data but has been extended to construct a shared manifold model between two observation spaces. GPLVM and its many variants have been proposed specially for human motion modeling, e.g., back constrained GPLVM, GP dynamic model (GPDM), balanced GPDM (B-GPDM) and topologically constrained GPDM. To capture the coupling effect of the pose and gait manifolds in the gait analysis, a multi-layer joint gait-pose manifolds was proposed.
Curvilinear component analysis (CCA) looks for the configuration of points in the output space that preserves original distances as much as possible while focusing on small distances in the output space (conversely to Sammon's mapping which focus on small distances in original space). It should be noticed that CCA, as an iterative learning algorithm, actually starts with focus on large distances (like the Sammon algorithm), then gradually change focus to small distances. The small distance information will overwrite the large distance information, if compromises between the two have to be made. The stress function of CCA is related to a sum of right Bregman divergences. Curvilinear distance analysis (CDA) trains a self-organizing neural network to fit the manifold and seeks to preserve geodesic distances in its embedding. It is based on Curvilinear Component Analysis (which extended Sammon's mapping), but uses geodesic distances instead. Diffeomorphic Dimensionality Reduction or Diffeomap learns a smooth diffeomorphic mapping which transports the data onto a lower-dimensional linear subspace. The method solves for a smooth time indexed vector field such that flows along the field which start at the data points will end at a lower-dimensional linear subspace, thereby attempting to preserve pairwise differences under both the forward and inverse mapping.
Perhaps the most widely used algorithm for manifold learning is Kernel principal component analysis (kernel PCA). It is a combination of Principal component analysis and the kernel trick. PCA begins by computing the covariance matrix of the M×n Matrix X. It then projects the data onto the first k eigenvectors of that matrix. By comparison, KPCA begins by computing the covariance matrix of the data after being transformed into a higher-dimensional space. It then projects the transformed data onto the first k eigenvectors of that matrix, just like PCA. It uses the kernel trick to factor away much of the computation, such that the entire process can be performed without actually computing ϕ(x). Of course ϕ must be chosen such that it has a known corresponding kernel.
Laplacian Eigenmaps, LLE) are special cases of kernel PCA, performed by constructing a data-dependent kernel matrix. KPCA has an internal model, so it can be used to map points onto its embedding that were not available at training time. Laplacian Eigenmaps uses spectral techniques to perform dimensionality reduction. This technique relies on the basic assumption that the data lies in a low-dimensional manifold in a high-dimensional space. This algorithm cannot embed out of sample points, but techniques based on Reproducing kernel Hilbert space regularization exist for adding this capability. Such techniques can be applied to other nonlinear dimensionality reduction algorithms as well. Traditional techniques like principal component analysis do not consider the intrinsic geometry of the data. Laplacian eigenmaps builds a graph from neighborhood information of the data set. Each data point serves as a node on the graph and connectivity between nodes is governed by the proximity of neighboring points (using e.g. the k-nearest neighbor algorithm). The graph thus generated can be considered as a discrete approximation of the low-dimensional manifold in the high-dimensional space. Minimization of a cost function based on the graph ensures that points close to each other on the manifold are mapped close to each other in the low-dimensional space, preserving local distances. The eigenfunctions of the Laplace-Beltrami operator on the manifold serve as the embedding dimensions, since under mild conditions this operator has a countable spectrum that is a basis for square integrable functions on the manifold (compare to Fourier series on the unit circle manifold). Attempts to place Laplacian eigenmaps on solid theoretical ground have met with some success, as under certain nonrestrictive assumptions, the graph Laplacian matrix has been shown to converge to the Laplace-Beltrami operator as the number of points goes to infinity. In classification applications, low dimension manifolds can be used to model data classes which can be defined from sets of observed instances. Each observed instance can be described by two independent factors termed ‘content’ and ‘style’, where ‘content’ is the invariant factor related to the essence of the class and ‘style’ expresses variations in that class between instances. Unfortunately, Laplacian Eigenmaps may fail to produce a coherent representation of a class of interest when training data consist of instances varying significantly in terms of style. In the case of classes which are represented by multivariate sequences, Structural Laplacian Eigenmaps has been proposed to overcome this issue by adding additional constraints within the Laplacian Eigenmaps neighborhood information graph to better reflect the intrinsic structure of the class. More specifically, the graph is used to encode both the sequential structure of the multivariate sequences and, to minimize stylistic variations, proximity between data points of different sequences or even within a sequence, if it contains repetitions. Using dynamic time warping, proximity is detected by finding correspondences between and within sections of the multivariate sequences that exhibit high similarity.
Like LLE, Hessian LLE is also based on sparse matrix techniques. It tends to yield results of a much higher quality than LLE. Unfortunately, it has a very costly computational complexity, so it is not well-suited for heavily sampled manifolds. It has no internal model. Modified LLE (MLLE) is another LLE variant which uses multiple weights in each neighborhood to address the local weight matrix conditioning problem which leads to distortions in LLE maps. MLLE produces robust projections similar to Hessian LLE, but without the significant additional computational cost.
Manifold alignment takes advantage of the assumption that disparate data sets produced by similar generating processes will share a similar underlying manifold representation. By learning projections from each original space to the shared manifold, correspondences are recovered and knowledge from one domain can be transferred to another. Most manifold alignment techniques consider only two data sets, but the concept extends to arbitrarily many initial data sets. Diffusion maps leverages the relationship between heat diffusion and a random walk (Markov Chain); an analogy is drawn between the diffusion operator on a manifold and a Markov transition matrix operating on functions defined on the graph whose nodes were sampled from the manifold. Relational perspective map is a multidimensional scaling algorithm. The algorithm finds a configuration of data points on a manifold by simulating a multi-particle dynamic system on a closed manifold, where data points are mapped to particles and distances (or dissimilarity) between data points represent a repulsive force. As the manifold gradually grows in size the multi-particle system cools down gradually and converges to a configuration that reflects the distance information of the data points. Local tangent space alignment (LISA) is based on the intuition that when a manifold is correctly unfolded, all of the tangent hyperplanes to the manifold will become aligned. It begins by computing the k-nearest neighbors of every point. It computes the tangent space at every point by computing the d-first principal components in each local neighborhood. It then optimizes to find an embedding that aligns the tangent spaces. Local Multidimensional Scaling performs multidimensional scaling in local regions, and then uses convex optimization to fit all the pieces together.
Maximum Variance Unfolding was formerly known as Semidefinite Embedding. The intuition for this algorithm is that when a manifold is properly unfolded, the variance over the points is maximized. This algorithm also begins by finding the k-nearest neighbors of every point. It then seeks to solve the problem of maximizing the distance between all non-neighboring points, constrained such that the distances between neighboring points are preserved. Nonlinear PCA (NLPCA) uses backpropagation to train a multi-layer perceptron (MLP) to fit to a manifold. Unlike typical MLP training, which only updates the weights, NLPCA updates both the weights and the inputs. That is, both the weights and inputs are treated as latent values. After training, the latent inputs are a low-dimensional representation of the observed vectors, and the MLP maps from that low-dimensional representation to the high-dimensional observation space. Manifold Sculpting uses graduated optimization to find an embedding. Like other algorithms, it computes the k-nearest neighbors and tries to seek an embedding that preserves relationships in local neighborhoods. It slowly scales variance out of higher dimensions, while simultaneously adjusting points in lower dimensions to preserve those relationships.
Ruffini (2015) discusses Multichannel transcranial current stimulation (tCS) systems that offer the possibility of EEG-guided optimized, non-invasive brain stimulation. A tCS electric field realistic brain model is used to create a forward “lead-field” matrix and, from that, an EEG inverter is employed for cortical mapping. Starting from EEG, 2D cortical surface dipole fields are defined that could produce the observed EEG electrode voltages.
Schestatsky et al. (2017) discuss transcranial direct current stimulation (tDCS), which stimulates through the scalp with a constant electric current that induces shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Although tDCS has most of its neuromodulatory effects on the underlying cortex, tDCS effects can also be observed in distant neural networks. Concomitant EEG monitoring of the effects of tDCS can provide valuable information on the mechanisms of tDCS. EEG findings can be an important surrogate marker for the effects of tDCS and thus can be used to optimize its parameters. This combined EEG-tDCS system can also be used for preventive treatment of neurological conditions characterized by abnormal peaks of cortical excitability, such as seizures. Such a system would be the basis of a non-invasive closed-loop device. tDCS and EEG can be used concurrently.
The present technology provides a method of replicating a mental state of a first subject in a second subject. (In some embodiments, a first and a second subject may be the same subject at different points in time.) The mental state typically is not a state of consciousness or an idea, but rather a subconscious (in a technical sense) state, representing an emotion, readiness, receptivity, or other state, often independent of particular thoughts or ideas. In essence, a mental state of the first subject (a “trainer” or “donor” who is in a desired mental state) is captured by recording neural correlates of the mental state, e.g., as expressed by brain activity patterns, such as EEG or MEG signals. The neural correlates of the first subject, either as direct or recorded representations, may then be used to control a stimulation of the second subject (a “trainee” or “recipient”), seeking to induce the same brain activity patterns in the second subject (recipient/trainee) as were present in the first subject (donor/trainer) to assist the second subject (recipient/trainee) to attain the desired mental state that had been attained by the donor/trainer. In an alternative embodiment, the signals from the first subject (donor/trainer) being in the first mental state are employed to prevent the second subject (recipient/trainee) from achieving a second mental state, wherein the second mental state is an undesirable one.
In some embodiments, the acquiring of the mental state information is preceded by or followed by identifying the mental state, by direct annotation by the first subject or an observer, or by automated analysis of the brain activity patterns, or both.
In other embodiments, the processing of the brain activity patterns does not seek to classify or characterize it, but rather to filter and transform the information to a form suitable for control of the stimulation of the second subject. In particular, according to this embodiment, the subtleties that are not yet reliably classified in traditional brain activity pattern analysis are respected. For example, it is understood that all brain activity is reflected in synaptic urrents and other neural modulation, and therefore to a large extent, conscious and subconscious information is in theory accessible through brain activity pattern analysis. Since the available processing technology generally fails to distinguish a large number of different brain activity patterns, that available processing technology, is necessarily deficient. However, just because a computational algorithm is unavailable to extract the information, does not mean that the information is absent. Therefore, this embodiment employs relatively raw brain activity pattern data, such as filtered EEGs, to control the stimulation of the second subject, without a full comprehension or understanding of exactly what information of significance is present. Typically, the stimulation is a relatively low dimensionality stimulus, such as stereooptic, binaural, tactile, or other sensory stimulation, operating bilaterally, and with control over frequency and phase and/or waveform.
Likewise, a lack of present understanding of the essential characteristics of the signal components in the brain activity patterns does not prevent their acquisition, storage, communication, and processing (to some extent). The stimulation may be direct, i.e., a visual or auditory stimulus corresponding to the brain activity pattern, or a derivative or feedback control based on the second subject's brain activity pattern.
According to one embodiment, the stimulation of the second subject is associated with a feedback process, to verify that the second subject has appropriately responded to the stimulation, e.g., has a predefined similarity to the mental state as the first subject, has a mental state with a predefined difference from the first subject, or has a desire change from a baseline mental state. Advantageously, the stimulation may be adaptive to the feedback. In some cases, the feedback may be functional, i.e., not based on brain activity per se, or neural correlates of mental state, but rather physical, psychological, or behavioral effects that may be reported or observed.
The feedback typically is provided to a model-based controller for the stimulator, which alters stimulation parameters to optimize the stimulation.
For example, it is believed that brainwaves represent a form of resonance, where ensembles of neurons interact in a coordinated fashion. The frequency of the wave is related to neural responsivity to neurotransmitters, distances along neural pathways, diffusion limitations, etc. That is, the same mental state may be represented by different frequencies in two different individuals, based on differences in the size of their brains, neuromodulators present, physiological differences, etc. These differences may be measured in microseconds or less, resulting in fractional changes in frequency. However, if the stimulus is different from the natural or resonant frequency of the target process, the result may be different from that expected. Therefore, the model-based controller can determine the parameters of neural transmission and ensemble characteristics, vis-à-vis stimulation, and resynthesize the stimulus wave to match the correct waveform, with the optimization of the waveform adaptively determined. This may not be as simple as speeding up or slowing down playback of the signal, as different elements of the various waveforms representing neural correlates of mental state may have different relative differences between subjects.
Thus, a hybrid approach is provided, with use of source-derived waveforms, on one hand, which may be extracted from the brain activity readings of the first subject, processed by principal component analysis, or spatial principal component analysis, autocorrelation, or other statistical processing technique which separates components of brain activity, which can then be modified or modulated based on high-level parameters, e.g., abstractions. However, in the general case, the present technology maintains use of components or subcomponents of the source subject brain activity readings, e.g., EEG or MEG, and does not seek to characterize or abstract them to a semantic level
Of course, in some cases, one or more components of the stimulation of the target subject may be represented as abstract or semantically defined signals, and more generally the processing of the signals to define the stimulation will involve high level modulation or transformation between the source signal received from the first subject, to define the target signal for stimulation of the second subject.
Preferably, each component represents a subset of the neural correlates reflecting brain activity that have a high autocorrelation in space and time, or in a hybrid representation such as wavelet. For example, one signal may represent a modulated 10.2 Hz signal, while another signal represents a superposed modulated 15.7 Hz signal, with respectively different spatial origins. These may be separated by optimal filtering (e.g., spatial PCA), once the characteristics of the signal are known, and bearing in mind that the signal is accompanied by a modulation pattern, and that the two components themselves may have some weak coupling and interaction.
In some cases, the base frequency, modulation, coupling, noise, phase jitter, or other characteristic of the signal may be substituted. For example, if the first subject is listening to music, there will be significant components of the neural correlates that are synchronized with the particular music. On the other hand, the music per se may not be part of the desired stimulation of the target subject. Therefore, through signal analysis and decomposition, the components of the signal from the first subject, which have a high temporal correlation with the music, may be extracted or suppressed from the resulting signal. Further, the target subject may be in a different acoustic environment, and it may be appropriate to modify the residual signal dependent on the acoustic environment of the target subject, so that the stimulation is appropriate for achieving the desired effect, and does not represent phantoms, distractions, or irrelevant or inappropriate content. In order to perform signal processing, it is convenient to store the signals or a partially processed representation, though a complete real-time signal processing chain may be implemented. Such a real-time signal processing chain is generally characterized in that the average size of a buffer remains constant, i.e., the lag between output and input is relatively constant, bearing in mind that there may be periodicity to the processing.
According to another embodiment, the mental state of the first subject (trainer or donor) is identified, and the neural correlates of brain activity are captured, and the second subject (trainee or recipient) is subject to stimulation based on the captured neural correlates and the identified mental state. The mental state is typically represented as a semantic variable, within a limited classification space. The mental state identification need not be through analysis of the neural correlates signal, and may be a volitional self-identification by the first subject, or a manual classification by third parties using, for example, fMRI or psychological assessment. The identified mental state is useful, for example, because it represents a target toward (or, in some cases, against) which the second subject (trainee or recipient) can be steered.
The stimulation may be one or more stimulus applied to the second subject (trainee or recipient), which may be an electrical or magnetic transcranial stimulation, sensory stimulation (e.g., visual, auditory or tactile), mechanical stimulation, ultrasonic stimulation, etc., and controlled with respect to waveform, intensity/amplitude, duration, or controlled via feedback, self-reported effect by the second subject, manual classification by third parties, automated analysis of brain activity, behavior, physiological parameters, etc. of the second subject.
Typically, the goal of the process is to induce in the second subject (trainee or recipient) neural correlates of the mental state of the first subject (trainer or donor) corresponding to the mental state of the first subject, through the use of stimulation parameters comprising a waveform over a period of time derived from the neural correlates of the mental state of the first subject.
Typically, the first and the second subjects are spatially remote from each other and may be temporally remote as well. In some cases, the first and second subject are the same subject (human or animal), temporally displaced. In other cases, the first and the second subject are spatially proximate to each other. These different embodiments differ principally in the transfer of the signal from the first subject to the second subject. However, when the first and the second subjects share a common environment, the signal processing of the neural correlates and, especially of real-time feedback of neural correlates from the second subject, may involve interactive algorithms with the neural correlates of the first subject.
According to another embodiment, the first and second subjects are each subject to stimulation. In one particularly interesting embodiment, the first subject and the second subject communicate with each other in real-time, with the first subject receiving stimulation based on the second subject, and the second subject receiving feedback based on the first subject. This can lead to synchronization of neural correlates (e.g., neuronal oscillations, or brainwaves) and, consequently, of mental state between the two subjects. However, the first subject need not receive stimulation based on real-time signals from the second subject, as the stimulation may derive from a third subject, or the first or second subjects at different points in time.
The neural correlates may be neuronal oscillations resulting in brainwaves that are detectable as, for example, EEG, qEEG, or MEG signals. Traditionally, these signals are found to have dominant frequencies, which may be determined by various analyses, such as spectral analysis, wavelet analysis, or principal part analysis (PCA), for example. One embodiment provides that the modulation pattern of a brainwave of the first subject is determined independent of the dominant frequency of the brainwave (though, typically, within the same class of brainwaves), and this modulation imposed on a brainwave corresponding to the dominant frequency of the second subject. That is, once the second subject achieves that same brainwave pattern as the first subject (which may be achieved by means other than electromagnetic, mechanical, or sensory stimulation), the modulation pattern of the first subject is imposed as a way of guiding the mental state of the second subject.
According to another embodiment, the second subject is stimulated with a stimulation signal which faithfully represents the frequency composition of a defined component of the neural correlates of the first subject. The defined component may be determined based on a principal component analysis or related technique.
The stimulation may be performed, for example, by using a tDCS device, a high-definition tDCS device, a tACS device, a TMS device, a deep TMS device, a light source, or a sound source configured to modulate the dominant frequency on the light signal or the sound signal. The stimulus may be a light signal, a sound signal, an electric signal, a magnetic field, olfactory or a tactile stimulation. The electric signal may be a direct current signal or an alternating current signal. The stimulus may be applied via a transcranial electric stimulation, a transcranial magnetic stimulation, a deep magnetic stimulation, a light stimulation, or a sound stimulation. A visual stimulus may be ambient light or a direct light. An auditory stimulus may be binaural beats or isochronic tones.
The technology also provides a processor configured to process the neural correlates of mental state from the first subject (trainer or donor), and to produce or define a stimulation pattern for the second subject (trainee or recipient) selectively dependent on a waveform pattern of the neural correlates from the first subject. Typically, the processor performs signal analysis and calculates at least a dominant frequency of the brainwaves of the first subject, and preferably also spatial and phase patterns within the brain of the first subject. The processor may also perform a PCA, a spatial PCA, an independent component analysis (ICA), eigenvalue decomposition, eigenvector-based multivariate analyses, factor analysis, an autoencoder neural network with a linear hidden layer, linear discriminant analysis, network component analysis, nonlinear dimensionality reduction (NLDR), or another statistical method of data analysis.
A signal is presented to a second apparatus, configured to stimulate the second subject (trainee or recipient), which may be an open loop stimulation dependent on a non-feedback controlled algorithm, or a closed loop feedback dependent algorithm. In other cases, analog processing is employed in part or in whole, wherein the algorithm comprises an analog signal processing chain. The second apparatus receives information from the processor (first apparatus), typically comprising a representation of a portion of a waveform represented in the neural correlates. The second apparatus produces a stimulation intended to induce in the second subject the desired mental state, e.g., representing the same mental state as was present in the first subject.
A typically process performed on the neural correlates is a filtering to remove noise. For example, noise filters may be provided at 50 Hz, 60 Hz, 100 Hz, 120 Hz, and additional overtones (e.g., secondary harmonics). Other environmental signals may also be filtered in a frequency-selective or waveform-selective (temporal) manner. Higher level filtering may also be employed, as is known in the art. The neural correlates, after noise filtering, may be encoded, compressed (lossy or losslessly), encrypted, or otherwise processed or transformed. The stimulator associated with the second subject (trainee or recipient) would typically perform decoding, decompression, decryption, inverse transformation, etc.
Information security and copy protection technology, similar to that employed for audio signals, may be employed to protect the neural correlate signals from copying or content analysis before use. In some cases, it is possible to use the stored encrypted signal in its encrypted for, without decryption. For example, with an asymmetric encryption scheme, which supports distance determination.
In practice, the feedback signal from the second subject may be correspondingly encoded as per the source signal, and the error between the two minimized. In such an algorithm, the signal sought to be authenticated is typically brought within an error tolerance of the encrypted signal before usable feedback is available. One way to accomplish this is to provide a predetermined range of acceptable authenticatable signals which are then encoded, such that an authentication occurs when the putative signal matches any of the predetermined range. In the case of the neural correlates, a large set of digital hash patterns may be provided representing different signals as hash patterns. The net result is relatively weakened encryption, but the cryptographic strength may still be sufficiently high to abate the risks.
According to one embodiment, the processor may perform a noise reduction distinct from a frequency-band filtering. According to one embodiment, the neural correlates is transformed into a sparse matrix, and in the transform domain, components representing high probability noise are masked, while components representing high probability signal are preserved. The distinction may be optimized or adaptive. That is, in some cases, the components which represent modulation that are important may not be known a priori. However, dependent on their effect in inducing the desired response in the second subject, the “important” components may be identified, and the remainder filtered or suppressed. The transformed signal may then be inverse-transformed, and used as a basis for a stimulation signal.
According to another embodiment, a method of mental state modification, e.g., brain entrainment, is provided, comprising: ascertaining a mental state in a plurality of first subjects; acquiring brain waves of the plurality of first subjects (trainer or donors), e.g., using one of EEG and MEG, to create a dataset containing brain waves corresponding to different mental states. The database may be encoded with a classification of mental states, activities, environment, or stimulus patterns, applied to the plurality of first subjects, and the database may include acquired brain waves across a large number of mental states, activities, environment, or stimulus patterns, for example. In many cases, the database records will reflect a characteristic or dominate frequency of the respective brain waves.
The database may be accessed according to its indexing, e.g., mental states, activities, environment, or stimulus patterns, for example, and a stimulation pattern for a second subject (trainee or recipient) defined based on the database records of one or more subjects.
The record(s) thus retrieved are used to define a stimulation pattern for the second subject (trainee or recipient). The selection of records, and their use, may be dependent on the second subject and/or feedback from the second subject. As a relatively trivial example, a female second subject could be stimulated principally dependent on records from female first subjects. Of course, a more nuanced approach is to process the entirety of the database and stimulate the second subject based on a global brain wave-stimulus model, though this is not required, and also, the underlying basis for the model may prove unreliable or inaccurate. In fact, it may be preferred to derive a stimulus waveform from only a single first subject, in order to preserve micro-modulation aspects of the signal, which as discussed above have not been fully characterized. However, the selection of the first subject(s) need not be static, and can change frequently. The selection of first subject records may be based on population statistics of other users of the records, i.e., whether or not the record had the expected effect, collaborative filtering, i.e., filtering the first subjects whose response pattern correlates highest with a given subject, etc. The selection of first subject records may also be based on feedback patterns from the second subject.
The process of stimulation typically seeks to target a desired mental state in the second subject (trainee or recipient), which is automatically or semi-automatically determined or manually entered. That target then represents a part of the query against the database to select the desired record(s). The selection of records may be a dynamic process, and reselection of records may be feedback dependent.
In one embodiment, the records are used to define a modulation waveform of a synthesized carrier or set of carriers, and the process may include a frequency domain multiplexed multi-subcarrier signal (which is not necessarily orthogonal). A plurality of stimuli may be applied concurrently, through the suffered subchannels and/or though different stimulator electrodes, magnetic field generators, mechanical stimulators, sensory stimulators, etc. The stimuli for the different subchannels or modalities need not be derived from the same records.
The stimulus may be applied to achieve brain entrainment (i.e., synchronization) of the second subject (trainee or recipient) with one or more first subjects (trainer or donor). Brain entrainment is not the only possible outcome of this process. If the plurality of first subjects are mutually entrained, then each will have a corresponding brain wave pattern dependent on the basis of brainwave entrainment. This link between first subject may be helpful in determining compatibility between a respective first subject and the second subject. For example, characteristic patterns in the entrained brainwaves may be determined, even for different target mental states, and the characteristic patterns correlated to find relatively close matches and to exclude relatively poor matches.
This technology may also provide a basis for a social network, dating site, employment or vocational testing, or other interpersonal environments, wherein people may be matched with each other based on entrainment characteristics. For example, people who efficiently entrain with each other may have better social relationships than those who do not.
As discussed above, the plurality of first subjects (trainers or donors) may have their respective brain wave patterns stored in association with separate database records. However, they may also be combined into a more global model. One such model is a neural network or deep neural network. Typically, such a network would have recurrent features. Data from a plurality of first subjects (trainers or donors) is used to train the neural network, which is then accessed by inputting the target state and/or feedback information, and which outputs a stimulation pattern or parameters for controlling a stimulator. When multiple first subjects form the basis for the stimulation pattern, it is preferred that the neural network output parameters of the stimulation, derived from and comprising features of the brain wave patterns or other neural correlates of mental state from the plurality of first subjects, which are then used to control a stimulator which, for example, generates its own carrier wave(s) which are then modulated based on the output of the neural network. The neural network need not periodically retrieve records, and therefore may operate in a more time-continuous manner, rather than the more segmented scheme of record-based control.
In any of the feedback dependent methods, the brainwave patterns or other neural correlates of mental states may be processed by a neural network, to produce an output that guides or controls the stimulation. The stimulation, is, for example, at least one of a light signal, a sound signal, an electric signal, a magnetic field, and a vibration or mechanical stimulus. The fields may be static or dynamically varying.
The process may employ a relational database of mental states and brainwave patterns, e.g., frequencies/neural correlate waveform patterns associated with the respective mental states. The relational database may comprise a first table, the first table further comprising a plurality of data records of brainwave patterns, and a second table, the second table comprising a plurality of mental states, each of the mental states being linked to at least one brainwave pattern. Data related to mental states and brainwave patterns associated with the mental states are stored in the relational database and maintained. The relational database is accessed by receiving queries for selected mental states, and data records are returned representing the associated brainwave pattern. The brainwave pattern retrieved from the relational database may then be used for modulating a stimulator seeking to produce an effect selectively dependent on the mental state at issue.
A further aspect of the technology provides a computer apparatus for creating and maintaining a relational database of mental states and frequencies associated with the mental state. The computer apparatus may comprise a non-volatile memory for storing a relational database of mental states and neural correlates of brain activity associated with the mental states, the database comprising a first table comprising a plurality of data records of neural correlates of brain activity associated with the mental states, and a second table comprising a plurality of mental states, each of the mental states being linked to one or more records in the first table; a processor coupled with the non-volatile memory, and being configured to process relational database queries, which are then used for searching the database; RAM coupled with the processor and the non-volatile memory for temporary holding database queries and data records retrieved from the relational database; and an 10 interface configured to receive database queries and deliver data records retrieved from the relational database. A SQL or noSQL database may also be used to store and retrieve records. A relational database described above maintained and operated by a general purpose computer, improves the operations of the general purpose computer by making searches of specific mental states and brainwaves associated therewith more efficient.
A further aspect of the technology provides a method of brain entrainment comprising: ascertaining a mental state in a first subject; recording brain waves of the plurality of subjects using at least one channel one of EEG and MEG; storing the recorded brain waves in a physical memory device; retrieving the brain waves from the memory device; applying a stimulus signal comprising a brainwave pattern derived from at least one-channel one of the EEG and MEG to a second subject via transcranial stimulation, whereby the mental state desired by the second subject is achieved. The stimulation may be of the same order (number of channels) as the EEG or MEG, or a different number of channels, typically reduced. For example, the EEG or MEG may comprise 128 or 256 channels, while the transcranial stimulator may have 8 or fewer channels. Sensory stimulation of various modalities and patterns may accompany the transcranial stimulation.
It is therefore an object to provide a method of inducing sleep in a mammal, comprising: retrieving a stored modulation sequence for at least one of an audio signal and a visual signal derived from captured neural correlates of at least one sleep cycle, which is adapted, when used to stimulate the mammal, to induce at least one sleep cycle in the mammal; and presenting the at least one of the audio signal and the visual signal having the modulation sequence to the mammal, to induce the mammal to enter a respective sleep cycle.
It is a further object to provide a system for inducing sleep in a subject, comprising: a memory configured to store a waveform, derived from neural correlates of at least one sleep stage, processed to derive at least one of a temporal and a spatial pattern transformed into the waveform for modulating at least one of a visual stimulus and an auditory stimulus; and at least one of a visual stimulator and an auditory stimulator, configured to retrieve the waveform and modulate the waveform on at least one of a visual stimulus and an auditory stimulus, for use in stimulating a subject to induce a sleep.
It is another object to provide a computer readable medium, storing non-transitory instructions for controlling a programmable processor for presenting at least one of a visual stimulus and an auditory stimulus to a subject to induce sleep, comprising: instructions to define a waveform pattern derived from neural correlates of at least one sleep stage, processed to derive at least one of a temporal and a spatial pattern transformed into the waveform; instructions to modulate the waveform on at least one of a visual stimulus and an auditory stimulus for presentation to the subject; and instructions for controlling the modulation of the waveform according to a sleep cycle.
It is also an object to provide a method of inducing a sleep cycle in a subject, comprising modulating a waveform on at least one of a visual stimulus and an auditory stimulus for use in visual or auditory stimulation of the subject, to induce the sleep cycle in the subject, wherein the waveform is generated by recording neural correlates of at least one sleep cycle of a donor, processing the recorded neural correlates of the at least one sleep cycle to decode at least one of a temporal and a spatial pattern; and transforming the at least one of the temporal and the spatial pattern into the waveform.
The recording of the neural correlates of at least one sleep stage of a donor may be done by recording at least one of an electroencephalogram (EEG), a magnetoencephalogram (MMG), and a functional magnetic resonance (fMRI). The recorded neural correlates of at the sleep stage may be processed using a statistical analysis technique. The statistical analysis technique may be one of a Principal Component Analysis (PCA), a Spatial Principal Component Analysis (Spatial PCA), a Kernel Principal Component Analysis (Kernel PCA), a Nonlinear Principal Component Analysis (NLPCA), an Independent Component Analysis (ICA), Singular Value Decomposition (SVD), Factor Analysis, a Gaussian Process Latent Variable Model (GPLVM), a Curvilinear Component Analysis (CCA), a Diffeomorphic Dimensionality Reduction (Diffeomap), a Gelfand transform, a Fourier transform, a Fourier-Pontryagin transform, a Laplace transform, a short-time Fourier transform (SIFT), a fractional Fourier transform (FRFT), Laplacian Eigenmaps, a spectral analysis, a wavelet analysis, an eigenvector-based multivariable analysis, a factor analysis, canonical correlation analysis (CCA), and a nonlinear dimensionality reduction (NLDR).
The transforming of the at least one of the temporal and a spatial pattern into the waveform may comprise performing an inversion transform on the at least one of the temporal and the spatial pattern of the donor into the waveform, adapted to expose the at least one of the temporal and the spatial pattern to the subject.
The subject and the donor may be a single human at different times.
The at least one of a light stimulus and a sound stimulus may be frequency modulated, amplitude modulated, pulse rate modulate, pulse frequency modulated, and/or phase modulated corresponding to the waveform.
The at least one of the light stimulus and the sound stimulus may be modulated to provide at least one of a binaural stimulation and an isochronic tones stimulation. The sound stimulus may comprise at least one of an audible sound frequency, an ultrasonic sound frequency, and an infrasonic sound frequency. The light stimulus may be at least one of amplitude modulated and pulse modulated. The sound stimulus may comprise at least one of a random noise, music, a sound of rainfall, a sound of ocean waves, and a sound of a human voice.
The sleep cycle may comprise a plurality of sleep stages, comprising a REM sleep stage, and/or a non-REM sleep stage. The sleep cycle may comprise a natural sequence of sleep stages comprising at least one full sleep cycle, e.g., at least two recorded sleep cycles. The method may comprise monitoring the sleep stage of the subject, distinct from recording the neural correlates, and adapting the waveform selectively dependent on the monitored sleep stage.
The subject may be stimulated with at least one of a visual stimulus and an auditory stimulus modulated according to a first portion of the waveform, correlating the stimulation of the subject with a respective sleep stage of the subject during stimulation, and selecting a second portion of the waveform representative of the at least one sleep stage of the donor that corresponds to the respective sleep stage of the subject. The method may further comprise stimulating the subject with the at least one of the visual stimulus and the auditory stimulus, and modifying the stimulation after determining that the subject is not in the sleep stage sought to be induced corresponding to the at least one sleep stage of the donor.
The method may further comprise adjusting an ambient temperature surrounding the subject for a specific sleep stage corresponding to the at least one sleep stage of the donor.
The method may further comprise superimposing on said at least one of the light stimulus and the sound stimulus a signal having a rhythm having a frequency less than approximately 100 Hz. The frequency may be approximately 40 Hz. In this case, the approximation means, for example, within 13%, or a signal having a corresponding physiological effect in the subject as a signal of that frequency in a mean normal male Caucasian adult, to the extent that the physiological effect varies across gender, race, size, condition, of other characteristics. The at least one channel may be less than six channels and the placement of electrodes used for transcranial stimulation may be approximately the same as the placement of electrodes used in recording of said one of EEG and MEG.
The present technology may be responsive to chronobiology, and in particular to the subjective sense of time. For a subject, this may be determined volitionally subjectively, but also automatically, for example by judging attention span, using e.g., eye movements, and analyzing persistence of brainwave patterns after a discrete stimulus. Further, time constants of the brain, reflected by delays and phase may also be analyzed. Further, the contingent negative variation (CNV) preceding a volitional act may be used, both to sense conscious action timing, and also the time relationships between thought and action more generally.
Typically, brainwave activity is measured with a large number of EEG electrodes, which each receive signals from a small area on the scalp, or in the case of an MEG, by a number of sensitive magnetic field detectors which are responsive to local field differences. Typically, the brainwave capture is performed in a relatively high number of spatial dimensions, e.g., corresponding to the number of sensors. Typically, it is infeasible to process the brainwave signals to create a source model, given that the brainwaves are created by billions of neurons, connected through axons which have long distances. Further, the neurons are generally no-linear, and interconnected. However, a source model is not required.
Various types of artificial intelligence may be exploited to analyze the neural correlates of mental state represented in the brain activity data, of both the first subject (source) and the second subject (target). The algorithm or implementation need to be the same, though in some cases, it is useful to conform the approach of the source processing and feedback processing so that the feedback does not achieve or seek a suboptimal target mental state. However, given the possible differences in conditions, resources, equipment, and purpose, there is no necessary coordination of these processes. The artificial intelligence may take the form of neural networks or deep neural networks, though rule/expert based systems, hybrids, and more classical statistical analysis may be used. In a typical case, an artificial intelligence process will have at least one aspect which is non-linear in its output response to an input signal, and thus at least the principle of linear superposition is violated. Such systems tend to permit discrimination, since a decision, and the process of decision-making, is ultimately non-linear. An artificially intelligent system requires a base of experience or information upon which to train. This can be a supervised (external labels applied to data), unsupervised (self-discrimination of classes), or semisupervised (a portion of the data is externally labelled). A self-learning or genetic algorithm may be used to tune the system, including both or either the signal processing at the trainer system and the target system. In a genetic algorithm feedback-dependent self-learning system, the responsivity of a subject, e.g., the target, to various kinds of stimuli may be determined over a stimulus space. This stimulation may be in the context of use, with a specific target mental state provided, or unconstrained. The stimulator may operate using a library of stimulus patterns, or seek to generate synthetic patterns or modifications of patterns. Over a period of time, the system will learn to map a desired mental state to optimal context-dependent parameters of the stimulus pattern.
The technology may be used for both the creation of mental states in the target, elimination of existing mental states in the target. In the latter case, a decision of what end state is to be achieved is less constrained, and therefore the optimization is distinct. For example, in the former case, it may be hard to achieve a particular mental state that is desired, requiring a set of transitions to cause the brain of the target to be enabled/prepared to enter the target state. In the case of a system seeking to eliminate an undesired mental state, the issue is principally what path to take to most efficiently leave the current state, bearing in mind the various costs, such as the comfort/discomfort of the stimulation, the time value cost, etc. Therefore, the series of states may differ in the implementation of these distinct goals, even if the endpoints are identical, i.e., the optimal algorithm to achieve state B from state A, may be different from the optimal algorithm to exit state A, and end up at state B.
The technology may be used to address mental states classified as emotions. Typically, an emotional state at a lower level, operates in different brain regions, than cognitive processes. As such, the biology of these mental state is different. Often, the emotional states have a biochemical or hormonal component, and perhaps a physiological component, that may be attenuated or absent from cognitive states. Therefore, while the general brainwave or other neural correlates acquisition may be similar or identical, the stimulus used on the second subject may be distinct, in modality, spatial location, intensity/waveform, other stimulation parameters, and the types and application of feedback employed. In e medical treatment implementation, in some cases it may be appropriate to administer a drug or pharmacological agent that assists in achieving the target mental state, and for emotional states, this may include certain psychotropic drugs, such as epinephrine, norepinephrine reuptake inhibitors, serotonin reuptake inhibitors, peptide endocrine hormones, such as oxytocin, ACTH fragments, insulin, etc.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference number in different figures indicates similar or identical items.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that the present disclosure may be readily implemented by those skilled in the art. However, it is to be noted that the present disclosure is not limited to the embodiments but can be embodied in various other ways. In drawings, parts irrelevant to the description are omitted for the simplicity of explanation, and like reference numerals denote like parts through the whole document.
Through the whole document, the term “connected to” or “coupled to” that is used to designate a connection or coupling of one element to another element includes both a case that an element is “directly connected or coupled to” another element and a case that an element is “electronically connected or coupled to” another element via still another element. Further, it is to be understood that the term “comprises or includes” and/or “comprising or including” used in the document means that one or more other components, steps, operation and/or existence or addition of elements are not excluded in addition to the described components, steps, operation and/or elements unless context dictates otherwise.
Through the whole document, the term “unit” or “module” includes a unit implemented by hardware or software and a unit implemented by both of them. One unit may be implemented by two or more pieces of hardware, and two or more units may be implemented by one piece of hardware.
Each of the following references is expressly incorporated herein by reference in its entirety.
This application is a non-provisional of, and claims benefit of priority from U.S. Provisional Patent Application No. 62/660,839, filed Apr. 20, 2018, which is expressly incorporated herein by reference in its entirety. This application incorporates by reference the entirety of U.S. Provisional Patent Application No. 62/612,565, filed Dec. 31, 2017, and U.S. patent application Ser. Nos. 16/237,497, 16/237,471, and 16/237,483, filed Dec. 31, 2018.
Number | Name | Date | Kind |
---|---|---|---|
2858388 | Eastman | Oct 1958 | A |
3951134 | Malech | Apr 1976 | A |
4030126 | Puhak | Jun 1977 | A |
4172014 | Sequeira, Jr. et al. | Oct 1979 | A |
4296756 | Dunning et al. | Oct 1981 | A |
4367527 | Desjacques | Jan 1983 | A |
4407299 | Culver | Oct 1983 | A |
4408616 | Duffy et al. | Oct 1983 | A |
4421122 | Duffy | Dec 1983 | A |
4437064 | Overton, Jr. et al. | Mar 1984 | A |
4493327 | Bergelson et al. | Jan 1985 | A |
4550736 | Broughton et al. | Nov 1985 | A |
4557270 | John | Dec 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4579125 | Strobl et al. | Apr 1986 | A |
4583190 | Salb | Apr 1986 | A |
4585011 | Broughton et al. | Apr 1986 | A |
4591787 | Hoenig | May 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4610259 | Cohen et al. | Sep 1986 | A |
4613817 | Hoenig | Sep 1986 | A |
4649482 | Raviv et al. | Mar 1987 | A |
4689559 | Hastings et al. | Aug 1987 | A |
4693000 | Hoenig | Sep 1987 | A |
4700135 | Hoenig | Oct 1987 | A |
4705049 | John | Nov 1987 | A |
4733180 | Hoenig et al. | Mar 1988 | A |
4736307 | Salb | Apr 1988 | A |
4736751 | Gevins et al. | Apr 1988 | A |
4744029 | Raviv et al. | May 1988 | A |
4749946 | Hoenig | Jun 1988 | A |
4753246 | Freeman | Jun 1988 | A |
4761611 | Hoenig | Aug 1988 | A |
4776345 | Cohen et al. | Oct 1988 | A |
4792145 | Eisenberg et al. | Dec 1988 | A |
4794533 | Cohen | Dec 1988 | A |
4801882 | Daalmans | Jan 1989 | A |
4846190 | John | Jul 1989 | A |
4862359 | Trivedi et al. | Aug 1989 | A |
4883067 | Knispel et al. | Nov 1989 | A |
4907597 | Chamoun | Mar 1990 | A |
4913152 | Ko et al. | Apr 1990 | A |
4924875 | Chamoun | May 1990 | A |
4937525 | Daalmans | Jun 1990 | A |
4940058 | Taff et al. | Jul 1990 | A |
4947480 | Lewis | Aug 1990 | A |
4949725 | Raviv et al. | Aug 1990 | A |
4951674 | Zanakis et al. | Aug 1990 | A |
4974602 | Abraham-Fuchs et al. | Dec 1990 | A |
4977505 | Pelizzari et al. | Dec 1990 | A |
4982157 | Seifert | Jan 1991 | A |
4983912 | Roehrlein et al. | Jan 1991 | A |
4996479 | Hoenig | Feb 1991 | A |
5008622 | Overton, Jr. et al. | Apr 1991 | A |
5010891 | Chamoun | Apr 1991 | A |
5012190 | Dossel | Apr 1991 | A |
5020538 | Morgan et al. | Jun 1991 | A |
5020540 | Chamoun | Jun 1991 | A |
5027817 | John | Jul 1991 | A |
5029082 | Shen et al. | Jul 1991 | A |
5059814 | Mead et al. | Oct 1991 | A |
5061680 | Paulson et al. | Oct 1991 | A |
5069218 | Ikeda | Dec 1991 | A |
5070399 | Martel | Dec 1991 | A |
5083571 | Prichep | Jan 1992 | A |
5088497 | Ikeda | Feb 1992 | A |
5092341 | Kelen | Mar 1992 | A |
5092835 | Schurig et al. | Mar 1992 | A |
5095270 | Ludeke | Mar 1992 | A |
5105354 | Nishimura | Apr 1992 | A |
5109862 | Kelen et al. | May 1992 | A |
5118606 | Lynch et al. | Jun 1992 | A |
5126315 | Nishino et al. | Jun 1992 | A |
RE34015 | Duffy | Aug 1992 | E |
5136687 | Edelman et al. | Aug 1992 | A |
5158932 | Hinshaw et al. | Oct 1992 | A |
5159703 | Lowery | Oct 1992 | A |
5159928 | Keppel | Nov 1992 | A |
5166614 | Yokosawa et al. | Nov 1992 | A |
5187327 | Ohta et al. | Feb 1993 | A |
5198977 | Salb | Mar 1993 | A |
5213338 | Brotz | May 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5218530 | Jastrzebski et al. | Jun 1993 | A |
5224203 | Skeirik | Jun 1993 | A |
5230344 | Ozdamar et al. | Jul 1993 | A |
5230346 | Leuchter et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5233517 | Jindra | Aug 1993 | A |
5241967 | Yasushi et al. | Sep 1993 | A |
5243281 | Ahonen et al. | Sep 1993 | A |
5243517 | Schmidt et al. | Sep 1993 | A |
5263488 | Van Veen et al. | Nov 1993 | A |
5265611 | Hoenig et al. | Nov 1993 | A |
5269315 | Leuchter et al. | Dec 1993 | A |
5269325 | Robinson et al. | Dec 1993 | A |
5273038 | Beavin | Dec 1993 | A |
5280791 | Lavie | Jan 1994 | A |
5282474 | Valdes Sosa et al. | Feb 1994 | A |
5283523 | Uhl et al. | Feb 1994 | A |
5287859 | John | Feb 1994 | A |
5291888 | Tucker | Mar 1994 | A |
5293187 | Knapp et al. | Mar 1994 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5303705 | Nenov | Apr 1994 | A |
5306228 | Rubins | Apr 1994 | A |
5307807 | Valdes Sosa et al. | May 1994 | A |
5309095 | Ahonen et al. | May 1994 | A |
5309917 | Wang et al. | May 1994 | A |
5309923 | Leuchter et al. | May 1994 | A |
5311129 | Ludwig et al. | May 1994 | A |
5320109 | Chamoun et al. | Jun 1994 | A |
5323777 | Ahonen et al. | Jun 1994 | A |
5325862 | Lewis et al. | Jul 1994 | A |
5326745 | Nishino et al. | Jul 1994 | A |
5331970 | Gevins et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5339811 | Ohta et al. | Aug 1994 | A |
5339826 | Schmidt et al. | Aug 1994 | A |
5343871 | Bittman et al. | Sep 1994 | A |
5359363 | Kuban et al. | Oct 1994 | A |
5377100 | Pope et al. | Dec 1994 | A |
5384588 | Martin et al. | Jan 1995 | A |
5406956 | Farwell | Apr 1995 | A |
5406957 | Tansey | Apr 1995 | A |
5409445 | Rubins | Apr 1995 | A |
5417211 | Abraham-Fuchs et al. | May 1995 | A |
5418512 | Ohta et al. | May 1995 | A |
5422689 | Knapp et al. | Jun 1995 | A |
5442289 | DiIorio et al. | Aug 1995 | A |
5443073 | Wang et al. | Aug 1995 | A |
5447154 | Cinquin et al. | Sep 1995 | A |
5447166 | Gevins | Sep 1995 | A |
5458117 | Chamoun et al. | Oct 1995 | A |
5458142 | Farmer et al. | Oct 1995 | A |
5459536 | Shalon et al. | Oct 1995 | A |
5461699 | Arbabi et al. | Oct 1995 | A |
5469057 | Robinson | Nov 1995 | A |
5474082 | Junker | Dec 1995 | A |
5476438 | Edrich et al. | Dec 1995 | A |
5491492 | Knapp et al. | Feb 1996 | A |
5496798 | Sakai et al. | Mar 1996 | A |
5503149 | Beavin | Apr 1996 | A |
5513649 | Gevins et al. | May 1996 | A |
5515301 | Corby, Jr. et al. | May 1996 | A |
5522863 | Spano et al. | Jun 1996 | A |
5546943 | Gould | Aug 1996 | A |
5552375 | Nishino et al. | Sep 1996 | A |
5555889 | Karagueuzian et al. | Sep 1996 | A |
5568816 | Gevins et al. | Oct 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5579241 | Corby, Jr. et al. | Nov 1996 | A |
5594849 | Kuc et al. | Jan 1997 | A |
5600243 | Colclough | Feb 1997 | A |
5601081 | Tomita et al. | Feb 1997 | A |
5611350 | John | Mar 1997 | A |
5617856 | Tamura et al. | Apr 1997 | A |
5619995 | Lobodzinski | Apr 1997 | A |
5622168 | Keusch et al. | Apr 1997 | A |
5626145 | Clapp et al. | May 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5640493 | Skeirik | Jun 1997 | A |
5643325 | Karagueuzian et al. | Jul 1997 | A |
5649061 | Smyth | Jul 1997 | A |
5650726 | Gasnier et al. | Jul 1997 | A |
5656937 | Cantor | Aug 1997 | A |
5662109 | Hutson | Sep 1997 | A |
5671740 | Tomita et al. | Sep 1997 | A |
5678561 | Karagueuzian et al. | Oct 1997 | A |
5682889 | Tomita et al. | Nov 1997 | A |
5685313 | Mayevsky | Nov 1997 | A |
5692517 | Junker | Dec 1997 | A |
5694939 | Cowings | Dec 1997 | A |
5699808 | John | Dec 1997 | A |
5701909 | Amir et al. | Dec 1997 | A |
5706402 | Bell | Jan 1998 | A |
5706811 | Takeda et al. | Jan 1998 | A |
5711305 | Swanson et al. | Jan 1998 | A |
5715821 | Faupel | Feb 1998 | A |
5719561 | Gonzales | Feb 1998 | A |
5720619 | Fisslinger | Feb 1998 | A |
5722418 | Bro | Mar 1998 | A |
5724987 | Gevins et al. | Mar 1998 | A |
5729046 | Nishino et al. | Mar 1998 | A |
5730146 | Itil et al. | Mar 1998 | A |
5736543 | Rogers et al. | Apr 1998 | A |
5737485 | Flanagan et al. | Apr 1998 | A |
5740812 | Cowan | Apr 1998 | A |
5742748 | Sever, Jr. | Apr 1998 | A |
5743854 | Dobson et al. | Apr 1998 | A |
5743860 | Hively et al. | Apr 1998 | A |
5747492 | Lynch et al. | May 1998 | A |
5752514 | Okamura et al. | May 1998 | A |
5752521 | Dardik | May 1998 | A |
5752911 | Canedo et al. | May 1998 | A |
5755227 | Tomita et al. | May 1998 | A |
5755739 | Sun et al. | May 1998 | A |
5761332 | Wischmann et al. | Jun 1998 | A |
5762611 | Lewis et al. | Jun 1998 | A |
5767043 | Cantor et al. | Jun 1998 | A |
5771261 | Anbar | Jun 1998 | A |
5771893 | Kassai et al. | Jun 1998 | A |
5771894 | Richards et al. | Jun 1998 | A |
5771897 | Zufrin | Jun 1998 | A |
5791342 | Woodard | Aug 1998 | A |
5794623 | Forbes | Aug 1998 | A |
5795304 | Sun et al. | Aug 1998 | A |
5797840 | Akselrod et al. | Aug 1998 | A |
5797853 | Musha et al. | Aug 1998 | A |
5810737 | Dardik | Sep 1998 | A |
5813993 | Kaplan et al. | Sep 1998 | A |
5815413 | Hively et al. | Sep 1998 | A |
5816247 | Maynard | Oct 1998 | A |
5825830 | Kopf | Oct 1998 | A |
5827195 | Lander | Oct 1998 | A |
5840040 | Altschuler et al. | Nov 1998 | A |
5842986 | Avrin et al. | Dec 1998 | A |
5845639 | Hochman et al. | Dec 1998 | A |
5846189 | Pincus | Dec 1998 | A |
5846208 | Pichlmayr et al. | Dec 1998 | A |
5853005 | Scanlon | Dec 1998 | A |
5857978 | Hively et al. | Jan 1999 | A |
5859533 | Gasnier et al. | Jan 1999 | A |
5871517 | Abrams et al. | Feb 1999 | A |
5877801 | Martin et al. | Mar 1999 | A |
5884626 | Kuroda et al. | Mar 1999 | A |
5885976 | Sandyk | Mar 1999 | A |
5891131 | Rajan et al. | Apr 1999 | A |
5899867 | Collura | May 1999 | A |
5911581 | Reynolds et al. | Jun 1999 | A |
5916171 | Mayevsky | Jun 1999 | A |
5921245 | O'Donnell, Jr. | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5938598 | Takeda et al. | Aug 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5970499 | Smith et al. | Oct 1999 | A |
5971923 | Finger | Oct 1999 | A |
5983129 | Cowan et al. | Nov 1999 | A |
5995868 | Dorfmeister et al. | Nov 1999 | A |
5999856 | Kennedy | Dec 1999 | A |
6002254 | Kassai et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6011990 | Schultz et al. | Jan 2000 | A |
6011991 | Mardirossian | Jan 2000 | A |
6016444 | John | Jan 2000 | A |
6021345 | Karagueuzian et al. | Feb 2000 | A |
6023161 | Dantsker et al. | Feb 2000 | A |
6026173 | Svenson et al. | Feb 2000 | A |
6032072 | Greenwald et al. | Feb 2000 | A |
6042548 | Giuffre | Mar 2000 | A |
6044292 | Heyrend et al. | Mar 2000 | A |
6050940 | Braun et al. | Apr 2000 | A |
6050962 | Kramer et al. | Apr 2000 | A |
6052619 | John | Apr 2000 | A |
6053739 | Stewart et al. | Apr 2000 | A |
6057846 | Sever, Jr. | May 2000 | A |
6066084 | Edrich et al. | May 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6067467 | John | May 2000 | A |
6069369 | Nishino et al. | May 2000 | A |
6070098 | Moore-Ede et al. | May 2000 | A |
6071246 | Sturzebecher et al. | Jun 2000 | A |
6080164 | Oshio et al. | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6088611 | Lauterbur et al. | Jul 2000 | A |
6092058 | Smyth | Jul 2000 | A |
6097980 | Monastra et al. | Aug 2000 | A |
6097981 | Freer | Aug 2000 | A |
6099319 | Zaltman et al. | Aug 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6115631 | Heyrend et al. | Sep 2000 | A |
6117075 | Barnea | Sep 2000 | A |
6129681 | Kuroda et al. | Oct 2000 | A |
6132724 | Blum | Oct 2000 | A |
6144872 | Graetz | Nov 2000 | A |
6149586 | Elkind | Nov 2000 | A |
6154026 | Dantsker et al. | Nov 2000 | A |
6155966 | Parker | Dec 2000 | A |
6155993 | Scott | Dec 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6157857 | Dimpfel | Dec 2000 | A |
6161031 | Hochman et al. | Dec 2000 | A |
6167298 | Levin | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6171239 | Humphrey | Jan 2001 | B1 |
6171258 | Karakasoglu et al. | Jan 2001 | B1 |
6182013 | Malinverno et al. | Jan 2001 | B1 |
6188924 | Swanson et al. | Feb 2001 | B1 |
6195576 | John | Feb 2001 | B1 |
6196972 | Moehring | Mar 2001 | B1 |
6205359 | Boveja | Mar 2001 | B1 |
6208902 | Boveja | Mar 2001 | B1 |
6224549 | Drongelen | May 2001 | B1 |
6226418 | Miller et al. | May 2001 | B1 |
6230037 | Tsukada et al. | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6239145 | Utsumi et al. | May 2001 | B1 |
6240308 | Hardy et al. | May 2001 | B1 |
6241686 | Balkin et al. | Jun 2001 | B1 |
6248126 | Lesser et al. | Jun 2001 | B1 |
6259399 | Krasner | Jul 2001 | B1 |
6263189 | Reagor | Jul 2001 | B1 |
6266453 | Hibbard et al. | Jul 2001 | B1 |
6269270 | Boveja | Jul 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6280393 | Granger et al. | Aug 2001 | B1 |
6287328 | Snyder et al. | Sep 2001 | B1 |
6290638 | Canedo et al. | Sep 2001 | B1 |
6292688 | Patton | Sep 2001 | B1 |
6293904 | Blazey et al. | Sep 2001 | B1 |
6294917 | Nichols | Sep 2001 | B1 |
6298259 | Kucharczyk et al. | Oct 2001 | B1 |
6305943 | Pougatchev et al. | Oct 2001 | B1 |
6306077 | Prabhu et al. | Oct 2001 | B1 |
6309342 | Blazey et al. | Oct 2001 | B1 |
6309361 | Thornton | Oct 2001 | B1 |
6315736 | Tsutsumi et al. | Nov 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6319205 | Goor et al. | Nov 2001 | B1 |
6322515 | Goor et al. | Nov 2001 | B1 |
6325475 | Hayes et al. | Dec 2001 | B1 |
6325761 | Jay | Dec 2001 | B1 |
6331164 | Shaw et al. | Dec 2001 | B1 |
6332087 | Svenson et al. | Dec 2001 | B1 |
6338713 | Chamoun et al. | Jan 2002 | B1 |
6339725 | Naritoku et al. | Jan 2002 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6343229 | Siebler et al. | Jan 2002 | B1 |
6346036 | Halley | Feb 2002 | B1 |
6346067 | Walters | Feb 2002 | B1 |
6346075 | Arai et al. | Feb 2002 | B1 |
6346985 | Hall | Feb 2002 | B1 |
6347465 | Jensen | Feb 2002 | B1 |
6347504 | Willibald | Feb 2002 | B1 |
6354087 | Nakahara et al. | Mar 2002 | B1 |
6354299 | Fischell et al. | Mar 2002 | B1 |
6356079 | Mizoguchi et al. | Mar 2002 | B1 |
6356781 | Lee et al. | Mar 2002 | B1 |
6356788 | Boveja | Mar 2002 | B2 |
6358201 | Childre et al. | Mar 2002 | B1 |
6364845 | Duffy et al. | Apr 2002 | B1 |
6366813 | DiLorenzo | Apr 2002 | B1 |
6366814 | Boveja et al. | Apr 2002 | B1 |
6370414 | Robinson | Apr 2002 | B1 |
6370423 | Guerrero et al. | Apr 2002 | B1 |
6374131 | Tomita et al. | Apr 2002 | B1 |
6375614 | Braun et al. | Apr 2002 | B1 |
6377833 | Albert | Apr 2002 | B1 |
6385479 | Sibbitt et al. | May 2002 | B1 |
6385486 | John et al. | May 2002 | B1 |
6390979 | Njemanze | May 2002 | B1 |
6393363 | Wilt et al. | May 2002 | B1 |
6394963 | Blazey et al. | May 2002 | B1 |
6402520 | Freer | Jun 2002 | B1 |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6408107 | Miller et al. | Jun 2002 | B1 |
6418344 | Rezai et al. | Jul 2002 | B1 |
6419629 | Balkin et al. | Jul 2002 | B1 |
6427086 | Fischell et al. | Jul 2002 | B1 |
6428490 | Kramer et al. | Aug 2002 | B1 |
6430443 | Karell | Aug 2002 | B1 |
6435878 | Reynolds et al. | Aug 2002 | B1 |
6442421 | Le Van Quyen et al. | Aug 2002 | B1 |
6442948 | Takeda | Sep 2002 | B1 |
6466816 | Granger et al. | Oct 2002 | B2 |
6470220 | Kraus, Jr. et al. | Oct 2002 | B1 |
6475163 | Smits et al. | Nov 2002 | B1 |
6482165 | Patton et al. | Nov 2002 | B1 |
6487441 | Swanson et al. | Nov 2002 | B1 |
6488617 | Katz | Dec 2002 | B1 |
6490472 | Li et al. | Dec 2002 | B1 |
6493577 | Williams | Dec 2002 | B1 |
6496724 | Levendowski et al. | Dec 2002 | B1 |
6497658 | Roizen et al. | Dec 2002 | B2 |
6497699 | Ludvig et al. | Dec 2002 | B1 |
6503085 | Elkind | Jan 2003 | B1 |
6507754 | Le Van Quyen et al. | Jan 2003 | B2 |
6510340 | Jordan | Jan 2003 | B1 |
6511424 | Moore-Ede et al. | Jan 2003 | B1 |
6516246 | Derakhshan | Feb 2003 | B2 |
6520905 | Surve et al. | Feb 2003 | B1 |
6520921 | Patton et al. | Feb 2003 | B1 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6524249 | Moehring et al. | Feb 2003 | B2 |
6526297 | Merilainen | Feb 2003 | B1 |
6526415 | Smith et al. | Feb 2003 | B2 |
6527715 | Balkin et al. | Mar 2003 | B2 |
6527730 | Blazey et al. | Mar 2003 | B2 |
6529759 | Tucker et al. | Mar 2003 | B1 |
6529773 | Dewan | Mar 2003 | B1 |
6530884 | Balkin et al. | Mar 2003 | B2 |
6534986 | Nichols | Mar 2003 | B2 |
6538436 | Simola et al. | Mar 2003 | B1 |
6539245 | Tsukada et al. | Mar 2003 | B2 |
6539263 | Schiff et al. | Mar 2003 | B1 |
6544170 | Kajihara et al. | Apr 2003 | B1 |
6546378 | Cook | Apr 2003 | B1 |
6547736 | Moehring et al. | Apr 2003 | B1 |
6547746 | Marino | Apr 2003 | B1 |
6549804 | Osorio et al. | Apr 2003 | B1 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6553252 | Balkin et al. | Apr 2003 | B2 |
6556695 | Packer et al. | Apr 2003 | B1 |
6556861 | Prichep | Apr 2003 | B1 |
6556868 | Naritoku et al. | Apr 2003 | B2 |
6557558 | Tajima et al. | May 2003 | B1 |
6560486 | Osorio et al. | May 2003 | B1 |
6565518 | Blazey et al. | May 2003 | B2 |
6574573 | Asano | Jun 2003 | B1 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6587729 | O'Loughlin et al. | Jul 2003 | B2 |
6591132 | Gotman et al. | Jul 2003 | B2 |
6591137 | Fischell et al. | Jul 2003 | B1 |
6594524 | Esteller et al. | Jul 2003 | B2 |
6597954 | Pless et al. | Jul 2003 | B1 |
6602202 | John et al. | Aug 2003 | B2 |
6603502 | Martin et al. | Aug 2003 | B2 |
6609030 | Rezai et al. | Aug 2003 | B1 |
6611698 | Yamashita et al. | Aug 2003 | B1 |
6615158 | Wenzel et al. | Sep 2003 | B2 |
6616611 | Moehring | Sep 2003 | B1 |
6622036 | Suffin | Sep 2003 | B1 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6625485 | Levendowski et al. | Sep 2003 | B2 |
6626676 | Freer | Sep 2003 | B2 |
6633686 | Bakircioglu et al. | Oct 2003 | B1 |
6644976 | Kullok et al. | Nov 2003 | B2 |
6648822 | Hamamoto et al. | Nov 2003 | B2 |
6648880 | Chauvet et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6652458 | Blazey et al. | Nov 2003 | B2 |
6652470 | Patton et al. | Nov 2003 | B2 |
6654632 | Lange et al. | Nov 2003 | B2 |
6654729 | Hickman et al. | Nov 2003 | B1 |
6656137 | Tyldsley et al. | Dec 2003 | B1 |
6658287 | Litt et al. | Dec 2003 | B1 |
6663571 | Njemanze | Dec 2003 | B1 |
6665552 | Yokosawa et al. | Dec 2003 | B2 |
6665553 | Kandori et al. | Dec 2003 | B2 |
6665562 | Gluckman et al. | Dec 2003 | B2 |
6671555 | Gielen et al. | Dec 2003 | B2 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6678548 | Echauz et al. | Jan 2004 | B1 |
6684098 | Oshio et al. | Jan 2004 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6687525 | Llinas et al. | Feb 2004 | B2 |
6695761 | Oschman et al. | Feb 2004 | B2 |
6697660 | Robinson | Feb 2004 | B1 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6701173 | Nowinski et al. | Mar 2004 | B2 |
6703838 | Conti | Mar 2004 | B2 |
6708051 | Durousseau | Mar 2004 | B1 |
6708064 | Rezai | Mar 2004 | B2 |
6708184 | Smith et al. | Mar 2004 | B2 |
6709399 | Shen et al. | Mar 2004 | B1 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6726624 | Keirsbilck et al. | Apr 2004 | B2 |
6728424 | Zhu et al. | Apr 2004 | B1 |
6728564 | Lahteenmaki | Apr 2004 | B2 |
6731975 | Viertio-Oja et al. | May 2004 | B1 |
6735460 | Tsukada et al. | May 2004 | B2 |
6735467 | Wilson | May 2004 | B2 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6740032 | Balkin et al. | May 2004 | B2 |
6743167 | Balkin et al. | Jun 2004 | B2 |
6743182 | Miller et al. | Jun 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6745156 | Cook | Jun 2004 | B2 |
6746409 | Keirsbilck et al. | Jun 2004 | B2 |
6751499 | Lange et al. | Jun 2004 | B2 |
6758813 | Meadows | Jul 2004 | B2 |
6768920 | Lange et al. | Jul 2004 | B2 |
6773400 | Njemanze | Aug 2004 | B2 |
6774929 | Kopp | Aug 2004 | B1 |
6775405 | Zhu | Aug 2004 | B1 |
6782292 | Whitehurst | Aug 2004 | B2 |
6785409 | Suri | Aug 2004 | B1 |
6788975 | Whitehurst et al. | Sep 2004 | B1 |
6791331 | Conti | Sep 2004 | B2 |
6795724 | Hogan | Sep 2004 | B2 |
6798898 | Fedorovskaya et al. | Sep 2004 | B1 |
6801648 | Cheng | Oct 2004 | B2 |
6801803 | Viertio-Oja | Oct 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6804661 | Cook | Oct 2004 | B2 |
6815949 | Kandori et al. | Nov 2004 | B2 |
6816744 | Garfield et al. | Nov 2004 | B2 |
6819956 | DiLorenzo | Nov 2004 | B2 |
6826426 | Lange et al. | Nov 2004 | B2 |
6843774 | Foust et al. | Jan 2005 | B2 |
6853186 | Li | Feb 2005 | B2 |
6856830 | He | Feb 2005 | B2 |
6863127 | Clark et al. | Mar 2005 | B2 |
6865494 | Duensing et al. | Mar 2005 | B2 |
6873872 | Gluckman et al. | Mar 2005 | B2 |
6875174 | Braun et al. | Apr 2005 | B2 |
6876196 | Taulu et al. | Apr 2005 | B1 |
6879859 | Boveja | Apr 2005 | B1 |
6882881 | Lesser et al. | Apr 2005 | B1 |
6885192 | Clarke et al. | Apr 2005 | B2 |
6885886 | Bauch et al. | Apr 2005 | B2 |
6886964 | Gardiner et al. | May 2005 | B2 |
6893407 | Brooks et al. | May 2005 | B1 |
6896655 | Patton et al. | May 2005 | B2 |
RE38749 | Dardik | Jun 2005 | E |
6907280 | Becerra et al. | Jun 2005 | B2 |
6915241 | Kohlmorgen et al. | Jul 2005 | B2 |
6920357 | Osorio et al. | Jul 2005 | B2 |
6926921 | Stasiak et al. | Aug 2005 | B2 |
6928354 | Ryu et al. | Aug 2005 | B2 |
6931274 | Williams | Aug 2005 | B2 |
6931275 | Collura | Aug 2005 | B2 |
6936012 | Wells | Aug 2005 | B2 |
6947790 | Gevins et al. | Sep 2005 | B2 |
6950697 | Jordan | Sep 2005 | B2 |
6950698 | Sarkela et al. | Sep 2005 | B2 |
6959215 | Gliner et al. | Oct 2005 | B2 |
6961618 | Osorio et al. | Nov 2005 | B2 |
6963770 | Scarantino et al. | Nov 2005 | B2 |
6963771 | Scarantino et al. | Nov 2005 | B2 |
6978179 | Flagg et al. | Dec 2005 | B1 |
6980863 | van Venrooij et al. | Dec 2005 | B2 |
6981947 | Melker | Jan 2006 | B2 |
6983184 | Price | Jan 2006 | B2 |
6983264 | Shimizu | Jan 2006 | B2 |
6985769 | Jordan | Jan 2006 | B2 |
6988056 | Cook | Jan 2006 | B2 |
6990377 | Gliner et al. | Jan 2006 | B2 |
6993380 | Modarres | Jan 2006 | B1 |
6996261 | deCharms | Feb 2006 | B2 |
6996549 | Zhang et al. | Feb 2006 | B2 |
7003352 | Whitehurst | Feb 2006 | B1 |
7006872 | Gielen et al. | Feb 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7010351 | Firlik et al. | Mar 2006 | B2 |
7011410 | Bolger et al. | Mar 2006 | B2 |
7011814 | Suddarth et al. | Mar 2006 | B2 |
7014613 | John et al. | Mar 2006 | B2 |
7016722 | Prichep | Mar 2006 | B2 |
7022083 | Tanaka et al. | Apr 2006 | B2 |
7023206 | Viehland et al. | Apr 2006 | B2 |
7024247 | Gliner et al. | Apr 2006 | B2 |
7030617 | Conti | Apr 2006 | B2 |
7035686 | Hogan | Apr 2006 | B2 |
7037260 | Keirsbilck et al. | May 2006 | B2 |
7038450 | Romalis et al. | May 2006 | B2 |
7039266 | Doty | May 2006 | B1 |
7039547 | Wilson | May 2006 | B2 |
7043293 | Baura | May 2006 | B1 |
7053610 | Clarke et al. | May 2006 | B2 |
7054454 | Causevic et al. | May 2006 | B2 |
7062391 | Wilson | Jun 2006 | B2 |
7063535 | Stamm et al. | Jun 2006 | B2 |
7070571 | Kramer et al. | Jul 2006 | B2 |
7079977 | Osorio et al. | Jul 2006 | B2 |
7089927 | John et al. | Aug 2006 | B2 |
7092748 | Valdes Sosa et al. | Aug 2006 | B2 |
7099714 | Houben | Aug 2006 | B2 |
7104947 | Riehl | Sep 2006 | B2 |
7104963 | Melker et al. | Sep 2006 | B2 |
7105824 | Stoddart et al. | Sep 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7116102 | Clarke et al. | Oct 2006 | B2 |
7117026 | Shao et al. | Oct 2006 | B2 |
7119553 | Yang et al. | Oct 2006 | B2 |
7120486 | Leuthardt et al. | Oct 2006 | B2 |
7123955 | Gao et al. | Oct 2006 | B1 |
7127100 | Wenzel et al. | Oct 2006 | B2 |
7128713 | Moehring et al. | Oct 2006 | B2 |
7130673 | Tolvanen-Laakso et al. | Oct 2006 | B2 |
7130675 | Ewing et al. | Oct 2006 | B2 |
7130691 | Falci | Oct 2006 | B2 |
7145333 | Romalis et al. | Dec 2006 | B2 |
7146211 | Frei et al. | Dec 2006 | B2 |
7146217 | Firlik et al. | Dec 2006 | B2 |
7146218 | Esteller et al. | Dec 2006 | B2 |
7149572 | Frei et al. | Dec 2006 | B2 |
7149773 | Haller et al. | Dec 2006 | B2 |
7150710 | Haber et al. | Dec 2006 | B2 |
7150715 | Collura et al. | Dec 2006 | B2 |
7150717 | Katura et al. | Dec 2006 | B2 |
7150718 | Okada et al. | Dec 2006 | B2 |
7151961 | Whitehurst et al. | Dec 2006 | B1 |
7155279 | Whitehurst et al. | Dec 2006 | B2 |
7163512 | Childre et al. | Jan 2007 | B1 |
7164941 | Misczynski et al. | Jan 2007 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7170294 | Kasevich | Jan 2007 | B2 |
7171252 | Scarantino et al. | Jan 2007 | B1 |
7171339 | Repucci et al. | Jan 2007 | B2 |
7174206 | Frei et al. | Feb 2007 | B2 |
7176680 | Veryaskin | Feb 2007 | B1 |
7177675 | Suffin et al. | Feb 2007 | B2 |
7177678 | Osorio et al. | Feb 2007 | B1 |
7181505 | Haller et al. | Feb 2007 | B2 |
7183381 | Varadhachary et al. | Feb 2007 | B2 |
7184837 | Goetz | Feb 2007 | B2 |
7186209 | Jacobson et al. | Mar 2007 | B2 |
7187169 | Clarke et al. | Mar 2007 | B2 |
7190826 | Russell et al. | Mar 2007 | B2 |
7190995 | Chervin et al. | Mar 2007 | B2 |
7193413 | Kandori et al. | Mar 2007 | B2 |
7196514 | Li | Mar 2007 | B2 |
7197352 | Gott et al. | Mar 2007 | B2 |
7199708 | Terauchi et al. | Apr 2007 | B2 |
7203548 | Whitehurst et al. | Apr 2007 | B2 |
7207948 | Coyle | Apr 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7209788 | Nicolelis et al. | Apr 2007 | B2 |
7212851 | Donoghue et al. | May 2007 | B2 |
7215986 | Diab et al. | May 2007 | B2 |
7215994 | Huiku | May 2007 | B2 |
7218104 | Clarke et al. | May 2007 | B2 |
7221981 | Gliner | May 2007 | B2 |
7222964 | Gotze et al. | May 2007 | B2 |
7224282 | Terauchi et al. | May 2007 | B2 |
7225013 | Geva et al. | May 2007 | B2 |
7228167 | Kara et al. | Jun 2007 | B2 |
7228169 | Viertio-Oja et al. | Jun 2007 | B2 |
7228171 | Lesser et al. | Jun 2007 | B2 |
7228178 | Carroll et al. | Jun 2007 | B2 |
7231245 | Greenwald et al. | Jun 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7236830 | Gliner | Jun 2007 | B2 |
7236831 | Firlik et al. | Jun 2007 | B2 |
7239731 | Semenov et al. | Jul 2007 | B1 |
7239926 | Goetz | Jul 2007 | B2 |
7242983 | Frei et al. | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7252090 | Goetz | Aug 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254439 | Misczynski et al. | Aug 2007 | B2 |
7254500 | Makeig et al. | Aug 2007 | B2 |
7257439 | Llinas | Aug 2007 | B2 |
7258659 | Anninou et al. | Aug 2007 | B2 |
7260430 | Wu et al. | Aug 2007 | B2 |
7267644 | Thomas et al. | Sep 2007 | B2 |
7267652 | Coyle et al. | Sep 2007 | B2 |
7269455 | Pineda | Sep 2007 | B2 |
7269456 | Collura | Sep 2007 | B2 |
7269516 | Brunner et al. | Sep 2007 | B2 |
7276916 | Hammer | Oct 2007 | B2 |
7277758 | DiLorenzo | Oct 2007 | B2 |
7278966 | Hjelt et al. | Oct 2007 | B2 |
7280861 | Thomas et al. | Oct 2007 | B2 |
7280867 | Frei et al. | Oct 2007 | B2 |
7280870 | Nurmikko et al. | Oct 2007 | B2 |
7282030 | Frei et al. | Oct 2007 | B2 |
7283861 | Bystritsky | Oct 2007 | B2 |
7286871 | Cohen | Oct 2007 | B2 |
7288066 | Drew | Oct 2007 | B2 |
7292890 | Whitehurst et al. | Nov 2007 | B2 |
7295019 | Yang et al. | Nov 2007 | B2 |
7297110 | Goyal et al. | Nov 2007 | B2 |
7299088 | Thakor et al. | Nov 2007 | B1 |
7299096 | Balzer et al. | Nov 2007 | B2 |
7302298 | Lowry et al. | Nov 2007 | B2 |
7305268 | Gliner et al. | Dec 2007 | B2 |
7309315 | Kullok et al. | Dec 2007 | B2 |
7313442 | Velasco et al. | Dec 2007 | B2 |
7318343 | Coenen | Jan 2008 | B2 |
7321837 | Osorio et al. | Jan 2008 | B2 |
7324845 | Mietus et al. | Jan 2008 | B2 |
7324851 | DiLorenzo | Jan 2008 | B1 |
7328053 | Diab et al. | Feb 2008 | B1 |
7330032 | Donnangelo | Feb 2008 | B2 |
7333619 | Causevic et al. | Feb 2008 | B2 |
7333851 | Echauz et al. | Feb 2008 | B2 |
7334892 | Goodall et al. | Feb 2008 | B2 |
7338171 | Hsieh et al. | Mar 2008 | B2 |
7338455 | White et al. | Mar 2008 | B2 |
7340125 | Doty | Mar 2008 | B1 |
7340289 | Kandori et al. | Mar 2008 | B2 |
7343198 | Behbehani et al. | Mar 2008 | B2 |
7346382 | McIntyre et al. | Mar 2008 | B2 |
7346395 | Lozano et al. | Mar 2008 | B2 |
7353064 | Gliner et al. | Apr 2008 | B2 |
7353065 | Morrell | Apr 2008 | B2 |
7355597 | Laidlaw et al. | Apr 2008 | B2 |
7359837 | Drew | Apr 2008 | B2 |
7363164 | Little et al. | Apr 2008 | B2 |
7366571 | Armstrong | Apr 2008 | B2 |
7367807 | Pennebaker | May 2008 | B1 |
7367949 | Korhonen et al. | May 2008 | B2 |
7369896 | Gesotti | May 2008 | B2 |
7371365 | Poduslo et al. | May 2008 | B2 |
7373198 | Bibian et al. | May 2008 | B2 |
7376453 | Diab et al. | May 2008 | B1 |
7376459 | Rosenfeld | May 2008 | B2 |
7378056 | Black | May 2008 | B2 |
7381185 | Zhirnov et al. | Jun 2008 | B2 |
7383070 | Diab et al. | Jun 2008 | B2 |
7383237 | Zhang et al. | Jun 2008 | B2 |
7386347 | Chung et al. | Jun 2008 | B2 |
7389144 | Osorio et al. | Jun 2008 | B1 |
7392079 | Donoghue et al. | Jun 2008 | B2 |
7394246 | Chieh et al. | Jul 2008 | B2 |
7395292 | Johnson | Jul 2008 | B2 |
7396333 | Stahmann et al. | Jul 2008 | B2 |
7399282 | John et al. | Jul 2008 | B2 |
7400984 | Kandori et al. | Jul 2008 | B2 |
7403809 | Tsukada et al. | Jul 2008 | B2 |
7403814 | Cox et al. | Jul 2008 | B2 |
7403815 | Katz et al. | Jul 2008 | B2 |
7403820 | DiLorenzo | Jul 2008 | B2 |
7407485 | Huiku | Aug 2008 | B2 |
7409321 | Repucci et al. | Aug 2008 | B2 |
7418290 | Devlin et al. | Aug 2008 | B2 |
7420033 | Varadhachary et al. | Sep 2008 | B2 |
7422555 | Zabara | Sep 2008 | B2 |
7429247 | Okada et al. | Sep 2008 | B2 |
7437196 | Wyler et al. | Oct 2008 | B2 |
7440789 | Hannula et al. | Oct 2008 | B2 |
7440806 | Whitehurst et al. | Oct 2008 | B1 |
7444184 | Boveja et al. | Oct 2008 | B2 |
7450986 | Nguyen et al. | Nov 2008 | B2 |
7453263 | Kim et al. | Nov 2008 | B2 |
7454240 | Diab et al. | Nov 2008 | B2 |
7454243 | Silberstein | Nov 2008 | B2 |
7454245 | Armstrong et al. | Nov 2008 | B2 |
7454387 | Abercrombie et al. | Nov 2008 | B2 |
7457653 | Fujimaki | Nov 2008 | B2 |
7457665 | Osorio et al. | Nov 2008 | B1 |
7461045 | Chaovalitwongse et al. | Dec 2008 | B1 |
7462151 | Childre et al. | Dec 2008 | B2 |
7462155 | England | Dec 2008 | B2 |
7463024 | Simola et al. | Dec 2008 | B2 |
7463142 | Lindsay | Dec 2008 | B2 |
7463927 | Chaouat | Dec 2008 | B1 |
7466132 | Clarke et al. | Dec 2008 | B2 |
7468040 | Hartley et al. | Dec 2008 | B2 |
7468350 | Gong et al. | Dec 2008 | B2 |
7469697 | Lee et al. | Dec 2008 | B2 |
7471971 | Diab et al. | Dec 2008 | B2 |
7471978 | John et al. | Dec 2008 | B2 |
7478108 | Townsend et al. | Jan 2009 | B2 |
7482298 | Nepela | Jan 2009 | B2 |
7483747 | Gliner et al. | Jan 2009 | B2 |
7486986 | Osorio et al. | Feb 2009 | B1 |
7488294 | Torch | Feb 2009 | B2 |
7489958 | Diab et al. | Feb 2009 | B2 |
7489964 | Suffin et al. | Feb 2009 | B2 |
7490085 | Walker et al. | Feb 2009 | B2 |
7491173 | Heim | Feb 2009 | B2 |
7493171 | Whitehurst et al. | Feb 2009 | B1 |
7493172 | Whitehurst et al. | Feb 2009 | B2 |
7496393 | Diab et al. | Feb 2009 | B2 |
7497828 | Wilk et al. | Mar 2009 | B1 |
7499741 | Diab et al. | Mar 2009 | B2 |
7499745 | Littrup et al. | Mar 2009 | B2 |
7499752 | Maschino et al. | Mar 2009 | B2 |
7499894 | Marom et al. | Mar 2009 | B2 |
7502720 | Taulu | Mar 2009 | B2 |
7509154 | Diab et al. | Mar 2009 | B2 |
7509161 | Viertio-Oja | Mar 2009 | B2 |
7509163 | Luo et al. | Mar 2009 | B1 |
7510531 | Lee et al. | Mar 2009 | B2 |
7510699 | Black et al. | Mar 2009 | B2 |
7515054 | Torch | Apr 2009 | B2 |
7530955 | Diab et al. | May 2009 | B2 |
7537568 | Moehring | May 2009 | B2 |
7539528 | Xiong et al. | May 2009 | B2 |
7539532 | Tran | May 2009 | B2 |
7539533 | Tran | May 2009 | B2 |
7539543 | Schiff et al. | May 2009 | B2 |
7547284 | Brainard, II | Jun 2009 | B2 |
7553810 | Gong et al. | Jun 2009 | B2 |
7558622 | Tran | Jul 2009 | B2 |
7559903 | Moussavi et al. | Jul 2009 | B2 |
7561918 | Armstrong et al. | Jul 2009 | B2 |
7565193 | Laken | Jul 2009 | B2 |
7565199 | Sheffield et al. | Jul 2009 | B2 |
7565200 | Wyler et al. | Jul 2009 | B2 |
7565809 | Takeda | Jul 2009 | B2 |
7567693 | deCharms | Jul 2009 | B2 |
7570054 | Lin | Aug 2009 | B1 |
7570991 | Milgramm et al. | Aug 2009 | B2 |
7572225 | Stahmann et al. | Aug 2009 | B2 |
7573264 | Xu et al. | Aug 2009 | B2 |
7573268 | Volegov et al. | Aug 2009 | B2 |
7574007 | Shaw et al. | Aug 2009 | B2 |
7574254 | Milgramm et al. | Aug 2009 | B2 |
7577472 | Li et al. | Aug 2009 | B2 |
7577481 | Firlik et al. | Aug 2009 | B2 |
7580798 | Brunner et al. | Aug 2009 | B2 |
7582062 | Magill et al. | Sep 2009 | B2 |
7583857 | Xu et al. | Sep 2009 | B2 |
7593767 | Modarres | Sep 2009 | B1 |
7594122 | Milgramm et al. | Sep 2009 | B2 |
7594889 | St. Ores et al. | Sep 2009 | B2 |
7596535 | de Voir et al. | Sep 2009 | B2 |
7597665 | Wilk et al. | Oct 2009 | B2 |
7603168 | Bibian et al. | Oct 2009 | B2 |
7603174 | De Ridder | Oct 2009 | B2 |
7604603 | Sackner et al. | Oct 2009 | B2 |
7606405 | Sawyer et al. | Oct 2009 | B2 |
7608579 | Gong et al. | Oct 2009 | B2 |
7610083 | Drew et al. | Oct 2009 | B2 |
7610094 | Stahmann et al. | Oct 2009 | B2 |
7610096 | McDonald, III | Oct 2009 | B2 |
7610100 | Jaax et al. | Oct 2009 | B2 |
7613502 | Yamamoto et al. | Nov 2009 | B2 |
7613519 | De Ridder | Nov 2009 | B2 |
7613520 | De Ridder | Nov 2009 | B2 |
7617002 | Goetz | Nov 2009 | B2 |
7618381 | Krebs et al. | Nov 2009 | B2 |
7620455 | Maschino | Nov 2009 | B2 |
7620456 | Gliner et al. | Nov 2009 | B2 |
7623912 | Akselrod et al. | Nov 2009 | B2 |
7623927 | Rezai | Nov 2009 | B2 |
7623928 | DiLorenzo | Nov 2009 | B2 |
7624293 | Osorio et al. | Nov 2009 | B2 |
7625340 | Sarkela | Dec 2009 | B2 |
7627370 | Marks | Dec 2009 | B2 |
7629889 | Sachanandani et al. | Dec 2009 | B2 |
7630757 | Dorfmeister et al. | Dec 2009 | B2 |
7634317 | Ben-David et al. | Dec 2009 | B2 |
7640055 | Geva et al. | Dec 2009 | B2 |
7643655 | Liang et al. | Jan 2010 | B2 |
7643881 | Armstrong | Jan 2010 | B2 |
7647097 | Flaherty et al. | Jan 2010 | B2 |
7647098 | Prichep | Jan 2010 | B2 |
7648498 | Hempel | Jan 2010 | B2 |
7649351 | Kajola et al. | Jan 2010 | B2 |
7653433 | Lozano et al. | Jan 2010 | B2 |
7654948 | Kaplan et al. | Feb 2010 | B2 |
7657316 | Jaax et al. | Feb 2010 | B2 |
7668579 | Lynn | Feb 2010 | B2 |
7668591 | Lee et al. | Feb 2010 | B2 |
7670838 | Deisseroth et al. | Mar 2010 | B2 |
7672707 | Takeda | Mar 2010 | B2 |
7672717 | Zikov et al. | Mar 2010 | B1 |
7672730 | Firlik et al. | Mar 2010 | B2 |
7676263 | Harris et al. | Mar 2010 | B2 |
7678047 | Shiomi et al. | Mar 2010 | B2 |
7678061 | Lee et al. | Mar 2010 | B2 |
7678767 | Gong et al. | Mar 2010 | B2 |
7680526 | McIntyre et al. | Mar 2010 | B2 |
7680540 | Jensen et al. | Mar 2010 | B2 |
7684856 | Virtanen et al. | Mar 2010 | B2 |
7684858 | He et al. | Mar 2010 | B2 |
7684866 | Fowler et al. | Mar 2010 | B2 |
7684867 | Jaax et al. | Mar 2010 | B2 |
7697979 | Martinerie et al. | Apr 2010 | B2 |
7702387 | Stevenson et al. | Apr 2010 | B2 |
7702502 | Ricci et al. | Apr 2010 | B2 |
7706871 | Devlin et al. | Apr 2010 | B2 |
7706992 | Ricci et al. | Apr 2010 | B2 |
7711417 | John et al. | May 2010 | B2 |
7711432 | Thimineur et al. | May 2010 | B2 |
7714936 | Martin et al. | May 2010 | B1 |
7715894 | Dunseath et al. | May 2010 | B2 |
7715910 | Hargrove et al. | May 2010 | B2 |
7715919 | Osorio et al. | May 2010 | B2 |
7720519 | Ruohonen | May 2010 | B2 |
7720530 | Causevic | May 2010 | B2 |
7725174 | Kern et al. | May 2010 | B2 |
7725192 | Eskandar et al. | May 2010 | B2 |
7727161 | Coyle et al. | Jun 2010 | B2 |
7729740 | Kraus, Jr. et al. | Jun 2010 | B2 |
7729753 | Kremliovsky et al. | Jun 2010 | B2 |
7729755 | Laken | Jun 2010 | B2 |
7729773 | Sloan | Jun 2010 | B2 |
7733224 | Tran | Jun 2010 | B2 |
7733973 | Moriya et al. | Jun 2010 | B2 |
7734334 | Mietus et al. | Jun 2010 | B2 |
7734340 | De Ridder | Jun 2010 | B2 |
7734355 | Cohen et al. | Jun 2010 | B2 |
7736382 | Webb et al. | Jun 2010 | B2 |
7737687 | Na et al. | Jun 2010 | B2 |
7738683 | Cahill et al. | Jun 2010 | B2 |
7740592 | Graham et al. | Jun 2010 | B2 |
7742820 | Wyler et al. | Jun 2010 | B2 |
7746979 | Dilmanian et al. | Jun 2010 | B2 |
7747318 | John et al. | Jun 2010 | B2 |
7747325 | Dilorenzo | Jun 2010 | B2 |
7747326 | Velasco et al. | Jun 2010 | B2 |
7747551 | Snyder | Jun 2010 | B2 |
7749155 | Anderson et al. | Jul 2010 | B1 |
7751877 | Flaherty et al. | Jul 2010 | B2 |
7751878 | Merkle et al. | Jul 2010 | B1 |
7753836 | Peterchev | Jul 2010 | B2 |
7754190 | Suffin | Jul 2010 | B2 |
7756564 | Matsui et al. | Jul 2010 | B2 |
7756568 | Scarantino et al. | Jul 2010 | B2 |
7756584 | Sheffield et al. | Jul 2010 | B2 |
7757690 | Stahmann et al. | Jul 2010 | B2 |
7758503 | Lynn et al. | Jul 2010 | B2 |
7763588 | van Praag et al. | Jul 2010 | B2 |
7764987 | Dorr et al. | Jul 2010 | B2 |
7765088 | Drew | Jul 2010 | B2 |
7766827 | Balkin et al. | Aug 2010 | B2 |
7769424 | Sato | Aug 2010 | B2 |
7769431 | Scarantino et al. | Aug 2010 | B2 |
7769461 | Whitehurst et al. | Aug 2010 | B2 |
7769464 | Gerber et al. | Aug 2010 | B2 |
7771341 | Rogers | Aug 2010 | B2 |
7771364 | Arbel et al. | Aug 2010 | B2 |
7774052 | Burton et al. | Aug 2010 | B2 |
7774064 | Meyer et al. | Aug 2010 | B2 |
7775993 | Heruth et al. | Aug 2010 | B2 |
7778490 | Quist | Aug 2010 | B2 |
7778692 | Scarantino et al. | Aug 2010 | B2 |
7778693 | Barbour et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7787937 | Scarantino et al. | Aug 2010 | B2 |
7787946 | Stahmann et al. | Aug 2010 | B2 |
7792575 | Fujimaki et al. | Sep 2010 | B2 |
7794403 | Schaafsma | Sep 2010 | B2 |
7794406 | Reisfeld et al. | Sep 2010 | B2 |
7797040 | Pesaran et al. | Sep 2010 | B2 |
7800493 | Terauchi et al. | Sep 2010 | B2 |
7801591 | Shusterman | Sep 2010 | B1 |
7801592 | Shan et al. | Sep 2010 | B2 |
7801593 | Behbehani et al. | Sep 2010 | B2 |
7801601 | Maschino et al. | Sep 2010 | B2 |
7801686 | Hyde et al. | Sep 2010 | B2 |
7803118 | Reisfeld et al. | Sep 2010 | B2 |
7803119 | Reisfeld | Sep 2010 | B2 |
7804441 | DeChiaro, Jr. | Sep 2010 | B1 |
7805203 | Ben-David et al. | Sep 2010 | B2 |
7809433 | Keenan | Oct 2010 | B2 |
7809434 | Kofol et al. | Oct 2010 | B2 |
7811279 | John | Oct 2010 | B2 |
7819794 | Becker | Oct 2010 | B2 |
7819812 | John et al. | Oct 2010 | B2 |
7822481 | Gerber et al. | Oct 2010 | B2 |
D627476 | Gaw et al. | Nov 2010 | S |
7829562 | Shamloo et al. | Nov 2010 | B2 |
7831302 | Thomas | Nov 2010 | B2 |
7831305 | Gliner | Nov 2010 | B2 |
7834627 | Sakai et al. | Nov 2010 | B2 |
7835787 | Sajda et al. | Nov 2010 | B2 |
7840039 | Fuchs | Nov 2010 | B2 |
7840248 | Fuchs et al. | Nov 2010 | B2 |
7840250 | Tucker | Nov 2010 | B2 |
7840257 | Chance | Nov 2010 | B2 |
7840280 | Parnis et al. | Nov 2010 | B2 |
7841986 | He et al. | Nov 2010 | B2 |
7844324 | Sarkela et al. | Nov 2010 | B2 |
7848803 | Jaax et al. | Dec 2010 | B1 |
7852087 | Wilt et al. | Dec 2010 | B2 |
7853321 | Jaax et al. | Dec 2010 | B2 |
7853322 | Bourget et al. | Dec 2010 | B2 |
7853323 | Goetz | Dec 2010 | B2 |
7853329 | DiLorenzo | Dec 2010 | B2 |
7856264 | Firlik et al. | Dec 2010 | B2 |
7860548 | McIntyre et al. | Dec 2010 | B2 |
7860552 | Borsook et al. | Dec 2010 | B2 |
7860561 | Modarres | Dec 2010 | B1 |
7860570 | Whitehurst et al. | Dec 2010 | B2 |
7863272 | Oksenberg et al. | Jan 2011 | B2 |
7865234 | Modarres | Jan 2011 | B1 |
7865235 | Le et al. | Jan 2011 | B2 |
7865244 | Giftakis et al. | Jan 2011 | B2 |
7869867 | Armstrong et al. | Jan 2011 | B2 |
7869884 | Scott et al. | Jan 2011 | B2 |
7869885 | Begnaud et al. | Jan 2011 | B2 |
7872235 | Rousso et al. | Jan 2011 | B2 |
7873411 | Eda et al. | Jan 2011 | B2 |
7876938 | Huang et al. | Jan 2011 | B2 |
7878965 | Haber et al. | Feb 2011 | B2 |
7879043 | Meneghini et al. | Feb 2011 | B2 |
7881760 | Matsui et al. | Feb 2011 | B2 |
7881770 | Melkent et al. | Feb 2011 | B2 |
7881780 | Flaherty | Feb 2011 | B2 |
7882135 | Brunner et al. | Feb 2011 | B2 |
7884101 | Teegarden et al. | Feb 2011 | B2 |
7887493 | Stahmann et al. | Feb 2011 | B2 |
7890155 | Burns et al. | Feb 2011 | B2 |
7890176 | Jaax et al. | Feb 2011 | B2 |
7890185 | Cohen et al. | Feb 2011 | B2 |
7891814 | Harada et al. | Feb 2011 | B2 |
7892764 | Xiong et al. | Feb 2011 | B2 |
7894890 | Sun et al. | Feb 2011 | B2 |
7894903 | John | Feb 2011 | B2 |
7895033 | Joublin et al. | Feb 2011 | B2 |
7896807 | Clancy et al. | Mar 2011 | B2 |
7899524 | Kozel | Mar 2011 | B2 |
7899525 | John et al. | Mar 2011 | B2 |
7899539 | Whitehurst et al. | Mar 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7901211 | Pennebaker | Mar 2011 | B2 |
7904134 | McIntyre et al. | Mar 2011 | B2 |
7904139 | Chance | Mar 2011 | B2 |
7904144 | Causevic et al. | Mar 2011 | B2 |
7904151 | Ben-David et al. | Mar 2011 | B2 |
7904175 | Scott et al. | Mar 2011 | B2 |
7904507 | Jung et al. | Mar 2011 | B2 |
7907994 | Stolarski et al. | Mar 2011 | B2 |
7907998 | Arad (Abboud) | Mar 2011 | B2 |
7908008 | Ben-David et al. | Mar 2011 | B2 |
7908009 | Wyler et al. | Mar 2011 | B2 |
7909771 | Meyer et al. | Mar 2011 | B2 |
7912530 | Seki et al. | Mar 2011 | B2 |
7917199 | Drew et al. | Mar 2011 | B2 |
7917206 | Frei et al. | Mar 2011 | B2 |
7917221 | Tass | Mar 2011 | B2 |
7917225 | Wyler et al. | Mar 2011 | B2 |
7918779 | Haber et al. | Apr 2011 | B2 |
7920914 | Shieh et al. | Apr 2011 | B2 |
7920915 | Mann et al. | Apr 2011 | B2 |
7920916 | Johnson et al. | Apr 2011 | B2 |
7925353 | Whitehurst et al. | Apr 2011 | B1 |
7929693 | Terauchi et al. | Apr 2011 | B2 |
7930035 | DiLorenzo | Apr 2011 | B2 |
7932225 | Gong et al. | Apr 2011 | B2 |
7933645 | Strychacz et al. | Apr 2011 | B2 |
7933646 | Frei et al. | Apr 2011 | B2 |
7933727 | Taulu et al. | Apr 2011 | B2 |
7937138 | Liley | May 2011 | B2 |
7937152 | Lozano | May 2011 | B1 |
7937222 | Donadille et al. | May 2011 | B2 |
7938782 | Stahmann et al. | May 2011 | B2 |
7938785 | Aguilar et al. | May 2011 | B2 |
7941209 | Hughes et al. | May 2011 | B2 |
7942824 | Kayyali et al. | May 2011 | B1 |
7944551 | Addison et al. | May 2011 | B2 |
7945304 | Feinberg | May 2011 | B2 |
7945316 | Giftakis et al. | May 2011 | B2 |
7945330 | Gliner et al. | May 2011 | B2 |
7957796 | Maschino | Jun 2011 | B2 |
7957797 | Bourget et al. | Jun 2011 | B2 |
7957806 | Stevenson et al. | Jun 2011 | B2 |
7957809 | Bourget et al. | Jun 2011 | B2 |
7961922 | Spence et al. | Jun 2011 | B2 |
7962204 | Suffin et al. | Jun 2011 | B2 |
7962214 | Byerman et al. | Jun 2011 | B2 |
7962219 | Jaax et al. | Jun 2011 | B2 |
7962220 | Kolafa et al. | Jun 2011 | B2 |
7970734 | Townsend et al. | Jun 2011 | B2 |
7972278 | Graham et al. | Jul 2011 | B2 |
7974688 | Armstrong et al. | Jul 2011 | B2 |
7974693 | Ben-David et al. | Jul 2011 | B2 |
7974696 | DiLorenzo | Jul 2011 | B1 |
7974697 | Maschino et al. | Jul 2011 | B2 |
7974701 | Armstrong | Jul 2011 | B2 |
7974787 | Hyde et al. | Jul 2011 | B2 |
7976465 | Frei et al. | Jul 2011 | B2 |
7983740 | Culver et al. | Jul 2011 | B2 |
7983741 | Chance | Jul 2011 | B2 |
7983757 | Miyazawa et al. | Jul 2011 | B2 |
7983762 | Gliner et al. | Jul 2011 | B2 |
7986991 | Prichep | Jul 2011 | B2 |
7988613 | Becker | Aug 2011 | B2 |
7988969 | Poduslo et al. | Aug 2011 | B2 |
7991461 | Flaherty et al. | Aug 2011 | B2 |
7991477 | McDonald, III | Aug 2011 | B2 |
7993279 | Hartley et al. | Aug 2011 | B2 |
7996075 | Korzinov et al. | Aug 2011 | B2 |
7996079 | Armstrong | Aug 2011 | B2 |
8000767 | Eden et al. | Aug 2011 | B2 |
8000773 | Rousso et al. | Aug 2011 | B2 |
8000788 | Giftakis et al. | Aug 2011 | B2 |
8000793 | Libbus | Aug 2011 | B2 |
8000794 | Lozano | Aug 2011 | B2 |
8000795 | Lozano | Aug 2011 | B2 |
8001179 | Jung et al. | Aug 2011 | B2 |
8002553 | Hatlestad et al. | Aug 2011 | B2 |
8005534 | Greenwald et al. | Aug 2011 | B2 |
8005624 | Starr | Aug 2011 | B1 |
8005894 | Jung et al. | Aug 2011 | B2 |
8010178 | Seki et al. | Aug 2011 | B2 |
8010347 | Ricci et al. | Aug 2011 | B2 |
8012107 | Einav et al. | Sep 2011 | B2 |
8014847 | Shastri et al. | Sep 2011 | B2 |
8014870 | Seidman | Sep 2011 | B2 |
8016597 | Becker et al. | Sep 2011 | B2 |
8019400 | Diab et al. | Sep 2011 | B2 |
8019410 | Bharmi et al. | Sep 2011 | B1 |
8024029 | Drew et al. | Sep 2011 | B2 |
8024032 | Osorio et al. | Sep 2011 | B1 |
8025404 | Bolger et al. | Sep 2011 | B2 |
8027730 | John | Sep 2011 | B2 |
8029553 | Nemenov | Oct 2011 | B2 |
8031076 | Sachanandani et al. | Oct 2011 | B2 |
8032209 | He et al. | Oct 2011 | B2 |
8032229 | Gerber et al. | Oct 2011 | B2 |
8032486 | Townsend et al. | Oct 2011 | B2 |
8033996 | Behar | Oct 2011 | B2 |
8036434 | Hewett et al. | Oct 2011 | B2 |
8036728 | Diab et al. | Oct 2011 | B2 |
8036736 | Snyder et al. | Oct 2011 | B2 |
8036745 | Ben-David et al. | Oct 2011 | B2 |
8041136 | Causevic | Oct 2011 | B2 |
8041418 | Giftakis et al. | Oct 2011 | B2 |
8041419 | Giftakis et al. | Oct 2011 | B2 |
8046041 | Diab et al. | Oct 2011 | B2 |
8046042 | Diab et al. | Oct 2011 | B2 |
8046076 | Whitehurst et al. | Oct 2011 | B2 |
8050768 | Firlik et al. | Nov 2011 | B2 |
8055348 | Heruth et al. | Nov 2011 | B2 |
8055591 | Jung et al. | Nov 2011 | B2 |
8059879 | Tsukimoto | Nov 2011 | B2 |
8060181 | Rodriguez Ponce et al. | Nov 2011 | B2 |
8060194 | Flaherty | Nov 2011 | B2 |
8064994 | Pardo et al. | Nov 2011 | B2 |
8065011 | Echauz et al. | Nov 2011 | B2 |
8065012 | Firlik et al. | Nov 2011 | B2 |
8065017 | Cornejo Cruz et al. | Nov 2011 | B2 |
8065240 | Jung et al. | Nov 2011 | B2 |
8065360 | Jung et al. | Nov 2011 | B2 |
8066637 | Childre et al. | Nov 2011 | B2 |
8066647 | Armitstead | Nov 2011 | B2 |
8068904 | Sun et al. | Nov 2011 | B2 |
8068911 | Giftakis et al. | Nov 2011 | B2 |
8069125 | Jung et al. | Nov 2011 | B2 |
8073534 | Low | Dec 2011 | B2 |
8073546 | Sheffield et al. | Dec 2011 | B2 |
8073631 | Wilber et al. | Dec 2011 | B2 |
8075499 | Nathan et al. | Dec 2011 | B2 |
8079953 | Braun et al. | Dec 2011 | B2 |
8082031 | Ochs | Dec 2011 | B2 |
8082033 | Rezai et al. | Dec 2011 | B2 |
8082215 | Jung et al. | Dec 2011 | B2 |
8083786 | Gafni et al. | Dec 2011 | B2 |
8086294 | Echauz et al. | Dec 2011 | B2 |
8086296 | Bystritsky | Dec 2011 | B2 |
8086563 | Jung et al. | Dec 2011 | B2 |
8088057 | Honeycutt et al. | Jan 2012 | B2 |
8089283 | Kaplan et al. | Jan 2012 | B2 |
8090164 | Bullitt et al. | Jan 2012 | B2 |
8092549 | Hillis et al. | Jan 2012 | B2 |
8095209 | Flaherty | Jan 2012 | B2 |
8095210 | Burdick et al. | Jan 2012 | B2 |
8097926 | De Graff et al. | Jan 2012 | B2 |
8099299 | Sirohey et al. | Jan 2012 | B2 |
8103333 | Tran | Jan 2012 | B2 |
8108033 | Drew et al. | Jan 2012 | B2 |
8108036 | Tran | Jan 2012 | B2 |
8108038 | Giftakis et al. | Jan 2012 | B2 |
8108039 | Saliga et al. | Jan 2012 | B2 |
8108042 | Johnson et al. | Jan 2012 | B1 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8112153 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8116874 | Tass | Feb 2012 | B2 |
8116877 | Lozano | Feb 2012 | B2 |
8116883 | Williams et al. | Feb 2012 | B2 |
8121361 | Ernst et al. | Feb 2012 | B2 |
8121673 | Tran | Feb 2012 | B2 |
8121694 | Molnar et al. | Feb 2012 | B2 |
8121695 | Gliner et al. | Feb 2012 | B2 |
8126228 | Fueyo et al. | Feb 2012 | B2 |
8126243 | Hamada et al. | Feb 2012 | B2 |
8126528 | Diab et al. | Feb 2012 | B2 |
8126542 | Grey | Feb 2012 | B2 |
8126567 | Gerber et al. | Feb 2012 | B2 |
8126568 | Gliner | Feb 2012 | B2 |
8128572 | Diab et al. | Mar 2012 | B2 |
8131354 | Arad (Abboud) | Mar 2012 | B2 |
8131526 | Neville | Mar 2012 | B2 |
8133172 | Shachar et al. | Mar 2012 | B2 |
8135472 | Fowler et al. | Mar 2012 | B2 |
8135957 | Dinges et al. | Mar 2012 | B2 |
8137269 | Sheikhzadeh-Nadjar et al. | Mar 2012 | B2 |
8137270 | Keenan et al. | Mar 2012 | B2 |
8140152 | John et al. | Mar 2012 | B2 |
8145295 | Boyden et al. | Mar 2012 | B2 |
8145310 | Dong et al. | Mar 2012 | B2 |
8148417 | Teegarden et al. | Apr 2012 | B2 |
8148418 | Teegarden et al. | Apr 2012 | B2 |
8150508 | Craig | Apr 2012 | B2 |
8150523 | Schiff et al. | Apr 2012 | B2 |
8150524 | Maschino et al. | Apr 2012 | B2 |
8150796 | Jung et al. | Apr 2012 | B2 |
8152732 | Lynn et al. | Apr 2012 | B2 |
8155726 | Seki et al. | Apr 2012 | B2 |
8155736 | Sullivan et al. | Apr 2012 | B2 |
8160273 | Visser et al. | Apr 2012 | B2 |
8160317 | Amunts et al. | Apr 2012 | B2 |
8160680 | Boyden et al. | Apr 2012 | B2 |
8160689 | Jadidi | Apr 2012 | B2 |
8160696 | Bendett et al. | Apr 2012 | B2 |
8165687 | Cornejo Cruz et al. | Apr 2012 | B2 |
8167784 | Honeycutt et al. | May 2012 | B1 |
8167826 | Oohashi et al. | May 2012 | B2 |
8170315 | Mistretta et al. | May 2012 | B2 |
8170347 | Ancelin | May 2012 | B2 |
8172759 | Bukhman | May 2012 | B2 |
8172766 | Kayyali et al. | May 2012 | B1 |
8174430 | DeChiaro, Jr. | May 2012 | B1 |
8175359 | O'Halloran et al. | May 2012 | B2 |
8175360 | Razifar et al. | May 2012 | B2 |
8175686 | Utsugi et al. | May 2012 | B2 |
8175696 | Liley et al. | May 2012 | B2 |
8175700 | Johnson et al. | May 2012 | B2 |
8177724 | Derchak et al. | May 2012 | B2 |
8177726 | John | May 2012 | B2 |
8177727 | Kwak | May 2012 | B2 |
8180125 | Avinash et al. | May 2012 | B2 |
8180148 | Cover et al. | May 2012 | B2 |
8180420 | Diab et al. | May 2012 | B2 |
8180436 | Boyden et al. | May 2012 | B2 |
8180601 | Butson et al. | May 2012 | B2 |
8185186 | Ross et al. | May 2012 | B2 |
8185207 | Molnar et al. | May 2012 | B2 |
8185382 | Joublin et al. | May 2012 | B2 |
8187181 | Osorio et al. | May 2012 | B2 |
8187201 | Lynn | May 2012 | B2 |
8188749 | Wilt et al. | May 2012 | B2 |
8190227 | Diab et al. | May 2012 | B2 |
8190248 | Besio et al. | May 2012 | B2 |
8190249 | Gharieb et al. | May 2012 | B1 |
8190251 | Molnar et al. | May 2012 | B2 |
8190264 | Lozano et al. | May 2012 | B2 |
8195295 | Stevenson et al. | Jun 2012 | B2 |
8195298 | Lozano | Jun 2012 | B2 |
8195300 | Gliner et al. | Jun 2012 | B2 |
8195593 | Jung et al. | Jun 2012 | B2 |
8197395 | Jassemidis et al. | Jun 2012 | B2 |
8197437 | Kalafut et al. | Jun 2012 | B2 |
8199982 | Fueyo et al. | Jun 2012 | B2 |
8199985 | Jakobsson et al. | Jun 2012 | B2 |
8200319 | Pu et al. | Jun 2012 | B2 |
8200340 | Skelton et al. | Jun 2012 | B2 |
8204583 | Sackellares et al. | Jun 2012 | B2 |
8204603 | Maschino | Jun 2012 | B2 |
8209009 | Giftakis et al. | Jun 2012 | B2 |
8209018 | Osorio et al. | Jun 2012 | B2 |
8209019 | Giftakis et al. | Jun 2012 | B2 |
8209224 | Pradeep et al. | Jun 2012 | B2 |
8211035 | Melker et al. | Jul 2012 | B2 |
8212556 | Schwindt et al. | Jul 2012 | B1 |
8213670 | Lai | Jul 2012 | B2 |
8214007 | Baker et al. | Jul 2012 | B2 |
8214035 | Giftakis et al. | Jul 2012 | B2 |
8219188 | Craig | Jul 2012 | B2 |
8221330 | Sarkela et al. | Jul 2012 | B2 |
8222378 | Masure | Jul 2012 | B2 |
8223023 | Sachanandani et al. | Jul 2012 | B2 |
8224431 | Drew | Jul 2012 | B2 |
8224433 | Suffin et al. | Jul 2012 | B2 |
8224444 | Ben-David et al. | Jul 2012 | B2 |
8224451 | Jaax et al. | Jul 2012 | B2 |
8229540 | Sami et al. | Jul 2012 | B2 |
8229559 | Westendorp et al. | Jul 2012 | B2 |
8233682 | Fessler et al. | Jul 2012 | B2 |
8233689 | Razifar et al. | Jul 2012 | B2 |
8233965 | Bjornerud et al. | Jul 2012 | B2 |
8233990 | Goetz | Jul 2012 | B2 |
8235907 | Wilk et al. | Aug 2012 | B2 |
8236005 | Meneghini et al. | Aug 2012 | B2 |
8236038 | Nofzinger | Aug 2012 | B2 |
8239014 | Ochs | Aug 2012 | B2 |
8239028 | Scott | Aug 2012 | B2 |
8239029 | De Ridder | Aug 2012 | B2 |
8239030 | Hagedorn et al. | Aug 2012 | B1 |
8241213 | Lynn et al. | Aug 2012 | B2 |
8244340 | Wu et al. | Aug 2012 | B2 |
8244341 | Hinrikus et al. | Aug 2012 | B2 |
8244347 | Lozano | Aug 2012 | B2 |
8244475 | Aguilar et al. | Aug 2012 | B2 |
8244552 | Firminger et al. | Aug 2012 | B2 |
8244553 | Firminger et al. | Aug 2012 | B2 |
8248069 | Buracas | Aug 2012 | B2 |
8249316 | Hu et al. | Aug 2012 | B2 |
8249698 | Mugler et al. | Aug 2012 | B2 |
8249718 | Skelton et al. | Aug 2012 | B2 |
8249815 | Taylor | Aug 2012 | B2 |
8260426 | Armstrong et al. | Sep 2012 | B2 |
8262714 | Hulvershorn et al. | Sep 2012 | B2 |
8263574 | Schaller et al. | Sep 2012 | B2 |
8267851 | Kroll | Sep 2012 | B1 |
8270814 | Pradeep et al. | Sep 2012 | B2 |
8271077 | Rotenberg | Sep 2012 | B1 |
8280502 | Hargrove et al. | Oct 2012 | B2 |
8280503 | Linderman | Oct 2012 | B2 |
8280505 | Craig | Oct 2012 | B2 |
8280514 | Lozano et al. | Oct 2012 | B2 |
8280517 | Skelton et al. | Oct 2012 | B2 |
8285351 | Johnson et al. | Oct 2012 | B2 |
8285368 | Chen et al. | Oct 2012 | B2 |
8290575 | Tarassenko et al. | Oct 2012 | B2 |
8290596 | Wei et al. | Oct 2012 | B2 |
8295914 | Kalafut et al. | Oct 2012 | B2 |
8295934 | Leyde | Oct 2012 | B2 |
8295935 | Okun et al. | Oct 2012 | B2 |
8296108 | Tanaka | Oct 2012 | B2 |
8298078 | Sutton et al. | Oct 2012 | B2 |
8298140 | Beck-Nielsen et al. | Oct 2012 | B2 |
8301222 | Rongen et al. | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8301233 | Zhang et al. | Oct 2012 | B2 |
8301257 | Hsu et al. | Oct 2012 | B2 |
8303636 | Schiffer | Nov 2012 | B2 |
8304246 | Cook et al. | Nov 2012 | B2 |
8305078 | Savukov et al. | Nov 2012 | B2 |
8306607 | Levi et al. | Nov 2012 | B1 |
8306610 | Mirow | Nov 2012 | B2 |
8306627 | Armstrong | Nov 2012 | B2 |
8308646 | Belohlavek et al. | Nov 2012 | B2 |
8308661 | Miesel et al. | Nov 2012 | B2 |
8311622 | Snyder et al. | Nov 2012 | B2 |
8311747 | Taylor | Nov 2012 | B2 |
8311748 | Taylor et al. | Nov 2012 | B2 |
8311750 | Taylor | Nov 2012 | B2 |
8313441 | Dalton | Nov 2012 | B2 |
8314707 | Kobetski et al. | Nov 2012 | B2 |
8315703 | Lozano | Nov 2012 | B2 |
8315704 | Jaax et al. | Nov 2012 | B2 |
8315710 | Skelton et al. | Nov 2012 | B2 |
8315812 | Taylor | Nov 2012 | B2 |
8315813 | Taylor et al. | Nov 2012 | B2 |
8315814 | Taylor et al. | Nov 2012 | B2 |
8315962 | Horne | Nov 2012 | B1 |
8315970 | Zalay et al. | Nov 2012 | B2 |
8320649 | Shahaf et al. | Nov 2012 | B2 |
8321150 | Taylor | Nov 2012 | B2 |
8323188 | Tran | Dec 2012 | B2 |
8323189 | Tran et al. | Dec 2012 | B2 |
8323204 | Stahmann et al. | Dec 2012 | B2 |
8326418 | Sommer et al. | Dec 2012 | B2 |
8326420 | Skelton et al. | Dec 2012 | B2 |
8326433 | Blum et al. | Dec 2012 | B2 |
8328718 | Tran | Dec 2012 | B2 |
8332017 | Tarassenko et al. | Dec 2012 | B2 |
8332024 | Rapoport et al. | Dec 2012 | B2 |
8332038 | Heruth et al. | Dec 2012 | B2 |
8332041 | Skelton et al. | Dec 2012 | B2 |
8332191 | Rosthal et al. | Dec 2012 | B2 |
8334690 | Kitching et al. | Dec 2012 | B2 |
8335561 | Modarres | Dec 2012 | B1 |
8335664 | Eberle | Dec 2012 | B2 |
8335715 | Pradeep et al. | Dec 2012 | B2 |
8335716 | Pradeep et al. | Dec 2012 | B2 |
8337404 | Osorio | Dec 2012 | B2 |
8340752 | Cox et al. | Dec 2012 | B2 |
8340753 | Hardt | Dec 2012 | B2 |
8340771 | Thimineur et al. | Dec 2012 | B2 |
8343026 | Gardiner et al. | Jan 2013 | B2 |
8343027 | DiMino et al. | Jan 2013 | B1 |
8343066 | Eagleman et al. | Jan 2013 | B1 |
8346331 | Bunce et al. | Jan 2013 | B2 |
8346342 | Kalafut | Jan 2013 | B2 |
8346349 | Guttag et al. | Jan 2013 | B2 |
8346354 | Hyde et al. | Jan 2013 | B2 |
8346365 | Lozano | Jan 2013 | B2 |
8350804 | Moll | Jan 2013 | B1 |
8352023 | John et al. | Jan 2013 | B2 |
8352031 | Rousso et al. | Jan 2013 | B2 |
8353837 | John et al. | Jan 2013 | B2 |
8354438 | Chez | Jan 2013 | B2 |
8354881 | Denison | Jan 2013 | B2 |
8355768 | Masmanidis et al. | Jan 2013 | B2 |
8356004 | Jung et al. | Jan 2013 | B2 |
8356594 | Ujhazy et al. | Jan 2013 | B2 |
8358818 | Miga et al. | Jan 2013 | B2 |
8359080 | Diab et al. | Jan 2013 | B2 |
8362780 | Rosthal et al. | Jan 2013 | B2 |
8364226 | Diab et al. | Jan 2013 | B2 |
8364254 | Jacquin et al. | Jan 2013 | B2 |
8364255 | Isenhart et al. | Jan 2013 | B2 |
8364271 | De Ridder | Jan 2013 | B2 |
8364272 | Goetz | Jan 2013 | B2 |
8369940 | Sun et al. | Feb 2013 | B2 |
8374411 | Ernst et al. | Feb 2013 | B2 |
8374412 | Kimura | Feb 2013 | B2 |
8374690 | Ma | Feb 2013 | B2 |
8374696 | Sanchez et al. | Feb 2013 | B2 |
8374701 | Hyde et al. | Feb 2013 | B2 |
8374703 | Imran | Feb 2013 | B2 |
8376965 | Schuette et al. | Feb 2013 | B2 |
8379947 | Garg et al. | Feb 2013 | B2 |
8379952 | McIntyre et al. | Feb 2013 | B2 |
8380289 | Zellers et al. | Feb 2013 | B2 |
8380290 | Scarantino et al. | Feb 2013 | B2 |
8380296 | Lee et al. | Feb 2013 | B2 |
8380314 | Panken et al. | Feb 2013 | B2 |
8380316 | Hagedorn et al. | Feb 2013 | B2 |
8380658 | Jung et al. | Feb 2013 | B2 |
8382667 | Osorio | Feb 2013 | B2 |
8386188 | Taylor et al. | Feb 2013 | B2 |
8386244 | Ricci et al. | Feb 2013 | B2 |
8386312 | Pradeep et al. | Feb 2013 | B2 |
8386313 | Pradeep et al. | Feb 2013 | B2 |
RE44097 | Wilber et al. | Mar 2013 | E |
8388529 | Fueyo et al. | Mar 2013 | B2 |
8388530 | Shusterman | Mar 2013 | B2 |
8388555 | Panken et al. | Mar 2013 | B2 |
8391942 | Benni | Mar 2013 | B2 |
8391956 | Zellers et al. | Mar 2013 | B2 |
8391966 | Luo et al. | Mar 2013 | B2 |
8392250 | Pradeep et al. | Mar 2013 | B2 |
8392251 | Pradeep et al. | Mar 2013 | B2 |
8392253 | Pradeep et al. | Mar 2013 | B2 |
8392254 | Pradeep et al. | Mar 2013 | B2 |
8392255 | Pradeep et al. | Mar 2013 | B2 |
8396542 | Johnson et al. | Mar 2013 | B2 |
8396545 | Berridge et al. | Mar 2013 | B2 |
8396546 | Hirata et al. | Mar 2013 | B2 |
8396557 | DiLorenzo | Mar 2013 | B2 |
8396565 | Singhal et al. | Mar 2013 | B2 |
8396744 | Pradeep et al. | Mar 2013 | B2 |
8398692 | Deisseroth et al. | Mar 2013 | B2 |
8401624 | Govari | Mar 2013 | B2 |
8401626 | Mietus et al. | Mar 2013 | B2 |
8401634 | Whitehurst et al. | Mar 2013 | B2 |
8401654 | Foster et al. | Mar 2013 | B1 |
8401655 | De Ridder | Mar 2013 | B2 |
8401666 | Skelton et al. | Mar 2013 | B2 |
8403848 | Mietus et al. | Mar 2013 | B2 |
8406838 | Kato | Mar 2013 | B2 |
8406841 | Lin et al. | Mar 2013 | B2 |
8406848 | Wu et al. | Mar 2013 | B2 |
8406862 | Hopenfeld | Mar 2013 | B2 |
8406890 | Goetz | Mar 2013 | B2 |
8412334 | Whitehurst et al. | Apr 2013 | B2 |
8412335 | Gliner et al. | Apr 2013 | B2 |
8412337 | Lozano | Apr 2013 | B2 |
8412338 | Faltys | Apr 2013 | B2 |
8412655 | Colman et al. | Apr 2013 | B2 |
8415123 | Pilla et al. | Apr 2013 | B2 |
8417344 | Colborn et al. | Apr 2013 | B2 |
8423118 | Wenzel et al. | Apr 2013 | B2 |
8423125 | Rousso et al. | Apr 2013 | B2 |
8423144 | Tass et al. | Apr 2013 | B2 |
8423155 | Jaax et al. | Apr 2013 | B1 |
8423297 | Wilber | Apr 2013 | B2 |
8425415 | Tran | Apr 2013 | B2 |
8425583 | Nofzinger | Apr 2013 | B2 |
8428696 | Foo | Apr 2013 | B2 |
8428703 | Hopenfeld | Apr 2013 | B2 |
8428704 | Johnson et al. | Apr 2013 | B2 |
8428726 | Ignagni et al. | Apr 2013 | B2 |
8429225 | Jung et al. | Apr 2013 | B2 |
8430805 | Burnett et al. | Apr 2013 | B2 |
8430816 | Avinash et al. | Apr 2013 | B2 |
8431537 | Gong et al. | Apr 2013 | B2 |
8433388 | Blunt et al. | Apr 2013 | B2 |
8433410 | Stevenson et al. | Apr 2013 | B2 |
8433414 | Gliner et al. | Apr 2013 | B2 |
8433418 | DeRidder | Apr 2013 | B2 |
8435166 | Burnett et al. | May 2013 | B2 |
8437843 | Kayyali et al. | May 2013 | B1 |
8437844 | Syed Momen et al. | May 2013 | B2 |
8437861 | Skelton et al. | May 2013 | B2 |
8439845 | Folkerts et al. | May 2013 | B2 |
8442626 | Zavoronkovs et al. | May 2013 | B2 |
8444571 | Folkerts et al. | May 2013 | B2 |
8445021 | Akhtari et al. | May 2013 | B2 |
8445851 | Rousso et al. | May 2013 | B2 |
8447392 | Llinas | May 2013 | B2 |
8447407 | Talathi et al. | May 2013 | B2 |
8447411 | Skelton et al. | May 2013 | B2 |
8449471 | Tran | May 2013 | B2 |
8452387 | Osorio et al. | May 2013 | B2 |
8452544 | Hymel | May 2013 | B2 |
8454555 | Struijk et al. | Jun 2013 | B2 |
8456164 | Subbarao | Jun 2013 | B2 |
8456166 | DePavia et al. | Jun 2013 | B2 |
8456309 | Sachanandani et al. | Jun 2013 | B2 |
8457730 | Makinen | Jun 2013 | B2 |
8457746 | Libbus | Jun 2013 | B2 |
8457747 | Terry, Jr. | Jun 2013 | B2 |
8461988 | Tran | Jun 2013 | B2 |
8463006 | Prokoski | Jun 2013 | B2 |
8463007 | Steinberg et al. | Jun 2013 | B2 |
8463349 | Diab et al. | Jun 2013 | B2 |
8463370 | Korhonen et al. | Jun 2013 | B2 |
8463374 | Hudson et al. | Jun 2013 | B2 |
8463378 | Tass | Jun 2013 | B2 |
8463386 | Tass | Jun 2013 | B2 |
8463387 | De Ridder | Jun 2013 | B2 |
8464288 | Pradeep et al. | Jun 2013 | B2 |
8465408 | Phillips et al. | Jun 2013 | B2 |
8467877 | Imran | Jun 2013 | B2 |
8467878 | Lozano et al. | Jun 2013 | B2 |
8473024 | Causevic et al. | Jun 2013 | B2 |
8473044 | Lee et al. | Jun 2013 | B2 |
8473306 | Seely | Jun 2013 | B2 |
8473345 | Pradeep et al. | Jun 2013 | B2 |
8475354 | Phillips et al. | Jul 2013 | B2 |
8475368 | Tran et al. | Jul 2013 | B2 |
8475371 | Derchak et al. | Jul 2013 | B2 |
8475387 | Derchak et al. | Jul 2013 | B2 |
8475506 | Bendett et al. | Jul 2013 | B1 |
8478389 | Brockway et al. | Jul 2013 | B1 |
8478394 | Prichep et al. | Jul 2013 | B2 |
8478402 | Wahlstrand et al. | Jul 2013 | B2 |
8478417 | Drew et al. | Jul 2013 | B2 |
8478428 | Cowley | Jul 2013 | B2 |
8480554 | Phillips et al. | Jul 2013 | B2 |
8483795 | Okada | Jul 2013 | B2 |
8483815 | Liley | Jul 2013 | B2 |
8483816 | Payton et al. | Jul 2013 | B1 |
8484081 | Pradeep et al. | Jul 2013 | B2 |
8484270 | Kurtz et al. | Jul 2013 | B2 |
8485979 | Giftakis et al. | Jul 2013 | B2 |
8487760 | Kangas et al. | Jul 2013 | B2 |
8489185 | Kilgard et al. | Jul 2013 | B2 |
8492336 | Masure | Jul 2013 | B2 |
8494610 | Pradeep et al. | Jul 2013 | B2 |
8494829 | Teixeira | Jul 2013 | B2 |
8494857 | Pakhomov | Jul 2013 | B2 |
8494905 | Pradeep et al. | Jul 2013 | B2 |
8496594 | Taylor et al. | Jul 2013 | B2 |
8498697 | Yong et al. | Jul 2013 | B2 |
8498699 | Wells et al. | Jul 2013 | B2 |
8498708 | Bentwich | Jul 2013 | B2 |
RE44408 | Lindsay | Aug 2013 | E |
8500282 | Bolger et al. | Aug 2013 | B2 |
8500636 | Tran | Aug 2013 | B2 |
8504150 | Skelton | Aug 2013 | B2 |
8506469 | Dietrich et al. | Aug 2013 | B2 |
8509879 | Durkin et al. | Aug 2013 | B2 |
8509881 | Thiagarajan et al. | Aug 2013 | B2 |
8509885 | Snyder et al. | Aug 2013 | B2 |
8509904 | Rickert et al. | Aug 2013 | B2 |
8512219 | Ferren et al. | Aug 2013 | B2 |
8512221 | Kaplan et al. | Aug 2013 | B2 |
8512240 | Zuckerman-Stark et al. | Aug 2013 | B1 |
8515535 | Hopper et al. | Aug 2013 | B2 |
8515538 | Osorio et al. | Aug 2013 | B1 |
8515541 | Jaax et al. | Aug 2013 | B1 |
8515549 | Panken et al. | Aug 2013 | B2 |
8515550 | Skelton et al. | Aug 2013 | B2 |
8517909 | Honeycutt et al. | Aug 2013 | B2 |
8517912 | Clare | Aug 2013 | B2 |
8519705 | Savukov et al. | Aug 2013 | B2 |
8519853 | Eskandarian et al. | Aug 2013 | B2 |
8520974 | Fujita et al. | Aug 2013 | B2 |
8521284 | Kim et al. | Aug 2013 | B2 |
8523779 | Taylor et al. | Sep 2013 | B2 |
8525673 | Tran | Sep 2013 | B2 |
8525687 | Tran | Sep 2013 | B2 |
8527029 | Okada | Sep 2013 | B2 |
8527035 | Diamond | Sep 2013 | B2 |
8527435 | Han et al. | Sep 2013 | B1 |
8529463 | Della Santina et al. | Sep 2013 | B2 |
8531291 | Tran | Sep 2013 | B2 |
8532756 | Schalk et al. | Sep 2013 | B2 |
8532757 | Molnar et al. | Sep 2013 | B2 |
8533042 | Pradeep et al. | Sep 2013 | B2 |
8536667 | de Graff et al. | Sep 2013 | B2 |
8538108 | Shekhar et al. | Sep 2013 | B2 |
8538512 | Bibian et al. | Sep 2013 | B1 |
8538513 | Molnar et al. | Sep 2013 | B2 |
8538514 | Sun et al. | Sep 2013 | B2 |
8538523 | Sommer et al. | Sep 2013 | B2 |
8538536 | Rezai et al. | Sep 2013 | B2 |
8538543 | McIntyre et al. | Sep 2013 | B2 |
8538700 | Badri et al. | Sep 2013 | B2 |
8538705 | Greenwald | Sep 2013 | B2 |
8542900 | Tolkowsky et al. | Sep 2013 | B2 |
8542916 | Tognoli et al. | Sep 2013 | B2 |
8543189 | Paitel et al. | Sep 2013 | B2 |
8543199 | Snyder et al. | Sep 2013 | B2 |
8543214 | Osorio et al. | Sep 2013 | B2 |
8543219 | Tass | Sep 2013 | B2 |
8545378 | Peterchev | Oct 2013 | B2 |
8545416 | Kayyali et al. | Oct 2013 | B1 |
8545420 | Einav et al. | Oct 2013 | B2 |
8545436 | Robertson et al. | Oct 2013 | B2 |
8548583 | Rousso et al. | Oct 2013 | B2 |
8548594 | Thimineur et al. | Oct 2013 | B2 |
8548604 | Whitehurst et al. | Oct 2013 | B2 |
8548786 | Plenz | Oct 2013 | B2 |
8548852 | Pradeep et al. | Oct 2013 | B2 |
8553956 | Wu et al. | Oct 2013 | B2 |
8554311 | Warner et al. | Oct 2013 | B2 |
8554325 | Molnar et al. | Oct 2013 | B2 |
8559645 | Corona-Strauss et al. | Oct 2013 | B2 |
8560034 | Diab et al. | Oct 2013 | B1 |
8560041 | Flaherty et al. | Oct 2013 | B2 |
8560073 | Osorio | Oct 2013 | B2 |
8562525 | Nakashima et al. | Oct 2013 | B2 |
8562526 | Heneghan et al. | Oct 2013 | B2 |
8562527 | Braun et al. | Oct 2013 | B2 |
8562536 | Osorio et al. | Oct 2013 | B2 |
8562540 | Goodall et al. | Oct 2013 | B2 |
8562548 | Shimada et al. | Oct 2013 | B2 |
8562660 | Peyman | Oct 2013 | B2 |
8562951 | Suffin et al. | Oct 2013 | B2 |
8565606 | Kim et al. | Oct 2013 | B2 |
8565864 | Drew et al. | Oct 2013 | B2 |
8565867 | Armstrong et al. | Oct 2013 | B2 |
8565883 | Lozano | Oct 2013 | B2 |
8565886 | Nelson et al. | Oct 2013 | B2 |
8568231 | Solanki et al. | Oct 2013 | B2 |
8568329 | Lee et al. | Oct 2013 | B2 |
8571293 | Ernst et al. | Oct 2013 | B2 |
8571629 | Faro et al. | Oct 2013 | B2 |
8571642 | Gill et al. | Oct 2013 | B2 |
8571643 | Osorio et al. | Oct 2013 | B2 |
8571653 | Ben-David et al. | Oct 2013 | B2 |
8574164 | Mashiach | Nov 2013 | B2 |
8574279 | Schiffer | Nov 2013 | B2 |
8577103 | Vija et al. | Nov 2013 | B2 |
8577464 | Mashiach | Nov 2013 | B2 |
8577465 | Mashiach | Nov 2013 | B2 |
8577466 | Mashiach | Nov 2013 | B2 |
8577467 | Mashiach et al. | Nov 2013 | B2 |
8577468 | Mashiach et al. | Nov 2013 | B2 |
8577472 | Mashiach et al. | Nov 2013 | B2 |
8577478 | Mashiach et al. | Nov 2013 | B2 |
8579786 | Osorio et al. | Nov 2013 | B2 |
8579793 | Honeycutt et al. | Nov 2013 | B1 |
8579795 | Martel | Nov 2013 | B2 |
8579834 | Davis et al. | Nov 2013 | B2 |
8583238 | Heldman et al. | Nov 2013 | B1 |
8583252 | Skelton et al. | Nov 2013 | B2 |
8585568 | Phillips et al. | Nov 2013 | B2 |
8586019 | Satchi-Fainaro et al. | Nov 2013 | B2 |
8586932 | Rousso et al. | Nov 2013 | B2 |
8587304 | Budker et al. | Nov 2013 | B2 |
8588486 | Virtue et al. | Nov 2013 | B2 |
8588552 | Garg et al. | Nov 2013 | B2 |
8588899 | Schiff | Nov 2013 | B2 |
8588929 | Skelton et al. | Nov 2013 | B2 |
8588933 | Floyd et al. | Nov 2013 | B2 |
8588941 | Mashiach | Nov 2013 | B2 |
8589316 | Lujan et al. | Nov 2013 | B2 |
8591419 | Tyler | Nov 2013 | B2 |
8591498 | John | Nov 2013 | B2 |
8593141 | Radparvar et al. | Nov 2013 | B1 |
8593154 | Ross | Nov 2013 | B2 |
8594798 | Osorio et al. | Nov 2013 | B2 |
8594800 | Butson et al. | Nov 2013 | B2 |
8594950 | Taylor | Nov 2013 | B2 |
8597171 | Altman et al. | Dec 2013 | B2 |
8597193 | Grunwald et al. | Dec 2013 | B2 |
8600493 | Tanner et al. | Dec 2013 | B2 |
8600502 | Lovett et al. | Dec 2013 | B2 |
8600513 | Aur et al. | Dec 2013 | B2 |
8600521 | Armstrong et al. | Dec 2013 | B2 |
8600696 | Zafiris | Dec 2013 | B2 |
8603790 | Deisseroth et al. | Dec 2013 | B2 |
8606349 | Rousso et al. | Dec 2013 | B2 |
8606351 | Wheeler | Dec 2013 | B2 |
8606356 | Lee et al. | Dec 2013 | B2 |
8606360 | Butson et al. | Dec 2013 | B2 |
8606361 | Gliner et al. | Dec 2013 | B2 |
8606530 | Taylor | Dec 2013 | B2 |
8606592 | Hyde et al. | Dec 2013 | B2 |
8612005 | Rezai et al. | Dec 2013 | B2 |
8613695 | Von Ohlsen et al. | Dec 2013 | B2 |
8613905 | El-Agnaf | Dec 2013 | B2 |
8614254 | Llinas et al. | Dec 2013 | B2 |
8614873 | Beran | Dec 2013 | B1 |
8615293 | Jacobson et al. | Dec 2013 | B2 |
8615309 | Craig | Dec 2013 | B2 |
8615479 | Jung et al. | Dec 2013 | B2 |
8615664 | Jung et al. | Dec 2013 | B2 |
8618799 | Radparvar et al. | Dec 2013 | B1 |
8620206 | Brown et al. | Dec 2013 | B2 |
8620419 | Rotenberg et al. | Dec 2013 | B2 |
8626264 | Beran | Jan 2014 | B1 |
8626301 | Libbus | Jan 2014 | B2 |
8628328 | Palacios | Jan 2014 | B2 |
8628480 | Derchak | Jan 2014 | B2 |
8630699 | Baker et al. | Jan 2014 | B2 |
8630705 | Mann et al. | Jan 2014 | B2 |
8630812 | Taylor | Jan 2014 | B2 |
8632465 | Brockway | Jan 2014 | B1 |
8632750 | Suffin et al. | Jan 2014 | B2 |
8634616 | Den Harder et al. | Jan 2014 | B2 |
8634922 | Osorio et al. | Jan 2014 | B1 |
8635105 | Pradeep et al. | Jan 2014 | B2 |
8636640 | Chang | Jan 2014 | B2 |
8638950 | Anderson et al. | Jan 2014 | B2 |
8641632 | Quintin et al. | Feb 2014 | B2 |
8641646 | Colborn | Feb 2014 | B2 |
8644754 | Brown | Feb 2014 | B2 |
8644910 | Rousso et al. | Feb 2014 | B2 |
8644914 | Hunt | Feb 2014 | B2 |
8644921 | Wilson | Feb 2014 | B2 |
8644945 | Skelton et al. | Feb 2014 | B2 |
8644946 | Butson et al. | Feb 2014 | B2 |
8644954 | Jaax et al. | Feb 2014 | B2 |
8644957 | Mashiach | Feb 2014 | B2 |
8647278 | Ji et al. | Feb 2014 | B2 |
8648017 | Umansky et al. | Feb 2014 | B2 |
8649845 | McIntyre et al. | Feb 2014 | B2 |
8649866 | Brooke | Feb 2014 | B2 |
8649871 | Frei et al. | Feb 2014 | B2 |
8652038 | Tran et al. | Feb 2014 | B2 |
8652187 | Wells et al. | Feb 2014 | B2 |
8652189 | Gafni et al. | Feb 2014 | B2 |
8655428 | Pradeep et al. | Feb 2014 | B2 |
8655437 | Pradeep et al. | Feb 2014 | B2 |
8655817 | Hasey et al. | Feb 2014 | B2 |
8657732 | Vasishta | Feb 2014 | B2 |
8657756 | Stahmann et al. | Feb 2014 | B2 |
8658149 | Satchi-Fainaro et al. | Feb 2014 | B2 |
8660642 | Ferren et al. | Feb 2014 | B2 |
8660649 | Ruffini et al. | Feb 2014 | B2 |
8660666 | Craig | Feb 2014 | B2 |
8660799 | Watson et al. | Feb 2014 | B2 |
8664258 | Teegarden et al. | Mar 2014 | B2 |
8666099 | Nielsen et al. | Mar 2014 | B2 |
8666467 | Lynn et al. | Mar 2014 | B2 |
8666478 | LaViolette et al. | Mar 2014 | B2 |
8666501 | Kilgard et al. | Mar 2014 | B2 |
8668496 | Nolen | Mar 2014 | B2 |
8670603 | Tolkowsky et al. | Mar 2014 | B2 |
8672852 | Gavish | Mar 2014 | B2 |
8675936 | Vija et al. | Mar 2014 | B2 |
8675945 | Barnhorst et al. | Mar 2014 | B2 |
8675983 | Yahil | Mar 2014 | B2 |
8676324 | Simon et al. | Mar 2014 | B2 |
8676325 | Lindenthaler et al. | Mar 2014 | B2 |
8676330 | Simon et al. | Mar 2014 | B2 |
8679009 | Osorio | Mar 2014 | B2 |
8680119 | Teegarden et al. | Mar 2014 | B2 |
8680991 | Tran | Mar 2014 | B2 |
8682422 | Hopenfeld | Mar 2014 | B2 |
8682441 | De Ridder | Mar 2014 | B2 |
8682449 | Simon | Mar 2014 | B2 |
8682687 | Hyde et al. | Mar 2014 | B2 |
8684742 | Siefert | Apr 2014 | B2 |
8684900 | Tran | Apr 2014 | B2 |
8684921 | Osorio | Apr 2014 | B2 |
8684922 | Tran | Apr 2014 | B2 |
8684926 | Arndt | Apr 2014 | B2 |
8688209 | Verbitskiy | Apr 2014 | B2 |
8690748 | Fu | Apr 2014 | B1 |
8693756 | Tolkowsky et al. | Apr 2014 | B2 |
8693765 | Mercier et al. | Apr 2014 | B2 |
8694087 | Schiff | Apr 2014 | B2 |
8694089 | Arad (Abboud) | Apr 2014 | B2 |
8694092 | Ferren et al. | Apr 2014 | B2 |
8694107 | Falci | Apr 2014 | B2 |
8694118 | Armstrong | Apr 2014 | B2 |
8694157 | Wenderow et al. | Apr 2014 | B2 |
8696722 | Deisseroth et al. | Apr 2014 | B2 |
8696724 | Rogers | Apr 2014 | B2 |
8698639 | Fung et al. | Apr 2014 | B2 |
8700137 | Albert | Apr 2014 | B2 |
8700141 | Causevic | Apr 2014 | B2 |
8700142 | John et al. | Apr 2014 | B2 |
8700163 | Terry, Jr. et al. | Apr 2014 | B2 |
8700167 | Sabel | Apr 2014 | B2 |
8700174 | Skelton et al. | Apr 2014 | B2 |
8700183 | Mashiach | Apr 2014 | B2 |
8703114 | Satchi-Fainaro et al. | Apr 2014 | B2 |
8706183 | Cui et al. | Apr 2014 | B2 |
8706205 | Shahaf et al. | Apr 2014 | B2 |
8706206 | Kanai et al. | Apr 2014 | B2 |
8706207 | Hint | Apr 2014 | B2 |
8706237 | Giftakis et al. | Apr 2014 | B2 |
8706241 | Firlik et al. | Apr 2014 | B2 |
8706518 | Hyde et al. | Apr 2014 | B2 |
8708903 | Tran | Apr 2014 | B2 |
8708934 | Skelton et al. | Apr 2014 | B2 |
8711655 | Gzara et al. | Apr 2014 | B2 |
8712507 | Cazares et al. | Apr 2014 | B2 |
8712512 | Doidge et al. | Apr 2014 | B2 |
8712513 | Modarres | Apr 2014 | B1 |
8712547 | Whitehurst et al. | Apr 2014 | B2 |
8716447 | Deisseroth et al. | May 2014 | B2 |
8717430 | Simon et al. | May 2014 | B2 |
8718747 | Bjornerud et al. | May 2014 | B2 |
8718776 | Mashiach et al. | May 2014 | B2 |
8718777 | Lowry et al. | May 2014 | B2 |
8718779 | Whitehurst et al. | May 2014 | B2 |
8721695 | Tass et al. | May 2014 | B2 |
8724871 | Biagiotti et al. | May 2014 | B1 |
8725238 | Liu et al. | May 2014 | B2 |
8725243 | Dilorenzo et al. | May 2014 | B2 |
8725311 | Breed | May 2014 | B1 |
8725668 | Georgopoulos | May 2014 | B2 |
8725669 | Fu | May 2014 | B1 |
8725796 | Serena | May 2014 | B2 |
8727978 | Tran et al. | May 2014 | B2 |
8728001 | Lynn | May 2014 | B2 |
8729040 | Deisseroth et al. | May 2014 | B2 |
8731650 | Sajda et al. | May 2014 | B2 |
8731656 | Bourget et al. | May 2014 | B2 |
8731987 | Chen et al. | May 2014 | B2 |
8733290 | Gerashchenko | May 2014 | B2 |
8734356 | Taylor | May 2014 | B2 |
8734357 | Taylor | May 2014 | B2 |
8734498 | DiMauro et al. | May 2014 | B2 |
8738121 | Virag et al. | May 2014 | B2 |
8738126 | Craig | May 2014 | B2 |
8738136 | Frei et al. | May 2014 | B2 |
8738140 | De Ridder | May 2014 | B2 |
8738395 | Hyde et al. | May 2014 | B2 |
8744562 | Giftakis et al. | Jun 2014 | B2 |
8744563 | Yoshida | Jun 2014 | B2 |
8747313 | Tran et al. | Jun 2014 | B2 |
8747336 | Tran | Jun 2014 | B2 |
8747382 | D'Souza et al. | Jun 2014 | B2 |
8750971 | Tran | Jun 2014 | B2 |
8750974 | Baker et al. | Jun 2014 | B2 |
8750992 | Hopper et al. | Jun 2014 | B2 |
8751008 | Carlton et al. | Jun 2014 | B2 |
8751011 | Skelton et al. | Jun 2014 | B2 |
8753296 | Einav et al. | Jun 2014 | B2 |
8754238 | Teegarden et al. | Jun 2014 | B2 |
8755854 | Addison et al. | Jun 2014 | B2 |
8755856 | Diab et al. | Jun 2014 | B2 |
8755868 | Yazicioglu | Jun 2014 | B2 |
8755869 | Zhang et al. | Jun 2014 | B2 |
8755871 | Weng et al. | Jun 2014 | B2 |
8755877 | Zoica | Jun 2014 | B2 |
8755901 | Skelton et al. | Jun 2014 | B2 |
8756017 | Hu et al. | Jun 2014 | B2 |
8758274 | Sahasrabudhe et al. | Jun 2014 | B2 |
8761438 | Lee et al. | Jun 2014 | B2 |
8761866 | Chance | Jun 2014 | B2 |
8761868 | Giftakis et al. | Jun 2014 | B2 |
8761869 | Leuthardt et al. | Jun 2014 | B2 |
8761889 | Wingeier et al. | Jun 2014 | B2 |
8762065 | DiLorenzo | Jun 2014 | B2 |
8762202 | Pradeep et al. | Jun 2014 | B2 |
8764651 | Tran | Jul 2014 | B2 |
8764652 | Lee et al. | Jul 2014 | B2 |
8764653 | Kaminska et al. | Jul 2014 | B2 |
8764673 | McCraty et al. | Jul 2014 | B2 |
8768022 | Miga et al. | Jul 2014 | B2 |
8768427 | Sjaaheim et al. | Jul 2014 | B2 |
8768431 | Ross et al. | Jul 2014 | B2 |
8768446 | Drew et al. | Jul 2014 | B2 |
8768447 | Ermes et al. | Jul 2014 | B2 |
8768449 | Pesaran et al. | Jul 2014 | B2 |
8768471 | Colborn et al. | Jul 2014 | B2 |
8768477 | Spitzer et al. | Jul 2014 | B2 |
8768718 | Cazares et al. | Jul 2014 | B2 |
8771194 | John et al. | Jul 2014 | B2 |
8774923 | Rom | Jul 2014 | B2 |
8775340 | Waxman et al. | Jul 2014 | B2 |
8781193 | Steinberg et al. | Jul 2014 | B2 |
8781197 | Wang et al. | Jul 2014 | B2 |
8781557 | Dean et al. | Jul 2014 | B2 |
8781563 | Foo | Jul 2014 | B2 |
8781595 | Grevious et al. | Jul 2014 | B2 |
8781597 | DiLorenzo | Jul 2014 | B2 |
8781796 | Mott et al. | Jul 2014 | B2 |
8784109 | Gottfried | Jul 2014 | B2 |
8784322 | Kim et al. | Jul 2014 | B2 |
8785441 | Teegarden et al. | Jul 2014 | B2 |
8786624 | Echauz et al. | Jul 2014 | B2 |
8787637 | Duchesnay et al. | Jul 2014 | B2 |
8788030 | Payton et al. | Jul 2014 | B1 |
8788033 | Rossi | Jul 2014 | B2 |
8788044 | John | Jul 2014 | B2 |
8788055 | Gerber et al. | Jul 2014 | B2 |
8788057 | Stevenson et al. | Jul 2014 | B2 |
8790255 | Behar | Jul 2014 | B2 |
8790272 | Sackner et al. | Jul 2014 | B2 |
8790297 | Bromander et al. | Jul 2014 | B2 |
8792972 | Zaidel et al. | Jul 2014 | B2 |
8792974 | Rothman | Jul 2014 | B2 |
8792991 | Gerber et al. | Jul 2014 | B2 |
8795175 | Funane et al. | Aug 2014 | B2 |
8798717 | Roscher | Aug 2014 | B2 |
8798728 | Drew et al. | Aug 2014 | B2 |
8798735 | Bibian et al. | Aug 2014 | B1 |
8798736 | Sullivan et al. | Aug 2014 | B2 |
8798773 | Mashiach | Aug 2014 | B2 |
8801620 | Melker et al. | Aug 2014 | B2 |
8805516 | Bentwich | Aug 2014 | B2 |
8805518 | King et al. | Aug 2014 | B2 |
8812126 | Butson et al. | Aug 2014 | B2 |
8812237 | Wilt et al. | Aug 2014 | B2 |
8812245 | Taylor | Aug 2014 | B2 |
8812246 | Taylor | Aug 2014 | B2 |
8814923 | Nissila et al. | Aug 2014 | B2 |
8815582 | Deisseroth et al. | Aug 2014 | B2 |
8821376 | Tolkowsky | Sep 2014 | B2 |
8821408 | Hu et al. | Sep 2014 | B2 |
8821559 | DiMauro et al. | Sep 2014 | B2 |
8825149 | Kraus et al. | Sep 2014 | B2 |
8825166 | John | Sep 2014 | B2 |
8825167 | Tass et al. | Sep 2014 | B2 |
8825428 | Addison et al. | Sep 2014 | B2 |
8827912 | Bukhman | Sep 2014 | B2 |
8827917 | Watson et al. | Sep 2014 | B2 |
8829908 | Roshtal et al. | Sep 2014 | B2 |
8831705 | Dobak | Sep 2014 | B2 |
8831731 | Blum et al. | Sep 2014 | B2 |
8831732 | Frei et al. | Sep 2014 | B2 |
8834392 | Panken et al. | Sep 2014 | B2 |
8834546 | Deisseroth et al. | Sep 2014 | B2 |
8838201 | Mori et al. | Sep 2014 | B2 |
8838225 | Ahonen et al. | Sep 2014 | B2 |
8838226 | Bibian et al. | Sep 2014 | B2 |
8838227 | Causevic et al. | Sep 2014 | B2 |
8838247 | Hagedorn et al. | Sep 2014 | B2 |
8843199 | Kim et al. | Sep 2014 | B2 |
8843201 | Heldman et al. | Sep 2014 | B1 |
8843210 | Simon et al. | Sep 2014 | B2 |
8845545 | Folkerts et al. | Sep 2014 | B2 |
8849390 | Echauz et al. | Sep 2014 | B2 |
8849392 | Lozano | Sep 2014 | B2 |
8849407 | Danilov et al. | Sep 2014 | B1 |
8849409 | Colborn et al. | Sep 2014 | B2 |
8849632 | Sparks et al. | Sep 2014 | B2 |
8849681 | Hargrove et al. | Sep 2014 | B2 |
8852073 | Genereux et al. | Oct 2014 | B2 |
8852100 | Osorio | Oct 2014 | B2 |
8852103 | Rothberg et al. | Oct 2014 | B2 |
8855758 | Rodriquez-Villegas et al. | Oct 2014 | B2 |
8855773 | Kokones et al. | Oct 2014 | B2 |
8855775 | Leyde | Oct 2014 | B2 |
8858440 | Tyler | Oct 2014 | B2 |
8858449 | Inan et al. | Oct 2014 | B2 |
8861819 | Lee et al. | Oct 2014 | B2 |
8862196 | Lynn | Oct 2014 | B2 |
8862210 | Yazicioglu et al. | Oct 2014 | B2 |
8862236 | Wolpaw et al. | Oct 2014 | B2 |
8862581 | Zhang et al. | Oct 2014 | B2 |
8864310 | Gross et al. | Oct 2014 | B2 |
8864806 | Wells et al. | Oct 2014 | B2 |
8868148 | Engelbrecht et al. | Oct 2014 | B2 |
8868163 | Guttag et al. | Oct 2014 | B2 |
8868172 | Leyde et al. | Oct 2014 | B2 |
8868173 | Nelson et al. | Oct 2014 | B2 |
8868174 | Sato et al. | Oct 2014 | B2 |
8868175 | Arad (Abboud) | Oct 2014 | B2 |
8868177 | Simon et al. | Oct 2014 | B2 |
8868189 | Stevenson et al. | Oct 2014 | B2 |
8868201 | Roberts et al. | Oct 2014 | B2 |
8870737 | Phillips et al. | Oct 2014 | B2 |
8871797 | Teegarden et al. | Oct 2014 | B2 |
8872640 | Horseman | Oct 2014 | B2 |
8874205 | Simon et al. | Oct 2014 | B2 |
8874218 | Terry, Jr. | Oct 2014 | B2 |
8874227 | Simon et al. | Oct 2014 | B2 |
8874439 | Kim et al. | Oct 2014 | B2 |
8880207 | Abeyratne et al. | Nov 2014 | B2 |
8880576 | Ochs et al. | Nov 2014 | B2 |
8886299 | Yazicioglu et al. | Nov 2014 | B2 |
8886302 | Skelton et al. | Nov 2014 | B2 |
8888672 | Phillips et al. | Nov 2014 | B2 |
8888673 | Phillips et al. | Nov 2014 | B2 |
8888702 | Osorio | Nov 2014 | B2 |
8888708 | Diab et al. | Nov 2014 | B2 |
8888723 | Einav | Nov 2014 | B2 |
8892207 | Nelson et al. | Nov 2014 | B2 |
8893120 | Pinsky et al. | Nov 2014 | B2 |
8898037 | Watson et al. | Nov 2014 | B2 |
8900284 | DiMauro et al. | Dec 2014 | B2 |
8902070 | Kobetski et al. | Dec 2014 | B2 |
8903479 | Zoicas | Dec 2014 | B2 |
8903483 | Sun et al. | Dec 2014 | B2 |
8903486 | Bourget et al. | Dec 2014 | B2 |
8903494 | Goldwasser et al. | Dec 2014 | B2 |
8906360 | Deisseroth et al. | Dec 2014 | B2 |
8907668 | Okada | Dec 2014 | B2 |
8909345 | Danilov et al. | Dec 2014 | B1 |
8910638 | Boyden et al. | Dec 2014 | B2 |
8913810 | Panin et al. | Dec 2014 | B2 |
8914100 | Adachi et al. | Dec 2014 | B2 |
8914115 | Giftakis et al. | Dec 2014 | B2 |
8914119 | Wu et al. | Dec 2014 | B2 |
8914122 | Simon et al. | Dec 2014 | B2 |
8915741 | Hatlestad et al. | Dec 2014 | B2 |
8915871 | Einav | Dec 2014 | B2 |
8918162 | Prokoski | Dec 2014 | B2 |
8918176 | Nelson et al. | Dec 2014 | B2 |
8918178 | Simon et al. | Dec 2014 | B2 |
8918183 | Carlton et al. | Dec 2014 | B2 |
8921320 | Paul et al. | Dec 2014 | B2 |
8922376 | Kangas et al. | Dec 2014 | B2 |
8922788 | Addison et al. | Dec 2014 | B2 |
8923958 | Gupta et al. | Dec 2014 | B2 |
8924235 | Seely | Dec 2014 | B2 |
RE45336 | Teegarden et al. | Jan 2015 | E |
RE45337 | Teegarden et al. | Jan 2015 | E |
8926959 | Deisseroth et al. | Jan 2015 | B2 |
8929991 | Fowler et al. | Jan 2015 | B2 |
8929999 | Maschiach | Jan 2015 | B2 |
8932218 | Thompson | Jan 2015 | B1 |
8932227 | Lynn | Jan 2015 | B2 |
8932562 | Deisseroth et al. | Jan 2015 | B2 |
8933696 | Nishikawa | Jan 2015 | B2 |
8934685 | Avinash et al. | Jan 2015 | B2 |
8934965 | Rogers et al. | Jan 2015 | B2 |
8934967 | Kilgard et al. | Jan 2015 | B2 |
8934979 | Moffitt | Jan 2015 | B2 |
8934986 | Goetz | Jan 2015 | B2 |
8936629 | Boyden et al. | Jan 2015 | B2 |
8936630 | Denison et al. | Jan 2015 | B2 |
8938102 | Carroll | Jan 2015 | B2 |
8938289 | Einav et al. | Jan 2015 | B2 |
8938290 | Wingeier et al. | Jan 2015 | B2 |
8938301 | Hagedorn | Jan 2015 | B2 |
8939903 | Roberts et al. | Jan 2015 | B2 |
8942777 | Diab et al. | Jan 2015 | B2 |
8942813 | Hagedorn et al. | Jan 2015 | B1 |
8942817 | Hyde et al. | Jan 2015 | B2 |
8945006 | Osorio | Feb 2015 | B2 |
8948834 | Diab et al. | Feb 2015 | B2 |
8948849 | Diamond et al. | Feb 2015 | B2 |
8948855 | Osorio et al. | Feb 2015 | B2 |
8948860 | Causevic | Feb 2015 | B2 |
8951189 | Osorio | Feb 2015 | B2 |
8951190 | Chmiel et al. | Feb 2015 | B2 |
8951192 | Osorio | Feb 2015 | B2 |
8951203 | Patangay et al. | Feb 2015 | B2 |
8954139 | Hopenfeld et al. | Feb 2015 | B2 |
8954146 | Hopper et al. | Feb 2015 | B2 |
8954293 | Klinkenbusch | Feb 2015 | B2 |
8955010 | Pradeep et al. | Feb 2015 | B2 |
8955974 | Gross et al. | Feb 2015 | B2 |
8956277 | Mishelevich | Feb 2015 | B2 |
8956363 | Schneider et al. | Feb 2015 | B2 |
8958868 | Ghovanloo et al. | Feb 2015 | B2 |
8958870 | Gerber et al. | Feb 2015 | B2 |
8958882 | Hagedorn | Feb 2015 | B1 |
8961187 | Boers et al. | Feb 2015 | B2 |
8961385 | Pilla et al. | Feb 2015 | B2 |
8961386 | Phillips et al. | Feb 2015 | B2 |
8962042 | Geng | Feb 2015 | B2 |
8962589 | Deisseroth et al. | Feb 2015 | B2 |
8964298 | Haddick et al. | Feb 2015 | B2 |
8965492 | Baker et al. | Feb 2015 | B2 |
8965513 | Wingeier et al. | Feb 2015 | B2 |
8965514 | Bikson et al. | Feb 2015 | B2 |
8968172 | Wang et al. | Mar 2015 | B2 |
8968176 | Altman et al. | Mar 2015 | B2 |
8968195 | Tran | Mar 2015 | B2 |
8968376 | Wells et al. | Mar 2015 | B2 |
8971936 | Derchak | Mar 2015 | B2 |
8972004 | Simon et al. | Mar 2015 | B2 |
8972013 | Maschino | Mar 2015 | B2 |
8974365 | Best | Mar 2015 | B2 |
8977024 | Rex et al. | Mar 2015 | B1 |
8977110 | Pradeep et al. | Mar 2015 | B2 |
8977362 | Saab | Mar 2015 | B2 |
8980891 | Stirn et al. | Mar 2015 | B2 |
8983155 | McIntyre et al. | Mar 2015 | B2 |
8983591 | Leininger et al. | Mar 2015 | B2 |
8983620 | Cinbis | Mar 2015 | B2 |
8983628 | Simon et al. | Mar 2015 | B2 |
8983629 | Simon et al. | Mar 2015 | B2 |
8985119 | Webb et al. | Mar 2015 | B1 |
8986207 | Li et al. | Mar 2015 | B2 |
8989835 | Badower et al. | Mar 2015 | B2 |
8989836 | Machon et al. | Mar 2015 | B2 |
8989863 | Osorio | Mar 2015 | B2 |
8989867 | Chow et al. | Mar 2015 | B2 |
8989868 | Mashiach et al. | Mar 2015 | B2 |
8989871 | Ollivier | Mar 2015 | B2 |
8992230 | Tuchschmid et al. | Mar 2015 | B2 |
8993623 | Goodenowe | Mar 2015 | B2 |
8996112 | Brooke | Mar 2015 | B2 |
8996120 | Calle et al. | Mar 2015 | B1 |
8998828 | Reichow et al. | Apr 2015 | B2 |
9002458 | Pal et al. | Apr 2015 | B2 |
9002471 | Stevenson et al. | Apr 2015 | B2 |
9002477 | Burnett | Apr 2015 | B2 |
9004687 | Stack | Apr 2015 | B2 |
9005102 | Burnett et al. | Apr 2015 | B2 |
9005126 | Beach et al. | Apr 2015 | B2 |
9005649 | Ho et al. | Apr 2015 | B2 |
9008367 | Tolkowsky et al. | Apr 2015 | B2 |
9008754 | Steinberg et al. | Apr 2015 | B2 |
9008771 | Dong et al. | Apr 2015 | B2 |
9008780 | Nudo et al. | Apr 2015 | B2 |
9008970 | Donderici et al. | Apr 2015 | B2 |
9011329 | Fenen et al. | Apr 2015 | B2 |
9014216 | Lazar et al. | Apr 2015 | B2 |
9014453 | Steinberg et al. | Apr 2015 | B2 |
9014804 | Giftakis et al. | Apr 2015 | B2 |
9014811 | Pal et al. | Apr 2015 | B2 |
9014819 | Lee et al. | Apr 2015 | B2 |
9014823 | Simon et al. | Apr 2015 | B2 |
9015057 | Phillips et al. | Apr 2015 | B2 |
9015087 | Li et al. | Apr 2015 | B2 |
9020576 | Nagatani | Apr 2015 | B2 |
9020582 | Osorio et al. | Apr 2015 | B2 |
9020585 | John et al. | Apr 2015 | B2 |
9020586 | Yamada et al. | Apr 2015 | B2 |
9020598 | Simon et al. | Apr 2015 | B2 |
9020612 | Danilov et al. | Apr 2015 | B1 |
9020789 | Butson et al. | Apr 2015 | B2 |
9022930 | Sachanandani et al. | May 2015 | B2 |
9022936 | Rothberg et al. | May 2015 | B2 |
9025845 | Carroll | May 2015 | B2 |
9026194 | Okada | May 2015 | B2 |
9026202 | Albert | May 2015 | B2 |
9026217 | Kokones et al. | May 2015 | B2 |
9026218 | Lozano et al. | May 2015 | B2 |
9026372 | O'Donnell, Jr. et al. | May 2015 | B2 |
9028405 | Tran | May 2015 | B2 |
9028412 | Rothberg et al. | May 2015 | B2 |
9031644 | Johnson et al. | May 2015 | B2 |
9031653 | Mashiach | May 2015 | B2 |
9031655 | Osorio et al. | May 2015 | B2 |
9031658 | Chiao et al. | May 2015 | B2 |
9033884 | Rothberg et al. | May 2015 | B2 |
9034055 | Vinjamuri et al. | May 2015 | B2 |
9034911 | Selvey et al. | May 2015 | B2 |
9034923 | Goodenowe | May 2015 | B2 |
9035657 | Zhang et al. | May 2015 | B2 |
9036844 | Suhami et al. | May 2015 | B1 |
9037224 | Fu | May 2015 | B1 |
9037225 | Saliga et al. | May 2015 | B1 |
9037254 | John | May 2015 | B2 |
9037256 | Bokil | May 2015 | B2 |
9037530 | Tan et al. | May 2015 | B2 |
9042074 | Beran | May 2015 | B1 |
9042201 | Tyler et al. | May 2015 | B2 |
9042952 | Lynn et al. | May 2015 | B2 |
9042958 | Karmarkar et al. | May 2015 | B2 |
9042988 | DiLorenzo | May 2015 | B2 |
9043001 | Simon et al. | May 2015 | B2 |
9044188 | DiLorenzo et al. | Jun 2015 | B2 |
9044612 | Mashiach et al. | Jun 2015 | B2 |
9050469 | Osorio et al. | Jun 2015 | B1 |
9050470 | Carlton et al. | Jun 2015 | B2 |
9050471 | Skelton et al. | Jun 2015 | B2 |
9053516 | Stempora | Jun 2015 | B2 |
9053534 | Ross et al. | Jun 2015 | B2 |
9055871 | Inan et al. | Jun 2015 | B2 |
9055974 | Goetz | Jun 2015 | B2 |
9056195 | Sabesan | Jun 2015 | B2 |
9058473 | Navratil et al. | Jun 2015 | B2 |
9060671 | Badower et al. | Jun 2015 | B2 |
9060683 | Tran | Jun 2015 | B2 |
9060695 | Peters | Jun 2015 | B2 |
9060722 | Teixeira | Jun 2015 | B2 |
9060746 | Weng et al. | Jun 2015 | B2 |
9061132 | Zweber et al. | Jun 2015 | B1 |
9061133 | Wurster et al. | Jun 2015 | B2 |
9061151 | Mashiach et al. | Jun 2015 | B2 |
9061153 | Lebovitz et al. | Jun 2015 | B1 |
9063183 | Toda et al. | Jun 2015 | B2 |
9063643 | Sparks et al. | Jun 2015 | B2 |
9064036 | Hyde et al. | Jun 2015 | B2 |
9067052 | Moses et al. | Jun 2015 | B2 |
9067054 | Simon et al. | Jun 2015 | B2 |
9067070 | Connor | Jun 2015 | B2 |
9069031 | Guedes et al. | Jun 2015 | B2 |
9069097 | Zhang et al. | Jun 2015 | B2 |
9070492 | Yarmush et al. | Jun 2015 | B2 |
9072449 | Semenov | Jul 2015 | B2 |
9072482 | Sarkela et al. | Jul 2015 | B2 |
9072832 | Frei et al. | Jul 2015 | B2 |
9072870 | Wu et al. | Jul 2015 | B2 |
9072905 | Kokones et al. | Jul 2015 | B2 |
9074976 | Adolphi et al. | Jul 2015 | B2 |
9076212 | Ernst et al. | Jul 2015 | B2 |
9078564 | Taylor | Jul 2015 | B2 |
9078577 | He et al. | Jul 2015 | B2 |
9078584 | Jorge et al. | Jul 2015 | B2 |
9079039 | Carlson et al. | Jul 2015 | B2 |
9079940 | Deisseroth et al. | Jul 2015 | B2 |
9081488 | Soederstroem | Jul 2015 | B2 |
9081882 | Taylor | Jul 2015 | B2 |
9081890 | An et al. | Jul 2015 | B2 |
9082169 | Thomson et al. | Jul 2015 | B2 |
9084584 | Weiland et al. | Jul 2015 | B2 |
9084885 | Deisseroth et al. | Jul 2015 | B2 |
9084896 | Kokones et al. | Jul 2015 | B2 |
9084900 | Hershey et al. | Jul 2015 | B2 |
9087147 | Fonte | Jul 2015 | B1 |
9089310 | Isenhart et al. | Jul 2015 | B2 |
9089400 | Nofzinger | Jul 2015 | B2 |
9089683 | Mishelevich | Jul 2015 | B2 |
9089707 | Kilgard et al. | Jul 2015 | B2 |
9089713 | John | Jul 2015 | B2 |
9089719 | Simon et al. | Jul 2015 | B2 |
9091785 | Donderici et al. | Jul 2015 | B2 |
9092556 | Amble et al. | Jul 2015 | B2 |
9092895 | Ross et al. | Jul 2015 | B2 |
9095266 | Fu | Aug 2015 | B1 |
9095268 | Kurtz et al. | Aug 2015 | B2 |
9095295 | Eagleman et al. | Aug 2015 | B2 |
9095303 | Osorio | Aug 2015 | B2 |
9095314 | Osorio et al. | Aug 2015 | B2 |
9095618 | Satchi-Fainaro et al. | Aug 2015 | B2 |
9095713 | Foster et al. | Aug 2015 | B2 |
9100758 | Adachi et al. | Aug 2015 | B2 |
9101263 | Jung et al. | Aug 2015 | B2 |
9101276 | Georgopoulos | Aug 2015 | B2 |
9101279 | Ritchey et al. | Aug 2015 | B2 |
9101690 | Deisseroth et al. | Aug 2015 | B2 |
9101759 | Delp et al. | Aug 2015 | B2 |
9101766 | Nekhendzy | Aug 2015 | B2 |
9102717 | Huang et al. | Aug 2015 | B2 |
9107586 | Tran | Aug 2015 | B2 |
9107595 | Smyth | Aug 2015 | B1 |
9108041 | Craig | Aug 2015 | B2 |
9113777 | Mittal | Aug 2015 | B2 |
9113801 | DiLorenzo | Aug 2015 | B2 |
9113803 | Zhang | Aug 2015 | B2 |
9113830 | Galen et al. | Aug 2015 | B2 |
9116201 | Shah et al. | Aug 2015 | B2 |
9116835 | Smyth | Aug 2015 | B1 |
9118775 | Lim et al. | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9119551 | Qi et al. | Sep 2015 | B2 |
9119583 | Tass | Sep 2015 | B2 |
9119597 | Dripps et al. | Sep 2015 | B2 |
9119598 | Engelbrecht et al. | Sep 2015 | B2 |
9121964 | Lewis et al. | Sep 2015 | B2 |
9125574 | Zia et al. | Sep 2015 | B2 |
9125581 | Wu et al. | Sep 2015 | B2 |
9125788 | Tee et al. | Sep 2015 | B2 |
9126050 | Simon et al. | Sep 2015 | B2 |
9131864 | Korenberg | Sep 2015 | B2 |
9133024 | Phan et al. | Sep 2015 | B2 |
9133709 | Huh et al. | Sep 2015 | B2 |
9135221 | Shahaf et al. | Sep 2015 | B2 |
9135400 | McIntyre et al. | Sep 2015 | B2 |
9138156 | Wu et al. | Sep 2015 | B2 |
9138175 | Ernst et al. | Sep 2015 | B2 |
9138183 | McKenna et al. | Sep 2015 | B2 |
9138579 | Wolpaw et al. | Sep 2015 | B2 |
9138580 | Ignagni et al. | Sep 2015 | B2 |
9142145 | Tuchschmid et al. | Sep 2015 | B2 |
9142185 | Fateh | Sep 2015 | B2 |
9144392 | Santosh et al. | Sep 2015 | B2 |
RE45766 | Lindsay | Oct 2015 | E |
9149195 | Hadley | Oct 2015 | B2 |
9149197 | Taylor | Oct 2015 | B2 |
9149210 | Sahasrabudhe et al. | Oct 2015 | B2 |
9149214 | Adachi et al. | Oct 2015 | B2 |
9149226 | Jadidi | Oct 2015 | B2 |
9149255 | Rothberg et al. | Oct 2015 | B2 |
9149577 | Robertson et al. | Oct 2015 | B2 |
9149599 | Walter et al. | Oct 2015 | B2 |
9149719 | Guan et al. | Oct 2015 | B2 |
9152757 | Taylor | Oct 2015 | B2 |
9155373 | Allen et al. | Oct 2015 | B2 |
9155484 | Baker et al. | Oct 2015 | B2 |
9155487 | Linderman et al. | Oct 2015 | B2 |
9155521 | Rothberg et al. | Oct 2015 | B2 |
9161715 | Jung et al. | Oct 2015 | B2 |
9162051 | Morrell | Oct 2015 | B2 |
9162052 | Morrell | Oct 2015 | B2 |
9165472 | Hagedorn et al. | Oct 2015 | B2 |
9167970 | Gratton et al. | Oct 2015 | B2 |
9167974 | Taylor | Oct 2015 | B2 |
9167976 | Wingeier et al. | Oct 2015 | B2 |
9167977 | Wingeier et al. | Oct 2015 | B2 |
9167978 | Wingeier et al. | Oct 2015 | B2 |
9167979 | Skidmore et al. | Oct 2015 | B2 |
9171353 | Vija et al. | Oct 2015 | B2 |
9171366 | Declerck et al. | Oct 2015 | B2 |
9173582 | Popovic et al. | Nov 2015 | B2 |
9173609 | Nelson | Nov 2015 | B2 |
9173610 | Navakatikyan | Nov 2015 | B2 |
9174045 | Simon et al. | Nov 2015 | B2 |
9174055 | Davis et al. | Nov 2015 | B2 |
9174066 | Simon et al. | Nov 2015 | B2 |
9175095 | Deisseroth et al. | Nov 2015 | B2 |
9177379 | Biagiotti et al. | Nov 2015 | B1 |
9177416 | Sharp | Nov 2015 | B2 |
9179850 | Wingeier et al. | Nov 2015 | B2 |
9179854 | Doidge et al. | Nov 2015 | B2 |
9179855 | Burdea et al. | Nov 2015 | B2 |
9179858 | Hasson et al. | Nov 2015 | B2 |
9179875 | Hua | Nov 2015 | B2 |
9179876 | Ochs et al. | Nov 2015 | B2 |
9183351 | Shusterman | Nov 2015 | B2 |
9186060 | De Graff et al. | Nov 2015 | B2 |
9186106 | Osorio | Nov 2015 | B2 |
9186503 | Lindenthaler et al. | Nov 2015 | B2 |
9186510 | Gliner et al. | Nov 2015 | B2 |
9187745 | Deisseroth et al. | Nov 2015 | B2 |
9192300 | Jung et al. | Nov 2015 | B2 |
9192309 | Hopenfeld et al. | Nov 2015 | B1 |
9198563 | Ferren et al. | Dec 2015 | B2 |
9198612 | Fueyo et al. | Dec 2015 | B2 |
9198621 | Fernstrom et al. | Dec 2015 | B2 |
9198624 | Funane et al. | Dec 2015 | B2 |
9198637 | Rothberg et al. | Dec 2015 | B2 |
9198707 | McKay et al. | Dec 2015 | B2 |
9198733 | Neal, II et al. | Dec 2015 | B2 |
9204796 | Tran | Dec 2015 | B2 |
9204835 | Parsey et al. | Dec 2015 | B2 |
9204838 | Osorio | Dec 2015 | B2 |
9204998 | Kilgard et al. | Dec 2015 | B2 |
9208430 | Solari | Dec 2015 | B2 |
9208557 | Pautot | Dec 2015 | B2 |
9208558 | Dean et al. | Dec 2015 | B2 |
9211076 | Kim | Dec 2015 | B2 |
9211077 | Jung et al. | Dec 2015 | B2 |
9211212 | Nofzinger et al. | Dec 2015 | B2 |
9211411 | Wu et al. | Dec 2015 | B2 |
9211417 | Heldman et al. | Dec 2015 | B2 |
9213074 | van der Kouwe et al. | Dec 2015 | B2 |
9213076 | Liu | Dec 2015 | B2 |
9215298 | Schiff | Dec 2015 | B2 |
9215978 | Knight et al. | Dec 2015 | B2 |
9220910 | Colborn | Dec 2015 | B2 |
9220917 | Boyden et al. | Dec 2015 | B2 |
9221755 | Teegarden et al. | Dec 2015 | B2 |
9226672 | Taylor | Jan 2016 | B2 |
9227056 | Heldman et al. | Jan 2016 | B1 |
9229080 | Lin | Jan 2016 | B2 |
9230065 | Hasegawa et al. | Jan 2016 | B2 |
9230539 | Pakhomov | Jan 2016 | B2 |
9232910 | Alshaer et al. | Jan 2016 | B2 |
9232984 | Guthart et al. | Jan 2016 | B2 |
9233244 | Pal et al. | Jan 2016 | B2 |
9233245 | Lamensdorf et al. | Jan 2016 | B2 |
9233246 | Simon et al. | Jan 2016 | B2 |
9233258 | Simon et al. | Jan 2016 | B2 |
9235679 | Taylor | Jan 2016 | B2 |
9235685 | McIntyre et al. | Jan 2016 | B2 |
9238142 | Heldman et al. | Jan 2016 | B2 |
9238150 | Deisseroth et al. | Jan 2016 | B2 |
9241647 | Osorio et al. | Jan 2016 | B2 |
9241665 | deCharms | Jan 2016 | B2 |
9242067 | Shore et al. | Jan 2016 | B2 |
9242092 | Simon et al. | Jan 2016 | B2 |
9247890 | Turnbull et al. | Feb 2016 | B2 |
9247911 | Galloway et al. | Feb 2016 | B2 |
9247924 | Rothberg et al. | Feb 2016 | B2 |
9248003 | Wright et al. | Feb 2016 | B2 |
9248280 | Moffitt et al. | Feb 2016 | B2 |
9248286 | Simon et al. | Feb 2016 | B2 |
9248288 | Panken et al. | Feb 2016 | B2 |
9248290 | Mashiach | Feb 2016 | B2 |
9248291 | Mashiach | Feb 2016 | B2 |
9248296 | Carcieri et al. | Feb 2016 | B2 |
9249200 | Deisseroth et al. | Feb 2016 | B2 |
9249234 | Deisseroth et al. | Feb 2016 | B2 |
9251566 | Bajic | Feb 2016 | B1 |
9254097 | Espy et al. | Feb 2016 | B2 |
9254099 | Connor | Feb 2016 | B2 |
9254383 | Simon et al. | Feb 2016 | B2 |
9254387 | Blum et al. | Feb 2016 | B2 |
9256982 | Sharp et al. | Feb 2016 | B2 |
9259177 | Drew et al. | Feb 2016 | B2 |
9259482 | Satchi-Fainaro et al. | Feb 2016 | B2 |
9259591 | Brown et al. | Feb 2016 | B2 |
9261573 | Radparvar et al. | Feb 2016 | B1 |
9265458 | Stack | Feb 2016 | B2 |
9265660 | Kilgard et al. | Feb 2016 | B2 |
9265661 | Kilgard et al. | Feb 2016 | B2 |
9265662 | Kilgard et al. | Feb 2016 | B2 |
9265663 | Kilgard et al. | Feb 2016 | B2 |
9265931 | Morrell | Feb 2016 | B2 |
9265943 | Yun et al. | Feb 2016 | B2 |
9265946 | Morrell | Feb 2016 | B2 |
9265965 | Fox et al. | Feb 2016 | B2 |
9265974 | You et al. | Feb 2016 | B2 |
9268014 | Rothberg et al. | Feb 2016 | B2 |
9268015 | Rothberg et al. | Feb 2016 | B2 |
9268902 | Taylor et al. | Feb 2016 | B2 |
9271651 | Avinash et al. | Mar 2016 | B2 |
9271657 | Taylor | Mar 2016 | B2 |
9271660 | Luo et al. | Mar 2016 | B2 |
9271674 | Deisseroth et al. | Mar 2016 | B2 |
9271679 | Cho et al. | Mar 2016 | B2 |
9272091 | Skelton et al. | Mar 2016 | B2 |
9272139 | Hamilton et al. | Mar 2016 | B2 |
9272145 | Kilgard et al. | Mar 2016 | B2 |
9272153 | Blum et al. | Mar 2016 | B2 |
9273035 | Teegarden et al. | Mar 2016 | B2 |
9275191 | Dean et al. | Mar 2016 | B2 |
9275451 | Ben-Haim et al. | Mar 2016 | B2 |
9277871 | Keenan et al. | Mar 2016 | B2 |
9277873 | Sarma et al. | Mar 2016 | B2 |
9278159 | Deisseroth et al. | Mar 2016 | B2 |
9278231 | Vasishta | Mar 2016 | B2 |
9280784 | Barnett et al. | Mar 2016 | B2 |
9282927 | Hyde et al. | Mar 2016 | B2 |
9282930 | Machon et al. | Mar 2016 | B2 |
9282934 | Liley et al. | Mar 2016 | B2 |
9283279 | Satchi-Fainaro et al. | Mar 2016 | B2 |
9283394 | Whitehurst et al. | Mar 2016 | B2 |
9284353 | Deisseroth et al. | Mar 2016 | B2 |
9285249 | Schober et al. | Mar 2016 | B2 |
9289143 | Wingeier et al. | Mar 2016 | B2 |
9289595 | Floyd et al. | Mar 2016 | B2 |
9289599 | Craig | Mar 2016 | B2 |
9289603 | Giuffrida et al. | Mar 2016 | B1 |
9289609 | Moffitt | Mar 2016 | B2 |
9292471 | Fung et al. | Mar 2016 | B2 |
9292858 | Marci et al. | Mar 2016 | B2 |
9292920 | Dean et al. | Mar 2016 | B2 |
9295838 | Starr et al. | Mar 2016 | B2 |
9296382 | Fung et al. | Mar 2016 | B2 |
9302069 | Tass et al. | Apr 2016 | B2 |
9302093 | Mashiach | Apr 2016 | B2 |
9302103 | Nirenberg | Apr 2016 | B1 |
9302109 | Sabesan | Apr 2016 | B2 |
9302110 | Kokones et al. | Apr 2016 | B2 |
9302114 | Rossi | Apr 2016 | B2 |
9302116 | Vo-Dinh et al. | Apr 2016 | B2 |
9305376 | Lee et al. | Apr 2016 | B2 |
9307925 | Russell et al. | Apr 2016 | B2 |
9307944 | Colman et al. | Apr 2016 | B2 |
9308372 | Sparks et al. | Apr 2016 | B2 |
9308392 | Deisseroth et al. | Apr 2016 | B2 |
9309296 | Deisseroth et al. | Apr 2016 | B2 |
9310985 | Blum et al. | Apr 2016 | B2 |
9311335 | Simon | Apr 2016 | B2 |
9314190 | Giuffrida et al. | Apr 2016 | B1 |
9314613 | Mashiach | Apr 2016 | B2 |
9314633 | Osorio et al. | Apr 2016 | B2 |
9314635 | Libbus | Apr 2016 | B2 |
9320449 | Gu | Apr 2016 | B2 |
9320450 | Badower | Apr 2016 | B2 |
9320451 | Feldkamp et al. | Apr 2016 | B2 |
9320900 | DiLorenzo | Apr 2016 | B2 |
9320913 | Dimino et al. | Apr 2016 | B2 |
9320914 | Toselli et al. | Apr 2016 | B2 |
9322895 | Santosh et al. | Apr 2016 | B2 |
9326705 | Derchak | May 2016 | B2 |
9326720 | McLaughlin | May 2016 | B2 |
9326742 | Hirschman et al. | May 2016 | B2 |
9327069 | Foster et al. | May 2016 | B2 |
9327070 | Skelton et al. | May 2016 | B2 |
9328107 | Teegarden et al. | May 2016 | B2 |
9329758 | Guzak et al. | May 2016 | B2 |
9330206 | Dean et al. | May 2016 | B2 |
9330523 | Sutton et al. | May 2016 | B2 |
9331841 | Kim et al. | May 2016 | B2 |
9332939 | Osorio | May 2016 | B2 |
9333334 | Jeffery et al. | May 2016 | B2 |
9333347 | Simon et al. | May 2016 | B2 |
9333350 | Rise et al. | May 2016 | B2 |
9336302 | Swamy | May 2016 | B1 |
9336535 | Pradeep et al. | May 2016 | B2 |
9336611 | Bilgic et al. | May 2016 | B2 |
9339200 | Fonte | May 2016 | B2 |
9339227 | D'arcy et al. | May 2016 | B2 |
9339641 | Rajguru et al. | May 2016 | B2 |
9339654 | Kilgard et al. | May 2016 | B2 |
9340589 | Deisseroth et al. | May 2016 | B2 |
9345412 | Horne | May 2016 | B2 |
9345609 | Hyde et al. | May 2016 | B2 |
9345886 | Kilgard et al. | May 2016 | B2 |
9345901 | Peterchev | May 2016 | B2 |
9348974 | Goetz | May 2016 | B2 |
9349178 | Itu et al. | May 2016 | B1 |
9351640 | Tran | May 2016 | B2 |
9351651 | Nagasaka | May 2016 | B2 |
9352145 | Whitehurst et al. | May 2016 | B2 |
9352152 | Lindenthaler et al. | May 2016 | B2 |
9352156 | Lane et al. | May 2016 | B2 |
9357240 | Pradeep et al. | May 2016 | B2 |
9357298 | Hiroe | May 2016 | B2 |
9357941 | Simon | Jun 2016 | B2 |
9357949 | Drew | Jun 2016 | B2 |
9357970 | Clark et al. | Jun 2016 | B2 |
9358361 | Hyde et al. | Jun 2016 | B2 |
9358381 | Simon et al. | Jun 2016 | B2 |
9358392 | Mashiach | Jun 2016 | B2 |
9358393 | Lozano | Jun 2016 | B1 |
9358398 | Moffitt et al. | Jun 2016 | B2 |
9359449 | Deisseroth et al. | Jun 2016 | B2 |
9360472 | Deisseroth et al. | Jun 2016 | B2 |
9364462 | Simpson, Jr. | Jun 2016 | B2 |
9364665 | Bokil et al. | Jun 2016 | B2 |
9364674 | Cook et al. | Jun 2016 | B2 |
9364679 | John | Jun 2016 | B2 |
9365628 | Deisseroth et al. | Jun 2016 | B2 |
9367131 | Klappert et al. | Jun 2016 | B2 |
9367738 | Harumatsu et al. | Jun 2016 | B2 |
9368018 | Kangas et al. | Jun 2016 | B2 |
9368265 | Park et al. | Jun 2016 | B2 |
9370309 | Ko et al. | Jun 2016 | B2 |
9370667 | Schmidt | Jun 2016 | B2 |
9375145 | Chin et al. | Jun 2016 | B2 |
9375151 | Hopenfeld et al. | Jun 2016 | B1 |
9375171 | Teixeira | Jun 2016 | B2 |
9375564 | Wingeier et al. | Jun 2016 | B2 |
9375571 | Errico et al. | Jun 2016 | B2 |
9375573 | Dilorenzo | Jun 2016 | B2 |
9377348 | Kataoka | Jun 2016 | B2 |
9377515 | Kim et al. | Jun 2016 | B2 |
9380976 | Stack | Jul 2016 | B2 |
9381346 | Lee et al. | Jul 2016 | B2 |
9381352 | Yun et al. | Jul 2016 | B2 |
9383208 | Mohanty | Jul 2016 | B2 |
9387320 | Wingeier et al. | Jul 2016 | B2 |
9387338 | Burnett | Jul 2016 | B2 |
9390233 | Fueyo et al. | Jul 2016 | B2 |
9392955 | Folkerts et al. | Jul 2016 | B2 |
9393406 | Ollivier | Jul 2016 | B2 |
9393418 | Giuffrida et al. | Jul 2016 | B2 |
9394347 | Deisseroth et al. | Jul 2016 | B2 |
9395425 | Diamond et al. | Jul 2016 | B2 |
9396533 | Skidmore | Jul 2016 | B2 |
9396669 | Karkanias et al. | Jul 2016 | B2 |
9398873 | Van Dooren et al. | Jul 2016 | B2 |
9399126 | Pal et al. | Jul 2016 | B2 |
9399133 | Besio | Jul 2016 | B2 |
9399134 | Simon et al. | Jul 2016 | B2 |
9399144 | Howard | Jul 2016 | B2 |
9401021 | Biagiotti et al. | Jul 2016 | B1 |
9401033 | Bajic | Jul 2016 | B2 |
9402558 | John et al. | Aug 2016 | B2 |
9402994 | Chow et al. | Aug 2016 | B2 |
9403000 | Lyons et al. | Aug 2016 | B2 |
9403001 | Simon et al. | Aug 2016 | B2 |
9403009 | Mashiach | Aug 2016 | B2 |
9403010 | Fried et al. | Aug 2016 | B2 |
9403038 | Tyler | Aug 2016 | B2 |
9405366 | Segal | Aug 2016 | B2 |
9408530 | Ferren et al. | Aug 2016 | B2 |
9409013 | Mashiach et al. | Aug 2016 | B2 |
9409022 | Jaax et al. | Aug 2016 | B2 |
9409028 | Whitehurst et al. | Aug 2016 | B2 |
9410885 | Schober et al. | Aug 2016 | B2 |
9411033 | He et al. | Aug 2016 | B2 |
9411935 | Moffitt et al. | Aug 2016 | B2 |
9412076 | Sapiro et al. | Aug 2016 | B2 |
9412233 | Bagherzadeh et al. | Aug 2016 | B1 |
9414029 | Miyazaki et al. | Aug 2016 | B2 |
9414749 | Semenov | Aug 2016 | B2 |
9414763 | Semenov | Aug 2016 | B2 |
9414764 | Semenov | Aug 2016 | B2 |
9414776 | Sillay et al. | Aug 2016 | B2 |
9414780 | Rhoads | Aug 2016 | B2 |
9414907 | Wortz et al. | Aug 2016 | B2 |
9415215 | Mashiach | Aug 2016 | B2 |
9415216 | Mashiach | Aug 2016 | B2 |
9415219 | Simon et al. | Aug 2016 | B2 |
9415222 | DiLorenzo | Aug 2016 | B2 |
9415233 | Pilla et al. | Aug 2016 | B2 |
9418368 | Jung et al. | Aug 2016 | B2 |
9420970 | Dagum | Aug 2016 | B2 |
9421258 | Deisseroth et al. | Aug 2016 | B2 |
9421372 | Mashiach et al. | Aug 2016 | B2 |
9421373 | DiLorenzo | Aug 2016 | B2 |
9421379 | Zhu | Aug 2016 | B2 |
9424761 | Tuchschmid et al. | Aug 2016 | B2 |
9427474 | Satchi-Fainaro et al. | Aug 2016 | B2 |
9427581 | Simon et al. | Aug 2016 | B2 |
9427585 | Gliner | Aug 2016 | B2 |
9427598 | Pilla et al. | Aug 2016 | B2 |
9430615 | Michaelis et al. | Aug 2016 | B2 |
9432777 | Lunner et al. | Aug 2016 | B2 |
9433797 | Pilla et al. | Sep 2016 | B2 |
9434692 | Xiong et al. | Sep 2016 | B2 |
9436989 | Uber, III | Sep 2016 | B2 |
9438650 | Serena | Sep 2016 | B2 |
9439150 | Carlson et al. | Sep 2016 | B2 |
9440063 | Ho et al. | Sep 2016 | B2 |
9440064 | Wingeier et al. | Sep 2016 | B2 |
9440070 | Goldwasser et al. | Sep 2016 | B2 |
9440084 | Davis et al. | Sep 2016 | B2 |
9440089 | Pilla et al. | Sep 2016 | B2 |
9440646 | Fung et al. | Sep 2016 | B2 |
9442088 | Feldkamp et al. | Sep 2016 | B2 |
9442525 | Choi et al. | Sep 2016 | B2 |
9443141 | Mirowski et al. | Sep 2016 | B2 |
9444998 | Kim et al. | Sep 2016 | B2 |
9445713 | Douglas et al. | Sep 2016 | B2 |
9445730 | Snyder et al. | Sep 2016 | B2 |
9445739 | Payton et al. | Sep 2016 | B1 |
9445763 | Davis et al. | Sep 2016 | B2 |
9446238 | Lozano | Sep 2016 | B2 |
9448289 | Wang et al. | Sep 2016 | B2 |
9449147 | Taylor | Sep 2016 | B2 |
9451303 | Kothuri et al. | Sep 2016 | B2 |
9451734 | Onuma et al. | Sep 2016 | B2 |
9451883 | Gallant et al. | Sep 2016 | B2 |
9451886 | Teixeira | Sep 2016 | B2 |
9451899 | Ritchey et al. | Sep 2016 | B2 |
9452287 | Rosenbluth et al. | Sep 2016 | B2 |
9453215 | Deisseroth et al. | Sep 2016 | B2 |
9454646 | Siefert | Sep 2016 | B2 |
9458208 | Deisseroth et al. | Oct 2016 | B2 |
9459597 | Kahn et al. | Oct 2016 | B2 |
9460400 | De Bruin et al. | Oct 2016 | B2 |
9462733 | Hokari | Oct 2016 | B2 |
9462956 | Pandia et al. | Oct 2016 | B2 |
9462975 | Sackner et al. | Oct 2016 | B2 |
9462977 | Horseman | Oct 2016 | B2 |
9463327 | Lempka et al. | Oct 2016 | B2 |
9468541 | Contreras-Vidal et al. | Oct 2016 | B2 |
9468761 | Frei et al. | Oct 2016 | B2 |
9470728 | George et al. | Oct 2016 | B2 |
9471978 | Chen et al. | Oct 2016 | B2 |
9472000 | Dempsey et al. | Oct 2016 | B2 |
9474481 | Dagum | Oct 2016 | B2 |
9474852 | Lozano et al. | Oct 2016 | B2 |
9474903 | Chen et al. | Oct 2016 | B2 |
9475502 | Fung et al. | Oct 2016 | B2 |
RE46189 | Prichep et al. | Nov 2016 | E |
RE46209 | Gong et al. | Nov 2016 | E |
9480402 | Leuthardt et al. | Nov 2016 | B2 |
9480425 | Culver et al. | Nov 2016 | B2 |
9480812 | Thompson | Nov 2016 | B1 |
9480841 | Hershey et al. | Nov 2016 | B2 |
9480845 | Harris et al. | Nov 2016 | B2 |
9480854 | Von Ohlsen et al. | Nov 2016 | B2 |
9483117 | Karkkainen et al. | Nov 2016 | B2 |
9483613 | Fueyo et al. | Nov 2016 | B2 |
9486168 | Bonmassar et al. | Nov 2016 | B2 |
9486381 | Juto et al. | Nov 2016 | B2 |
9486389 | Tass | Nov 2016 | B2 |
9486618 | Wingeier et al. | Nov 2016 | B2 |
9486632 | Saab | Nov 2016 | B2 |
9489854 | Haruta et al. | Nov 2016 | B2 |
9492084 | Behar et al. | Nov 2016 | B2 |
9492114 | Reiman | Nov 2016 | B2 |
9492120 | Horseman | Nov 2016 | B2 |
9492313 | Nofzinger | Nov 2016 | B2 |
9492656 | Chow et al. | Nov 2016 | B2 |
9492678 | Chow | Nov 2016 | B2 |
9495684 | Jung et al. | Nov 2016 | B2 |
9497017 | Kim et al. | Nov 2016 | B1 |
9498134 | Trobaugh et al. | Nov 2016 | B1 |
9498628 | Kaemmerer et al. | Nov 2016 | B2 |
9498634 | De Ridder | Nov 2016 | B2 |
9500722 | Takahashi | Nov 2016 | B2 |
9501829 | Carlton et al. | Nov 2016 | B2 |
9504390 | Osorio | Nov 2016 | B2 |
9504410 | Gal | Nov 2016 | B2 |
9504420 | Davis et al. | Nov 2016 | B2 |
9504788 | Hyde et al. | Nov 2016 | B2 |
9505402 | Fung et al. | Nov 2016 | B2 |
9505817 | Deisseroth et al. | Nov 2016 | B2 |
9510790 | Kang et al. | Dec 2016 | B2 |
9513398 | Wilson et al. | Dec 2016 | B2 |
9517020 | Shacham-Diamand et al. | Dec 2016 | B2 |
9517031 | Jung | Dec 2016 | B2 |
9517222 | Goodenowe | Dec 2016 | B2 |
9519981 | Sudarsky et al. | Dec 2016 | B2 |
9521958 | Nagasaka et al. | Dec 2016 | B2 |
9522085 | Kilgard et al. | Dec 2016 | B2 |
9522278 | Heldman et al. | Dec 2016 | B1 |
9522282 | Chow et al. | Dec 2016 | B2 |
9522288 | Deisseroth et al. | Dec 2016 | B2 |
9526419 | Derchak et al. | Dec 2016 | B2 |
9526902 | Blum et al. | Dec 2016 | B2 |
9526906 | Mashiach | Dec 2016 | B2 |
9526913 | Vo-Dinh et al. | Dec 2016 | B2 |
9526914 | Vo-Dinh et al. | Dec 2016 | B2 |
9533113 | Lain et al. | Jan 2017 | B2 |
9533144 | Bahmer | Jan 2017 | B2 |
9533147 | Osorio | Jan 2017 | B2 |
9533148 | Carcieri | Jan 2017 | B2 |
9533150 | Nudo et al. | Jan 2017 | B2 |
9533151 | Craig | Jan 2017 | B2 |
9534044 | El-Agnaf | Jan 2017 | B2 |
9538635 | Beran | Jan 2017 | B1 |
9538948 | Dagum | Jan 2017 | B2 |
9538951 | Osorio | Jan 2017 | B2 |
9539118 | Leuthardt et al. | Jan 2017 | B2 |
9541383 | Abovitz et al. | Jan 2017 | B2 |
9545221 | Adhikari et al. | Jan 2017 | B2 |
9545222 | Derchak et al. | Jan 2017 | B2 |
9545225 | Cavuoto et al. | Jan 2017 | B2 |
9545226 | Osorio | Jan 2017 | B2 |
9545285 | Ghaffari et al. | Jan 2017 | B2 |
9545510 | Kokones et al. | Jan 2017 | B2 |
9545515 | Wolpaw et al. | Jan 2017 | B2 |
9549691 | Tran | Jan 2017 | B2 |
9550064 | Mashiach | Jan 2017 | B2 |
9556149 | Krishnan et al. | Jan 2017 | B2 |
9556487 | Umansky et al. | Jan 2017 | B2 |
9557439 | Wilson et al. | Jan 2017 | B2 |
9558558 | Stehle et al. | Jan 2017 | B2 |
9560458 | Lunner et al. | Jan 2017 | B2 |
9560967 | Hyde et al. | Feb 2017 | B2 |
9560984 | Pradeep et al. | Feb 2017 | B2 |
9560986 | Varcoe | Feb 2017 | B2 |
9561380 | Carcieri et al. | Feb 2017 | B2 |
9562988 | Wilson et al. | Feb 2017 | B2 |
9563273 | Mann | Feb 2017 | B2 |
9563740 | Abdelghani et al. | Feb 2017 | B2 |
9563950 | Raj | Feb 2017 | B2 |
9566426 | Simon et al. | Feb 2017 | B2 |
9567327 | Xiong et al. | Feb 2017 | B2 |
9568564 | Ma et al. | Feb 2017 | B2 |
9568635 | Suhami | Feb 2017 | B2 |
9572996 | Tass et al. | Feb 2017 | B2 |
9577992 | Zizi et al. | Feb 2017 | B2 |
9578425 | Hakansson | Feb 2017 | B2 |
9579035 | Sarkela | Feb 2017 | B2 |
9579048 | Rayner et al. | Feb 2017 | B2 |
9579247 | Juto et al. | Feb 2017 | B2 |
9579457 | Osorio | Feb 2017 | B2 |
9579506 | Osorio | Feb 2017 | B2 |
9582072 | Connor | Feb 2017 | B2 |
9582152 | Gulaka et al. | Feb 2017 | B2 |
9582925 | Durand et al. | Feb 2017 | B2 |
9584928 | Laudanski et al. | Feb 2017 | B2 |
9585581 | Mullins et al. | Mar 2017 | B1 |
9585723 | Taylor | Mar 2017 | B2 |
9586047 | Osorio et al. | Mar 2017 | B2 |
9586053 | Moffitt et al. | Mar 2017 | B2 |
9588203 | Zhu et al. | Mar 2017 | B2 |
9588490 | Tsang | Mar 2017 | B2 |
9590986 | Zizi et al. | Mar 2017 | B2 |
9592003 | Osorio et al. | Mar 2017 | B2 |
9592004 | DiLorenzo et al. | Mar 2017 | B2 |
9592384 | Tass | Mar 2017 | B2 |
9592387 | Skelton et al. | Mar 2017 | B2 |
9592389 | Moffitt | Mar 2017 | B2 |
9592409 | Yoo et al. | Mar 2017 | B2 |
9596224 | Woods et al. | Mar 2017 | B2 |
9597493 | Wingeier et al. | Mar 2017 | B2 |
9597494 | Wingeier et al. | Mar 2017 | B2 |
9597501 | Danilov et al. | Mar 2017 | B1 |
9597504 | Danilov et al. | Mar 2017 | B1 |
9600138 | Thomas et al. | Mar 2017 | B2 |
9600778 | Sapiro et al. | Mar 2017 | B2 |
9604056 | Starr et al. | Mar 2017 | B2 |
9604067 | Kothandaraman et al. | Mar 2017 | B2 |
9604073 | Deisseroth et al. | Mar 2017 | B2 |
9607023 | Swamy | Mar 2017 | B1 |
9607377 | Lovberg et al. | Mar 2017 | B2 |
9609453 | Jabri | Mar 2017 | B2 |
9610442 | Yoo et al. | Apr 2017 | B2 |
9610456 | Linke et al. | Apr 2017 | B2 |
9610459 | Burnett et al. | Apr 2017 | B2 |
9612295 | Toda et al. | Apr 2017 | B2 |
9613184 | Giftakis et al. | Apr 2017 | B2 |
9613186 | Fonte | Apr 2017 | B2 |
9615746 | Horseman | Apr 2017 | B2 |
9615749 | Clifton et al. | Apr 2017 | B2 |
9615789 | Deisseroth et al. | Apr 2017 | B2 |
9616166 | Kalafut et al. | Apr 2017 | B2 |
9616227 | Lindenthaler et al. | Apr 2017 | B2 |
9618591 | Radparvar et al. | Apr 2017 | B1 |
9622660 | Le et al. | Apr 2017 | B2 |
9622672 | Yoshida et al. | Apr 2017 | B2 |
9622675 | Leyde et al. | Apr 2017 | B2 |
9622676 | Masmanidis et al. | Apr 2017 | B2 |
9622700 | Sahasrabudhe et al. | Apr 2017 | B2 |
9622702 | Badower et al. | Apr 2017 | B2 |
9622703 | Badower et al. | Apr 2017 | B2 |
9623240 | Simon et al. | Apr 2017 | B2 |
9623241 | Wagner et al. | Apr 2017 | B2 |
9626756 | Dean et al. | Apr 2017 | B2 |
9629548 | Sachanandani et al. | Apr 2017 | B2 |
9629568 | Hagedorn et al. | Apr 2017 | B2 |
9629976 | Acton | Apr 2017 | B1 |
9630004 | Rajguru et al. | Apr 2017 | B2 |
9630008 | McLaughlin et al. | Apr 2017 | B2 |
9630011 | Lipani | Apr 2017 | B2 |
9630029 | Wurster et al. | Apr 2017 | B2 |
9636019 | Hendler et al. | May 2017 | B2 |
9636185 | Quaid et al. | May 2017 | B2 |
9640167 | DeFranks et al. | May 2017 | B2 |
9641665 | Lee et al. | May 2017 | B2 |
9642552 | Hua | May 2017 | B2 |
9642553 | Hokari | May 2017 | B2 |
9642554 | Simola et al. | May 2017 | B2 |
9642699 | Wortz et al. | May 2017 | B2 |
9643015 | Moffitt et al. | May 2017 | B2 |
9643017 | Carcieri et al. | May 2017 | B2 |
9643019 | Higgins et al. | May 2017 | B2 |
9646248 | Benvenuto et al. | May 2017 | B1 |
9649030 | Gross et al. | May 2017 | B2 |
9649036 | Teixeira | May 2017 | B2 |
9649439 | John | May 2017 | B2 |
9649493 | Mashiach | May 2017 | B2 |
9649494 | Gerber et al. | May 2017 | B2 |
9649501 | Best | May 2017 | B2 |
9651368 | Abovitz et al. | May 2017 | B2 |
9651706 | Mandviwala et al. | May 2017 | B2 |
9652626 | Son et al. | May 2017 | B2 |
9652871 | Han et al. | May 2017 | B2 |
9655573 | Majewski et al. | May 2017 | B2 |
9655669 | Palti et al. | May 2017 | B2 |
9656069 | Danilov et al. | May 2017 | B1 |
9656075 | Osorio | May 2017 | B2 |
9656078 | Danilov et al. | May 2017 | B1 |
9656096 | Pilla | May 2017 | B2 |
9659186 | Pinsky et al. | May 2017 | B2 |
9659229 | Clifton et al. | May 2017 | B2 |
9662049 | Scarantino et al. | May 2017 | B2 |
9662069 | De Graff et al. | May 2017 | B2 |
9662083 | Sakaue | May 2017 | B2 |
9662490 | Tracey et al. | May 2017 | B2 |
9662492 | Tucker et al. | May 2017 | B1 |
9662502 | Giuffrida et al. | May 2017 | B2 |
9664856 | Nagasaka | May 2017 | B2 |
9665824 | Chang et al. | May 2017 | B2 |
9665987 | Fateh | May 2017 | B2 |
9668694 | Badower | Jun 2017 | B2 |
9669185 | Nofzinger | Jun 2017 | B2 |
9669239 | Carpentier | Jun 2017 | B2 |
9672302 | Dean et al. | Jun 2017 | B2 |
9672617 | Dean et al. | Jun 2017 | B2 |
9674621 | Bahmer | Jun 2017 | B2 |
9675254 | Semenov | Jun 2017 | B2 |
9675255 | Semenov | Jun 2017 | B2 |
9675292 | Fadem | Jun 2017 | B2 |
9675794 | Miller | Jun 2017 | B2 |
9675809 | Chow | Jun 2017 | B2 |
9681814 | Galloway et al. | Jun 2017 | B2 |
9681820 | Wagner | Jun 2017 | B2 |
9682232 | Shore et al. | Jun 2017 | B2 |
9682241 | Hyde et al. | Jun 2017 | B2 |
9684051 | Nieminen et al. | Jun 2017 | B2 |
9684335 | Kim et al. | Jun 2017 | B2 |
9685600 | Washington, II et al. | Jun 2017 | B2 |
9687187 | Dagum | Jun 2017 | B2 |
9687562 | Satchi-Fainaro et al. | Jun 2017 | B2 |
9693684 | Lopez et al. | Jul 2017 | B2 |
9693724 | Dagum | Jul 2017 | B2 |
9693725 | Soza | Jul 2017 | B2 |
9693734 | Horseman | Jul 2017 | B2 |
9694155 | Panova et al. | Jul 2017 | B2 |
9694178 | Ruffini et al. | Jul 2017 | B2 |
9694197 | Segal | Jul 2017 | B2 |
9697330 | Taylor | Jul 2017 | B2 |
9697336 | Hyde et al. | Jul 2017 | B2 |
9700256 | Osorio et al. | Jul 2017 | B2 |
9700716 | Faltys et al. | Jul 2017 | B2 |
9700723 | Sabesan | Jul 2017 | B2 |
9704205 | Akutagawa et al. | Jul 2017 | B2 |
9706910 | Blaha et al. | Jul 2017 | B1 |
9706925 | Taylor | Jul 2017 | B2 |
9706957 | Wu et al. | Jul 2017 | B2 |
9706963 | Gupta et al. | Jul 2017 | B2 |
9707372 | Smith | Jul 2017 | B2 |
9707390 | Ahmed | Jul 2017 | B2 |
9707391 | Ahmed | Jul 2017 | B2 |
9707396 | Su et al. | Jul 2017 | B2 |
9710788 | Horseman | Jul 2017 | B2 |
9712736 | Kearns et al. | Jul 2017 | B2 |
9713428 | Chon et al. | Jul 2017 | B2 |
9713433 | Gadot et al. | Jul 2017 | B2 |
9713444 | Severson | Jul 2017 | B2 |
9713712 | Wingeier et al. | Jul 2017 | B2 |
9715032 | Song et al. | Jul 2017 | B2 |
9717461 | Yu et al. | Aug 2017 | B2 |
9717904 | Simon et al. | Aug 2017 | B2 |
9717920 | Heldman et al. | Aug 2017 | B1 |
9724517 | Giftakis et al. | Aug 2017 | B2 |
9729252 | Tyler et al. | Aug 2017 | B2 |
9732039 | Xiong et al. | Aug 2017 | B2 |
9734589 | Yu et al. | Aug 2017 | B2 |
9734601 | Bresler et al. | Aug 2017 | B2 |
9734632 | Thomas et al. | Aug 2017 | B2 |
9737230 | Sarma et al. | Aug 2017 | B2 |
9740710 | Han et al. | Aug 2017 | B2 |
9740946 | Varkuti et al. | Aug 2017 | B2 |
9741114 | Varkuti | Aug 2017 | B2 |
9743197 | Petersen et al. | Aug 2017 | B2 |
9743835 | Taylor | Aug 2017 | B2 |
9744358 | Hehrmann et al. | Aug 2017 | B2 |
9763592 | Le et al. | Sep 2017 | B2 |
9991026 | Kanagawa | Jun 2018 | B2 |
20010003799 | Boveja | Jun 2001 | A1 |
20010009975 | Tsukada et al. | Jul 2001 | A1 |
20010014818 | Kennedy | Aug 2001 | A1 |
20010020127 | Oshio et al. | Sep 2001 | A1 |
20010021800 | Balkin et al. | Sep 2001 | A1 |
20010029391 | Gluckman et al. | Oct 2001 | A1 |
20010049480 | John et al. | Dec 2001 | A1 |
20010051774 | Littrup et al. | Dec 2001 | A1 |
20010051787 | Haller et al. | Dec 2001 | A1 |
20020000808 | Nichols | Jan 2002 | A1 |
20020005784 | Balkin et al. | Jan 2002 | A1 |
20020006875 | Mcfetridge | Jan 2002 | A1 |
20020013612 | Whitehurst | Jan 2002 | A1 |
20020013613 | Haller et al. | Jan 2002 | A1 |
20020016552 | Granger et al. | Feb 2002 | A1 |
20020017905 | Conti | Feb 2002 | A1 |
20020017994 | Balkin et al. | Feb 2002 | A1 |
20020024450 | Townsend et al. | Feb 2002 | A1 |
20020032375 | Bauch et al. | Mar 2002 | A1 |
20020033454 | Cheng et al. | Mar 2002 | A1 |
20020035317 | Cheng et al. | Mar 2002 | A1 |
20020035338 | Dear et al. | Mar 2002 | A1 |
20020037095 | Cheng | Mar 2002 | A1 |
20020042563 | Becerra et al. | Apr 2002 | A1 |
20020052539 | Haller et al. | May 2002 | A1 |
20020055675 | Llinas et al. | May 2002 | A1 |
20020058867 | Breiter et al. | May 2002 | A1 |
20020059159 | Cook | May 2002 | A1 |
20020072776 | Osorio et al. | Jun 2002 | A1 |
20020072782 | Osorio et al. | Jun 2002 | A1 |
20020077536 | Diab et al. | Jun 2002 | A1 |
20020082513 | Ennen et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020085174 | Bolger et al. | Jul 2002 | A1 |
20020087201 | Firlik et al. | Jul 2002 | A1 |
20020091319 | Moehring et al. | Jul 2002 | A1 |
20020091335 | John et al. | Jul 2002 | A1 |
20020091419 | Firlik et al. | Jul 2002 | A1 |
20020095099 | Quyen et al. | Jul 2002 | A1 |
20020097332 | Martin et al. | Jul 2002 | A1 |
20020099273 | Bocionek et al. | Jul 2002 | A1 |
20020099295 | Gil et al. | Jul 2002 | A1 |
20020099306 | Shaw et al. | Jul 2002 | A1 |
20020099412 | Fischell et al. | Jul 2002 | A1 |
20020099417 | Naritoku et al. | Jul 2002 | A1 |
20020099418 | Naritoku et al. | Jul 2002 | A1 |
20020103428 | deCharms | Aug 2002 | A1 |
20020103429 | deCharms | Aug 2002 | A1 |
20020103512 | Echauz et al. | Aug 2002 | A1 |
20020107454 | Collura et al. | Aug 2002 | A1 |
20020112732 | Blazey et al. | Aug 2002 | A1 |
20020117176 | Mantzaridis et al. | Aug 2002 | A1 |
20020128540 | Kim et al. | Sep 2002 | A1 |
20020128544 | Diab et al. | Sep 2002 | A1 |
20020128638 | Chauvet et al. | Sep 2002 | A1 |
20020138013 | Guerrero et al. | Sep 2002 | A1 |
20020151771 | Braun et al. | Oct 2002 | A1 |
20020151939 | Rezai | Oct 2002 | A1 |
20020158631 | Kandori et al. | Oct 2002 | A1 |
20020173714 | Tsukada et al. | Nov 2002 | A1 |
20020177882 | DiLorenzo | Nov 2002 | A1 |
20020182574 | Freer | Dec 2002 | A1 |
20020183607 | Bauch et al. | Dec 2002 | A1 |
20020183644 | Levendowski et al. | Dec 2002 | A1 |
20020188330 | Gielen et al. | Dec 2002 | A1 |
20020193670 | Garfield et al. | Dec 2002 | A1 |
20030001098 | Stoddart et al. | Jan 2003 | A1 |
20030004429 | Price | Jan 2003 | A1 |
20030009078 | Fedorovskaya et al. | Jan 2003 | A1 |
20030009096 | Lahteenmaki | Jan 2003 | A1 |
20030013981 | Gevins et al. | Jan 2003 | A1 |
20030018277 | He | Jan 2003 | A1 |
20030018278 | Jordan | Jan 2003 | A1 |
20030023183 | Williams | Jan 2003 | A1 |
20030023282 | Barrett et al. | Jan 2003 | A1 |
20030028081 | Blazey et al. | Feb 2003 | A1 |
20030028121 | Blazey et al. | Feb 2003 | A1 |
20030028348 | Wenzel et al. | Feb 2003 | A1 |
20030031357 | Wenzel et al. | Feb 2003 | A1 |
20030032870 | Farwell | Feb 2003 | A1 |
20030032888 | Dewan | Feb 2003 | A1 |
20030032889 | Wells | Feb 2003 | A1 |
20030035301 | Gardiner et al. | Feb 2003 | A1 |
20030036689 | Diab et al. | Feb 2003 | A1 |
20030040660 | Jackowski et al. | Feb 2003 | A1 |
20030045914 | Cohen et al. | Mar 2003 | A1 |
20030046018 | Kohlmorgen et al. | Mar 2003 | A1 |
20030055355 | Viertio-Oja | Mar 2003 | A1 |
20030068605 | Kullok et al. | Apr 2003 | A1 |
20030070685 | Patton et al. | Apr 2003 | A1 |
20030074032 | Gliner | Apr 2003 | A1 |
20030081818 | Fujimaki | May 2003 | A1 |
20030083596 | Kramer et al. | May 2003 | A1 |
20030083716 | Nicolelis et al. | May 2003 | A1 |
20030088274 | Gliner et al. | May 2003 | A1 |
20030093004 | Sosa et al. | May 2003 | A1 |
20030093005 | Tucker | May 2003 | A1 |
20030093129 | Nicolelis et al. | May 2003 | A1 |
20030097159 | Schiff et al. | May 2003 | A1 |
20030097161 | Firlik et al. | May 2003 | A1 |
20030100844 | Miller et al. | May 2003 | A1 |
20030105408 | Gotman et al. | Jun 2003 | A1 |
20030114886 | Gluckman et al. | Jun 2003 | A1 |
20030120140 | Bango | Jun 2003 | A1 |
20030120172 | Foust et al. | Jun 2003 | A1 |
20030125786 | Gliner et al. | Jul 2003 | A1 |
20030128801 | Eisenberg et al. | Jul 2003 | A1 |
20030130706 | Sheffield et al. | Jul 2003 | A1 |
20030130709 | D. C. et al. | Jul 2003 | A1 |
20030135128 | Suffin et al. | Jul 2003 | A1 |
20030139681 | Melker et al. | Jul 2003 | A1 |
20030144601 | Prichep | Jul 2003 | A1 |
20030149351 | Nowinski et al. | Aug 2003 | A1 |
20030149678 | Cook | Aug 2003 | A1 |
20030153818 | Bocionek et al. | Aug 2003 | A1 |
20030158466 | Lynn et al. | Aug 2003 | A1 |
20030158495 | Hogan | Aug 2003 | A1 |
20030158496 | Keirsbilck et al. | Aug 2003 | A1 |
20030158497 | Graham et al. | Aug 2003 | A1 |
20030158587 | Esteller et al. | Aug 2003 | A1 |
20030160622 | Duensing et al. | Aug 2003 | A1 |
20030163027 | Balkin et al. | Aug 2003 | A1 |
20030163028 | Balkin et al. | Aug 2003 | A1 |
20030167019 | Viertio-Oja et al. | Sep 2003 | A1 |
20030171658 | Keirsbilck et al. | Sep 2003 | A1 |
20030171685 | Lesser et al. | Sep 2003 | A1 |
20030171689 | Millan et al. | Sep 2003 | A1 |
20030176804 | Melker | Sep 2003 | A1 |
20030181791 | Thomas et al. | Sep 2003 | A1 |
20030181821 | Greenwald et al. | Sep 2003 | A1 |
20030181954 | Rezai | Sep 2003 | A1 |
20030181955 | Gielen et al. | Sep 2003 | A1 |
20030185408 | Causevic et al. | Oct 2003 | A1 |
20030187359 | Njemanze | Oct 2003 | A1 |
20030195429 | Wilson | Oct 2003 | A1 |
20030195574 | Osorio et al. | Oct 2003 | A1 |
20030199749 | Lowery, Jr. et al. | Oct 2003 | A1 |
20030204135 | Bystritsky | Oct 2003 | A1 |
20030216654 | Xu et al. | Nov 2003 | A1 |
20030225335 | Njemanze | Dec 2003 | A1 |
20030225340 | Collura | Dec 2003 | A1 |
20030229291 | Collura | Dec 2003 | A1 |
20030233039 | Shao et al. | Dec 2003 | A1 |
20030233250 | Joffe et al. | Dec 2003 | A1 |
20030234781 | Laidlaw et al. | Dec 2003 | A1 |
20030236458 | Hochman | Dec 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040002635 | Hargrove et al. | Jan 2004 | A1 |
20040006265 | Alhussiny | Jan 2004 | A1 |
20040006376 | Falci | Jan 2004 | A1 |
20040010203 | Bibian et al. | Jan 2004 | A1 |
20040015204 | Whitehurst et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040019257 | Meadows | Jan 2004 | A1 |
20040019370 | Gliner et al. | Jan 2004 | A1 |
20040024287 | Patton et al. | Feb 2004 | A1 |
20040030585 | Sariel | Feb 2004 | A1 |
20040034299 | Kandori et al. | Feb 2004 | A1 |
20040039268 | Barbour et al. | Feb 2004 | A1 |
20040049124 | Kullok et al. | Mar 2004 | A1 |
20040049484 | Kamba | Mar 2004 | A1 |
20040059203 | Guerrero et al. | Mar 2004 | A1 |
20040059241 | Suffin | Mar 2004 | A1 |
20040064020 | Diab et al. | Apr 2004 | A1 |
20040064066 | John et al. | Apr 2004 | A1 |
20040068164 | Diab et al. | Apr 2004 | A1 |
20040068172 | Nowinski et al. | Apr 2004 | A1 |
20040068199 | Echauz et al. | Apr 2004 | A1 |
20040072133 | Kullok et al. | Apr 2004 | A1 |
20040073098 | Geva et al. | Apr 2004 | A1 |
20040073129 | Caldwell et al. | Apr 2004 | A1 |
20040073273 | Gluckman et al. | Apr 2004 | A1 |
20040077960 | Tanaka et al. | Apr 2004 | A1 |
20040077967 | Jordan | Apr 2004 | A1 |
20040078056 | Zangen et al. | Apr 2004 | A1 |
20040079372 | John et al. | Apr 2004 | A1 |
20040082862 | Chance | Apr 2004 | A1 |
20040082876 | Viertio-Oja et al. | Apr 2004 | A1 |
20040088732 | Martin et al. | May 2004 | A1 |
20040092809 | DeCharms | May 2004 | A1 |
20040096395 | Xiong et al. | May 2004 | A1 |
20040097802 | Cohen | May 2004 | A1 |
20040101146 | Laitinen et al. | May 2004 | A1 |
20040116784 | Gavish | Jun 2004 | A1 |
20040116791 | Miyauchi | Jun 2004 | A1 |
20040116798 | Cancro et al. | Jun 2004 | A1 |
20040116825 | Sturzebecher | Jun 2004 | A1 |
20040117098 | Ryu et al. | Jun 2004 | A1 |
20040122787 | Avinash et al. | Jun 2004 | A1 |
20040122790 | Walker et al. | Jun 2004 | A1 |
20040127803 | Berkes et al. | Jul 2004 | A1 |
20040131998 | Marom et al. | Jul 2004 | A1 |
20040133118 | Llinas | Jul 2004 | A1 |
20040133119 | Osorio et al. | Jul 2004 | A1 |
20040133120 | Frei et al. | Jul 2004 | A1 |
20040133248 | Frei et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040138516 | Osorio et al. | Jul 2004 | A1 |
20040138517 | Osorio et al. | Jul 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
20040138536 | Frei et al. | Jul 2004 | A1 |
20040138580 | Frei et al. | Jul 2004 | A1 |
20040138581 | Frei et al. | Jul 2004 | A1 |
20040138647 | Osorio et al. | Jul 2004 | A1 |
20040138711 | Osorio et al. | Jul 2004 | A1 |
20040138721 | Osorio et al. | Jul 2004 | A1 |
20040140811 | Conti | Jul 2004 | A1 |
20040143170 | DuRousseau | Jul 2004 | A1 |
20040144925 | Stoddart et al. | Jul 2004 | A1 |
20040145370 | Conti | Jul 2004 | A1 |
20040151368 | Cruickshank et al. | Aug 2004 | A1 |
20040152958 | Frei et al. | Aug 2004 | A1 |
20040152995 | Cox et al. | Aug 2004 | A1 |
20040153129 | Pless et al. | Aug 2004 | A1 |
20040158119 | Osorio et al. | Aug 2004 | A1 |
20040158298 | Gliner et al. | Aug 2004 | A1 |
20040158300 | Gardiner | Aug 2004 | A1 |
20040166536 | Kerkman et al. | Aug 2004 | A1 |
20040167418 | Nguyen et al. | Aug 2004 | A1 |
20040172089 | Whitehurst et al. | Sep 2004 | A1 |
20040172091 | Rezai | Sep 2004 | A1 |
20040172094 | Cohen et al. | Sep 2004 | A1 |
20040181162 | Wilson | Sep 2004 | A1 |
20040184024 | Katura et al. | Sep 2004 | A1 |
20040186542 | Van Venrooij et al. | Sep 2004 | A1 |
20040193037 | Tsukada et al. | Sep 2004 | A1 |
20040193068 | Burton et al. | Sep 2004 | A1 |
20040193220 | Whitehurst et al. | Sep 2004 | A1 |
20040195512 | Crosetto | Oct 2004 | A1 |
20040199482 | Wilson | Oct 2004 | A1 |
20040204636 | Diab et al. | Oct 2004 | A1 |
20040204637 | Diab et al. | Oct 2004 | A1 |
20040204656 | Tolvanen-Laakso et al. | Oct 2004 | A1 |
20040204659 | John et al. | Oct 2004 | A1 |
20040210127 | Kandori et al. | Oct 2004 | A1 |
20040210146 | Diab et al. | Oct 2004 | A1 |
20040210156 | Hogan | Oct 2004 | A1 |
20040215082 | Chance | Oct 2004 | A1 |
20040220494 | Sturzebecher | Nov 2004 | A1 |
20040220782 | Cook | Nov 2004 | A1 |
20040225179 | Kaplan et al. | Nov 2004 | A1 |
20040230105 | Geva et al. | Nov 2004 | A1 |
20040243017 | Causevic | Dec 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040254493 | Chervin et al. | Dec 2004 | A1 |
20040260169 | Sternnickel | Dec 2004 | A1 |
20040260356 | Kara et al. | Dec 2004 | A1 |
20040263162 | Kandori et al. | Dec 2004 | A1 |
20040267152 | Pineda | Dec 2004 | A1 |
20050004489 | Sarkela et al. | Jan 2005 | A1 |
20050007091 | Makeig et al. | Jan 2005 | A1 |
20050010091 | Woods et al. | Jan 2005 | A1 |
20050010116 | Korhonen et al. | Jan 2005 | A1 |
20050015205 | Repucci et al. | Jan 2005 | A1 |
20050018858 | John | Jan 2005 | A1 |
20050019734 | Peled | Jan 2005 | A1 |
20050020483 | Oksenberg et al. | Jan 2005 | A1 |
20050020918 | Wilk et al. | Jan 2005 | A1 |
20050021105 | Firlik et al. | Jan 2005 | A1 |
20050025704 | Keirsbilck et al. | Feb 2005 | A1 |
20050027284 | Lozano et al. | Feb 2005 | A1 |
20050032827 | Oksenberg et al. | Feb 2005 | A1 |
20050033122 | Balkin et al. | Feb 2005 | A1 |
20050033154 | deCharms | Feb 2005 | A1 |
20050033174 | Moehring et al. | Feb 2005 | A1 |
20050033379 | Lozano et al. | Feb 2005 | A1 |
20050038354 | Miller et al. | Feb 2005 | A1 |
20050043774 | Devlin et al. | Feb 2005 | A1 |
20050049651 | Whitehurst et al. | Mar 2005 | A1 |
20050059689 | Oksenberg et al. | Mar 2005 | A1 |
20050059874 | Fuchs et al. | Mar 2005 | A1 |
20050060001 | Singhal et al. | Mar 2005 | A1 |
20050060007 | Goetz | Mar 2005 | A1 |
20050060008 | Goetz | Mar 2005 | A1 |
20050060009 | Goetz | Mar 2005 | A1 |
20050060010 | Goetz | Mar 2005 | A1 |
20050065412 | Shiomi et al. | Mar 2005 | A1 |
20050065427 | Magill et al. | Mar 2005 | A1 |
20050075568 | Moehring | Apr 2005 | A1 |
20050079474 | Lowe | Apr 2005 | A1 |
20050079636 | White et al. | Apr 2005 | A1 |
20050080124 | Teegarden et al. | Apr 2005 | A1 |
20050080349 | Okada et al. | Apr 2005 | A1 |
20050080828 | Johnson | Apr 2005 | A1 |
20050085744 | Beverina et al. | Apr 2005 | A1 |
20050096311 | Suffin et al. | May 2005 | A1 |
20050096517 | Diab et al. | May 2005 | A1 |
20050106713 | Phan et al. | May 2005 | A1 |
20050107654 | Riehl | May 2005 | A1 |
20050113713 | Foust et al. | May 2005 | A1 |
20050118286 | Suffin et al. | Jun 2005 | A1 |
20050119547 | Shastri et al. | Jun 2005 | A1 |
20050119586 | Coyle et al. | Jun 2005 | A1 |
20050124848 | Holzner | Jun 2005 | A1 |
20050124851 | Patton et al. | Jun 2005 | A1 |
20050124863 | Cook | Jun 2005 | A1 |
20050131311 | Leuthardt et al. | Jun 2005 | A1 |
20050135102 | Gardiner et al. | Jun 2005 | A1 |
20050136002 | Fossheim et al. | Jun 2005 | A1 |
20050137494 | Viertio-Oja | Jun 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050144042 | Joffe et al. | Jun 2005 | A1 |
20050148828 | Lindsay | Jul 2005 | A1 |
20050148893 | Misczynski et al. | Jul 2005 | A1 |
20050148894 | Misczynski et al. | Jul 2005 | A1 |
20050148895 | Misczynski et al. | Jul 2005 | A1 |
20050149123 | Lesser et al. | Jul 2005 | A1 |
20050149157 | Hunter et al. | Jul 2005 | A1 |
20050153268 | Junkin et al. | Jul 2005 | A1 |
20050154290 | Langleben | Jul 2005 | A1 |
20050154419 | Whitehurst et al. | Jul 2005 | A1 |
20050154425 | Boveja et al. | Jul 2005 | A1 |
20050154426 | Boveja et al. | Jul 2005 | A1 |
20050156602 | Conti | Jul 2005 | A1 |
20050159670 | Sneddon | Jul 2005 | A1 |
20050159671 | Sneddon | Jul 2005 | A1 |
20050165458 | Boveja et al. | Jul 2005 | A1 |
20050167588 | Donnangelo | Aug 2005 | A1 |
20050171410 | Hjelt et al. | Aug 2005 | A1 |
20050182287 | Becker | Aug 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050182389 | LaPorte et al. | Aug 2005 | A1 |
20050182450 | Hunter et al. | Aug 2005 | A1 |
20050182453 | Whitehurst et al. | Aug 2005 | A1 |
20050182456 | Ziobro et al. | Aug 2005 | A1 |
20050182467 | Hunter et al. | Aug 2005 | A1 |
20050182468 | Hunter et al. | Aug 2005 | A1 |
20050182469 | Hunter et al. | Aug 2005 | A1 |
20050187600 | Hunter et al. | Aug 2005 | A1 |
20050192514 | Kearby et al. | Sep 2005 | A1 |
20050192644 | Boveja et al. | Sep 2005 | A1 |
20050192647 | Hunter et al. | Sep 2005 | A1 |
20050197590 | Osorio et al. | Sep 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050197678 | Boveja et al. | Sep 2005 | A1 |
20050209512 | Heruth et al. | Sep 2005 | A1 |
20050209517 | Diab et al. | Sep 2005 | A1 |
20050209654 | Boveja et al. | Sep 2005 | A1 |
20050209664 | Hunter et al. | Sep 2005 | A1 |
20050209665 | Hunter et al. | Sep 2005 | A1 |
20050209666 | Hunter et al. | Sep 2005 | A1 |
20050215889 | Patterson | Sep 2005 | A1 |
20050216070 | Boveja et al. | Sep 2005 | A1 |
20050216071 | Devlin et al. | Sep 2005 | A1 |
20050222522 | Heruth et al. | Oct 2005 | A1 |
20050222639 | Seifritz et al. | Oct 2005 | A1 |
20050228451 | Jaax et al. | Oct 2005 | A1 |
20050228785 | Wolcott et al. | Oct 2005 | A1 |
20050240087 | Keenan et al. | Oct 2005 | A1 |
20050240229 | Whitehurst et al. | Oct 2005 | A1 |
20050240253 | Tyler et al. | Oct 2005 | A1 |
20050244045 | Eriksson | Nov 2005 | A1 |
20050245796 | Woods et al. | Nov 2005 | A1 |
20050251055 | Zhirnov et al. | Nov 2005 | A1 |
20050251220 | Barrett et al. | Nov 2005 | A1 |
20050256378 | Takai et al. | Nov 2005 | A1 |
20050256385 | Diab et al. | Nov 2005 | A1 |
20050256418 | Mietus et al. | Nov 2005 | A1 |
20050267011 | Deisseroth et al. | Dec 2005 | A1 |
20050267343 | Woods et al. | Dec 2005 | A1 |
20050267344 | Woods et al. | Dec 2005 | A1 |
20050267362 | Mietus et al. | Dec 2005 | A1 |
20050267542 | David et al. | Dec 2005 | A1 |
20050273017 | Gordon | Dec 2005 | A1 |
20050277813 | Katz et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050283053 | deCharms | Dec 2005 | A1 |
20050283090 | Wells | Dec 2005 | A1 |
20060004298 | Kennedy et al. | Jan 2006 | A1 |
20060004422 | De Ridder | Jan 2006 | A1 |
20060009704 | Okada et al. | Jan 2006 | A1 |
20060009815 | Boveja et al. | Jan 2006 | A1 |
20060014753 | Shamloo et al. | Jan 2006 | A1 |
20060015034 | Martinerie et al. | Jan 2006 | A1 |
20060015153 | Gliner et al. | Jan 2006 | A1 |
20060018525 | Barbour | Jan 2006 | A1 |
20060020184 | Woods et al. | Jan 2006 | A1 |
20060036152 | Kozel | Feb 2006 | A1 |
20060036153 | Laken | Feb 2006 | A1 |
20060041201 | Behbehani et al. | Feb 2006 | A1 |
20060047187 | Goyal et al. | Mar 2006 | A1 |
20060047216 | Dorr et al. | Mar 2006 | A1 |
20060047324 | Tass | Mar 2006 | A1 |
20060047325 | Thimineur et al. | Mar 2006 | A1 |
20060051814 | Jackowski et al. | Mar 2006 | A1 |
20060052386 | Wieloch et al. | Mar 2006 | A1 |
20060052657 | Zabara | Mar 2006 | A9 |
20060052706 | Hynynen et al. | Mar 2006 | A1 |
20060058590 | Shaw et al. | Mar 2006 | A1 |
20060058683 | Chance | Mar 2006 | A1 |
20060058856 | Morrell | Mar 2006 | A1 |
20060061544 | Min et al. | Mar 2006 | A1 |
20060064138 | Velasco et al. | Mar 2006 | A1 |
20060064139 | Chung et al. | Mar 2006 | A1 |
20060064140 | Whitehurst et al. | Mar 2006 | A1 |
20060069059 | Schaller et al. | Mar 2006 | A1 |
20060069415 | Cameron et al. | Mar 2006 | A1 |
20060074290 | Chen et al. | Apr 2006 | A1 |
20060074298 | Borsook et al. | Apr 2006 | A1 |
20060074334 | Coyle | Apr 2006 | A1 |
20060074822 | Eda et al. | Apr 2006 | A1 |
20060078183 | deCharms | Apr 2006 | A1 |
20060079936 | Boveja et al. | Apr 2006 | A1 |
20060082727 | Bolger et al. | Apr 2006 | A1 |
20060084858 | Marks | Apr 2006 | A1 |
20060084877 | Ujhazy et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060089541 | Braun et al. | Apr 2006 | A1 |
20060089549 | Diab et al. | Apr 2006 | A1 |
20060094968 | Drew | May 2006 | A1 |
20060094970 | Drew | May 2006 | A1 |
20060094971 | Drew | May 2006 | A1 |
20060094972 | Drew | May 2006 | A1 |
20060095091 | Drew | May 2006 | A1 |
20060095092 | Drew | May 2006 | A1 |
20060100526 | Yamamoto et al. | May 2006 | A1 |
20060100530 | Kliot et al. | May 2006 | A1 |
20060100671 | Ridder | May 2006 | A1 |
20060102171 | Gavish | May 2006 | A1 |
20060106274 | Thomas et al. | May 2006 | A1 |
20060106326 | Krebs et al. | May 2006 | A1 |
20060106430 | Fowler et al. | May 2006 | A1 |
20060106434 | Padgitt et al. | May 2006 | A1 |
20060111644 | Guttag et al. | May 2006 | A1 |
20060116556 | Duhamel | Jun 2006 | A1 |
20060122481 | Sievenpiper et al. | Jun 2006 | A1 |
20060129022 | Venza et al. | Jun 2006 | A1 |
20060129202 | Armstrong | Jun 2006 | A1 |
20060129277 | Wu et al. | Jun 2006 | A1 |
20060129324 | Rabinoff et al. | Jun 2006 | A1 |
20060135879 | Liley | Jun 2006 | A1 |
20060135880 | Sarkela | Jun 2006 | A1 |
20060136135 | Little et al. | Jun 2006 | A1 |
20060142802 | Armstrong | Jun 2006 | A1 |
20060149144 | Lynn et al. | Jul 2006 | A1 |
20060149160 | Kofol et al. | Jul 2006 | A1 |
20060149337 | John | Jul 2006 | A1 |
20060152227 | Hammer | Jul 2006 | A1 |
20060153396 | John | Jul 2006 | A1 |
20060155206 | Lynn | Jul 2006 | A1 |
20060155207 | Lynn et al. | Jul 2006 | A1 |
20060155348 | deCharms | Jul 2006 | A1 |
20060155495 | Osorio et al. | Jul 2006 | A1 |
20060161071 | Lynn et al. | Jul 2006 | A1 |
20060161075 | Kurtz | Jul 2006 | A1 |
20060161217 | Jaax et al. | Jul 2006 | A1 |
20060161218 | Danilov | Jul 2006 | A1 |
20060161384 | Osorio et al. | Jul 2006 | A1 |
20060167370 | Greenwald et al. | Jul 2006 | A1 |
20060167497 | Armstrong et al. | Jul 2006 | A1 |
20060167564 | Flaherty et al. | Jul 2006 | A1 |
20060167722 | MRF Struys et al. | Jul 2006 | A1 |
20060170424 | Kasevich | Aug 2006 | A1 |
20060173259 | Flaherty et al. | Aug 2006 | A1 |
20060173364 | Clancy et al. | Aug 2006 | A1 |
20060173493 | Armstrong et al. | Aug 2006 | A1 |
20060173494 | Armstrong et al. | Aug 2006 | A1 |
20060173495 | Armstrong et al. | Aug 2006 | A1 |
20060173510 | Besio et al. | Aug 2006 | A1 |
20060176062 | Yang et al. | Aug 2006 | A1 |
20060178709 | Foster et al. | Aug 2006 | A1 |
20060184058 | Silberstein | Aug 2006 | A1 |
20060184059 | Jadidi | Aug 2006 | A1 |
20060188134 | Quist | Aug 2006 | A1 |
20060189866 | Thomas et al. | Aug 2006 | A1 |
20060189880 | Lynn et al. | Aug 2006 | A1 |
20060189882 | Thomas | Aug 2006 | A1 |
20060189899 | Flaherty et al. | Aug 2006 | A1 |
20060191543 | Becker et al. | Aug 2006 | A1 |
20060195039 | Drew et al. | Aug 2006 | A1 |
20060195154 | Jaax et al. | Aug 2006 | A1 |
20060195155 | Firlik et al. | Aug 2006 | A1 |
20060200013 | Smith et al. | Sep 2006 | A1 |
20060200016 | Diab et al. | Sep 2006 | A1 |
20060200034 | Ricci et al. | Sep 2006 | A1 |
20060200035 | Ricci et al. | Sep 2006 | A1 |
20060200206 | Firlik et al. | Sep 2006 | A1 |
20060204532 | John | Sep 2006 | A1 |
20060206033 | Guerrero et al. | Sep 2006 | A1 |
20060206108 | Hempel | Sep 2006 | A1 |
20060206155 | Ben-David et al. | Sep 2006 | A1 |
20060206165 | Jaax et al. | Sep 2006 | A1 |
20060206174 | Honeycutt et al. | Sep 2006 | A1 |
20060212090 | Lozano et al. | Sep 2006 | A1 |
20060212091 | Lozano et al. | Sep 2006 | A1 |
20060217609 | Diab et al. | Sep 2006 | A1 |
20060217781 | John | Sep 2006 | A1 |
20060217816 | Pesaran et al. | Sep 2006 | A1 |
20060224216 | Pless et al. | Oct 2006 | A1 |
20060224421 | St. Ores et al. | Oct 2006 | A1 |
20060225437 | Kazami | Oct 2006 | A1 |
20060229164 | Einav | Oct 2006 | A1 |
20060233390 | Causevic et al. | Oct 2006 | A1 |
20060235315 | Akselrod et al. | Oct 2006 | A1 |
20060235324 | Lynn | Oct 2006 | A1 |
20060235484 | Jaax et al. | Oct 2006 | A1 |
20060235489 | Drew et al. | Oct 2006 | A1 |
20060239482 | Hatoum | Oct 2006 | A1 |
20060241373 | Strychacz et al. | Oct 2006 | A1 |
20060241382 | Li et al. | Oct 2006 | A1 |
20060241562 | John et al. | Oct 2006 | A1 |
20060241718 | Tyler et al. | Oct 2006 | A1 |
20060247728 | Foster et al. | Nov 2006 | A1 |
20060251303 | He et al. | Nov 2006 | A1 |
20060252978 | Vesely et al. | Nov 2006 | A1 |
20060252979 | Vesely et al. | Nov 2006 | A1 |
20060258896 | Haber et al. | Nov 2006 | A1 |
20060258950 | Hargrove et al. | Nov 2006 | A1 |
20060259077 | Pardo et al. | Nov 2006 | A1 |
20060265022 | John et al. | Nov 2006 | A1 |
20060276695 | Lynn et al. | Dec 2006 | A9 |
20060281543 | Sutton et al. | Dec 2006 | A1 |
20060281980 | Randlov et al. | Dec 2006 | A1 |
20060282123 | Hunter et al. | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060293578 | Rennaker | Dec 2006 | A1 |
20060293721 | Tarver et al. | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070000372 | Rezai et al. | Jan 2007 | A1 |
20070005115 | Lozano et al. | Jan 2007 | A1 |
20070005391 | Repucci et al. | Jan 2007 | A1 |
20070007454 | Stoddart et al. | Jan 2007 | A1 |
20070008172 | Hewett et al. | Jan 2007 | A1 |
20070014454 | Sawyer et al. | Jan 2007 | A1 |
20070015985 | Tolvanen-Laakso et al. | Jan 2007 | A1 |
20070016095 | Low et al. | Jan 2007 | A1 |
20070016264 | Falci | Jan 2007 | A1 |
20070019846 | Bullitt et al. | Jan 2007 | A1 |
20070021673 | Arbel et al. | Jan 2007 | A1 |
20070021675 | Childre et al. | Jan 2007 | A1 |
20070021800 | Whitehurst et al. | Jan 2007 | A1 |
20070025608 | Armstrong | Feb 2007 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070027498 | Maschino et al. | Feb 2007 | A1 |
20070027499 | Maschino et al. | Feb 2007 | A1 |
20070027500 | Maschino et al. | Feb 2007 | A1 |
20070027501 | Jensen et al. | Feb 2007 | A1 |
20070031798 | Gottfried | Feb 2007 | A1 |
20070032733 | Burton | Feb 2007 | A1 |
20070032737 | Causevic et al. | Feb 2007 | A1 |
20070032834 | Gliner et al. | Feb 2007 | A1 |
20070036355 | Terauchi et al. | Feb 2007 | A1 |
20070036402 | Cahill et al. | Feb 2007 | A1 |
20070038067 | Kandori et al. | Feb 2007 | A1 |
20070038264 | Jaax et al. | Feb 2007 | A1 |
20070038382 | Keenan | Feb 2007 | A1 |
20070043392 | Gliner et al. | Feb 2007 | A1 |
20070043401 | John | Feb 2007 | A1 |
20070049844 | Rosenfeld | Mar 2007 | A1 |
20070049988 | Carbunaru et al. | Mar 2007 | A1 |
20070050715 | Behar | Mar 2007 | A1 |
20070055145 | Zelnik et al. | Mar 2007 | A1 |
20070060830 | Le et al. | Mar 2007 | A1 |
20070060831 | Le et al. | Mar 2007 | A1 |
20070060954 | Cameron et al. | Mar 2007 | A1 |
20070060974 | Lozano | Mar 2007 | A1 |
20070060984 | Webb et al. | Mar 2007 | A1 |
20070066403 | Conkwright | Mar 2007 | A1 |
20070066914 | Le et al. | Mar 2007 | A1 |
20070066915 | Frei et al. | Mar 2007 | A1 |
20070066997 | He et al. | Mar 2007 | A1 |
20070067003 | Sanchez et al. | Mar 2007 | A1 |
20070067004 | Boveja et al. | Mar 2007 | A1 |
20070072857 | Teegarden et al. | Mar 2007 | A1 |
20070078134 | Teegarden et al. | Apr 2007 | A1 |
20070081712 | Huang et al. | Apr 2007 | A1 |
20070083128 | Cote et al. | Apr 2007 | A1 |
20070084473 | Hewett | Apr 2007 | A1 |
20070093721 | Lynn et al. | Apr 2007 | A1 |
20070093870 | Maschino | Apr 2007 | A1 |
20070100246 | Hyde | May 2007 | A1 |
20070100251 | Prichep | May 2007 | A1 |
20070100278 | Frei et al. | May 2007 | A1 |
20070100377 | Armstrong et al. | May 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070100389 | Jaax et al. | May 2007 | A1 |
20070100392 | Maschino et al. | May 2007 | A1 |
20070100398 | Sloan | May 2007 | A1 |
20070100666 | Stivoric et al. | May 2007 | A1 |
20070112404 | Mann et al. | May 2007 | A1 |
20070118197 | Loeb | May 2007 | A1 |
20070127793 | Beckett et al. | Jun 2007 | A1 |
20070129647 | Lynn | Jun 2007 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070129774 | Bourget et al. | Jun 2007 | A1 |
20070135724 | Ujhazy et al. | Jun 2007 | A1 |
20070135728 | Snyder et al. | Jun 2007 | A1 |
20070138886 | Krebs et al. | Jun 2007 | A1 |
20070142862 | Dilorenzo | Jun 2007 | A1 |
20070142873 | Esteller et al. | Jun 2007 | A1 |
20070142874 | John | Jun 2007 | A1 |
20070149860 | Lynn et al. | Jun 2007 | A1 |
20070150024 | Leyde et al. | Jun 2007 | A1 |
20070150025 | Dilorenzo et al. | Jun 2007 | A1 |
20070150026 | Bourget et al. | Jun 2007 | A1 |
20070150029 | Bourget et al. | Jun 2007 | A1 |
20070156180 | Jaax et al. | Jul 2007 | A1 |
20070156457 | Brown | Jul 2007 | A1 |
20070159185 | Yang et al. | Jul 2007 | A1 |
20070161919 | DiLorenzo | Jul 2007 | A1 |
20070162085 | DiLorenzo | Jul 2007 | A1 |
20070162086 | DiLorenzo | Jul 2007 | A1 |
20070165915 | Fuchs | Jul 2007 | A1 |
20070167694 | Causevic et al. | Jul 2007 | A1 |
20070167723 | Park et al. | Jul 2007 | A1 |
20070167853 | Melker et al. | Jul 2007 | A1 |
20070167858 | Virtanen et al. | Jul 2007 | A1 |
20070167991 | DiLorenzo | Jul 2007 | A1 |
20070173733 | Le et al. | Jul 2007 | A1 |
20070173902 | Maschino et al. | Jul 2007 | A1 |
20070179395 | Sotos et al. | Aug 2007 | A1 |
20070179396 | Le et al. | Aug 2007 | A1 |
20070179534 | Firlik et al. | Aug 2007 | A1 |
20070179558 | Gliner et al. | Aug 2007 | A1 |
20070179734 | Chmiel et al. | Aug 2007 | A1 |
20070184507 | Jackowski et al. | Aug 2007 | A1 |
20070191688 | Lynn | Aug 2007 | A1 |
20070191691 | Polanco | Aug 2007 | A1 |
20070191697 | Lynn et al. | Aug 2007 | A1 |
20070191704 | DeCharms | Aug 2007 | A1 |
20070191727 | Fadem | Aug 2007 | A1 |
20070197930 | Sarkela | Aug 2007 | A1 |
20070198063 | Hunter et al. | Aug 2007 | A1 |
20070203401 | Gordon et al. | Aug 2007 | A1 |
20070203448 | Melker et al. | Aug 2007 | A1 |
20070208212 | DiLorenzo | Sep 2007 | A1 |
20070208269 | Mumford et al. | Sep 2007 | A1 |
20070209669 | Derchak | Sep 2007 | A1 |
20070213785 | Osorio et al. | Sep 2007 | A1 |
20070213786 | Sackellares et al. | Sep 2007 | A1 |
20070225581 | Diab et al. | Sep 2007 | A1 |
20070225674 | Molnar et al. | Sep 2007 | A1 |
20070225774 | Eskandar et al. | Sep 2007 | A1 |
20070225932 | Halford | Sep 2007 | A1 |
20070233192 | Craig | Oct 2007 | A1 |
20070233193 | Craig | Oct 2007 | A1 |
20070238934 | Viswanathan | Oct 2007 | A1 |
20070239059 | McIver | Oct 2007 | A1 |
20070244387 | Rodriguez Ponce et al. | Oct 2007 | A1 |
20070244407 | Osorio | Oct 2007 | A1 |
20070249918 | Diab et al. | Oct 2007 | A1 |
20070249949 | Hadley | Oct 2007 | A1 |
20070249952 | Rubin et al. | Oct 2007 | A1 |
20070250119 | Tyler et al. | Oct 2007 | A1 |
20070250138 | Nofzinger | Oct 2007 | A1 |
20070255122 | Vol et al. | Nov 2007 | A1 |
20070255135 | Kalafut et al. | Nov 2007 | A1 |
20070255155 | Drew et al. | Nov 2007 | A1 |
20070255320 | Inman et al. | Nov 2007 | A1 |
20070255379 | Williams et al. | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070259323 | Brown et al. | Nov 2007 | A1 |
20070260151 | Clifford | Nov 2007 | A1 |
20070265508 | Sheikhzadeh-Nadjar et al. | Nov 2007 | A1 |
20070265533 | Tran | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070273611 | Torch | Nov 2007 | A1 |
20070276270 | Tran | Nov 2007 | A1 |
20070276278 | Coyle et al. | Nov 2007 | A1 |
20070276279 | Echauz et al. | Nov 2007 | A1 |
20070276441 | Goetz | Nov 2007 | A1 |
20070276609 | Greenwald | Nov 2007 | A1 |
20070280508 | Ernst et al. | Dec 2007 | A1 |
20070282228 | Einav et al. | Dec 2007 | A1 |
20070287896 | Derchak et al. | Dec 2007 | A1 |
20070291832 | Diab et al. | Dec 2007 | A1 |
20070293760 | Schaafsma | Dec 2007 | A1 |
20070299370 | Bystritsky | Dec 2007 | A1 |
20070299371 | Einav et al. | Dec 2007 | A1 |
20080001600 | deCharms | Jan 2008 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080004514 | Diab et al. | Jan 2008 | A1 |
20080004550 | Einav et al. | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009685 | Kim et al. | Jan 2008 | A1 |
20080009772 | Tyler et al. | Jan 2008 | A1 |
20080013747 | Tran | Jan 2008 | A1 |
20080015458 | Buarque de Macedo et al. | Jan 2008 | A1 |
20080015459 | Llinas | Jan 2008 | A1 |
20080021332 | Brainard | Jan 2008 | A1 |
20080021336 | Dobak | Jan 2008 | A1 |
20080021340 | Sarkela | Jan 2008 | A1 |
20080021341 | Harris et al. | Jan 2008 | A1 |
20080021342 | Echauz et al. | Jan 2008 | A1 |
20080021345 | Kern et al. | Jan 2008 | A1 |
20080027347 | Harris et al. | Jan 2008 | A1 |
20080027348 | Harris et al. | Jan 2008 | A1 |
20080027515 | Harris et al. | Jan 2008 | A1 |
20080033266 | Diab et al. | Feb 2008 | A1 |
20080033291 | Rousso et al. | Feb 2008 | A1 |
20080033297 | Sliwa | Feb 2008 | A1 |
20080033502 | Harris et al. | Feb 2008 | A1 |
20080033503 | Fowler et al. | Feb 2008 | A1 |
20080033508 | Frei et al. | Feb 2008 | A1 |
20080033513 | Man et al. | Feb 2008 | A1 |
20080036752 | Diab et al. | Feb 2008 | A1 |
20080039677 | Adams | Feb 2008 | A1 |
20080039698 | Burton | Feb 2008 | A1 |
20080039737 | Breiter et al. | Feb 2008 | A1 |
20080039904 | Bulkes et al. | Feb 2008 | A1 |
20080042067 | Rousso et al. | Feb 2008 | A1 |
20080045775 | Lozano | Feb 2008 | A1 |
20080045823 | Diab et al. | Feb 2008 | A1 |
20080045844 | Arbel et al. | Feb 2008 | A1 |
20080046012 | Covalin et al. | Feb 2008 | A1 |
20080046035 | Fowler et al. | Feb 2008 | A1 |
20080049376 | Stevenson et al. | Feb 2008 | A1 |
20080051669 | Meyer et al. | Feb 2008 | A1 |
20080051858 | Haber et al. | Feb 2008 | A1 |
20080058664 | Mirro | Mar 2008 | A1 |
20080058668 | Seyed Momen et al. | Mar 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080064934 | Frei et al. | Mar 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080069446 | Ancelin | Mar 2008 | A1 |
20080071150 | Miesel et al. | Mar 2008 | A1 |
20080071326 | Heruth et al. | Mar 2008 | A1 |
20080074307 | Boric-Lubecke et al. | Mar 2008 | A1 |
20080077010 | Cohen-Solal et al. | Mar 2008 | A1 |
20080077015 | Boric-Lubecke et al. | Mar 2008 | A1 |
20080077191 | Morrell | Mar 2008 | A1 |
20080081963 | Naghavi et al. | Apr 2008 | A1 |
20080082018 | Sackner et al. | Apr 2008 | A1 |
20080086182 | Ben-David et al. | Apr 2008 | A1 |
20080091118 | Georgopoulos | Apr 2008 | A1 |
20080091240 | Ben-David et al. | Apr 2008 | A1 |
20080097197 | Kalafut et al. | Apr 2008 | A1 |
20080097235 | Ofek et al. | Apr 2008 | A1 |
20080097553 | John | Apr 2008 | A1 |
20080097785 | Ali | Apr 2008 | A1 |
20080103547 | Okun et al. | May 2008 | A1 |
20080103548 | Fowler et al. | May 2008 | A1 |
20080109050 | John | May 2008 | A1 |
20080119716 | Boric-Lubecke et al. | May 2008 | A1 |
20080119747 | Mtetus et al. | May 2008 | A1 |
20080119763 | Wiener | May 2008 | A1 |
20080119900 | DiLorenzo | May 2008 | A1 |
20080123927 | Miga et al. | May 2008 | A1 |
20080125669 | Suffin et al. | May 2008 | A1 |
20080125829 | Velasco et al. | May 2008 | A1 |
20080125830 | Morrell | May 2008 | A1 |
20080125831 | Morrell | May 2008 | A1 |
20080128626 | Rousso et al. | Jun 2008 | A1 |
20080132383 | Einav et al. | Jun 2008 | A1 |
20080139953 | Baker et al. | Jun 2008 | A1 |
20080140141 | Ben-David et al. | Jun 2008 | A1 |
20080140149 | John et al. | Jun 2008 | A1 |
20080140403 | Hughes et al. | Jun 2008 | A1 |
20080147137 | Cohen et al. | Jun 2008 | A1 |
20080154111 | Wu et al. | Jun 2008 | A1 |
20080154126 | Culver et al. | Jun 2008 | A1 |
20080154148 | Chung et al. | Jun 2008 | A1 |
20080154331 | John et al. | Jun 2008 | A1 |
20080154332 | Rezai | Jun 2008 | A1 |
20080157980 | Sachanandani et al. | Jul 2008 | A1 |
20080161700 | Sachanandani et al. | Jul 2008 | A1 |
20080161879 | Firlik et al. | Jul 2008 | A1 |
20080161880 | Firlik et al. | Jul 2008 | A1 |
20080161881 | Firlik et al. | Jul 2008 | A1 |
20080161886 | Stevenson et al. | Jul 2008 | A1 |
20080161894 | Ben-David et al. | Jul 2008 | A1 |
20080162182 | Cazares et al. | Jul 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080167540 | Korhonen et al. | Jul 2008 | A1 |
20080167569 | Ernies et al. | Jul 2008 | A1 |
20080167571 | Gevins | Jul 2008 | A1 |
20080177195 | Armitstead | Jul 2008 | A1 |
20080177196 | Burdick et al. | Jul 2008 | A1 |
20080177197 | Lee et al. | Jul 2008 | A1 |
20080183072 | Robertson et al. | Jul 2008 | A1 |
20080183097 | Leyde et al. | Jul 2008 | A1 |
20080188765 | Stolarski et al. | Aug 2008 | A1 |
20080194981 | Sarkela et al. | Aug 2008 | A1 |
20080195166 | Sun et al. | Aug 2008 | A1 |
20080200831 | Sturzebecher | Aug 2008 | A1 |
20080208072 | Fadem et al. | Aug 2008 | A1 |
20080208073 | Causevic | Aug 2008 | A1 |
20080208280 | Lindenthaler et al. | Aug 2008 | A1 |
20080208285 | Fowler et al. | Aug 2008 | A1 |
20080214902 | Lee et al. | Sep 2008 | A1 |
20080215112 | Firlik et al. | Sep 2008 | A1 |
20080219917 | Koruga | Sep 2008 | A1 |
20080221400 | Lee et al. | Sep 2008 | A1 |
20080221401 | Derchak et al. | Sep 2008 | A1 |
20080221441 | Bjornerud et al. | Sep 2008 | A1 |
20080221472 | Lee et al. | Sep 2008 | A1 |
20080221969 | Lee et al. | Sep 2008 | A1 |
20080228077 | Wilk et al. | Sep 2008 | A1 |
20080228100 | Navakatikyan | Sep 2008 | A1 |
20080228239 | Tyler et al. | Sep 2008 | A1 |
20080229408 | Dinges et al. | Sep 2008 | A1 |
20080230702 | Rousso et al. | Sep 2008 | A1 |
20080230705 | Rousso et al. | Sep 2008 | A1 |
20080234113 | Einav | Sep 2008 | A1 |
20080234601 | Wexelman | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080241804 | Pennebaker | Oct 2008 | A1 |
20080242521 | Einav | Oct 2008 | A1 |
20080242976 | Robertson et al. | Oct 2008 | A1 |
20080243005 | Jung et al. | Oct 2008 | A1 |
20080243014 | Moussavi et al. | Oct 2008 | A1 |
20080243017 | Moussavi et al. | Oct 2008 | A1 |
20080243021 | Causevic et al. | Oct 2008 | A1 |
20080247618 | Laine et al. | Oct 2008 | A1 |
20080249430 | John et al. | Oct 2008 | A1 |
20080249589 | Cornejo Cruz et al. | Oct 2008 | A1 |
20080255469 | Shieh et al. | Oct 2008 | A1 |
20080255816 | Neville | Oct 2008 | A1 |
20080255949 | Genco et al. | Oct 2008 | A1 |
20080257349 | Hedner et al. | Oct 2008 | A1 |
20080260212 | Moskal et al. | Oct 2008 | A1 |
20080262327 | Kato | Oct 2008 | A1 |
20080262367 | Mugler et al. | Oct 2008 | A1 |
20080262371 | Causevic | Oct 2008 | A1 |
20080269542 | Zabara | Oct 2008 | A1 |
20080269812 | Gerber et al. | Oct 2008 | A1 |
20080269833 | Scott et al. | Oct 2008 | A1 |
20080269834 | Byerman et al. | Oct 2008 | A1 |
20080269840 | Scott et al. | Oct 2008 | A1 |
20080269843 | Gerber et al. | Oct 2008 | A1 |
20080275327 | Faarbaek et al. | Nov 2008 | A1 |
20080275340 | Beach et al. | Nov 2008 | A1 |
20080275526 | Lozano | Nov 2008 | A1 |
20080279436 | Razifar et al. | Nov 2008 | A1 |
20080281238 | Oohashi et al. | Nov 2008 | A1 |
20080281381 | Gerber et al. | Nov 2008 | A1 |
20080281667 | Chen et al. | Nov 2008 | A1 |
20080286453 | Koruga | Nov 2008 | A1 |
20080287774 | Katz-Brull | Nov 2008 | A1 |
20080287821 | Jung et al. | Nov 2008 | A1 |
20080288018 | Rezai et al. | Nov 2008 | A1 |
20080294019 | Tran | Nov 2008 | A1 |
20080294063 | Bibian et al. | Nov 2008 | A1 |
20080298653 | Amunts et al. | Dec 2008 | A1 |
20080298659 | Spence et al. | Dec 2008 | A1 |
20080304691 | Lai | Dec 2008 | A1 |
20080304731 | Kimura | Dec 2008 | A1 |
20080306365 | Bunce et al. | Dec 2008 | A1 |
20080310697 | Razifar et al. | Dec 2008 | A1 |
20080311549 | Belitsiotis | Dec 2008 | A1 |
20080317317 | Shekhar et al. | Dec 2008 | A1 |
20080319326 | Behbehani et al. | Dec 2008 | A1 |
20080319505 | Boyden et al. | Dec 2008 | A1 |
20090005654 | Jung et al. | Jan 2009 | A1 |
20090005667 | Cui et al. | Jan 2009 | A1 |
20090005675 | Grunwald et al. | Jan 2009 | A1 |
20090006001 | Niculescu et al. | Jan 2009 | A1 |
20090009284 | Sako | Jan 2009 | A1 |
20090012387 | Hanson et al. | Jan 2009 | A1 |
20090018407 | Jung et al. | Jan 2009 | A1 |
20090018419 | Torch | Jan 2009 | A1 |
20090018429 | Saliga et al. | Jan 2009 | A1 |
20090018431 | Feiweier et al. | Jan 2009 | A1 |
20090018432 | He et al. | Jan 2009 | A1 |
20090018462 | Bell | Jan 2009 | A1 |
20090022825 | Kerkman et al. | Jan 2009 | A1 |
20090024007 | Lee et al. | Jan 2009 | A1 |
20090024050 | Jung et al. | Jan 2009 | A1 |
20090030476 | Hargrove | Jan 2009 | A1 |
20090030930 | Pradeep et al. | Jan 2009 | A1 |
20090033333 | Gribova et al. | Feb 2009 | A1 |
20090036781 | Utsugi et al. | Feb 2009 | A1 |
20090036791 | Plenz | Feb 2009 | A1 |
20090036950 | Armstrong et al. | Feb 2009 | A1 |
20090039889 | Wilt et al. | Feb 2009 | A1 |
20090043221 | Kaplan et al. | Feb 2009 | A1 |
20090048507 | Feiweier et al. | Feb 2009 | A1 |
20090048530 | Sarkela et al. | Feb 2009 | A1 |
20090054788 | Hauger et al. | Feb 2009 | A1 |
20090054800 | Martinerie et al. | Feb 2009 | A1 |
20090054801 | Hinrikus et al. | Feb 2009 | A1 |
20090054946 | Sommer et al. | Feb 2009 | A1 |
20090054958 | Nofzinger | Feb 2009 | A1 |
20090058660 | Torch | Mar 2009 | A1 |
20090062660 | Chance | Mar 2009 | A1 |
20090062670 | Sterling et al. | Mar 2009 | A1 |
20090062676 | Kruglikov et al. | Mar 2009 | A1 |
20090062679 | Tan et al. | Mar 2009 | A1 |
20090062680 | Sandford | Mar 2009 | A1 |
20090062696 | Nathan et al. | Mar 2009 | A1 |
20090062698 | Einav et al. | Mar 2009 | A1 |
20090069707 | Sandford | Mar 2009 | A1 |
20090074279 | Razifar et al. | Mar 2009 | A1 |
20090076339 | Quintin et al. | Mar 2009 | A1 |
20090076399 | Arbel et al. | Mar 2009 | A1 |
20090076400 | Diab et al. | Mar 2009 | A1 |
20090076406 | Graham et al. | Mar 2009 | A1 |
20090076407 | John et al. | Mar 2009 | A1 |
20090076567 | Fowler et al. | Mar 2009 | A1 |
20090078875 | Rousso et al. | Mar 2009 | A1 |
20090082688 | Wagner | Mar 2009 | A1 |
20090082689 | Guttag et al. | Mar 2009 | A1 |
20090082690 | Phillips et al. | Mar 2009 | A1 |
20090082829 | Panken et al. | Mar 2009 | A1 |
20090083071 | Phillips et al. | Mar 2009 | A1 |
20090088658 | Luo et al. | Apr 2009 | A1 |
20090088680 | Aravanis et al. | Apr 2009 | A1 |
20090093403 | Zhang et al. | Apr 2009 | A1 |
20090093862 | Gliner et al. | Apr 2009 | A1 |
20090094305 | Johnson | Apr 2009 | A1 |
20090099474 | Pineda et al. | Apr 2009 | A1 |
20090099627 | Molnar et al. | Apr 2009 | A1 |
20090099783 | Reisberg | Apr 2009 | A1 |
20090105785 | Wei et al. | Apr 2009 | A1 |
20090112117 | Rewari | Apr 2009 | A1 |
20090112273 | Wingeier et al. | Apr 2009 | A1 |
20090112277 | Wingeier et al. | Apr 2009 | A1 |
20090112278 | Wingeier et al. | Apr 2009 | A1 |
20090112279 | Wingeier et al. | Apr 2009 | A1 |
20090112280 | Wingeier et al. | Apr 2009 | A1 |
20090112281 | Miyazawa et al. | Apr 2009 | A1 |
20090112523 | Townsend et al. | Apr 2009 | A1 |
20090118593 | Jung et al. | May 2009 | A1 |
20090118610 | Karmarkar et al. | May 2009 | A1 |
20090118622 | Durkin et al. | May 2009 | A1 |
20090118636 | Collura | May 2009 | A1 |
20090118780 | DiLorenzo | May 2009 | A1 |
20090118786 | Meadows et al. | May 2009 | A1 |
20090118787 | Moffitt et al. | May 2009 | A1 |
20090119154 | Jung et al. | May 2009 | A1 |
20090124869 | Hu et al. | May 2009 | A1 |
20090124921 | Milgramm et al. | May 2009 | A1 |
20090124922 | Milgramm et al. | May 2009 | A1 |
20090124923 | Sackellares et al. | May 2009 | A1 |
20090131995 | Sloan et al. | May 2009 | A1 |
20090132275 | Jung et al. | May 2009 | A1 |
20090137915 | Childre et al. | May 2009 | A1 |
20090137923 | Suffin et al. | May 2009 | A1 |
20090143654 | Funane et al. | Jun 2009 | A1 |
20090148019 | Hamada et al. | Jun 2009 | A1 |
20090149148 | Kurtz et al. | Jun 2009 | A1 |
20090149736 | Skidmore et al. | Jun 2009 | A1 |
20090156907 | Jung et al. | Jun 2009 | A1 |
20090156954 | Cox et al. | Jun 2009 | A1 |
20090156955 | Jung et al. | Jun 2009 | A1 |
20090156956 | Milgramm et al. | Jun 2009 | A1 |
20090157323 | Jung et al. | Jun 2009 | A1 |
20090157481 | Jung et al. | Jun 2009 | A1 |
20090157482 | Jung et al. | Jun 2009 | A1 |
20090157625 | Jung et al. | Jun 2009 | A1 |
20090157660 | Jung et al. | Jun 2009 | A1 |
20090157662 | Suffin et al. | Jun 2009 | A1 |
20090157751 | Jung et al. | Jun 2009 | A1 |
20090157813 | Jung et al. | Jun 2009 | A1 |
20090163777 | Jung et al. | Jun 2009 | A1 |
20090163980 | Stevenson | Jun 2009 | A1 |
20090163981 | Stevenson et al. | Jun 2009 | A1 |
20090163982 | deCharms | Jun 2009 | A1 |
20090164131 | Jung et al. | Jun 2009 | A1 |
20090164132 | Jung et al. | Jun 2009 | A1 |
20090164302 | Jung et al. | Jun 2009 | A1 |
20090164401 | Jung et al. | Jun 2009 | A1 |
20090164403 | Jung et al. | Jun 2009 | A1 |
20090164458 | Jung et al. | Jun 2009 | A1 |
20090164503 | Jung et al. | Jun 2009 | A1 |
20090164549 | Jung et al. | Jun 2009 | A1 |
20090171164 | Jung et al. | Jul 2009 | A1 |
20090171232 | Hu et al. | Jul 2009 | A1 |
20090171240 | Aguilar et al. | Jul 2009 | A1 |
20090171405 | Craig | Jul 2009 | A1 |
20090172540 | Jung et al. | Jul 2009 | A1 |
20090177050 | Griffiths et al. | Jul 2009 | A1 |
20090177090 | Grunwald et al. | Jul 2009 | A1 |
20090177108 | Shieh et al. | Jul 2009 | A1 |
20090177144 | Masmanidis et al. | Jul 2009 | A1 |
20090179642 | deCharms | Jul 2009 | A1 |
20090182211 | Diab et al. | Jul 2009 | A1 |
20090187230 | Dilorenzo | Jul 2009 | A1 |
20090191131 | Fossheim et al. | Jul 2009 | A1 |
20090192394 | Guttag et al. | Jul 2009 | A1 |
20090192556 | Wu et al. | Jul 2009 | A1 |
20090198144 | Phillips et al. | Aug 2009 | A1 |
20090198145 | Chow | Aug 2009 | A1 |
20090204015 | Phillips et al. | Aug 2009 | A1 |
20090209831 | Kucharczyk et al. | Aug 2009 | A1 |
20090209835 | Diab et al. | Aug 2009 | A1 |
20090209845 | Christen et al. | Aug 2009 | A1 |
20090210018 | Lozano | Aug 2009 | A1 |
20090216091 | Arndt | Aug 2009 | A1 |
20090216146 | Teicher et al. | Aug 2009 | A1 |
20090216288 | Schiff et al. | Aug 2009 | A1 |
20090220425 | Moxon et al. | Sep 2009 | A1 |
20090220429 | Johnsen et al. | Sep 2009 | A1 |
20090221904 | Shealy et al. | Sep 2009 | A1 |
20090221928 | Einav et al. | Sep 2009 | A1 |
20090221930 | Laken | Sep 2009 | A1 |
20090227876 | Tran | Sep 2009 | A1 |
20090227877 | Tran | Sep 2009 | A1 |
20090227882 | Foo | Sep 2009 | A1 |
20090227889 | John et al. | Sep 2009 | A2 |
20090234419 | Maschino et al. | Sep 2009 | A1 |
20090240119 | Schwaibold et al. | Sep 2009 | A1 |
20090243756 | Stevenson et al. | Oct 2009 | A1 |
20090246138 | Santosh et al. | Oct 2009 | A1 |
20090247893 | Lapinlampi et al. | Oct 2009 | A1 |
20090247894 | Causevic | Oct 2009 | A1 |
20090259277 | Cornejo Cruz et al. | Oct 2009 | A1 |
20090261832 | DePavia et al. | Oct 2009 | A1 |
20090264785 | Causevic et al. | Oct 2009 | A1 |
20090264789 | Molnar et al. | Oct 2009 | A1 |
20090264952 | Jassemidis et al. | Oct 2009 | A1 |
20090264954 | Rise et al. | Oct 2009 | A1 |
20090264955 | Giftakis et al. | Oct 2009 | A1 |
20090264956 | Rise et al. | Oct 2009 | A1 |
20090264957 | Giftakis et al. | Oct 2009 | A1 |
20090264958 | Hsu et al. | Oct 2009 | A1 |
20090264967 | Giftakis et al. | Oct 2009 | A1 |
20090267758 | Hyde et al. | Oct 2009 | A1 |
20090270687 | Hyde et al. | Oct 2009 | A1 |
20090270688 | Hyde et al. | Oct 2009 | A1 |
20090270692 | Hyde et al. | Oct 2009 | A1 |
20090270693 | Hyde et al. | Oct 2009 | A1 |
20090270694 | Hyde et al. | Oct 2009 | A1 |
20090270754 | Moridaira | Oct 2009 | A1 |
20090270758 | Eagleman et al. | Oct 2009 | A1 |
20090270786 | Hyde et al. | Oct 2009 | A1 |
20090270944 | Whitehurst et al. | Oct 2009 | A1 |
20090271011 | Hyde et al. | Oct 2009 | A1 |
20090271120 | Hyde et al. | Oct 2009 | A1 |
20090271122 | Hyde et al. | Oct 2009 | A1 |
20090271347 | Hyde et al. | Oct 2009 | A1 |
20090275853 | Sarkela | Nov 2009 | A1 |
20090276011 | Hyde et al. | Nov 2009 | A1 |
20090276012 | Hyde et al. | Nov 2009 | A1 |
20090280153 | Hunter et al. | Nov 2009 | A1 |
20090281400 | McCraty et al. | Nov 2009 | A1 |
20090281448 | Wright et al. | Nov 2009 | A1 |
20090281594 | King et al. | Nov 2009 | A1 |
20090287035 | Dietrich et al. | Nov 2009 | A1 |
20090287107 | Beck-Nielsen et al. | Nov 2009 | A1 |
20090287108 | Levy | Nov 2009 | A1 |
20090287271 | Blum et al. | Nov 2009 | A1 |
20090287272 | Kokones et al. | Nov 2009 | A1 |
20090287273 | Carlton et al. | Nov 2009 | A1 |
20090287274 | De Ridder | Nov 2009 | A1 |
20090287467 | Sparks et al. | Nov 2009 | A1 |
20090290767 | Jung et al. | Nov 2009 | A1 |
20090290772 | Avinash et al. | Nov 2009 | A1 |
20090292180 | Mirow | Nov 2009 | A1 |
20090292478 | Avinash et al. | Nov 2009 | A1 |
20090292551 | Sirohey et al. | Nov 2009 | A1 |
20090292713 | Jung et al. | Nov 2009 | A1 |
20090292724 | Jung et al. | Nov 2009 | A1 |
20090297000 | Shahaf et al. | Dec 2009 | A1 |
20090299126 | Fowler et al. | Dec 2009 | A1 |
20090299169 | deCharms | Dec 2009 | A1 |
20090299435 | Gliner et al. | Dec 2009 | A1 |
20090304582 | Rousso et al. | Dec 2009 | A1 |
20090306491 | Haggers | Dec 2009 | A1 |
20090306531 | Leuthardt et al. | Dec 2009 | A1 |
20090306532 | Tucker | Dec 2009 | A1 |
20090306534 | Pizzagalli | Dec 2009 | A1 |
20090306741 | Hogle et al. | Dec 2009 | A1 |
20090311655 | Karkanias et al. | Dec 2009 | A1 |
20090312595 | Leuthardt et al. | Dec 2009 | A1 |
20090312624 | Berridge et al. | Dec 2009 | A1 |
20090312646 | Binder et al. | Dec 2009 | A1 |
20090312663 | John et al. | Dec 2009 | A1 |
20090312664 | Rodriguez Villegas et al. | Dec 2009 | A1 |
20090312668 | Leuthardt et al. | Dec 2009 | A1 |
20090312808 | Tyler et al. | Dec 2009 | A1 |
20090312817 | Hogle et al. | Dec 2009 | A1 |
20090312998 | Berckmans et al. | Dec 2009 | A1 |
20090316925 | Eisenfeld et al. | Dec 2009 | A1 |
20090316968 | Fueyo et al. | Dec 2009 | A1 |
20090316969 | Fueyo et al. | Dec 2009 | A1 |
20090318773 | Jung et al. | Dec 2009 | A1 |
20090318779 | Tran | Dec 2009 | A1 |
20090318794 | DeCharms | Dec 2009 | A1 |
20090319000 | Firlik et al. | Dec 2009 | A1 |
20090319001 | Schiff | Dec 2009 | A1 |
20090319002 | Simon | Dec 2009 | A1 |
20090319004 | Sabel | Dec 2009 | A1 |
20090322331 | Buracas | Dec 2009 | A1 |
20090323049 | Addison et al. | Dec 2009 | A1 |
20090326353 | Watson et al. | Dec 2009 | A1 |
20090326604 | Tyler et al. | Dec 2009 | A1 |
20090326605 | Morrell | Dec 2009 | A1 |
20090327068 | Pradeep et al. | Dec 2009 | A1 |
20100003656 | Kilgard et al. | Jan 2010 | A1 |
20100004500 | Gliner et al. | Jan 2010 | A1 |
20100004705 | Kilgard et al. | Jan 2010 | A1 |
20100004717 | Kilgard et al. | Jan 2010 | A1 |
20100004762 | Leuthardt et al. | Jan 2010 | A1 |
20100004977 | Marci et al. | Jan 2010 | A1 |
20100010289 | Clare | Jan 2010 | A1 |
20100010316 | Fueyo et al. | Jan 2010 | A1 |
20100010363 | Fueyo et al. | Jan 2010 | A1 |
20100010364 | Verbitskiy | Jan 2010 | A1 |
20100010365 | Terao et al. | Jan 2010 | A1 |
20100010366 | Silberstein | Jan 2010 | A1 |
20100010383 | Skelton et al. | Jan 2010 | A1 |
20100010388 | Panken et al. | Jan 2010 | A1 |
20100010391 | Skelton et al. | Jan 2010 | A1 |
20100010392 | Skelton et al. | Jan 2010 | A1 |
20100010571 | Skelton et al. | Jan 2010 | A1 |
20100010572 | Skelton et al. | Jan 2010 | A1 |
20100010573 | Skelton et al. | Jan 2010 | A1 |
20100010574 | Skelton et al. | Jan 2010 | A1 |
20100010575 | Skelton et al. | Jan 2010 | A1 |
20100010576 | Skelton et al. | Jan 2010 | A1 |
20100010577 | Skelton et al. | Jan 2010 | A1 |
20100010578 | Skelton et al. | Jan 2010 | A1 |
20100010579 | Skelton et al. | Jan 2010 | A1 |
20100010580 | Skelton et al. | Jan 2010 | A1 |
20100010584 | Skelton et al. | Jan 2010 | A1 |
20100010585 | Davis et al. | Jan 2010 | A1 |
20100010587 | Skelton et al. | Jan 2010 | A1 |
20100010588 | Skelton et al. | Jan 2010 | A1 |
20100010589 | Skelton et al. | Jan 2010 | A1 |
20100010590 | Skelton et al. | Jan 2010 | A1 |
20100010844 | Isaksen | Jan 2010 | A1 |
20100014730 | Hahn et al. | Jan 2010 | A1 |
20100014732 | Vija et al. | Jan 2010 | A1 |
20100015583 | Leuthardt et al. | Jan 2010 | A1 |
20100016783 | Bourke, Jr. et al. | Jan 2010 | A1 |
20100017001 | Leuthardt et al. | Jan 2010 | A1 |
20100021378 | Rousso et al. | Jan 2010 | A1 |
20100022820 | Leuthardt et al. | Jan 2010 | A1 |
20100023089 | DiLorenzo | Jan 2010 | A1 |
20100028841 | Eatough et al. | Feb 2010 | A1 |
20100030073 | Kalafut | Feb 2010 | A1 |
20100030089 | Hyde et al. | Feb 2010 | A1 |
20100030097 | Silberstein | Feb 2010 | A1 |
20100030287 | Jaax et al. | Feb 2010 | A1 |
20100036211 | La Rue et al. | Feb 2010 | A1 |
20100036233 | Zhu et al. | Feb 2010 | A1 |
20100036276 | Ochs | Feb 2010 | A1 |
20100036453 | Hulvershorn et al. | Feb 2010 | A1 |
20100041949 | Tolkowsky | Feb 2010 | A1 |
20100041958 | Leuthardt et al. | Feb 2010 | A1 |
20100041962 | Causevic et al. | Feb 2010 | A1 |
20100041964 | Hyde et al. | Feb 2010 | A1 |
20100042011 | Doidge et al. | Feb 2010 | A1 |
20100042578 | Leuthardt et al. | Feb 2010 | A1 |
20100043795 | Ujhazy et al. | Feb 2010 | A1 |
20100045467 | Sachanandani et al. | Feb 2010 | A1 |
20100049069 | Tarassenko et al. | Feb 2010 | A1 |
20100049075 | Bolger et al. | Feb 2010 | A1 |
20100049276 | Blum et al. | Feb 2010 | A1 |
20100049482 | He et al. | Feb 2010 | A1 |
20100056276 | Silberstein | Mar 2010 | A1 |
20100056854 | Chang | Mar 2010 | A1 |
20100056939 | Tarassenko et al. | Mar 2010 | A1 |
20100057159 | Lozano | Mar 2010 | A1 |
20100057160 | De Ridder | Mar 2010 | A1 |
20100057655 | Jacobson et al. | Mar 2010 | A1 |
20100063368 | Leuthardt et al. | Mar 2010 | A1 |
20100063563 | Craig | Mar 2010 | A1 |
20100068751 | Eberle | Mar 2010 | A1 |
20100069724 | Leuthardt et al. | Mar 2010 | A1 |
20100069739 | deCharms | Mar 2010 | A1 |
20100069762 | Mietus et al. | Mar 2010 | A1 |
20100069775 | Milgramm et al. | Mar 2010 | A1 |
20100069777 | Marks | Mar 2010 | A1 |
20100069780 | Schuette et al. | Mar 2010 | A1 |
20100070001 | Goetz | Mar 2010 | A1 |
20100076249 | Leuthardt et al. | Mar 2010 | A1 |
20100076253 | Altman et al. | Mar 2010 | A1 |
20100076274 | Severson | Mar 2010 | A1 |
20100076333 | Burton et al. | Mar 2010 | A9 |
20100076334 | Rothblatt | Mar 2010 | A1 |
20100076338 | Kwak | Mar 2010 | A1 |
20100076525 | Skelton et al. | Mar 2010 | A1 |
20100079292 | Lynn et al. | Apr 2010 | A1 |
20100080432 | Lilja et al. | Apr 2010 | A1 |
20100081860 | Leuthardt et al. | Apr 2010 | A1 |
20100081861 | Leuthardt et al. | Apr 2010 | A1 |
20100082506 | Avinash et al. | Apr 2010 | A1 |
20100087719 | Benni | Apr 2010 | A1 |
20100087900 | Flint | Apr 2010 | A1 |
20100090835 | Liu et al. | Apr 2010 | A1 |
20100092934 | Silberstein | Apr 2010 | A1 |
20100094103 | Kaplan et al. | Apr 2010 | A1 |
20100094152 | Semmlow | Apr 2010 | A1 |
20100094154 | Schalk et al. | Apr 2010 | A1 |
20100094155 | Prichep | Apr 2010 | A1 |
20100098289 | Tognoli et al. | Apr 2010 | A1 |
20100099954 | Dickinson et al. | Apr 2010 | A1 |
20100099975 | Faro et al. | Apr 2010 | A1 |
20100100036 | Leuthardt et al. | Apr 2010 | A1 |
20100100164 | Johnson et al. | Apr 2010 | A1 |
20100106041 | Ghovanloo et al. | Apr 2010 | A1 |
20100106043 | Robinson et al. | Apr 2010 | A1 |
20100106044 | Linderman | Apr 2010 | A1 |
20100106217 | Colborn | Apr 2010 | A1 |
20100113959 | Pascual-Leone et al. | May 2010 | A1 |
20100114190 | Bendett et al. | May 2010 | A1 |
20100114192 | Jaax et al. | May 2010 | A1 |
20100114193 | Lozano et al. | May 2010 | A1 |
20100114237 | Giftakis et al. | May 2010 | A1 |
20100114272 | Haidarliu et al. | May 2010 | A1 |
20100114813 | Zalay et al. | May 2010 | A1 |
20100121415 | Skelton et al. | May 2010 | A1 |
20100125219 | Harris et al. | May 2010 | A1 |
20100125304 | Faltys | May 2010 | A1 |
20100125561 | Leuthardt et al. | May 2010 | A1 |
20100130811 | Leuthardt et al. | May 2010 | A1 |
20100130812 | Martel | May 2010 | A1 |
20100130869 | Hauger et al. | May 2010 | A1 |
20100130878 | Lasso et al. | May 2010 | A1 |
20100131030 | Firlik et al. | May 2010 | A1 |
20100131034 | Gliner et al. | May 2010 | A1 |
20100132448 | Donadille et al. | Jun 2010 | A1 |
20100134113 | DePavia et al. | Jun 2010 | A1 |
20100135556 | Razifar et al. | Jun 2010 | A1 |
20100137728 | Govari | Jun 2010 | A1 |
20100137937 | John et al. | Jun 2010 | A1 |
20100142774 | Ben-Haim et al. | Jun 2010 | A1 |
20100143256 | Suffin et al. | Jun 2010 | A1 |
20100145215 | Pradeep et al. | Jun 2010 | A1 |
20100145219 | Grey | Jun 2010 | A1 |
20100145427 | Gliner et al. | Jun 2010 | A1 |
20100145428 | Cameron et al. | Jun 2010 | A1 |
20100152621 | Janna et al. | Jun 2010 | A1 |
20100160737 | Shachar et al. | Jun 2010 | A1 |
20100163027 | Hyde et al. | Jul 2010 | A1 |
20100163028 | Hyde et al. | Jul 2010 | A1 |
20100163035 | Hyde et al. | Jul 2010 | A1 |
20100165593 | Townsend et al. | Jul 2010 | A1 |
20100168053 | Kurtz | Jul 2010 | A1 |
20100168525 | Hyde et al. | Jul 2010 | A1 |
20100168529 | Hyde et al. | Jul 2010 | A1 |
20100168602 | Hyde et al. | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100174161 | Lynn | Jul 2010 | A1 |
20100174533 | Pakhomov | Jul 2010 | A1 |
20100179415 | Wenzel et al. | Jul 2010 | A1 |
20100179447 | Hunt | Jul 2010 | A1 |
20100185113 | Peot et al. | Jul 2010 | A1 |
20100189318 | Chang et al. | Jul 2010 | A1 |
20100191095 | Felblinger et al. | Jul 2010 | A1 |
20100191124 | Prokoski | Jul 2010 | A1 |
20100191139 | Jacquin et al. | Jul 2010 | A1 |
20100191304 | Scott | Jul 2010 | A1 |
20100191305 | Imran et al. | Jul 2010 | A1 |
20100195770 | Ricci et al. | Aug 2010 | A1 |
20100197610 | Lian et al. | Aug 2010 | A1 |
20100197993 | Vasishta | Aug 2010 | A1 |
20100198090 | Hudson et al. | Aug 2010 | A1 |
20100198098 | Osorio et al. | Aug 2010 | A1 |
20100198101 | Song et al. | Aug 2010 | A1 |
20100198282 | Rogers | Aug 2010 | A1 |
20100198296 | Ignagni et al. | Aug 2010 | A1 |
20100198519 | Wilt et al. | Aug 2010 | A1 |
20100204604 | Liley et al. | Aug 2010 | A1 |
20100204614 | Lindquist et al. | Aug 2010 | A1 |
20100204748 | Lozano et al. | Aug 2010 | A1 |
20100204749 | Thimineur et al. | Aug 2010 | A1 |
20100204750 | Hargrove et al. | Aug 2010 | A1 |
20100217100 | LeBoeuf et al. | Aug 2010 | A1 |
20100217146 | Osvath | Aug 2010 | A1 |
20100217341 | John et al. | Aug 2010 | A1 |
20100217348 | DiLorenzo | Aug 2010 | A1 |
20100219820 | Skidmore et al. | Sep 2010 | A1 |
20100222640 | Anderson et al. | Sep 2010 | A1 |
20100222694 | Causevic | Sep 2010 | A1 |
20100222845 | Goetz | Sep 2010 | A1 |
20100224188 | John et al. | Sep 2010 | A1 |
20100231221 | Rosthal et al. | Sep 2010 | A1 |
20100231327 | Johnson et al. | Sep 2010 | A1 |
20100234705 | Lynn | Sep 2010 | A1 |
20100234752 | Sullivan et al. | Sep 2010 | A1 |
20100234753 | Ma | Sep 2010 | A1 |
20100238763 | Gzara et al. | Sep 2010 | A1 |
20100241020 | Zaidel et al. | Sep 2010 | A1 |
20100241195 | Meadows et al. | Sep 2010 | A1 |
20100241449 | Firminger et al. | Sep 2010 | A1 |
20100245093 | Kobetski et al. | Sep 2010 | A1 |
20100248275 | Jackowski et al. | Sep 2010 | A1 |
20100249573 | Marks | Sep 2010 | A1 |
20100249627 | Zhang et al. | Sep 2010 | A1 |
20100249635 | Van Der Reijden | Sep 2010 | A1 |
20100249638 | Liley | Sep 2010 | A1 |
20100256592 | Gerber et al. | Oct 2010 | A1 |
20100258126 | Ujhazy et al. | Oct 2010 | A1 |
20100260402 | Axelsson et al. | Oct 2010 | A1 |
20100261977 | Seely | Oct 2010 | A1 |
20100261993 | van der Kouwe et al. | Oct 2010 | A1 |
20100262377 | Jensen | Oct 2010 | A1 |
20100268055 | Jung et al. | Oct 2010 | A1 |
20100268057 | Firminger et al. | Oct 2010 | A1 |
20100268108 | Firminger et al. | Oct 2010 | A1 |
20100268288 | Hunter et al. | Oct 2010 | A1 |
20100274106 | Heruth et al. | Oct 2010 | A1 |
20100274141 | Patangay et al. | Oct 2010 | A1 |
20100274147 | Patangay et al. | Oct 2010 | A1 |
20100274303 | Bukhman | Oct 2010 | A1 |
20100274305 | Gliner et al. | Oct 2010 | A1 |
20100274308 | Scott | Oct 2010 | A1 |
20100274577 | Firminger et al. | Oct 2010 | A1 |
20100274578 | Firminger et al. | Oct 2010 | A1 |
20100280332 | Hyde et al. | Nov 2010 | A1 |
20100280334 | Carlson et al. | Nov 2010 | A1 |
20100280335 | Carlson et al. | Nov 2010 | A1 |
20100280372 | Poolman et al. | Nov 2010 | A1 |
20100280403 | Erdogmus et al. | Nov 2010 | A1 |
20100280500 | Skelton et al. | Nov 2010 | A1 |
20100280571 | Sloan | Nov 2010 | A1 |
20100280574 | Carlson et al. | Nov 2010 | A1 |
20100280579 | Denison et al. | Nov 2010 | A1 |
20100286549 | John et al. | Nov 2010 | A1 |
20100286747 | Sabesan et al. | Nov 2010 | A1 |
20100292602 | Worrell et al. | Nov 2010 | A1 |
20100292752 | Bardakjian et al. | Nov 2010 | A1 |
20100293002 | Firminger et al. | Nov 2010 | A1 |
20100293115 | Seyed Momen | Nov 2010 | A1 |
20100298624 | Becker | Nov 2010 | A1 |
20100298735 | Suffin | Nov 2010 | A1 |
20100303101 | Lazar et al. | Dec 2010 | A1 |
20100305962 | Firminger et al. | Dec 2010 | A1 |
20100305963 | Firminger et al. | Dec 2010 | A1 |
20100312188 | Robertson et al. | Dec 2010 | A1 |
20100312579 | Firminger et al. | Dec 2010 | A1 |
20100318025 | John | Dec 2010 | A1 |
20100318160 | Stevenson et al. | Dec 2010 | A1 |
20100322488 | Virtue et al. | Dec 2010 | A1 |
20100322497 | Dempsey et al. | Dec 2010 | A1 |
20100324441 | Hargrove et al. | Dec 2010 | A1 |
20100331649 | Chou | Dec 2010 | A1 |
20100331715 | Addison et al. | Dec 2010 | A1 |
20100331976 | Pesaran et al. | Dec 2010 | A1 |
20110004115 | Shahaf et al. | Jan 2011 | A1 |
20110004270 | Sheffield et al. | Jan 2011 | A1 |
20110004283 | Stevenson et al. | Jan 2011 | A1 |
20110004412 | Shahaf et al. | Jan 2011 | A1 |
20110007129 | Martin et al. | Jan 2011 | A1 |
20110009715 | O' Reilly et al. | Jan 2011 | A1 |
20110009729 | Shin et al. | Jan 2011 | A1 |
20110009752 | Chen et al. | Jan 2011 | A1 |
20110009777 | Reichow et al. | Jan 2011 | A1 |
20110009920 | Whitehurst et al. | Jan 2011 | A1 |
20110009928 | Gerber et al. | Jan 2011 | A1 |
20110015209 | Shamloo et al. | Jan 2011 | A1 |
20110015469 | Walter et al. | Jan 2011 | A1 |
20110015501 | Lynn et al. | Jan 2011 | A1 |
20110015515 | deCharms | Jan 2011 | A1 |
20110015536 | Milgramm et al. | Jan 2011 | A1 |
20110015539 | deCharms | Jan 2011 | A1 |
20110021899 | Arps et al. | Jan 2011 | A1 |
20110021970 | Vo-Dinh et al. | Jan 2011 | A1 |
20110022981 | Mahajan et al. | Jan 2011 | A1 |
20110028798 | Hyde et al. | Feb 2011 | A1 |
20110028799 | Hyde et al. | Feb 2011 | A1 |
20110028802 | Addison et al. | Feb 2011 | A1 |
20110028825 | Douglas et al. | Feb 2011 | A1 |
20110028827 | Sitaram et al. | Feb 2011 | A1 |
20110028859 | Chian | Feb 2011 | A1 |
20110029038 | Hyde et al. | Feb 2011 | A1 |
20110029044 | Hyde et al. | Feb 2011 | A1 |
20110034812 | Patangay et al. | Feb 2011 | A1 |
20110034821 | Ekpar | Feb 2011 | A1 |
20110034822 | Phillips et al. | Feb 2011 | A1 |
20110034912 | de Graff et al. | Feb 2011 | A1 |
20110035231 | Firminger et al. | Feb 2011 | A1 |
20110038515 | Jacquin et al. | Feb 2011 | A1 |
20110038850 | Bagnol et al. | Feb 2011 | A1 |
20110040202 | Luo et al. | Feb 2011 | A1 |
20110040356 | Schiffer | Feb 2011 | A1 |
20110040546 | Gerber et al. | Feb 2011 | A1 |
20110040547 | Gerber et al. | Feb 2011 | A1 |
20110040713 | Colman et al. | Feb 2011 | A1 |
20110043759 | Bushinsky | Feb 2011 | A1 |
20110046451 | Horn et al. | Feb 2011 | A1 |
20110046473 | Pradeep et al. | Feb 2011 | A1 |
20110046491 | Diamond | Feb 2011 | A1 |
20110050232 | Wilt et al. | Mar 2011 | A1 |
20110054272 | Derchak | Mar 2011 | A1 |
20110054279 | Reisfeld et al. | Mar 2011 | A1 |
20110054345 | Nagatani | Mar 2011 | A1 |
20110054562 | Gliner | Mar 2011 | A1 |
20110054569 | Zitnik et al. | Mar 2011 | A1 |
20110060382 | Jaax et al. | Mar 2011 | A1 |
20110066005 | Rotenberg | Mar 2011 | A1 |
20110066041 | Pandia et al. | Mar 2011 | A1 |
20110066042 | Pandia et al. | Mar 2011 | A1 |
20110066053 | Yaztcioglu | Mar 2011 | A1 |
20110074396 | Liao et al. | Mar 2011 | A1 |
20110077503 | Bonilha et al. | Mar 2011 | A1 |
20110077538 | Liu et al. | Mar 2011 | A1 |
20110077548 | Torch | Mar 2011 | A1 |
20110077721 | Whitehurst et al. | Mar 2011 | A1 |
20110082154 | Oksenberg et al. | Apr 2011 | A1 |
20110082360 | Fuchs et al. | Apr 2011 | A1 |
20110082381 | Uthman et al. | Apr 2011 | A1 |
20110082522 | Bourget et al. | Apr 2011 | A1 |
20110087125 | Causevic | Apr 2011 | A1 |
20110087127 | Sarkela et al. | Apr 2011 | A1 |
20110092800 | Yoo et al. | Apr 2011 | A1 |
20110092834 | Yazictoglu et al. | Apr 2011 | A1 |
20110092839 | Alshaer et al. | Apr 2011 | A1 |
20110092882 | Firlik et al. | Apr 2011 | A1 |
20110093033 | Nekhendzy | Apr 2011 | A1 |
20110098583 | Pandia et al. | Apr 2011 | A1 |
20110098778 | Thimineur et al. | Apr 2011 | A1 |
20110105859 | Popovic et al. | May 2011 | A1 |
20110105915 | Bauer et al. | May 2011 | A1 |
20110105938 | Hardt | May 2011 | A1 |
20110105998 | Zhang et al. | May 2011 | A1 |
20110106206 | Schiff | May 2011 | A1 |
20110106750 | Pradeep et al. | May 2011 | A1 |
20110110868 | Akhtari et al. | May 2011 | A1 |
20110112379 | Li et al. | May 2011 | A1 |
20110112381 | Sun et al. | May 2011 | A1 |
20110112394 | Mishelevich | May 2011 | A1 |
20110112426 | Causevic | May 2011 | A1 |
20110112427 | Phillips et al. | May 2011 | A1 |
20110112590 | Wu et al. | May 2011 | A1 |
20110115624 | Tran | May 2011 | A1 |
20110118536 | Phillips et al. | May 2011 | A1 |
20110118618 | John et al. | May 2011 | A1 |
20110118619 | Burton et al. | May 2011 | A1 |
20110119212 | De Bruin et al. | May 2011 | A1 |
20110125046 | Burton et al. | May 2011 | A1 |
20110125048 | Causevic et al. | May 2011 | A1 |
20110125077 | Denison et al. | May 2011 | A1 |
20110125078 | Denison et al. | May 2011 | A1 |
20110125203 | Simon et al. | May 2011 | A1 |
20110125238 | Nofzinger | May 2011 | A1 |
20110129129 | Avinash et al. | Jun 2011 | A1 |
20110130615 | Mishelevich | Jun 2011 | A1 |
20110130643 | Derchak et al. | Jun 2011 | A1 |
20110130675 | Bibian et al. | Jun 2011 | A1 |
20110137371 | Giftakis et al. | Jun 2011 | A1 |
20110137381 | Lee et al. | Jun 2011 | A1 |
20110144520 | Causevic et al. | Jun 2011 | A1 |
20110144521 | Molnar et al. | Jun 2011 | A1 |
20110150253 | Corona-Strauss et al. | Jun 2011 | A1 |
20110152284 | Wieloch et al. | Jun 2011 | A1 |
20110152710 | Kim et al. | Jun 2011 | A1 |
20110152729 | Oohashi et al. | Jun 2011 | A1 |
20110152967 | Simon et al. | Jun 2011 | A1 |
20110152988 | Whitehurst et al. | Jun 2011 | A1 |
20110160543 | Parsey et al. | Jun 2011 | A1 |
20110160607 | John et al. | Jun 2011 | A1 |
20110160608 | Hargrove | Jun 2011 | A1 |
20110160795 | Osorio | Jun 2011 | A1 |
20110160796 | Lane et al. | Jun 2011 | A1 |
20110161011 | Hasson et al. | Jun 2011 | A1 |
20110162645 | John et al. | Jul 2011 | A1 |
20110166430 | Harris et al. | Jul 2011 | A1 |
20110166471 | Drew et al. | Jul 2011 | A1 |
20110166546 | Jaax et al. | Jul 2011 | A1 |
20110172500 | Van Dooren et al. | Jul 2011 | A1 |
20110172509 | Chance | Jul 2011 | A1 |
20110172553 | John et al. | Jul 2011 | A1 |
20110172554 | Leyde et al. | Jul 2011 | A1 |
20110172562 | Sahasrabudhe et al. | Jul 2011 | A1 |
20110172564 | Drew | Jul 2011 | A1 |
20110172567 | Panken et al. | Jul 2011 | A1 |
20110172725 | Wells et al. | Jul 2011 | A1 |
20110172732 | Maschino | Jul 2011 | A1 |
20110172738 | Davis et al. | Jul 2011 | A1 |
20110172739 | Mann et al. | Jul 2011 | A1 |
20110172743 | Davis et al. | Jul 2011 | A1 |
20110172927 | Sahasrabudhe et al. | Jul 2011 | A1 |
20110178359 | Hirschman et al. | Jul 2011 | A1 |
20110178441 | Tyler | Jul 2011 | A1 |
20110178442 | Mishelevich | Jul 2011 | A1 |
20110178581 | Haber et al. | Jul 2011 | A1 |
20110181422 | Tran | Jul 2011 | A1 |
20110182501 | Mercier et al. | Jul 2011 | A1 |
20110184305 | Liley | Jul 2011 | A1 |
20110184487 | Alberts et al. | Jul 2011 | A1 |
20110184650 | Hymel | Jul 2011 | A1 |
20110190569 | Simon et al. | Aug 2011 | A1 |
20110190600 | McKenna et al. | Aug 2011 | A1 |
20110190846 | Ruffini et al. | Aug 2011 | A1 |
20110191275 | Lujan et al. | Aug 2011 | A1 |
20110191350 | Zhang et al. | Aug 2011 | A1 |
20110196693 | Hargrove et al. | Aug 2011 | A1 |
20110201944 | Higgins et al. | Aug 2011 | A1 |
20110207988 | Ruohonen et al. | Aug 2011 | A1 |
20110208012 | Gerber et al. | Aug 2011 | A1 |
20110208094 | Mishelevich | Aug 2011 | A1 |
20110208264 | Gliner et al. | Aug 2011 | A1 |
20110208539 | Lynn | Aug 2011 | A1 |
20110213200 | Mishelevich | Sep 2011 | A1 |
20110213222 | Leyde et al. | Sep 2011 | A1 |
20110217240 | Ferris | Sep 2011 | A1 |
20110218405 | Avinash et al. | Sep 2011 | A1 |
20110218453 | Hirata et al. | Sep 2011 | A1 |
20110218456 | Graham et al. | Sep 2011 | A1 |
20110218950 | Mirowski et al. | Sep 2011 | A1 |
20110224569 | Isenhart et al. | Sep 2011 | A1 |
20110224570 | Causevic | Sep 2011 | A1 |
20110224571 | Pascual-Leone et al. | Sep 2011 | A1 |
20110224602 | Struijk et al. | Sep 2011 | A1 |
20110224749 | Ben-David et al. | Sep 2011 | A1 |
20110229005 | Den Harder et al. | Sep 2011 | A1 |
20110230701 | Simon et al. | Sep 2011 | A1 |
20110230738 | Chance | Sep 2011 | A1 |
20110230755 | MacFarlane et al. | Sep 2011 | A1 |
20110230938 | Simon et al. | Sep 2011 | A1 |
20110238130 | Bourget et al. | Sep 2011 | A1 |
20110238136 | Bourget et al. | Sep 2011 | A1 |
20110245709 | Greenwald | Oct 2011 | A1 |
20110245734 | Wagner et al. | Oct 2011 | A1 |
20110251583 | Miyazawa et al. | Oct 2011 | A1 |
20110251985 | Waxman et al. | Oct 2011 | A1 |
20110256520 | Siefert | Oct 2011 | A1 |
20110257501 | Huys et al. | Oct 2011 | A1 |
20110257517 | Guttag et al. | Oct 2011 | A1 |
20110257519 | Bjornerud et al. | Oct 2011 | A1 |
20110263962 | Marks | Oct 2011 | A1 |
20110263968 | Quattrocki-Knight et al. | Oct 2011 | A1 |
20110263995 | Chen | Oct 2011 | A1 |
20110264182 | Cowley | Oct 2011 | A1 |
20110270074 | deCharms | Nov 2011 | A1 |
20110270095 | Bukhman | Nov 2011 | A1 |
20110270096 | Osorio et al. | Nov 2011 | A1 |
20110270117 | Warwick et al. | Nov 2011 | A1 |
20110270346 | Frei et al. | Nov 2011 | A1 |
20110270347 | Frei et al. | Nov 2011 | A1 |
20110270348 | Goetz | Nov 2011 | A1 |
20110270579 | Watson et al. | Nov 2011 | A1 |
20110270914 | Jung et al. | Nov 2011 | A1 |
20110275927 | Wagner et al. | Nov 2011 | A1 |
20110276107 | Simon et al. | Nov 2011 | A1 |
20110276112 | Simon et al. | Nov 2011 | A1 |
20110282225 | Anderson et al. | Nov 2011 | A1 |
20110282230 | Liley | Nov 2011 | A9 |
20110282234 | Ochs | Nov 2011 | A1 |
20110288119 | Chesworth et al. | Nov 2011 | A1 |
20110288400 | Russell et al. | Nov 2011 | A1 |
20110288424 | Kanai et al. | Nov 2011 | A1 |
20110288431 | Alshaer et al. | Nov 2011 | A1 |
20110293193 | Garg et al. | Dec 2011 | A1 |
20110295142 | Chakravarthy et al. | Dec 2011 | A1 |
20110295143 | Leuthardt et al. | Dec 2011 | A1 |
20110295166 | Dalton | Dec 2011 | A1 |
20110295338 | Rickert et al. | Dec 2011 | A1 |
20110295344 | Wells et al. | Dec 2011 | A1 |
20110295345 | Wells et al. | Dec 2011 | A1 |
20110295346 | Wells et al. | Dec 2011 | A1 |
20110295347 | Wells et al. | Dec 2011 | A1 |
20110298706 | Mann | Dec 2011 | A1 |
20110301436 | Teixeira | Dec 2011 | A1 |
20110301439 | Albert et al. | Dec 2011 | A1 |
20110301441 | Bandic et al. | Dec 2011 | A1 |
20110301448 | deCharms | Dec 2011 | A1 |
20110301486 | VanHek et al. | Dec 2011 | A1 |
20110301487 | Abeyratne et al. | Dec 2011 | A1 |
20110301488 | Schuette et al. | Dec 2011 | A1 |
20110301529 | Zhang et al. | Dec 2011 | A1 |
20110306845 | Osorio | Dec 2011 | A1 |
20110306846 | Osorio | Dec 2011 | A1 |
20110307029 | Hargrove | Dec 2011 | A1 |
20110307030 | John | Dec 2011 | A1 |
20110307079 | Oweiss et al. | Dec 2011 | A1 |
20110308789 | Zhang et al. | Dec 2011 | A1 |
20110311021 | Tsukagoshi | Dec 2011 | A1 |
20110311489 | Deisseroth et al. | Dec 2011 | A1 |
20110313268 | Kokones et al. | Dec 2011 | A1 |
20110313274 | Subbarao | Dec 2011 | A1 |
20110313308 | Zavoronkovs et al. | Dec 2011 | A1 |
20110313487 | Kokones et al. | Dec 2011 | A1 |
20110313760 | Ricci et al. | Dec 2011 | A1 |
20110319482 | Blower et al. | Dec 2011 | A1 |
20110319724 | Cox | Dec 2011 | A1 |
20110319726 | Sachanandani et al. | Dec 2011 | A1 |
20110319975 | Ho et al. | Dec 2011 | A1 |
20120003615 | Ochs | Jan 2012 | A1 |
20120004518 | D'Souza et al. | Jan 2012 | A1 |
20120004561 | John | Jan 2012 | A1 |
20120004564 | Dobak | Jan 2012 | A1 |
20120004579 | Luo et al. | Jan 2012 | A1 |
20120004749 | Abeyratne et al. | Jan 2012 | A1 |
20120010493 | Semenov | Jan 2012 | A1 |
20120010536 | Bolger et al. | Jan 2012 | A1 |
20120011927 | Badri et al. | Jan 2012 | A1 |
20120016218 | Lau et al. | Jan 2012 | A1 |
20120016252 | Melker et al. | Jan 2012 | A1 |
20120016336 | Whitehurst et al. | Jan 2012 | A1 |
20120016430 | Lozano | Jan 2012 | A1 |
20120016432 | Westendorp et al. | Jan 2012 | A1 |
20120016435 | Rom | Jan 2012 | A1 |
20120021394 | deCharms | Jan 2012 | A1 |
20120022336 | Teixeira | Jan 2012 | A1 |
20120022340 | Heruth et al. | Jan 2012 | A1 |
20120022343 | Shastri et al. | Jan 2012 | A1 |
20120022350 | Teixeira | Jan 2012 | A1 |
20120022351 | Starr | Jan 2012 | A1 |
20120022365 | Mansfield | Jan 2012 | A1 |
20120022384 | Teixeira | Jan 2012 | A1 |
20120022392 | Leuthardt et al. | Jan 2012 | A1 |
20120022611 | Firlik et al. | Jan 2012 | A1 |
20120022844 | Teixeira | Jan 2012 | A1 |
20120022884 | Chillemi | Jan 2012 | A1 |
20120029320 | Watson et al. | Feb 2012 | A1 |
20120029378 | Low | Feb 2012 | A1 |
20120029379 | Sivadas | Feb 2012 | A1 |
20120029591 | Simon et al. | Feb 2012 | A1 |
20120029601 | Simon et al. | Feb 2012 | A1 |
20120035428 | Roberts et al. | Feb 2012 | A1 |
20120035431 | Sun et al. | Feb 2012 | A1 |
20120035433 | Chance | Feb 2012 | A1 |
20120035698 | Johnson et al. | Feb 2012 | A1 |
20120035765 | Sato et al. | Feb 2012 | A1 |
20120036004 | Pradeep et al. | Feb 2012 | A1 |
20120041279 | Freeman et al. | Feb 2012 | A1 |
20120041318 | Taylor | Feb 2012 | A1 |
20120041319 | Taylor et al. | Feb 2012 | A1 |
20120041320 | Taylor | Feb 2012 | A1 |
20120041321 | Taylor et al. | Feb 2012 | A1 |
20120041322 | Taylor et al. | Feb 2012 | A1 |
20120041323 | Taylor et al. | Feb 2012 | A1 |
20120041324 | Taylor et al. | Feb 2012 | A1 |
20120041330 | Prichep et al. | Feb 2012 | A1 |
20120041498 | Gliner et al. | Feb 2012 | A1 |
20120041735 | Taylor | Feb 2012 | A1 |
20120041739 | Taylor | Feb 2012 | A1 |
20120046531 | Hua | Feb 2012 | A1 |
20120046535 | Lin et al. | Feb 2012 | A1 |
20120046711 | Osorio | Feb 2012 | A1 |
20120046715 | Moffitt et al. | Feb 2012 | A1 |
20120046971 | Walker et al. | Feb 2012 | A1 |
20120052469 | Sobel et al. | Mar 2012 | A1 |
20120052905 | Lim et al. | Mar 2012 | A1 |
20120053394 | Honeycutt | Mar 2012 | A1 |
20120053433 | Chamoun et al. | Mar 2012 | A1 |
20120053449 | Moses et al. | Mar 2012 | A1 |
20120053473 | Johnson et al. | Mar 2012 | A1 |
20120053476 | Hopenfeld | Mar 2012 | A1 |
20120053478 | Johnson et al. | Mar 2012 | A1 |
20120053479 | Hopenfeld | Mar 2012 | A1 |
20120053483 | Doidge et al. | Mar 2012 | A1 |
20120053491 | Nathan et al. | Mar 2012 | A1 |
20120053508 | Wu et al. | Mar 2012 | A1 |
20120053919 | Taylor | Mar 2012 | A1 |
20120053921 | Taylor | Mar 2012 | A1 |
20120059246 | Taylor | Mar 2012 | A1 |
20120059273 | Meggiolaro et al. | Mar 2012 | A1 |
20120059431 | Williams et al. | Mar 2012 | A1 |
20120060851 | Amberg | Mar 2012 | A1 |
20120065536 | Causevic et al. | Mar 2012 | A1 |
20120070044 | Avinash et al. | Mar 2012 | A1 |
20120071771 | Behar | Mar 2012 | A1 |
20120078115 | Lonky | Mar 2012 | A1 |
20120078323 | Osorio | Mar 2012 | A1 |
20120078327 | Sloan et al. | Mar 2012 | A1 |
20120080305 | Koruga | Apr 2012 | A1 |
20120083668 | Pradeep et al. | Apr 2012 | A1 |
20120083690 | Semenov | Apr 2012 | A1 |
20120083700 | Osorio | Apr 2012 | A1 |
20120083701 | Osorio | Apr 2012 | A1 |
20120083708 | Rajdev et al. | Apr 2012 | A1 |
20120088987 | Braun et al. | Apr 2012 | A1 |
20120088992 | Armitstead | Apr 2012 | A1 |
20120089004 | Hsu et al. | Apr 2012 | A1 |
20120089205 | Boyden et al. | Apr 2012 | A1 |
20120092156 | Tran | Apr 2012 | A1 |
20120092157 | Tran | Apr 2012 | A1 |
20120095352 | Tran | Apr 2012 | A1 |
20120095357 | Tran | Apr 2012 | A1 |
20120100514 | Desain et al. | Apr 2012 | A1 |
20120101326 | Simon et al. | Apr 2012 | A1 |
20120101387 | Ji et al. | Apr 2012 | A1 |
20120101401 | Faul et al. | Apr 2012 | A1 |
20120101402 | Nguyen | Apr 2012 | A1 |
20120101430 | Robertson et al. | Apr 2012 | A1 |
20120101544 | Hoberman et al. | Apr 2012 | A1 |
20120108909 | Slobounov et al. | May 2012 | A1 |
20120108918 | Jarvik et al. | May 2012 | A1 |
20120108995 | Pradeep et al. | May 2012 | A1 |
20120108997 | Guan et al. | May 2012 | A1 |
20120108998 | Molnar et al. | May 2012 | A1 |
20120108999 | Leininger et al. | May 2012 | A1 |
20120109020 | Wagner et al. | May 2012 | A1 |
20120116149 | Pilla et al. | May 2012 | A1 |
20120116179 | Drew et al. | May 2012 | A1 |
20120116235 | Trumble et al. | May 2012 | A1 |
20120116244 | McIntyre et al. | May 2012 | A1 |
20120116475 | Nelson et al. | May 2012 | A1 |
20120116741 | Choi et al. | May 2012 | A1 |
20120123232 | Najarian et al. | May 2012 | A1 |
20120123290 | Kidmose et al. | May 2012 | A1 |
20120125337 | Asanoi | May 2012 | A1 |
20120128683 | Shantha | May 2012 | A1 |
20120130204 | Basta et al. | May 2012 | A1 |
20120130228 | Zellers et al. | May 2012 | A1 |
20120130229 | Zellers et al. | May 2012 | A1 |
20120130300 | Stavchansky et al. | May 2012 | A1 |
20120130641 | Morrison et al. | May 2012 | A1 |
20120136242 | Qi et al. | May 2012 | A1 |
20120136274 | Burdea et al. | May 2012 | A1 |
20120136605 | Addison et al. | May 2012 | A1 |
20120143038 | Georgopoulos | Jun 2012 | A1 |
20120143074 | Shin et al. | Jun 2012 | A1 |
20120143075 | Tansey | Jun 2012 | A1 |
20120143104 | Tee et al. | Jun 2012 | A1 |
20120143285 | Wang et al. | Jun 2012 | A1 |
20120145152 | Lain et al. | Jun 2012 | A1 |
20120149042 | Jackowski et al. | Jun 2012 | A1 |
20120149997 | Diab et al. | Jun 2012 | A1 |
20120150255 | Lindenthaler et al. | Jun 2012 | A1 |
20120150257 | Aur et al. | Jun 2012 | A1 |
20120150262 | Gliner et al. | Jun 2012 | A1 |
20120150516 | Taylor et al. | Jun 2012 | A1 |
20120150545 | Simon | Jun 2012 | A1 |
20120157804 | Rogers et al. | Jun 2012 | A1 |
20120157963 | Imran | Jun 2012 | A1 |
20120158092 | Thimineur et al. | Jun 2012 | A1 |
20120159656 | Gerber et al. | Jun 2012 | A1 |
20120162002 | Semenov | Jun 2012 | A1 |
20120163689 | Bottger et al. | Jun 2012 | A1 |
20120164613 | Jung et al. | Jun 2012 | A1 |
20120165624 | Diab et al. | Jun 2012 | A1 |
20120165631 | Diab et al. | Jun 2012 | A1 |
20120165696 | Arns | Jun 2012 | A1 |
20120165898 | Moffitt | Jun 2012 | A1 |
20120165899 | Gliner | Jun 2012 | A1 |
20120165904 | Lee et al. | Jun 2012 | A1 |
20120172682 | Linderman et al. | Jul 2012 | A1 |
20120172689 | Albert et al. | Jul 2012 | A1 |
20120172743 | Aguilar et al. | Jul 2012 | A1 |
20120177716 | Ho et al. | Jul 2012 | A1 |
20120179071 | Skelton | Jul 2012 | A1 |
20120179228 | DeCharms | Jul 2012 | A1 |
20120184801 | Simon et al. | Jul 2012 | A1 |
20120184826 | Keenan et al. | Jul 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20120191000 | Adachi et al. | Jul 2012 | A1 |
20120191158 | Craig | Jul 2012 | A1 |
20120191542 | Nurmi | Jul 2012 | A1 |
20120195860 | Walker et al. | Aug 2012 | A1 |
20120197092 | Luo et al. | Aug 2012 | A1 |
20120197153 | Kraus et al. | Aug 2012 | A1 |
20120197163 | Mishelevich | Aug 2012 | A1 |
20120197322 | Skelton et al. | Aug 2012 | A1 |
20120203079 | McLaughlin | Aug 2012 | A1 |
20120203087 | McKenna et al. | Aug 2012 | A1 |
20120203130 | Bernhard | Aug 2012 | A1 |
20120203131 | DiLorenzo | Aug 2012 | A1 |
20120203133 | Jadidi | Aug 2012 | A1 |
20120203725 | Stoica | Aug 2012 | A1 |
20120207362 | Fueyo et al. | Aug 2012 | A1 |
20120209126 | Amos et al. | Aug 2012 | A1 |
20120209136 | Ma | Aug 2012 | A1 |
20120209139 | John | Aug 2012 | A1 |
20120209346 | Bikson et al. | Aug 2012 | A1 |
20120212353 | Fung et al. | Aug 2012 | A1 |
20120215114 | Gratton et al. | Aug 2012 | A1 |
20120215448 | Hu et al. | Aug 2012 | A1 |
20120219195 | Wu et al. | Aug 2012 | A1 |
20120219507 | Santosh et al. | Aug 2012 | A1 |
20120220843 | Diab et al. | Aug 2012 | A1 |
20120220889 | Sullivan et al. | Aug 2012 | A1 |
20120221310 | Sarrafzadeh et al. | Aug 2012 | A1 |
20120226091 | Mishelevich | Sep 2012 | A1 |
20120226130 | De Graff et al. | Sep 2012 | A1 |
20120226185 | Chung et al. | Sep 2012 | A1 |
20120226334 | Gardiner et al. | Sep 2012 | A1 |
20120232327 | Lozano et al. | Sep 2012 | A1 |
20120232376 | Crevecoeur et al. | Sep 2012 | A1 |
20120232433 | Mishelevich | Sep 2012 | A1 |
20120238890 | Baker et al. | Sep 2012 | A1 |
20120242501 | Tran et al. | Sep 2012 | A1 |
20120245464 | Tran | Sep 2012 | A1 |
20120245474 | Ofek et al. | Sep 2012 | A1 |
20120245481 | Blanco et al. | Sep 2012 | A1 |
20120245493 | Mishelevich | Sep 2012 | A1 |
20120245655 | Spitzer et al. | Sep 2012 | A1 |
20120249274 | Toda et al. | Oct 2012 | A1 |
20120253101 | Wang et al. | Oct 2012 | A1 |
20120253141 | Addison et al. | Oct 2012 | A1 |
20120253168 | Hu et al. | Oct 2012 | A1 |
20120253219 | Suffin et al. | Oct 2012 | A1 |
20120253249 | Wilson | Oct 2012 | A1 |
20120253261 | Poletto et al. | Oct 2012 | A1 |
20120253421 | Gliner et al. | Oct 2012 | A1 |
20120253429 | Schiffer | Oct 2012 | A1 |
20120253434 | Nissila et al. | Oct 2012 | A1 |
20120253442 | Gliner et al. | Oct 2012 | A1 |
20120259249 | Khuri-Yakub et al. | Oct 2012 | A1 |
20120262250 | Stevenson et al. | Oct 2012 | A1 |
20120262558 | Boger et al. | Oct 2012 | A1 |
20120263393 | Yahil | Oct 2012 | A1 |
20120265080 | Yu et al. | Oct 2012 | A1 |
20120265262 | Osorio | Oct 2012 | A1 |
20120265267 | Blum et al. | Oct 2012 | A1 |
20120265270 | Cornejo Cruz et al. | Oct 2012 | A1 |
20120265271 | Goetz | Oct 2012 | A1 |
20120268272 | Lee et al. | Oct 2012 | A1 |
20120269385 | Lee et al. | Oct 2012 | A1 |
20120271148 | Nelson | Oct 2012 | A1 |
20120271151 | LaVoilette et al. | Oct 2012 | A1 |
20120271183 | Sachanandani et al. | Oct 2012 | A1 |
20120271189 | Nelson et al. | Oct 2012 | A1 |
20120271190 | Mortensen et al. | Oct 2012 | A1 |
20120271374 | Nelson et al. | Oct 2012 | A1 |
20120271375 | Wu et al. | Oct 2012 | A1 |
20120271376 | Kokones et al. | Oct 2012 | A1 |
20120271377 | Hagedorn et al. | Oct 2012 | A1 |
20120271380 | Roberts et al. | Oct 2012 | A1 |
20120277545 | Teixeira | Nov 2012 | A1 |
20120277548 | Burton | Nov 2012 | A1 |
20120277816 | Zhang et al. | Nov 2012 | A1 |
20120277833 | Gerber et al. | Nov 2012 | A1 |
20120283502 | Mishelevich et al. | Nov 2012 | A1 |
20120283604 | Mishelevich | Nov 2012 | A1 |
20120288143 | Ernst et al. | Nov 2012 | A1 |
20120289854 | Yamada et al. | Nov 2012 | A1 |
20120289869 | Tyler | Nov 2012 | A1 |
20120290058 | Langevin et al. | Nov 2012 | A1 |
20120296182 | Hornero S nchez et al. | Nov 2012 | A1 |
20120296241 | Mishelevich | Nov 2012 | A1 |
20120296253 | Mathews et al. | Nov 2012 | A1 |
20120296569 | Shahaf et al. | Nov 2012 | A1 |
20120302842 | Kurtz et al. | Nov 2012 | A1 |
20120302845 | Lynn et al. | Nov 2012 | A1 |
20120302856 | Chang et al. | Nov 2012 | A1 |
20120302867 | Ichimura | Nov 2012 | A1 |
20120302894 | Diab et al. | Nov 2012 | A1 |
20120302912 | Moffitt et al. | Nov 2012 | A1 |
20120303080 | Ben-David et al. | Nov 2012 | A1 |
20120303087 | Moffitt et al. | Nov 2012 | A1 |
20120310050 | Osorio | Dec 2012 | A1 |
20120310100 | Galen et al. | Dec 2012 | A1 |
20120310105 | Feingold et al. | Dec 2012 | A1 |
20120310106 | Cavuoto | Dec 2012 | A1 |
20120310107 | Doidge et al. | Dec 2012 | A1 |
20120310298 | Besio et al. | Dec 2012 | A1 |
20120316622 | Whitehurst et al. | Dec 2012 | A1 |
20120316630 | Firlik et al. | Dec 2012 | A1 |
20120316793 | Jung et al. | Dec 2012 | A1 |
20120321152 | Carroll | Dec 2012 | A1 |
20120321160 | Carroll | Dec 2012 | A1 |
20120321759 | Marinkovich et al. | Dec 2012 | A1 |
20120323108 | Carroll | Dec 2012 | A1 |
20120323132 | Warner et al. | Dec 2012 | A1 |
20120330109 | Tran | Dec 2012 | A1 |
20120330369 | Osorio et al. | Dec 2012 | A1 |
20130006124 | Eyal et al. | Jan 2013 | A1 |
20130006332 | Sommer et al. | Jan 2013 | A1 |
20130009783 | Tran | Jan 2013 | A1 |
20130011819 | Horseman | Jan 2013 | A1 |
20130012786 | Horseman | Jan 2013 | A1 |
20130012787 | Horseman | Jan 2013 | A1 |
20130012788 | Horseman | Jan 2013 | A1 |
20130012789 | Horseman | Jan 2013 | A1 |
20130012790 | Horseman | Jan 2013 | A1 |
20130012802 | Horseman | Jan 2013 | A1 |
20130012804 | deCharms | Jan 2013 | A1 |
20130012830 | Leininger et al. | Jan 2013 | A1 |
20130013327 | Horseman | Jan 2013 | A1 |
20130013339 | Goldman et al. | Jan 2013 | A1 |
20130013667 | Serena | Jan 2013 | A1 |
20130018435 | De Ridder | Jan 2013 | A1 |
20130018438 | Chow | Jan 2013 | A1 |
20130018439 | Chow et al. | Jan 2013 | A1 |
20130018440 | Chow et al. | Jan 2013 | A1 |
20130018592 | Mollicone et al. | Jan 2013 | A1 |
20130018596 | Bottger et al. | Jan 2013 | A1 |
20130019325 | Deisseroth et al. | Jan 2013 | A1 |
20130023783 | Snyder et al. | Jan 2013 | A1 |
20130028496 | Panin et al. | Jan 2013 | A1 |
20130030241 | Smith | Jan 2013 | A1 |
20130030257 | Nakata et al. | Jan 2013 | A1 |
20130031038 | Horne | Jan 2013 | A1 |
20130034837 | Clapp et al. | Feb 2013 | A1 |
20130035579 | Le et al. | Feb 2013 | A1 |
20130039498 | Adachi et al. | Feb 2013 | A1 |
20130041235 | Rogers et al. | Feb 2013 | A1 |
20130041281 | Park et al. | Feb 2013 | A1 |
20130046151 | Bsoul et al. | Feb 2013 | A1 |
20130046193 | Guttag et al. | Feb 2013 | A1 |
20130046358 | Leyde | Feb 2013 | A1 |
20130046715 | Castermans et al. | Feb 2013 | A1 |
20130053656 | Mollicone et al. | Feb 2013 | A1 |
20130054214 | Taylor | Feb 2013 | A1 |
20130054215 | Stubna et al. | Feb 2013 | A1 |
20130058548 | Garg et al. | Mar 2013 | A1 |
20130060110 | Lynn et al. | Mar 2013 | A1 |
20130060125 | Zeman et al. | Mar 2013 | A1 |
20130060158 | Perez-Velazquez et al. | Mar 2013 | A1 |
20130063434 | Miga et al. | Mar 2013 | A1 |
20130063550 | Ritchey et al. | Mar 2013 | A1 |
20130064438 | Taylor et al. | Mar 2013 | A1 |
20130066350 | Mishelevich | Mar 2013 | A1 |
20130066391 | Hulvershorn et al. | Mar 2013 | A1 |
20130066392 | Simon et al. | Mar 2013 | A1 |
20130066394 | Saab | Mar 2013 | A1 |
20130066395 | Simon et al. | Mar 2013 | A1 |
20130066618 | Taylor et al. | Mar 2013 | A1 |
20130069780 | Tran et al. | Mar 2013 | A1 |
20130070929 | Adachi et al. | Mar 2013 | A1 |
20130072292 | Sutton et al. | Mar 2013 | A1 |
20130072775 | Rogers et al. | Mar 2013 | A1 |
20130072780 | Espy et al. | Mar 2013 | A1 |
20130072807 | Tran | Mar 2013 | A1 |
20130072996 | Kilgard et al. | Mar 2013 | A1 |
20130073022 | Ollivier | Mar 2013 | A1 |
20130076885 | Kobetski et al. | Mar 2013 | A1 |
20130079606 | McGonigle et al. | Mar 2013 | A1 |
20130079621 | Shoham et al. | Mar 2013 | A1 |
20130079647 | McGonigle et al. | Mar 2013 | A1 |
20130079656 | Dripps et al. | Mar 2013 | A1 |
20130079657 | Ochs et al. | Mar 2013 | A1 |
20130080127 | Shahaf et al. | Mar 2013 | A1 |
20130080489 | Ochs et al. | Mar 2013 | A1 |
20130085678 | Jung et al. | Apr 2013 | A1 |
20130089503 | Deisseroth et al. | Apr 2013 | A1 |
20130090454 | Deisseroth et al. | Apr 2013 | A1 |
20130090706 | Nudo et al. | Apr 2013 | A1 |
20130091941 | Huh et al. | Apr 2013 | A1 |
20130095459 | Tran | Apr 2013 | A1 |
20130096391 | Osorio et al. | Apr 2013 | A1 |
20130096393 | Osorio et al. | Apr 2013 | A1 |
20130096394 | Gupta et al. | Apr 2013 | A1 |
20130096408 | He et al. | Apr 2013 | A1 |
20130096441 | Osorio | Apr 2013 | A1 |
20130096453 | Chung et al. | Apr 2013 | A1 |
20130096454 | Jang et al. | Apr 2013 | A1 |
20130096839 | Osorio et al. | Apr 2013 | A1 |
20130096840 | Osorio et al. | Apr 2013 | A1 |
20130102833 | John et al. | Apr 2013 | A1 |
20130102877 | Mori et al. | Apr 2013 | A1 |
20130102897 | Kalafut et al. | Apr 2013 | A1 |
20130102907 | Funane et al. | Apr 2013 | A1 |
20130102919 | Schiff | Apr 2013 | A1 |
20130104066 | Soederstroem | Apr 2013 | A1 |
20130109995 | Rothman et al. | May 2013 | A1 |
20130109996 | Turnbull et al. | May 2013 | A1 |
20130110616 | Bakalash et al. | May 2013 | A1 |
20130113816 | Sudarsky et al. | May 2013 | A1 |
20130116520 | Roham et al. | May 2013 | A1 |
20130116540 | Li et al. | May 2013 | A1 |
20130116561 | Rothberg et al. | May 2013 | A1 |
20130116578 | An et al. | May 2013 | A1 |
20130116588 | Yazicioglu et al. | May 2013 | A1 |
20130116748 | Bokil et al. | May 2013 | A1 |
20130118494 | Ujhazy et al. | May 2013 | A1 |
20130120246 | Schuette et al. | May 2013 | A1 |
20130121984 | Haslett et al. | May 2013 | A1 |
20130123568 | Hamilton et al. | May 2013 | A1 |
20130123584 | Sun et al. | May 2013 | A1 |
20130123607 | Leuthardt et al. | May 2013 | A1 |
20130123684 | Giuffrida et al. | May 2013 | A1 |
20130127708 | Jung et al. | May 2013 | A1 |
20130127980 | Haddick et al. | May 2013 | A1 |
20130130799 | Van Hulle et al. | May 2013 | A1 |
20130131438 | Brewer et al. | May 2013 | A1 |
20130131461 | Jorge et al. | May 2013 | A1 |
20130131537 | Tam | May 2013 | A1 |
20130131746 | Simon et al. | May 2013 | A1 |
20130131753 | Simon et al. | May 2013 | A1 |
20130131755 | Panken et al. | May 2013 | A1 |
20130132029 | Mollicone et al. | May 2013 | A1 |
20130137717 | Chesworth et al. | May 2013 | A1 |
20130137936 | Baker, Jr. et al. | May 2013 | A1 |
20130137938 | Peters | May 2013 | A1 |
20130138002 | Weng et al. | May 2013 | A1 |
20130138176 | Goetz | May 2013 | A1 |
20130138177 | DeRidder | May 2013 | A1 |
20130141103 | Roshtal et al. | Jun 2013 | A1 |
20130144106 | Phillips et al. | Jun 2013 | A1 |
20130144107 | Phillips et al. | Jun 2013 | A1 |
20130144108 | Phillips et al. | Jun 2013 | A1 |
20130144183 | John et al. | Jun 2013 | A1 |
20130144192 | Mischelevich et al. | Jun 2013 | A1 |
20130144353 | Lozano | Jun 2013 | A1 |
20130144537 | Schalk et al. | Jun 2013 | A1 |
20130150650 | Phillips et al. | Jun 2013 | A1 |
20130150651 | Phillips et al. | Jun 2013 | A1 |
20130150659 | Shaw et al. | Jun 2013 | A1 |
20130150702 | Hokari | Jun 2013 | A1 |
20130150921 | Singhal et al. | Jun 2013 | A1 |
20130151163 | Taylor et al. | Jun 2013 | A1 |
20130158883 | Hasegawa et al. | Jun 2013 | A1 |
20130159041 | Jayaraman et al. | Jun 2013 | A1 |
20130165766 | Nishikawa et al. | Jun 2013 | A1 |
20130165804 | Johnson et al. | Jun 2013 | A1 |
20130165812 | Aksenova et al. | Jun 2013 | A1 |
20130165846 | Peyman | Jun 2013 | A1 |
20130165996 | Meadows et al. | Jun 2013 | A1 |
20130167360 | Masmanidis et al. | Jul 2013 | A1 |
20130172663 | Leonard | Jul 2013 | A1 |
20130172686 | Addison et al. | Jul 2013 | A1 |
20130172691 | Tran | Jul 2013 | A1 |
20130172716 | Lozano et al. | Jul 2013 | A1 |
20130172763 | Wheeler | Jul 2013 | A1 |
20130172767 | Dripps et al. | Jul 2013 | A1 |
20130172772 | Alshaer et al. | Jul 2013 | A1 |
20130172774 | Crowder et al. | Jul 2013 | A1 |
20130178693 | Neuvonen et al. | Jul 2013 | A1 |
20130178718 | Tran et al. | Jul 2013 | A1 |
20130178733 | Langleben | Jul 2013 | A1 |
20130178913 | Lozano | Jul 2013 | A1 |
20130182860 | Adachi et al. | Jul 2013 | A1 |
20130184218 | Paul et al. | Jul 2013 | A1 |
20130184516 | Genereux et al. | Jul 2013 | A1 |
20130184552 | Westermann et al. | Jul 2013 | A1 |
20130184558 | Gallant et al. | Jul 2013 | A1 |
20130184597 | Hopenfeld | Jul 2013 | A1 |
20130184603 | Rothman | Jul 2013 | A1 |
20130184639 | Whitehurst et al. | Jul 2013 | A1 |
20130184728 | Mishelevich | Jul 2013 | A1 |
20130184781 | Eskandar et al. | Jul 2013 | A1 |
20130184786 | Goetz | Jul 2013 | A1 |
20130184792 | Simon et al. | Jul 2013 | A1 |
20130184997 | Mott | Jul 2013 | A1 |
20130185144 | Pradeep et al. | Jul 2013 | A1 |
20130185145 | Pradeep et al. | Jul 2013 | A1 |
20130188830 | Ernst et al. | Jul 2013 | A1 |
20130188854 | Bilgic et al. | Jul 2013 | A1 |
20130189663 | Tuchschmtd et al. | Jul 2013 | A1 |
20130190577 | Brunner et al. | Jul 2013 | A1 |
20130190642 | Muesch et al. | Jul 2013 | A1 |
20130197321 | Wilson | Aug 2013 | A1 |
20130197322 | Tran | Aug 2013 | A1 |
20130197328 | Diab et al. | Aug 2013 | A1 |
20130197339 | Bardakjian et al. | Aug 2013 | A1 |
20130197401 | Sato et al. | Aug 2013 | A1 |
20130197944 | Drew et al. | Aug 2013 | A1 |
20130203019 | Nolen | Aug 2013 | A1 |
20130204085 | Alexander et al. | Aug 2013 | A1 |
20130204122 | Hendler et al. | Aug 2013 | A1 |
20130204144 | Colborn et al. | Aug 2013 | A1 |
20130204150 | Similowski et al. | Aug 2013 | A1 |
20130211183 | Schiffer | Aug 2013 | A1 |
20130211224 | Isenhart et al. | Aug 2013 | A1 |
20130211238 | DeCharms | Aug 2013 | A1 |
20130211276 | Luo et al. | Aug 2013 | A1 |
20130211291 | Tran | Aug 2013 | A1 |
20130211728 | Taylor et al. | Aug 2013 | A1 |
20130217982 | Behzadi | Aug 2013 | A1 |
20130218043 | Yoshida | Aug 2013 | A1 |
20130218053 | Kaiser et al. | Aug 2013 | A1 |
20130218232 | Giftakis et al. | Aug 2013 | A1 |
20130218233 | Warschewske et al. | Aug 2013 | A1 |
20130218819 | Lujan et al. | Aug 2013 | A1 |
20130221961 | Liu | Aug 2013 | A1 |
20130223709 | Wagner | Aug 2013 | A1 |
20130225940 | Fujita et al. | Aug 2013 | A1 |
20130225953 | Oliviero et al. | Aug 2013 | A1 |
20130225992 | Osorio | Aug 2013 | A1 |
20130226261 | Sparks et al. | Aug 2013 | A1 |
20130226408 | Fung et al. | Aug 2013 | A1 |
20130226464 | Marci et al. | Aug 2013 | A1 |
20130231574 | Tran | Sep 2013 | A1 |
20130231580 | Chen et al. | Sep 2013 | A1 |
20130231709 | Lozano | Sep 2013 | A1 |
20130231716 | Skelton et al. | Sep 2013 | A1 |
20130231721 | DeCharms | Sep 2013 | A1 |
20130231947 | Shusterman | Sep 2013 | A1 |
20130234823 | Kahn et al. | Sep 2013 | A1 |
20130235550 | Stevenson et al. | Sep 2013 | A1 |
20130237541 | Teegarden et al. | Sep 2013 | A1 |
20130237874 | Zoicas | Sep 2013 | A1 |
20130238049 | Simon et al. | Sep 2013 | A1 |
20130238050 | Simon et al. | Sep 2013 | A1 |
20130238053 | Ignagni et al. | Sep 2013 | A1 |
20130238063 | Nofz | Sep 2013 | A1 |
20130242262 | Lewis | Sep 2013 | A1 |
20130243287 | Thomson et al. | Sep 2013 | A1 |
20130244323 | Deisseroth et al. | Sep 2013 | A1 |
20130245416 | Yarmush et al. | Sep 2013 | A1 |
20130245422 | D'arcy et al. | Sep 2013 | A1 |
20130245424 | deCharms | Sep 2013 | A1 |
20130245464 | Colborn et al. | Sep 2013 | A1 |
20130245466 | Sachanandani et al. | Sep 2013 | A1 |
20130245485 | Mashour et al. | Sep 2013 | A1 |
20130245486 | Simon et al. | Sep 2013 | A1 |
20130245711 | Simon et al. | Sep 2013 | A1 |
20130245712 | Simon et al. | Sep 2013 | A1 |
20130245886 | Fung et al. | Sep 2013 | A1 |
20130251641 | Akhtari et al. | Sep 2013 | A1 |
20130253363 | Juffali et al. | Sep 2013 | A1 |
20130253612 | Chow | Sep 2013 | A1 |
20130255586 | Gerashchenko | Oct 2013 | A1 |
20130261490 | Truccolo et al. | Oct 2013 | A1 |
20130261506 | Mishelevich | Oct 2013 | A1 |
20130261703 | Chow et al. | Oct 2013 | A1 |
20130266163 | Morikawa et al. | Oct 2013 | A1 |
20130267760 | Jin | Oct 2013 | A1 |
20130267866 | Nakashima et al. | Oct 2013 | A1 |
20130267928 | Imran et al. | Oct 2013 | A1 |
20130274562 | Ghaffari et al. | Oct 2013 | A1 |
20130274580 | Madsen et al. | Oct 2013 | A1 |
20130274586 | Miyazaki et al. | Oct 2013 | A1 |
20130274625 | Sarma et al. | Oct 2013 | A1 |
20130275159 | Seely | Oct 2013 | A1 |
20130281758 | Solvason et al. | Oct 2013 | A1 |
20130281759 | Hagedorn et al. | Oct 2013 | A1 |
20130281811 | Imran | Oct 2013 | A1 |
20130281879 | Raniere | Oct 2013 | A1 |
20130281890 | Mishelevich | Oct 2013 | A1 |
20130282075 | De Ridder | Oct 2013 | A1 |
20130282339 | Ricci et al. | Oct 2013 | A1 |
20130289360 | Hyde et al. | Oct 2013 | A1 |
20130289364 | Colman et al. | Oct 2013 | A1 |
20130289385 | Lozano et al. | Oct 2013 | A1 |
20130289386 | Deisseroth et al. | Oct 2013 | A1 |
20130289401 | Colbaugh et al. | Oct 2013 | A1 |
20130289413 | Ochs et al. | Oct 2013 | A1 |
20130289417 | Grunwald et al. | Oct 2013 | A1 |
20130289424 | Brockway et al. | Oct 2013 | A1 |
20130289433 | Jin et al. | Oct 2013 | A1 |
20130289653 | Kiigard et al. | Oct 2013 | A1 |
20130289669 | Deisseroth et al. | Oct 2013 | A1 |
20130293844 | Gross et al. | Nov 2013 | A1 |
20130295016 | Gerber et al. | Nov 2013 | A1 |
20130296406 | Deisseroth et al. | Nov 2013 | A1 |
20130296637 | Kiigard et al. | Nov 2013 | A1 |
20130300573 | Brown et al. | Nov 2013 | A1 |
20130303828 | Hargrove | Nov 2013 | A1 |
20130303934 | Collura | Nov 2013 | A1 |
20130304153 | Hargrove et al. | Nov 2013 | A1 |
20130304159 | Simon et al. | Nov 2013 | A1 |
20130304472 | Pakhomov | Nov 2013 | A1 |
20130308099 | Stack | Nov 2013 | A1 |
20130309278 | Peyman | Nov 2013 | A1 |
20130310422 | Brown et al. | Nov 2013 | A1 |
20130310660 | Zuckerman-Stark et al. | Nov 2013 | A1 |
20130310909 | Simon et al. | Nov 2013 | A1 |
20130314243 | Le | Nov 2013 | A1 |
20130317380 | Liley et al. | Nov 2013 | A1 |
20130317382 | Le | Nov 2013 | A1 |
20130317384 | Le | Nov 2013 | A1 |
20130317474 | Rezai et al. | Nov 2013 | A1 |
20130317568 | Skelton | Nov 2013 | A1 |
20130317580 | Simon et al. | Nov 2013 | A1 |
20130318546 | Kothuri et al. | Nov 2013 | A1 |
20130324880 | Adachi et al. | Dec 2013 | A1 |
20130330428 | Geng | Dec 2013 | A1 |
20130338449 | Warwick et al. | Dec 2013 | A1 |
20130338450 | Osorio et al. | Dec 2013 | A1 |
20130338459 | Lynn et al. | Dec 2013 | A1 |
20130338518 | Zoica | Dec 2013 | A1 |
20130338526 | Howard | Dec 2013 | A1 |
20130338738 | Garcia Molina et al. | Dec 2013 | A1 |
20130338803 | Maoz et al. | Dec 2013 | A1 |
20130339043 | Bakar et al. | Dec 2013 | A1 |
20130344465 | Dickinson et al. | Dec 2013 | A1 |
20130345522 | Sun et al. | Dec 2013 | A1 |
20130345523 | Diab et al. | Dec 2013 | A1 |
20140000630 | Ford | Jan 2014 | A1 |
20140003696 | Taghva | Jan 2014 | A1 |
20140005518 | Ko et al. | Jan 2014 | A1 |
20140005743 | Giuffrida et al. | Jan 2014 | A1 |
20140005744 | Hershey et al. | Jan 2014 | A1 |
20140005988 | Brockway | Jan 2014 | A1 |
20140012061 | Song et al. | Jan 2014 | A1 |
20140012110 | Watson et al. | Jan 2014 | A1 |
20140012133 | Sverdlik et al. | Jan 2014 | A1 |
20140012153 | Greenwald | Jan 2014 | A1 |
20140015852 | Kantartzis et al. | Jan 2014 | A1 |
20140018649 | Jespersen et al. | Jan 2014 | A1 |
20140018792 | Gang et al. | Jan 2014 | A1 |
20140019165 | Horseman | Jan 2014 | A1 |
20140023999 | Greder | Jan 2014 | A1 |
20140025133 | Lozano | Jan 2014 | A1 |
20140025396 | Horseman | Jan 2014 | A1 |
20140025397 | Horseman | Jan 2014 | A1 |
20140029830 | Vija et al. | Jan 2014 | A1 |
20140031703 | Rayner et al. | Jan 2014 | A1 |
20140031889 | Mashiach | Jan 2014 | A1 |
20140031903 | Mashiach | Jan 2014 | A1 |
20140032512 | Drew et al. | Jan 2014 | A1 |
20140038147 | Morrow | Feb 2014 | A1 |
20140039279 | Jarvik et al. | Feb 2014 | A1 |
20140039290 | De Graff et al. | Feb 2014 | A1 |
20140039336 | Osorio et al. | Feb 2014 | A1 |
20140039571 | Wolpaw et al. | Feb 2014 | A1 |
20140039577 | Kothandaraman et al. | Feb 2014 | A1 |
20140039578 | Whitehurst et al. | Feb 2014 | A1 |
20140039975 | Hill | Feb 2014 | A1 |
20140046203 | Osorio et al. | Feb 2014 | A1 |
20140046208 | Sejdic et al. | Feb 2014 | A1 |
20140046407 | Ben-Ezra et al. | Feb 2014 | A1 |
20140051044 | Badower et al. | Feb 2014 | A1 |
20140051960 | Badower et al. | Feb 2014 | A1 |
20140051961 | Badower et al. | Feb 2014 | A1 |
20140052213 | Osorio | Feb 2014 | A1 |
20140055284 | Tran et al. | Feb 2014 | A1 |
20140056815 | Peyman | Feb 2014 | A1 |
20140057232 | Wetmore et al. | Feb 2014 | A1 |
20140058189 | Stubbeman | Feb 2014 | A1 |
20140058218 | Randlov et al. | Feb 2014 | A1 |
20140058219 | Kiraly | Feb 2014 | A1 |
20140058241 | Apparies et al. | Feb 2014 | A1 |
20140058289 | Panken et al. | Feb 2014 | A1 |
20140058292 | Alford et al. | Feb 2014 | A1 |
20140058528 | Contreras-Vidal et al. | Feb 2014 | A1 |
20140062472 | Nishikawa | Mar 2014 | A1 |
20140063054 | Osterhout et al. | Mar 2014 | A1 |
20140063055 | Osterhout et al. | Mar 2014 | A1 |
20140066739 | He et al. | Mar 2014 | A1 |
20140066763 | Rothberg et al. | Mar 2014 | A2 |
20140066796 | Davis et al. | Mar 2014 | A1 |
20140067740 | Solari | Mar 2014 | A1 |
20140070958 | Foo | Mar 2014 | A1 |
20140072127 | Adachi et al. | Mar 2014 | A1 |
20140072130 | Adachi et al. | Mar 2014 | A1 |
20140073863 | Engelbrecht et al. | Mar 2014 | A1 |
20140073864 | Engelbrecht et al. | Mar 2014 | A1 |
20140073866 | Engelbrecht et al. | Mar 2014 | A1 |
20140073870 | Engelbrecht et al. | Mar 2014 | A1 |
20140073875 | Engelbrecht et al. | Mar 2014 | A1 |
20140073876 | Rodriguez-Llorente et al. | Mar 2014 | A1 |
20140073877 | Wooder | Mar 2014 | A1 |
20140073878 | Engelbrecht et al. | Mar 2014 | A1 |
20140073898 | Engelbrecht et al. | Mar 2014 | A1 |
20140073948 | Engelbrecht et al. | Mar 2014 | A1 |
20140073949 | Engelbrecht et al. | Mar 2014 | A1 |
20140073951 | Engelbrecht et al. | Mar 2014 | A1 |
20140073953 | Engelbrecht et al. | Mar 2014 | A1 |
20140073954 | Engelbrecht et al. | Mar 2014 | A1 |
20140073955 | Engelbrecht et al. | Mar 2014 | A1 |
20140073956 | Engelbrecht et al. | Mar 2014 | A1 |
20140073960 | Rodriguez-Llorente et al. | Mar 2014 | A1 |
20140073961 | Rodriguez-Llorente et al. | Mar 2014 | A1 |
20140073963 | Engelbrecht et al. | Mar 2014 | A1 |
20140073965 | Engelbrecht et al. | Mar 2014 | A1 |
20140073966 | Engelbrecht et al. | Mar 2014 | A1 |
20140073967 | Engelbrecht et al. | Mar 2014 | A1 |
20140073968 | Engelbrecht et al. | Mar 2014 | A1 |
20140073974 | Engelbrecht | Mar 2014 | A1 |
20140073975 | Engelbrecht et al. | Mar 2014 | A1 |
20140074060 | Imran | Mar 2014 | A1 |
20140074179 | Heldman et al. | Mar 2014 | A1 |
20140074180 | Heldman et al. | Mar 2014 | A1 |
20140074188 | Armstrong et al. | Mar 2014 | A1 |
20140077612 | Onuma et al. | Mar 2014 | A1 |
20140077946 | Tran | Mar 2014 | A1 |
20140081071 | Simon et al. | Mar 2014 | A1 |
20140081114 | Shachar et al. | Mar 2014 | A1 |
20140081115 | Gu | Mar 2014 | A1 |
20140081347 | Nelson et al. | Mar 2014 | A1 |
20140081353 | Cook et al. | Mar 2014 | A1 |
20140088341 | Altman et al. | Mar 2014 | A1 |
20140088377 | Manzke et al. | Mar 2014 | A1 |
20140094710 | Sarma et al. | Apr 2014 | A1 |
20140094719 | Mishelevich | Apr 2014 | A1 |
20140094720 | Tyler | Apr 2014 | A1 |
20140098981 | Lunner et al. | Apr 2014 | A1 |
20140100467 | Baker et al. | Apr 2014 | A1 |
20140100633 | Mann et al. | Apr 2014 | A1 |
20140101084 | Li et al. | Apr 2014 | A1 |
20140104059 | Tran | Apr 2014 | A1 |
20140105436 | Adachi et al. | Apr 2014 | A1 |
20140107397 | Simon et al. | Apr 2014 | A1 |
20140107398 | Simon et al. | Apr 2014 | A1 |
20140107401 | Anderson et al. | Apr 2014 | A1 |
20140107464 | Aksenova et al. | Apr 2014 | A1 |
20140107519 | Musha et al. | Apr 2014 | A1 |
20140107521 | Galan | Apr 2014 | A1 |
20140107525 | Tass | Apr 2014 | A1 |
20140107728 | Fried et al. | Apr 2014 | A1 |
20140107935 | Taylor | Apr 2014 | A1 |
20140111335 | Kleiss et al. | Apr 2014 | A1 |
20140113367 | Deisseroth et al. | Apr 2014 | A1 |
20140114165 | Walker et al. | Apr 2014 | A1 |
20140114205 | Braun et al. | Apr 2014 | A1 |
20140114207 | Patterson | Apr 2014 | A1 |
20140114242 | Eckle | Apr 2014 | A1 |
20140114889 | Dagum | Apr 2014 | A1 |
20140119621 | Uber | May 2014 | A1 |
20140121446 | Phillips et al. | May 2014 | A1 |
20140121476 | Tran et al. | May 2014 | A1 |
20140121554 | Sarma et al. | May 2014 | A1 |
20140121565 | Kim | May 2014 | A1 |
20140122379 | Moffitt et al. | May 2014 | A1 |
20140128762 | Han et al. | May 2014 | A1 |
20140128763 | Fadem | May 2014 | A1 |
20140128764 | Gandhi | May 2014 | A1 |
20140128938 | Craig | May 2014 | A1 |
20140133720 | Lee et al. | May 2014 | A1 |
20140133722 | Lee et al. | May 2014 | A1 |
20140135642 | Ekpar | May 2014 | A1 |
20140135680 | Peyman | May 2014 | A1 |
20140135873 | An et al. | May 2014 | A1 |
20140135879 | Flint | May 2014 | A1 |
20140135886 | Cook et al. | May 2014 | A1 |
20140136585 | Brockway | May 2014 | A1 |
20140140567 | LeBoeuf et al. | May 2014 | A1 |
20140142448 | Bae et al. | May 2014 | A1 |
20140142653 | Osorio | May 2014 | A1 |
20140142654 | Simon et al. | May 2014 | A1 |
20140142669 | Cook et al. | May 2014 | A1 |
20140143064 | Tran | May 2014 | A1 |
20140148479 | Chesworth et al. | May 2014 | A1 |
20140148657 | Hendler et al. | May 2014 | A1 |
20140148693 | Taylor | May 2014 | A1 |
20140148716 | Hopenfeld et al. | May 2014 | A1 |
20140148723 | Nierenberg et al. | May 2014 | A1 |
20140148726 | Wagner | May 2014 | A1 |
20140148872 | Goldwasser et al. | May 2014 | A1 |
20140151563 | Rousso et al. | Jun 2014 | A1 |
20140152673 | Lynn et al. | Jun 2014 | A1 |
20140154647 | Nolen | Jun 2014 | A1 |
20140154650 | Stack | Jun 2014 | A1 |
20140155430 | Chesworth et al. | Jun 2014 | A1 |
20140155706 | Kochs et al. | Jun 2014 | A1 |
20140155714 | Gavish | Jun 2014 | A1 |
20140155730 | Bansal et al. | Jun 2014 | A1 |
20140155740 | Semenov | Jun 2014 | A1 |
20140155770 | Taylor | Jun 2014 | A1 |
20140155772 | Frei et al. | Jun 2014 | A1 |
20140155952 | Lozano et al. | Jun 2014 | A1 |
20140156000 | Campin et al. | Jun 2014 | A1 |
20140159862 | Yang et al. | Jun 2014 | A1 |
20140161352 | Buyens et al. | Jun 2014 | A1 |
20140163328 | Geva et al. | Jun 2014 | A1 |
20140163330 | Horseman | Jun 2014 | A1 |
20140163331 | Horseman | Jun 2014 | A1 |
20140163332 | Horseman | Jun 2014 | A1 |
20140163333 | Horseman | Jun 2014 | A1 |
20140163335 | Horseman | Jun 2014 | A1 |
20140163336 | Horseman | Jun 2014 | A1 |
20140163337 | Horseman | Jun 2014 | A1 |
20140163368 | Rousso et al. | Jun 2014 | A1 |
20140163385 | Kelleher et al. | Jun 2014 | A1 |
20140163409 | Arndt | Jun 2014 | A1 |
20140163425 | Tran | Jun 2014 | A1 |
20140163627 | Starr et al. | Jun 2014 | A1 |
20140163643 | Craig | Jun 2014 | A1 |
20140163893 | Harumatsu et al. | Jun 2014 | A1 |
20140163897 | Lynn et al. | Jun 2014 | A1 |
20140171749 | Chin et al. | Jun 2014 | A1 |
20140171757 | Kawato et al. | Jun 2014 | A1 |
20140171819 | Patterson | Jun 2014 | A1 |
20140171820 | Causevic | Jun 2014 | A1 |
20140174277 | Mann | Jun 2014 | A1 |
20140175261 | Addison et al. | Jun 2014 | A1 |
20140176944 | Addison et al. | Jun 2014 | A1 |
20140179980 | Phillips et al. | Jun 2014 | A1 |
20140180088 | Rothberg et al. | Jun 2014 | A1 |
20140180092 | Rothberg et al. | Jun 2014 | A1 |
20140180093 | Rothberg et al. | Jun 2014 | A1 |
20140180094 | Rothberg et al. | Jun 2014 | A1 |
20140180095 | Rothberg et al. | Jun 2014 | A1 |
20140180096 | Rothberg et al. | Jun 2014 | A1 |
20140180097 | Rothberg et al. | Jun 2014 | A1 |
20140180099 | Rothberg et al. | Jun 2014 | A1 |
20140180100 | Rothberg et al. | Jun 2014 | A1 |
20140180112 | Rothberg et al. | Jun 2014 | A1 |
20140180113 | Rothberg et al. | Jun 2014 | A1 |
20140180145 | Kanai et al. | Jun 2014 | A1 |
20140180153 | Zia et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140180161 | Bolger et al. | Jun 2014 | A1 |
20140180176 | Rothberg et al. | Jun 2014 | A1 |
20140180177 | Rothberg et al. | Jun 2014 | A1 |
20140180194 | Lozano | Jun 2014 | A1 |
20140180358 | Giftakis et al. | Jun 2014 | A1 |
20140180597 | Brown et al. | Jun 2014 | A1 |
20140184550 | Hennessey et al. | Jul 2014 | A1 |
20140187901 | Cui et al. | Jul 2014 | A1 |
20140187994 | Thornton | Jul 2014 | A1 |
20140188006 | Alshaer et al. | Jul 2014 | A1 |
20140188770 | Agrafioti et al. | Jul 2014 | A1 |
20140193336 | Rousso et al. | Jul 2014 | A1 |
20140194702 | Tran | Jul 2014 | A1 |
20140194720 | Hua | Jul 2014 | A1 |
20140194726 | Mishelevich et al. | Jul 2014 | A1 |
20140194758 | Korenberg | Jul 2014 | A1 |
20140194759 | Weiland et al. | Jul 2014 | A1 |
20140194768 | Nierenberg et al. | Jul 2014 | A1 |
20140194769 | Nierenberg et al. | Jul 2014 | A1 |
20140194780 | Alshaer et al. | Jul 2014 | A1 |
20140194793 | Nakata et al. | Jul 2014 | A1 |
20140200414 | Osorio | Jul 2014 | A1 |
20140200432 | Banerji et al. | Jul 2014 | A1 |
20140200623 | Lindenthaler et al. | Jul 2014 | A1 |
20140203797 | Stivoric et al. | Jul 2014 | A1 |
20140206981 | Nagasaka | Jul 2014 | A1 |
20140207224 | Simon | Jul 2014 | A1 |
20140207432 | Taylor | Jul 2014 | A1 |
20140211593 | Tyler et al. | Jul 2014 | A1 |
20140213842 | Simon et al. | Jul 2014 | A1 |
20140213843 | Pilla et al. | Jul 2014 | A1 |
20140213844 | Pilla et al. | Jul 2014 | A1 |
20140213937 | Bianchi et al. | Jul 2014 | A1 |
20140213961 | Whitehurst et al. | Jul 2014 | A1 |
20140214135 | Ben-David et al. | Jul 2014 | A1 |
20140214330 | Iyer et al. | Jul 2014 | A1 |
20140214335 | Siefert | Jul 2014 | A1 |
20140221726 | Pilla et al. | Aug 2014 | A1 |
20140221866 | Quy | Aug 2014 | A1 |
20140222113 | Gliner et al. | Aug 2014 | A1 |
20140222406 | Taylor | Aug 2014 | A1 |
20140223462 | Aimone | Aug 2014 | A1 |
20140226131 | Lopez et al. | Aug 2014 | A1 |
20140226888 | Skidmore | Aug 2014 | A1 |
20140228620 | Vasishta | Aug 2014 | A1 |
20140228649 | Rayner et al. | Aug 2014 | A1 |
20140228651 | Causevic et al. | Aug 2014 | A1 |
20140228653 | Kiraly | Aug 2014 | A1 |
20140228702 | Shahaf et al. | Aug 2014 | A1 |
20140232516 | Stivoric et al. | Aug 2014 | A1 |
20140235826 | Deisseroth et al. | Aug 2014 | A1 |
20140235965 | Tran | Aug 2014 | A1 |
20140236039 | Strokova Aksenova et al. | Aug 2014 | A1 |
20140236077 | Robertson et al. | Aug 2014 | A1 |
20140236272 | Simon et al. | Aug 2014 | A1 |
20140236492 | Taylor | Aug 2014 | A1 |
20140237073 | Schiff | Aug 2014 | A1 |
20140243608 | Hunt | Aug 2014 | A1 |
20140243613 | Osorio | Aug 2014 | A1 |
20140243614 | Rothberg et al. | Aug 2014 | A1 |
20140243621 | Weng et al. | Aug 2014 | A1 |
20140243628 | Ochs et al. | Aug 2014 | A1 |
20140243647 | Clark et al. | Aug 2014 | A1 |
20140243652 | Pashko | Aug 2014 | A1 |
20140243663 | Taylor | Aug 2014 | A1 |
20140243694 | Baker et al. | Aug 2014 | A1 |
20140243714 | Ward et al. | Aug 2014 | A1 |
20140243926 | Carcieri | Aug 2014 | A1 |
20140243934 | Vo-Dinh et al. | Aug 2014 | A1 |
20140245191 | Serena | Aug 2014 | A1 |
20140247970 | Taylor | Sep 2014 | A1 |
20140249360 | Jaeger et al. | Sep 2014 | A1 |
20140249396 | Shacham-Diamand et al. | Sep 2014 | A1 |
20140249429 | Tran | Sep 2014 | A1 |
20140249445 | Deadwyler et al. | Sep 2014 | A1 |
20140249447 | Sereno et al. | Sep 2014 | A1 |
20140249454 | Carpentier | Sep 2014 | A1 |
20140249608 | Rogers | Sep 2014 | A1 |
20140249791 | Taylor | Sep 2014 | A1 |
20140249792 | Taylor | Sep 2014 | A1 |
20140257047 | Sillay et al. | Sep 2014 | A1 |
20140257073 | Machon et al. | Sep 2014 | A1 |
20140257118 | DiLorenzo et al. | Sep 2014 | A1 |
20140257128 | Moxon et al. | Sep 2014 | A1 |
20140257132 | Kilgard et al. | Sep 2014 | A1 |
20140257147 | John et al. | Sep 2014 | A1 |
20140257430 | Kiigard et al. | Sep 2014 | A1 |
20140257437 | Simon et al. | Sep 2014 | A1 |
20140257438 | Simon et al. | Sep 2014 | A1 |
20140266696 | Addison et al. | Sep 2014 | A1 |
20140266787 | Tran | Sep 2014 | A1 |
20140270438 | Declerck et al. | Sep 2014 | A1 |
20140271483 | Satchi-Fainaro et al. | Sep 2014 | A1 |
20140275716 | Connor | Sep 2014 | A1 |
20140275741 | Vandenbelt et al. | Sep 2014 | A1 |
20140275807 | Redei | Sep 2014 | A1 |
20140275847 | Perryman et al. | Sep 2014 | A1 |
20140275851 | Amble et al. | Sep 2014 | A1 |
20140275886 | Teixeira | Sep 2014 | A1 |
20140275889 | Addison et al. | Sep 2014 | A1 |
20140275891 | Muehlemann et al. | Sep 2014 | A1 |
20140275944 | Semenov | Sep 2014 | A1 |
20140276012 | Semenov | Sep 2014 | A1 |
20140276013 | Muehlemann et al. | Sep 2014 | A1 |
20140276014 | Khanicheh et al. | Sep 2014 | A1 |
20140276090 | Breed | Sep 2014 | A1 |
20140276123 | Yang | Sep 2014 | A1 |
20140276130 | Mirelman et al. | Sep 2014 | A1 |
20140276181 | Sun et al. | Sep 2014 | A1 |
20140276183 | Badower | Sep 2014 | A1 |
20140276185 | Carlson et al. | Sep 2014 | A1 |
20140276187 | Lasemidis et al. | Sep 2014 | A1 |
20140276194 | Osorio | Sep 2014 | A1 |
20140276549 | Osorio | Sep 2014 | A1 |
20140276702 | McKay et al. | Sep 2014 | A1 |
20140276944 | Farritor et al. | Sep 2014 | A1 |
20140277255 | Sabesan | Sep 2014 | A1 |
20140277256 | Osorio | Sep 2014 | A1 |
20140277282 | Jaax | Sep 2014 | A1 |
20140277286 | Cinbis | Sep 2014 | A1 |
20140277582 | Leuthardt et al. | Sep 2014 | A1 |
20140279341 | Bhardwaj et al. | Sep 2014 | A1 |
20140279746 | De Bruin et al. | Sep 2014 | A1 |
20140288381 | Faarbaek et al. | Sep 2014 | A1 |
20140288614 | Hagedorn et al. | Sep 2014 | A1 |
20140288620 | DiLorenzo | Sep 2014 | A1 |
20140288953 | Lynn et al. | Sep 2014 | A1 |
20140289172 | Rothman et al. | Sep 2014 | A1 |
20140296646 | Wingeier et al. | Oct 2014 | A1 |
20140296655 | Akhbardeh et al. | Oct 2014 | A1 |
20140296724 | Guttag et al. | Oct 2014 | A1 |
20140296733 | Omurtag et al. | Oct 2014 | A1 |
20140296750 | Einav et al. | Oct 2014 | A1 |
20140297397 | Bakalash et al. | Oct 2014 | A1 |
20140300532 | Karkkainen et al. | Oct 2014 | A1 |
20140303424 | Glass | Oct 2014 | A1 |
20140303425 | Pilla et al. | Oct 2014 | A1 |
20140303452 | Ghaffari | Oct 2014 | A1 |
20140303453 | Seely et al. | Oct 2014 | A1 |
20140303454 | Clifton et al. | Oct 2014 | A1 |
20140303486 | Baumgartner et al. | Oct 2014 | A1 |
20140303508 | Plotnik-Peleg et al. | Oct 2014 | A1 |
20140303511 | Sajda et al. | Oct 2014 | A1 |
20140304773 | Woods et al. | Oct 2014 | A1 |
20140309484 | Chang | Oct 2014 | A1 |
20140309614 | Frei et al. | Oct 2014 | A1 |
20140309881 | Fung et al. | Oct 2014 | A1 |
20140309943 | Grundlehner et al. | Oct 2014 | A1 |
20140313303 | Davis et al. | Oct 2014 | A1 |
20140315169 | Bohbot | Oct 2014 | A1 |
20140316191 | de Zambotti et al. | Oct 2014 | A1 |
20140316192 | de Zambotti et al. | Oct 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316221 | Rothman | Oct 2014 | A1 |
20140316230 | Denison et al. | Oct 2014 | A1 |
20140316235 | Davis et al. | Oct 2014 | A1 |
20140316243 | Niedermeyer | Oct 2014 | A1 |
20140316248 | deCharms | Oct 2014 | A1 |
20140316278 | Addison et al. | Oct 2014 | A1 |
20140323849 | Deisseroth et al. | Oct 2014 | A1 |
20140323899 | Silberstein | Oct 2014 | A1 |
20140323900 | Bibian et al. | Oct 2014 | A1 |
20140323924 | Mishelevich | Oct 2014 | A1 |
20140323946 | Bourke, Jr. et al. | Oct 2014 | A1 |
20140324118 | Simon et al. | Oct 2014 | A1 |
20140324138 | Wentz et al. | Oct 2014 | A1 |
20140328487 | Hiroe | Nov 2014 | A1 |
20140330093 | Pedro | Nov 2014 | A1 |
20140330102 | Zbrzeski et al. | Nov 2014 | A1 |
20140330157 | Snook | Nov 2014 | A1 |
20140330159 | Costa et al. | Nov 2014 | A1 |
20140330268 | Palti et al. | Nov 2014 | A1 |
20140330334 | Errico et al. | Nov 2014 | A1 |
20140330335 | Errico et al. | Nov 2014 | A1 |
20140330336 | Errico et al. | Nov 2014 | A1 |
20140330337 | Linke et al. | Nov 2014 | A1 |
20140330345 | John | Nov 2014 | A1 |
20140330357 | Stevenson et al. | Nov 2014 | A1 |
20140330394 | Leuthardt et al. | Nov 2014 | A1 |
20140330404 | Abdelghani et al. | Nov 2014 | A1 |
20140330580 | Grima et al. | Nov 2014 | A1 |
20140335489 | DeCharms | Nov 2014 | A1 |
20140336473 | Greco | Nov 2014 | A1 |
20140336489 | Angotzi et al. | Nov 2014 | A1 |
20140336514 | Peyman | Nov 2014 | A1 |
20140336547 | Tass et al. | Nov 2014 | A1 |
20140336730 | Simon et al. | Nov 2014 | A1 |
20140340084 | Alon | Nov 2014 | A1 |
20140343397 | Kim et al. | Nov 2014 | A1 |
20140343399 | Posse | Nov 2014 | A1 |
20140343408 | Tolkowsky | Nov 2014 | A1 |
20140343463 | Mishelevich | Nov 2014 | A1 |
20140343882 | Taulu et al. | Nov 2014 | A1 |
20140347265 | Aimone et al. | Nov 2014 | A1 |
20140347491 | Connor | Nov 2014 | A1 |
20140348183 | Kim et al. | Nov 2014 | A1 |
20140348412 | Taylor | Nov 2014 | A1 |
20140350353 | Connor | Nov 2014 | A1 |
20140350369 | Budiman et al. | Nov 2014 | A1 |
20140350380 | Eidelberg | Nov 2014 | A1 |
20140350431 | Hagedorn | Nov 2014 | A1 |
20140350436 | Nathan et al. | Nov 2014 | A1 |
20140350634 | Grill et al. | Nov 2014 | A1 |
20140350636 | King et al. | Nov 2014 | A1 |
20140350864 | Fang et al. | Nov 2014 | A1 |
20140354278 | Subbarao | Dec 2014 | A1 |
20140355859 | Taylor et al. | Dec 2014 | A1 |
20140357507 | Umansky et al. | Dec 2014 | A1 |
20140357932 | Lozano | Dec 2014 | A1 |
20140357935 | Ilmoniemi et al. | Dec 2014 | A1 |
20140357936 | Simon et al. | Dec 2014 | A1 |
20140357962 | Harrington et al. | Dec 2014 | A1 |
20140358024 | Nelson et al. | Dec 2014 | A1 |
20140358025 | Parhi et al. | Dec 2014 | A1 |
20140358067 | Deisseroth et al. | Dec 2014 | A1 |
20140358193 | Lyons et al. | Dec 2014 | A1 |
20140358199 | Lim | Dec 2014 | A1 |
20140364721 | Lee et al. | Dec 2014 | A1 |
20140364746 | Addison et al. | Dec 2014 | A1 |
20140369537 | Pontoppidan et al. | Dec 2014 | A1 |
20140370479 | Gazzaley | Dec 2014 | A1 |
20140371515 | John | Dec 2014 | A1 |
20140371516 | Tsai et al. | Dec 2014 | A1 |
20140371544 | Wu et al. | Dec 2014 | A1 |
20140371573 | Komoto et al. | Dec 2014 | A1 |
20140371599 | Wu et al. | Dec 2014 | A1 |
20140371611 | Kim | Dec 2014 | A1 |
20140371984 | Fung et al. | Dec 2014 | A1 |
20140378809 | Weitnauer et al. | Dec 2014 | A1 |
20140378810 | Davis et al. | Dec 2014 | A1 |
20140378815 | Huang et al. | Dec 2014 | A1 |
20140378830 | Li | Dec 2014 | A1 |
20140378851 | Frei et al. | Dec 2014 | A1 |
20140378941 | Su et al. | Dec 2014 | A1 |
20140379620 | Sarrafzadeh et al. | Dec 2014 | A1 |
20150002815 | Gross et al. | Jan 2015 | A1 |
20150003698 | Davis et al. | Jan 2015 | A1 |
20150003699 | Davis et al. | Jan 2015 | A1 |
20150005592 | Osorio | Jan 2015 | A1 |
20150005594 | Chamoun et al. | Jan 2015 | A1 |
20150005640 | Davis et al. | Jan 2015 | A1 |
20150005644 | Rhoads | Jan 2015 | A1 |
20150005646 | Balakrishnan et al. | Jan 2015 | A1 |
20150005660 | Kraus et al. | Jan 2015 | A1 |
20150005680 | Lipani | Jan 2015 | A1 |
20150005839 | Sabesan et al. | Jan 2015 | A1 |
20150005840 | Pal et al. | Jan 2015 | A1 |
20150005841 | Pal et al. | Jan 2015 | A1 |
20150006186 | Davis et al. | Jan 2015 | A1 |
20150008916 | Le Prado et al. | Jan 2015 | A1 |
20150010223 | Sapiro et al. | Jan 2015 | A1 |
20150011866 | Baumgartner | Jan 2015 | A1 |
20150011877 | Baumgartner | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150012054 | Kilgard et al. | Jan 2015 | A1 |
20150012057 | Carlson et al. | Jan 2015 | A1 |
20150012111 | Contreras-Vidal et al. | Jan 2015 | A1 |
20150012466 | Sapiro et al. | Jan 2015 | A1 |
20150016618 | Adachi et al. | Jan 2015 | A1 |
20150017115 | Satchi-Fainaro et al. | Jan 2015 | A1 |
20150018665 | Jasanoff et al. | Jan 2015 | A1 |
20150018699 | Zeng et al. | Jan 2015 | A1 |
20150018702 | Galloway et al. | Jan 2015 | A1 |
20150018705 | Barlow et al. | Jan 2015 | A1 |
20150018706 | Segal | Jan 2015 | A1 |
20150018758 | John | Jan 2015 | A1 |
20150018893 | Kilgard et al. | Jan 2015 | A1 |
20150018905 | Nofzjnger et al. | Jan 2015 | A1 |
20150019241 | Bennett et al. | Jan 2015 | A1 |
20150019266 | Stempora | Jan 2015 | A1 |
20150024356 | Hillyer et al. | Jan 2015 | A1 |
20150025351 | Govari | Jan 2015 | A1 |
20150025408 | Wingeier et al. | Jan 2015 | A1 |
20150025410 | Wolpaw et al. | Jan 2015 | A1 |
20150025421 | Wagner et al. | Jan 2015 | A1 |
20150025422 | Tyler | Jan 2015 | A1 |
20150025610 | Wingeier et al. | Jan 2015 | A1 |
20150025917 | Stempora | Jan 2015 | A1 |
20150026446 | Kim et al. | Jan 2015 | A1 |
20150029087 | Klappert et al. | Jan 2015 | A1 |
20150030220 | Cho et al. | Jan 2015 | A1 |
20150032017 | Babaeizadeh et al. | Jan 2015 | A1 |
20150032044 | Peyman | Jan 2015 | A9 |
20150032178 | Simon et al. | Jan 2015 | A1 |
20150033245 | Klappert et al. | Jan 2015 | A1 |
20150033258 | Klappert et al. | Jan 2015 | A1 |
20150033259 | Klappert et al. | Jan 2015 | A1 |
20150033262 | Klappert et al. | Jan 2015 | A1 |
20150033266 | Klappert et al. | Jan 2015 | A1 |
20150033363 | Pinsky et al. | Jan 2015 | A1 |
20150035959 | Amble et al. | Feb 2015 | A1 |
20150038804 | Younes | Feb 2015 | A1 |
20150038812 | Ayaz et al. | Feb 2015 | A1 |
20150038822 | Wingeier et al. | Feb 2015 | A1 |
20150038869 | Simon et al. | Feb 2015 | A1 |
20150039066 | Wingeier et al. | Feb 2015 | A1 |
20150039110 | Abeyratne et al. | Feb 2015 | A1 |
20150042477 | Kobetski et al. | Feb 2015 | A1 |
20150044138 | Lansbergen et al. | Feb 2015 | A1 |
20150045606 | Hagedorn et al. | Feb 2015 | A1 |
20150045607 | Hakansson | Feb 2015 | A1 |
20150045686 | Lynn | Feb 2015 | A1 |
20150051655 | Kilgard et al. | Feb 2015 | A1 |
20150051656 | Kilgard et al. | Feb 2015 | A1 |
20150051657 | Kilgard et al. | Feb 2015 | A1 |
20150051658 | Kilgard et al. | Feb 2015 | A1 |
20150051659 | Kilgard et al. | Feb 2015 | A1 |
20150051663 | Hagedorn | Feb 2015 | A1 |
20150051668 | Bahmer | Feb 2015 | A1 |
20150057512 | Kapoor | Feb 2015 | A1 |
20150057715 | Kilgard et al. | Feb 2015 | A1 |
20150065803 | Douglas et al. | Mar 2015 | A1 |
20150065831 | Popovic et al. | Mar 2015 | A1 |
20150065838 | Wingeier et al. | Mar 2015 | A1 |
20150065839 | Farah et al. | Mar 2015 | A1 |
20150065845 | Takiguchi | Mar 2015 | A1 |
20150066124 | Stevenson et al. | Mar 2015 | A1 |
20150068069 | Tran et al. | Mar 2015 | A1 |
20150069846 | Hokari | Mar 2015 | A1 |
20150071907 | Crombez et al. | Mar 2015 | A1 |
20150072394 | Deisseroth et al. | Mar 2015 | A1 |
20150073141 | Teegarden et al. | Mar 2015 | A1 |
20150073237 | Osorio | Mar 2015 | A1 |
20150073249 | Musha | Mar 2015 | A1 |
20150073294 | Zhang et al. | Mar 2015 | A1 |
20150073306 | Abeyratne et al. | Mar 2015 | A1 |
20150073505 | Errico et al. | Mar 2015 | A1 |
20150073722 | Taylor et al. | Mar 2015 | A1 |
20150080327 | Paul et al. | Mar 2015 | A1 |
20150080671 | Christensen et al. | Mar 2015 | A1 |
20150080674 | Drew et al. | Mar 2015 | A1 |
20150080695 | Rogers et al. | Mar 2015 | A1 |
20150080703 | Reiman | Mar 2015 | A1 |
20150080746 | Bleich et al. | Mar 2015 | A1 |
20150080753 | Miyazaki et al. | Mar 2015 | A1 |
20150080985 | Yun et al. | Mar 2015 | A1 |
20150081226 | Baki | Mar 2015 | A1 |
20150081299 | Jasinschi et al. | Mar 2015 | A1 |
20150087931 | Banerjee et al. | Mar 2015 | A1 |
20150088015 | Taylor | Mar 2015 | A1 |
20150088024 | Sackellares et al. | Mar 2015 | A1 |
20150088093 | Goetz | Mar 2015 | A1 |
20150088120 | Garcia et al. | Mar 2015 | A1 |
20150088224 | Goldwasser et al. | Mar 2015 | A1 |
20150088228 | Moffitt | Mar 2015 | A1 |
20150088478 | Taylor | Mar 2015 | A1 |
20150091730 | Kangas et al. | Apr 2015 | A1 |
20150091791 | Segal | Apr 2015 | A1 |
20150092949 | Adachi et al. | Apr 2015 | A1 |
20150093729 | Plans et al. | Apr 2015 | A1 |
20150094962 | Hoegh et al. | Apr 2015 | A1 |
20150096564 | Cosnek | Apr 2015 | A1 |
20150099941 | Tran | Apr 2015 | A1 |
20150099946 | Sahin | Apr 2015 | A1 |
20150099959 | Bonmassar et al. | Apr 2015 | A1 |
20150099962 | Weiss et al. | Apr 2015 | A1 |
20150103360 | Addison et al. | Apr 2015 | A1 |
20150105631 | Tran et al. | Apr 2015 | A1 |
20150105641 | Austin et al. | Apr 2015 | A1 |
20150105701 | Mayer et al. | Apr 2015 | A1 |
20150105837 | Aguilar Domingo | Apr 2015 | A1 |
20150105844 | Tass et al. | Apr 2015 | A1 |
20150112222 | Sun et al. | Apr 2015 | A1 |
20150112403 | Ruffini et al. | Apr 2015 | A1 |
20150112409 | Hagedorn | Apr 2015 | A1 |
20150112899 | Dagum | Apr 2015 | A1 |
20150119652 | Hyde et al. | Apr 2015 | A1 |
20150119658 | Osorio | Apr 2015 | A1 |
20150119689 | Pascual-Leone et al. | Apr 2015 | A1 |
20150119698 | Eyal et al. | Apr 2015 | A1 |
20150119743 | Maksym et al. | Apr 2015 | A1 |
20150119745 | Similowski et al. | Apr 2015 | A1 |
20150119746 | Conradsen | Apr 2015 | A1 |
20150119794 | Peyman | Apr 2015 | A1 |
20150119898 | Desalles et al. | Apr 2015 | A1 |
20150119956 | Libbus et al. | Apr 2015 | A1 |
20150120007 | Guez et al. | Apr 2015 | A1 |
20150123653 | Nagasaka | May 2015 | A1 |
20150124220 | Gross et al. | May 2015 | A1 |
20150126821 | Kempfner et al. | May 2015 | A1 |
20150126845 | Jin et al. | May 2015 | A1 |
20150126848 | Baker et al. | May 2015 | A1 |
20150126873 | Connor | May 2015 | A1 |
20150133716 | Suhami et al. | May 2015 | A1 |
20150133811 | Suzuki et al. | May 2015 | A1 |
20150133812 | deCharms | May 2015 | A1 |
20150133830 | Dirks et al. | May 2015 | A1 |
20150134031 | Moffitt et al. | May 2015 | A1 |
20150134264 | Tansey | May 2015 | A1 |
20150137817 | Wilson et al. | May 2015 | A1 |
20150137988 | Gravenstein et al. | May 2015 | A1 |
20150140528 | Sikstrom et al. | May 2015 | A1 |
20150141529 | Hargrove | May 2015 | A1 |
20150141773 | Einav et al. | May 2015 | A1 |
20150141789 | Knight et al. | May 2015 | A1 |
20150141794 | Foo | May 2015 | A1 |
20150142082 | Simon et al. | May 2015 | A1 |
20150145519 | Lee et al. | May 2015 | A1 |
20150145676 | Adhikari et al. | May 2015 | A1 |
20150148617 | Friedman | May 2015 | A1 |
20150148619 | Berg et al. | May 2015 | A1 |
20150148700 | Mhuircheartaigh et al. | May 2015 | A1 |
20150148878 | Yoo et al. | May 2015 | A1 |
20150150122 | Son et al. | May 2015 | A1 |
20150150473 | Knight et al. | Jun 2015 | A1 |
20150150475 | Varcoe | Jun 2015 | A1 |
20150150530 | Taylor et al. | Jun 2015 | A1 |
20150150753 | Racette | Jun 2015 | A1 |
20150151142 | Tyler et al. | Jun 2015 | A1 |
20150153477 | Wikelski et al. | Jun 2015 | A1 |
20150154721 | Thompson | Jun 2015 | A1 |
20150154764 | Xie et al. | Jun 2015 | A1 |
20150154889 | Tuchschmtd et al. | Jun 2015 | A1 |
20150157235 | Jelen et al. | Jun 2015 | A1 |
20150157266 | Machon et al. | Jun 2015 | A1 |
20150157271 | Zhang | Jun 2015 | A1 |
20150157859 | Besio | Jun 2015 | A1 |
20150161326 | Taylor et al. | Jun 2015 | A1 |
20150161348 | Taylor et al. | Jun 2015 | A1 |
20150161738 | Stempora | Jun 2015 | A1 |
20150164349 | Gopalakrishnan et al. | Jun 2015 | A1 |
20150164362 | Morrow | Jun 2015 | A1 |
20150164375 | Schindhelm et al. | Jun 2015 | A1 |
20150164404 | Euliano et al. | Jun 2015 | A1 |
20150164431 | Terry et al. | Jun 2015 | A1 |
20150165226 | Simon et al. | Jun 2015 | A1 |
20150165239 | Mishelevich | Jun 2015 | A1 |
20150167459 | Sen et al. | Jun 2015 | A1 |
20150174362 | Panova et al. | Jun 2015 | A1 |
20150174398 | Chow et al. | Jun 2015 | A1 |
20150174403 | Pal et al. | Jun 2015 | A1 |
20150174405 | Kilgard et al. | Jun 2015 | A1 |
20150174406 | Lamensdorf et al. | Jun 2015 | A1 |
20150174407 | Osorio | Jun 2015 | A1 |
20150174418 | Tyler et al. | Jun 2015 | A1 |
20150177413 | Wilt et al. | Jun 2015 | A1 |
20150178631 | Thomas et al. | Jun 2015 | A1 |
20150178978 | Durand et al. | Jun 2015 | A1 |
20150181840 | Tupin, Jr. et al. | Jul 2015 | A1 |
20150182417 | Nagatani | Jul 2015 | A1 |
20150182753 | Harris et al. | Jul 2015 | A1 |
20150182756 | Peyman | Jul 2015 | A1 |
20150186923 | Gurumoorthy et al. | Jul 2015 | A1 |
20150190062 | Han et al. | Jul 2015 | A1 |
20150190070 | Bonmassar et al. | Jul 2015 | A1 |
20150190077 | Kim et al. | Jul 2015 | A1 |
20150190085 | Nathan et al. | Jul 2015 | A1 |
20150190094 | Lee et al. | Jul 2015 | A1 |
20150190636 | Simon et al. | Jul 2015 | A1 |
20150190637 | Simon et al. | Jul 2015 | A1 |
20150192532 | Clevenson et al. | Jul 2015 | A1 |
20150192776 | Lee et al. | Jul 2015 | A1 |
20150196213 | Pandia et al. | Jul 2015 | A1 |
20150196246 | Osorio | Jul 2015 | A1 |
20150196249 | Brown et al. | Jul 2015 | A1 |
20150196800 | Macri et al. | Jul 2015 | A1 |
20150199010 | Coleman et al. | Jul 2015 | A1 |
20150199121 | Gulaka et al. | Jul 2015 | A1 |
20150200046 | Park et al. | Jul 2015 | A1 |
20150201849 | Taylor | Jul 2015 | A1 |
20150201879 | Hargrove | Jul 2015 | A1 |
20150202330 | Yang et al. | Jul 2015 | A1 |
20150202428 | Miller | Jul 2015 | A1 |
20150202447 | Afshar et al. | Jul 2015 | A1 |
20150203822 | Tremolada et al. | Jul 2015 | A1 |
20150206051 | Mclntosh et al. | Jul 2015 | A1 |
20150206174 | Barnett et al. | Jul 2015 | A1 |
20150208940 | Addison et al. | Jul 2015 | A1 |
20150208975 | Ghajar | Jul 2015 | A1 |
20150208978 | Osorio et al. | Jul 2015 | A1 |
20150208982 | Ho et al. | Jul 2015 | A1 |
20150208994 | Rapoport | Jul 2015 | A1 |
20150212168 | Shah et al. | Jul 2015 | A1 |
20150213012 | Marvit et al. | Jul 2015 | A1 |
20150213019 | Marvit et al. | Jul 2015 | A1 |
20150213020 | Marvit et al. | Jul 2015 | A1 |
20150213191 | Abdelghani et al. | Jul 2015 | A1 |
20150215412 | Marvit et al. | Jul 2015 | A1 |
20150216436 | Bosl et al. | Aug 2015 | A1 |
20150216439 | Muraskin et al. | Aug 2015 | A1 |
20150216468 | Vidal-Naquet et al. | Aug 2015 | A1 |
20150216469 | DiLorenzo et al. | Aug 2015 | A1 |
20150216762 | Oohashi et al. | Aug 2015 | A1 |
20150217082 | Kang et al. | Aug 2015 | A1 |
20150219729 | Takahashi | Aug 2015 | A1 |
20150219732 | Diamond et al. | Aug 2015 | A1 |
20150220486 | Karakonstantis et al. | Aug 2015 | A1 |
20150220830 | Li et al. | Aug 2015 | A1 |
20150223721 | De Ridder | Aug 2015 | A1 |
20150223731 | Sahin | Aug 2015 | A1 |
20150223743 | Pathangay et al. | Aug 2015 | A1 |
20150223905 | Karmarkar et al. | Aug 2015 | A1 |
20150226813 | Yu et al. | Aug 2015 | A1 |
20150227702 | Krishna et al. | Aug 2015 | A1 |
20150227793 | Ernst et al. | Aug 2015 | A1 |
20150230719 | Berg et al. | Aug 2015 | A1 |
20150230744 | Faubert et al. | Aug 2015 | A1 |
20150230750 | McDarby et al. | Aug 2015 | A1 |
20150231330 | Lozano et al. | Aug 2015 | A1 |
20150231395 | Saab | Aug 2015 | A1 |
20150231397 | Nudo, Jr. et al. | Aug 2015 | A1 |
20150231405 | Okada | Aug 2015 | A1 |
20150231408 | Williams et al. | Aug 2015 | A1 |
20150234477 | Abovitz et al. | Aug 2015 | A1 |
20150235088 | Abovitz et al. | Aug 2015 | A1 |
20150235370 | Abovitz et al. | Aug 2015 | A1 |
20150235441 | Abovitz et al. | Aug 2015 | A1 |
20150235447 | Abovitz et al. | Aug 2015 | A1 |
20150238104 | Tass | Aug 2015 | A1 |
20150238106 | Lappalainen et al. | Aug 2015 | A1 |
20150238112 | Park et al. | Aug 2015 | A1 |
20150238137 | Eyal et al. | Aug 2015 | A1 |
20150238693 | Skelton et al. | Aug 2015 | A1 |
20150238761 | Sabesan | Aug 2015 | A1 |
20150238765 | Zhu | Aug 2015 | A1 |
20150241705 | Abovitz et al. | Aug 2015 | A1 |
20150241916 | Choi et al. | Aug 2015 | A1 |
20150241959 | Abovitz et al. | Aug 2015 | A1 |
20150242575 | Abovitz et al. | Aug 2015 | A1 |
20150242608 | Kim et al. | Aug 2015 | A1 |
20150242943 | Abovitz et al. | Aug 2015 | A1 |
20150243100 | Abovitz et al. | Aug 2015 | A1 |
20150243105 | Abovitz et al. | Aug 2015 | A1 |
20150243106 | Abovitz et al. | Aug 2015 | A1 |
20150245781 | Hua | Sep 2015 | A1 |
20150245800 | Sorensen et al. | Sep 2015 | A1 |
20150246238 | Moses et al. | Sep 2015 | A1 |
20150247723 | Abovitz et al. | Sep 2015 | A1 |
20150247921 | Rothberg et al. | Sep 2015 | A1 |
20150247975 | Abovitz et al. | Sep 2015 | A1 |
20150247976 | Abovitz et al. | Sep 2015 | A1 |
20150248167 | Turbell et al. | Sep 2015 | A1 |
20150248169 | Abovitz et al. | Sep 2015 | A1 |
20150248170 | Abovitz et al. | Sep 2015 | A1 |
20150248470 | Coleman et al. | Sep 2015 | A1 |
20150248615 | Parra et al. | Sep 2015 | A1 |
20150248764 | Keskin et al. | Sep 2015 | A1 |
20150248765 | Criminisi et al. | Sep 2015 | A1 |
20150248787 | Abovitz et al. | Sep 2015 | A1 |
20150248788 | Abovitz et al. | Sep 2015 | A1 |
20150248789 | Abovitz et al. | Sep 2015 | A1 |
20150248791 | Abovitz et al. | Sep 2015 | A1 |
20150248792 | Abovitz et al. | Sep 2015 | A1 |
20150248793 | Abovitz et al. | Sep 2015 | A1 |
20150250393 | Tran | Sep 2015 | A1 |
20150250401 | Tveit | Sep 2015 | A1 |
20150250415 | Leininger et al. | Sep 2015 | A1 |
20150251016 | Vo-Dinh et al. | Sep 2015 | A1 |
20150253391 | Toda et al. | Sep 2015 | A1 |
20150253410 | Warfield et al. | Sep 2015 | A1 |
20150254413 | Soederstroem | Sep 2015 | A1 |
20150257645 | Bae et al. | Sep 2015 | A1 |
20150257648 | Semenov | Sep 2015 | A1 |
20150257649 | Semenov | Sep 2015 | A1 |
20150257673 | Lawrence et al. | Sep 2015 | A1 |
20150257674 | Jordan et al. | Sep 2015 | A1 |
20150257700 | Fu | Sep 2015 | A1 |
20150257712 | Sarrafzadeh et al. | Sep 2015 | A1 |
20150262016 | Rothblatt | Sep 2015 | A1 |
20150264492 | Laudanski et al. | Sep 2015 | A1 |
20150265164 | Gopalakrishnan et al. | Sep 2015 | A1 |
20150265207 | Wu et al. | Sep 2015 | A1 |
20150265583 | Chesworth et al. | Sep 2015 | A1 |
20150265830 | Simon et al. | Sep 2015 | A1 |
20150265836 | Simon et al. | Sep 2015 | A1 |
20150269825 | Tran | Sep 2015 | A1 |
20150272448 | Fonte et al. | Oct 2015 | A1 |
20150272461 | Morimoto et al. | Oct 2015 | A1 |
20150272465 | Ishii | Oct 2015 | A1 |
20150272496 | Klappert et al. | Oct 2015 | A1 |
20150272510 | Chin | Oct 2015 | A1 |
20150272652 | Ghaffari et al. | Oct 2015 | A1 |
20150273211 | Ollivier | Oct 2015 | A1 |
20150273223 | John | Oct 2015 | A1 |
20150282705 | Avital | Oct 2015 | A1 |
20150282730 | Knight et al. | Oct 2015 | A1 |
20150282749 | Zand et al. | Oct 2015 | A1 |
20150282755 | Deriche et al. | Oct 2015 | A1 |
20150282760 | Badower et al. | Oct 2015 | A1 |
20150283019 | Feingold | Oct 2015 | A1 |
20150283265 | Peyman | Oct 2015 | A1 |
20150283379 | Venkatesan | Oct 2015 | A1 |
20150283393 | Schmidt | Oct 2015 | A1 |
20150287223 | Bresler et al. | Oct 2015 | A1 |
20150289217 | Ban et al. | Oct 2015 | A1 |
20150289779 | Fischl et al. | Oct 2015 | A1 |
20150289813 | Lipov | Oct 2015 | A1 |
20150289929 | Toth et al. | Oct 2015 | A1 |
20150290419 | Kare et al. | Oct 2015 | A1 |
20150290420 | Nofzinger | Oct 2015 | A1 |
20150290453 | Tyler et al. | Oct 2015 | A1 |
20150290454 | Tyler et al. | Oct 2015 | A1 |
20150293004 | Adolphi et al. | Oct 2015 | A1 |
20150294067 | Kare et al. | Oct 2015 | A1 |
20150294074 | Kawato et al. | Oct 2015 | A1 |
20150294085 | Kare et al. | Oct 2015 | A1 |
20150294086 | Kare et al. | Oct 2015 | A1 |
20150294445 | Sakaue | Oct 2015 | A1 |
20150296288 | Anastas | Oct 2015 | A1 |
20150297106 | Pasley et al. | Oct 2015 | A1 |
20150297108 | Chase et al. | Oct 2015 | A1 |
20150297109 | Garten et al. | Oct 2015 | A1 |
20150297139 | Toth | Oct 2015 | A1 |
20150297141 | Siegel et al. | Oct 2015 | A1 |
20150297444 | Tass | Oct 2015 | A1 |
20150297719 | Deisseroth et al. | Oct 2015 | A1 |
20150297889 | Simon et al. | Oct 2015 | A1 |
20150297893 | Kokones et al. | Oct 2015 | A1 |
20150301218 | Donderici | Oct 2015 | A1 |
20150304048 | Kim et al. | Oct 2015 | A1 |
20150304101 | Gupta et al. | Oct 2015 | A1 |
20150305685 | Shahaf et al. | Oct 2015 | A1 |
20150305686 | Coleman et al. | Oct 2015 | A1 |
20150305689 | Gourmelon et al. | Oct 2015 | A1 |
20150305799 | Trieu | Oct 2015 | A1 |
20150305800 | Trieu | Oct 2015 | A1 |
20150305801 | Trieu | Oct 2015 | A1 |
20150306057 | Goodenowe | Oct 2015 | A1 |
20150306340 | Giap et al. | Oct 2015 | A1 |
20150306390 | Zalay et al. | Oct 2015 | A1 |
20150306391 | Wu et al. | Oct 2015 | A1 |
20150306392 | Sabesan | Oct 2015 | A1 |
20150309563 | Connor | Oct 2015 | A1 |
20150309582 | Gupta | Oct 2015 | A1 |
20150310862 | Dauphin et al. | Oct 2015 | A1 |
20150313496 | Connor | Nov 2015 | A1 |
20150313498 | Coleman et al. | Nov 2015 | A1 |
20150313535 | Alshaer et al. | Nov 2015 | A1 |
20150313539 | Connor | Nov 2015 | A1 |
20150313540 | Deuchar et al. | Nov 2015 | A1 |
20150313949 | Cutillo | Nov 2015 | A1 |
20150313971 | Haslett et al. | Nov 2015 | A1 |
20150315554 | Shekdar et al. | Nov 2015 | A1 |
20150317447 | Helleputte et al. | Nov 2015 | A1 |
20150317796 | Schett et al. | Nov 2015 | A1 |
20150320591 | Smith et al. | Nov 2015 | A1 |
20150321000 | Rosenbluth et al. | Nov 2015 | A1 |
20150324544 | Mastowski et al. | Nov 2015 | A1 |
20150324545 | Fonte | Nov 2015 | A1 |
20150324692 | Ritchey et al. | Nov 2015 | A1 |
20150325151 | Tuchschmtd et al. | Nov 2015 | A1 |
20150327813 | Fu | Nov 2015 | A1 |
20150327837 | Qi et al. | Nov 2015 | A1 |
20150328330 | Satchi-Fainaro et al. | Nov 2015 | A1 |
20150328455 | Meadows et al. | Nov 2015 | A1 |
20150331929 | El-Saban et al. | Nov 2015 | A1 |
20150332015 | Taylor | Nov 2015 | A1 |
20150335281 | Scroggins | Nov 2015 | A1 |
20150335288 | Toth et al. | Nov 2015 | A1 |
20150335292 | Mittal | Nov 2015 | A1 |
20150335294 | Witcher et al. | Nov 2015 | A1 |
20150335295 | Park et al. | Nov 2015 | A1 |
20150335303 | Chandelier et al. | Nov 2015 | A1 |
20150335876 | Jeffery et al. | Nov 2015 | A1 |
20150335877 | Jeffery et al. | Nov 2015 | A1 |
20150338915 | Publicover et al. | Nov 2015 | A1 |
20150339363 | Moldoveanu et al. | Nov 2015 | A1 |
20150339459 | Taylor | Nov 2015 | A1 |
20150342472 | Semenov | Dec 2015 | A1 |
20150342478 | Galen et al. | Dec 2015 | A1 |
20150342493 | Hardt | Dec 2015 | A1 |
20150343215 | De Ridder | Dec 2015 | A1 |
20150343222 | Kilgard et al. | Dec 2015 | A1 |
20150343242 | Tyler et al. | Dec 2015 | A1 |
20150351655 | Coleman | Dec 2015 | A1 |
20150351690 | Toth et al. | Dec 2015 | A1 |
20150351701 | Moxon et al. | Dec 2015 | A1 |
20150352362 | Craig | Dec 2015 | A1 |
20150352363 | McIntyre et al. | Dec 2015 | A1 |
20150359431 | Bakalash et al. | Dec 2015 | A1 |
20150359441 | Giovangrandi et al. | Dec 2015 | A1 |
20150359450 | Lee et al. | Dec 2015 | A1 |
20150359452 | Giovangrandi et al. | Dec 2015 | A1 |
20150359467 | Tran | Dec 2015 | A1 |
20150359486 | Kovacs et al. | Dec 2015 | A1 |
20150359492 | Giovangrandi et al. | Dec 2015 | A1 |
20150360026 | Wagner | Dec 2015 | A1 |
20150360030 | Cartledge et al. | Dec 2015 | A1 |
20150360039 | Lempka et al. | Dec 2015 | A1 |
20150363941 | Taylor | Dec 2015 | A1 |
20150366482 | Lee | Dec 2015 | A1 |
20150366497 | Cavuoto et al. | Dec 2015 | A1 |
20150366503 | Sjaaheim et al. | Dec 2015 | A1 |
20150366504 | Connor | Dec 2015 | A1 |
20150366516 | Dripps et al. | Dec 2015 | A1 |
20150366518 | Sampson | Dec 2015 | A1 |
20150366656 | Wortz et al. | Dec 2015 | A1 |
20150366659 | Wortz et al. | Dec 2015 | A1 |
20150369864 | Marlow et al. | Dec 2015 | A1 |
20150370320 | Connor | Dec 2015 | A1 |
20150370325 | Jarosiewicz et al. | Dec 2015 | A1 |
20150374250 | Hatano et al. | Dec 2015 | A1 |
20150374285 | Chang et al. | Dec 2015 | A1 |
20150374292 | Wyeth et al. | Dec 2015 | A1 |
20150374300 | Najarian et al. | Dec 2015 | A1 |
20150374973 | Morrell | Dec 2015 | A1 |
20150374983 | Simon et al. | Dec 2015 | A1 |
20150374986 | Bahmer | Dec 2015 | A1 |
20150374987 | Bahmer | Dec 2015 | A1 |
20150374993 | Morrell | Dec 2015 | A1 |
20150375006 | Denison et al. | Dec 2015 | A1 |
20150379230 | Taylor | Dec 2015 | A1 |
20150379370 | Clifton et al. | Dec 2015 | A1 |
20150379878 | Walter et al. | Dec 2015 | A1 |
20150380009 | Chang et al. | Dec 2015 | A1 |
20160000348 | Kitaj et al. | Jan 2016 | A1 |
20160000354 | Hagedorn et al. | Jan 2016 | A1 |
20160000383 | Lee et al. | Jan 2016 | A1 |
20160001065 | Wingeier et al. | Jan 2016 | A1 |
20160001096 | Mishelevich | Jan 2016 | A1 |
20160001098 | Wingeier et al. | Jan 2016 | A1 |
20160002523 | Huh et al. | Jan 2016 | A1 |
20160004298 | Mazed et al. | Jan 2016 | A1 |
20160004396 | Gulaka et al. | Jan 2016 | A1 |
20160004821 | Fueyo et al. | Jan 2016 | A1 |
20160004957 | Solari | Jan 2016 | A1 |
20160005235 | Fateh | Jan 2016 | A1 |
20160005320 | deCharms et al. | Jan 2016 | A1 |
20160007899 | Durkee et al. | Jan 2016 | A1 |
20160007904 | Vardy | Jan 2016 | A1 |
20160007915 | Berka et al. | Jan 2016 | A1 |
20160007918 | Badower et al. | Jan 2016 | A1 |
20160007945 | Taylor | Jan 2016 | A1 |
20160008489 | Korzus | Jan 2016 | A1 |
20160008568 | Attia et al. | Jan 2016 | A1 |
20160008598 | McLaughlin et al. | Jan 2016 | A1 |
20160008600 | Hershey et al. | Jan 2016 | A1 |
20160008620 | Stubbeman | Jan 2016 | A1 |
20160008632 | Wetmore et al. | Jan 2016 | A1 |
20160012011 | Llinas et al. | Jan 2016 | A1 |
20160012583 | Cales et al. | Jan 2016 | A1 |
20160012749 | Connor | Jan 2016 | A1 |
20160015281 | McKenna et al. | Jan 2016 | A1 |
20160015289 | Simon et al. | Jan 2016 | A1 |
20160015307 | Kothuri | Jan 2016 | A1 |
20160015673 | Goodenowe | Jan 2016 | A1 |
20160016014 | Wagner et al. | Jan 2016 | A1 |
20160019434 | Caldwell | Jan 2016 | A1 |
20160019693 | Silbersweig et al. | Jan 2016 | A1 |
20160022141 | Mittal et al. | Jan 2016 | A1 |
20160022156 | Kovacs et al. | Jan 2016 | A1 |
20160022164 | Brockway et al. | Jan 2016 | A1 |
20160022165 | Sackellares et al. | Jan 2016 | A1 |
20160022167 | Simon | Jan 2016 | A1 |
20160022168 | Luczak et al. | Jan 2016 | A1 |
20160022206 | Simon et al. | Jan 2016 | A1 |
20160022207 | Roberts et al. | Jan 2016 | A1 |
20160022981 | Wingeier et al. | Jan 2016 | A1 |
20160023016 | Bonmassar et al. | Jan 2016 | A1 |
20160026913 | Moon et al. | Jan 2016 | A1 |
20160027178 | Yu et al. | Jan 2016 | A1 |
20160027293 | Esteller et al. | Jan 2016 | A1 |
20160027342 | Ben-Haim | Jan 2016 | A1 |
20160027423 | Deuel et al. | Jan 2016 | A1 |
20160029896 | Lee et al. | Feb 2016 | A1 |
20160029917 | Baker et al. | Feb 2016 | A1 |
20160029918 | Baker et al. | Feb 2016 | A1 |
20160029946 | Simon et al. | Feb 2016 | A1 |
20160029950 | Chang et al. | Feb 2016 | A1 |
20160029958 | Le et al. | Feb 2016 | A1 |
20160029959 | Le et al. | Feb 2016 | A1 |
20160029965 | Simon | Feb 2016 | A1 |
20160029998 | Brister et al. | Feb 2016 | A1 |
20160030666 | Lozano et al. | Feb 2016 | A1 |
20160030702 | Yang | Feb 2016 | A1 |
20160030749 | Carcieri et al. | Feb 2016 | A1 |
20160030750 | Bokil et al. | Feb 2016 | A1 |
20160030834 | Brown et al. | Feb 2016 | A1 |
20160031479 | Fung et al. | Feb 2016 | A1 |
20160035093 | Kateb et al. | Feb 2016 | A1 |
20160038037 | Kovacs | Feb 2016 | A1 |
20160038038 | Kovacs | Feb 2016 | A1 |
20160038042 | Mulligan et al. | Feb 2016 | A1 |
20160038043 | Mulligan et al. | Feb 2016 | A1 |
20160038049 | Geva et al. | Feb 2016 | A1 |
20160038069 | Stack | Feb 2016 | A1 |
20160038091 | Krishnaswamy et al. | Feb 2016 | A1 |
20160038559 | Palmer et al. | Feb 2016 | A1 |
20160038770 | Tyler et al. | Feb 2016 | A1 |
20160040514 | Rahmani et al. | Feb 2016 | A1 |
20160044841 | Chamberlain | Feb 2016 | A1 |
20160045128 | Sitt et al. | Feb 2016 | A1 |
20160045150 | Leininger et al. | Feb 2016 | A1 |
20160045162 | De Graff et al. | Feb 2016 | A1 |
20160045731 | Simon et al. | Feb 2016 | A1 |
20160045756 | Phillips et al. | Feb 2016 | A1 |
20160048659 | Pereira et al. | Feb 2016 | A1 |
20160048948 | Bajic | Feb 2016 | A1 |
20160048965 | Stehle et al. | Feb 2016 | A1 |
20160051161 | Labyt et al. | Feb 2016 | A1 |
20160051162 | Durand et al. | Feb 2016 | A1 |
20160051187 | Damadian | Feb 2016 | A1 |
20160051195 | Pang et al. | Feb 2016 | A1 |
20160051793 | Gibson-Horn | Feb 2016 | A1 |
20160051812 | Montgomery, Jr. et al. | Feb 2016 | A1 |
20160051818 | Simon et al. | Feb 2016 | A1 |
20160055236 | Frank et al. | Feb 2016 | A1 |
20160055304 | Russell et al. | Feb 2016 | A1 |
20160055415 | Baxi | Feb 2016 | A1 |
20160055842 | DeFranks et al. | Feb 2016 | A1 |
20160058301 | Shusterman | Mar 2016 | A1 |
20160058304 | Emblem et al. | Mar 2016 | A1 |
20160058322 | Brister et al. | Mar 2016 | A1 |
20160058354 | Phan et al. | Mar 2016 | A1 |
20160058359 | Osorio | Mar 2016 | A1 |
20160058366 | Choi et al. | Mar 2016 | A1 |
20160058376 | Baek et al. | Mar 2016 | A1 |
20160058392 | Hasson et al. | Mar 2016 | A1 |
20160058673 | Francis | Mar 2016 | A1 |
20160060926 | Kim et al. | Mar 2016 | A1 |
20160062459 | Publicover et al. | Mar 2016 | A1 |
20160063207 | Schmidt | Mar 2016 | A1 |
20160063883 | Jeyanandarajan | Mar 2016 | A1 |
20160065724 | Lee et al. | Mar 2016 | A1 |
20160065840 | Kim et al. | Mar 2016 | A1 |
20160066788 | Tran et al. | Mar 2016 | A1 |
20160066789 | Rogers et al. | Mar 2016 | A1 |
20160066828 | Phan et al. | Mar 2016 | A1 |
20160066838 | DeCharms | Mar 2016 | A1 |
20160067485 | Lindenthaler et al. | Mar 2016 | A1 |
20160067492 | Wolpaw et al. | Mar 2016 | A1 |
20160067494 | Lipani | Mar 2016 | A1 |
20160067496 | Gliner et al. | Mar 2016 | A1 |
20160067526 | Yang | Mar 2016 | A1 |
20160070436 | Thomas et al. | Mar 2016 | A1 |
20160073886 | Connor | Mar 2016 | A1 |
20160073916 | Aksenova et al. | Mar 2016 | A1 |
20160073947 | Anderson | Mar 2016 | A1 |
20160073991 | Taylor | Mar 2016 | A1 |
20160074657 | Kwan et al. | Mar 2016 | A1 |
20160074660 | Osorio et al. | Mar 2016 | A1 |
20160074661 | Lipani | Mar 2016 | A1 |
20160077547 | Aimone et al. | Mar 2016 | A1 |
20160078780 | Alexander et al. | Mar 2016 | A1 |
20160081577 | Sridhar et al. | Mar 2016 | A1 |
20160081610 | Osorio et al. | Mar 2016 | A1 |
20160081613 | Braun et al. | Mar 2016 | A1 |
20160081616 | Li | Mar 2016 | A1 |
20160081625 | Kim et al. | Mar 2016 | A1 |
20160081793 | Galstian et al. | Mar 2016 | A1 |
20160082180 | Toth et al. | Mar 2016 | A1 |
20160082319 | Macri et al. | Mar 2016 | A1 |
20160084925 | Le Prado et al. | Mar 2016 | A1 |
20160085302 | Publicover et al. | Mar 2016 | A1 |
20160086622 | Yamamoto | Mar 2016 | A1 |
20160087603 | Ricci et al. | Mar 2016 | A1 |
20160089031 | Hu | Mar 2016 | A1 |
20160091448 | Soleimani | Mar 2016 | A1 |
20160095546 | Sahasrabudhe et al. | Apr 2016 | A1 |
20160095838 | Satchi-Fainaro et al. | Apr 2016 | A1 |
20160096025 | Moffitt et al. | Apr 2016 | A1 |
20160097824 | Fujii et al. | Apr 2016 | A1 |
20160100769 | Kim et al. | Apr 2016 | A1 |
20160101260 | Austin et al. | Apr 2016 | A1 |
20160102500 | Donderici et al. | Apr 2016 | A1 |
20160103487 | Crawford et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160104006 | Son et al. | Apr 2016 | A1 |
20160106331 | Zorick et al. | Apr 2016 | A1 |
20160106344 | Nazari | Apr 2016 | A1 |
20160106513 | De Stavola et al. | Apr 2016 | A1 |
20160106950 | Vasapollo | Apr 2016 | A1 |
20160106997 | Arendash et al. | Apr 2016 | A1 |
20160107309 | Walsh et al. | Apr 2016 | A1 |
20160107653 | Fung et al. | Apr 2016 | A1 |
20160109851 | Tsang | Apr 2016 | A1 |
20160109959 | Heo | Apr 2016 | A1 |
20160110517 | Taylor | Apr 2016 | A1 |
20160110866 | Taylor | Apr 2016 | A1 |
20160110867 | Taylor | Apr 2016 | A1 |
20160112022 | Butts | Apr 2016 | A1 |
20160112684 | Connor | Apr 2016 | A1 |
20160113517 | Lee et al. | Apr 2016 | A1 |
20160113528 | Taylor | Apr 2016 | A1 |
20160113539 | Sinharay et al. | Apr 2016 | A1 |
20160113545 | Kim et al. | Apr 2016 | A1 |
20160113567 | Osvath et al. | Apr 2016 | A1 |
20160113569 | Zhao et al. | Apr 2016 | A1 |
20160113587 | Kothe et al. | Apr 2016 | A1 |
20160113726 | Taylor | Apr 2016 | A1 |
20160114165 | Levine et al. | Apr 2016 | A1 |
20160116472 | Ay | Apr 2016 | A1 |
20160116553 | Kim et al. | Apr 2016 | A1 |
20160117815 | Taylor | Apr 2016 | A1 |
20160117816 | Taylor | Apr 2016 | A1 |
20160117819 | Taylor | Apr 2016 | A1 |
20160119726 | Pontoppidan et al. | Apr 2016 | A1 |
20160120048 | Seo et al. | Apr 2016 | A1 |
20160120428 | Yoshida et al. | May 2016 | A1 |
20160120432 | Sridhar et al. | May 2016 | A1 |
20160120433 | Hughes et al. | May 2016 | A1 |
20160120434 | Park et al. | May 2016 | A1 |
20160120436 | Silberstein | May 2016 | A1 |
20160120437 | Graham et al. | May 2016 | A1 |
20160120457 | Wu et al. | May 2016 | A1 |
20160120464 | Lau et al. | May 2016 | A1 |
20160120480 | Turnbull et al. | May 2016 | A1 |
20160121074 | Ashby | May 2016 | A1 |
20160121114 | Simon et al. | May 2016 | A1 |
20160121116 | Simon et al. | May 2016 | A1 |
20160125228 | Son et al. | May 2016 | A1 |
20160125572 | Yoo et al. | May 2016 | A1 |
20160128589 | Tabib-Azar | May 2016 | A1 |
20160128596 | Morshed et al. | May 2016 | A1 |
20160128597 | Lin et al. | May 2016 | A1 |
20160128632 | Wiebe et al. | May 2016 | A1 |
20160128661 | Taylor | May 2016 | A1 |
20160128864 | Nofzinger et al. | May 2016 | A1 |
20160129249 | Yun et al. | May 2016 | A1 |
20160131723 | Nagasaka | May 2016 | A1 |
20160132654 | Rothman et al. | May 2016 | A1 |
20160133015 | Taylor | May 2016 | A1 |
20160135691 | Dripps et al. | May 2016 | A1 |
20160135727 | Osorio | May 2016 | A1 |
20160135748 | Lin et al. | May 2016 | A1 |
20160135754 | Marshall et al. | May 2016 | A1 |
20160136423 | Simon et al. | May 2016 | A1 |
20160136427 | De Ridder | May 2016 | A1 |
20160136429 | Massoumi et al. | May 2016 | A1 |
20160136430 | Moffitt et al. | May 2016 | A1 |
20160136443 | Grandhe et al. | May 2016 | A1 |
20160139215 | Fujii | May 2016 | A1 |
20160140306 | Hua et al. | May 2016 | A1 |
20160140313 | Taylor | May 2016 | A1 |
20160140707 | Abe et al. | May 2016 | A1 |
20160140834 | Tran | May 2016 | A1 |
20160140975 | Kamamoto et al. | May 2016 | A1 |
20160143540 | Gencer et al. | May 2016 | A1 |
20160143541 | He et al. | May 2016 | A1 |
20160143554 | Lim et al. | May 2016 | A1 |
20160143560 | Grunwald et al. | May 2016 | A1 |
20160143574 | Jones et al. | May 2016 | A1 |
20160143582 | Connor | May 2016 | A1 |
20160143594 | Moorman et al. | May 2016 | A1 |
20160144175 | Simon et al. | May 2016 | A1 |
20160144186 | Kaemmerer et al. | May 2016 | A1 |
20160147964 | Corey et al. | May 2016 | A1 |
20160148077 | Cox et al. | May 2016 | A1 |
20160148371 | Itu et al. | May 2016 | A1 |
20160148372 | Itu et al. | May 2016 | A1 |
20160148400 | Bajic | May 2016 | A1 |
20160148531 | Bleich et al. | May 2016 | A1 |
20160150988 | Prerau et al. | Jun 2016 | A1 |
20160151014 | Ujhazy et al. | Jun 2016 | A1 |
20160151018 | Machon et al. | Jun 2016 | A1 |
20160151628 | Simon et al. | Jun 2016 | A1 |
20160152233 | Fung et al. | Jun 2016 | A1 |
20160155005 | Varkuti et al. | Jun 2016 | A1 |
20160157742 | Huang et al. | Jun 2016 | A1 |
20160157773 | Baek et al. | Jun 2016 | A1 |
20160157777 | Attal et al. | Jun 2016 | A1 |
20160157828 | Sumi et al. | Jun 2016 | A1 |
20160158553 | Panken et al. | Jun 2016 | A1 |
20160158554 | Graig | Jun 2016 | A1 |
20160162652 | Siekmeier | Jun 2016 | A1 |
20160164813 | Anderson et al. | Jun 2016 | A1 |
20160165852 | Goldfain | Jun 2016 | A1 |
20160165853 | Goldfain | Jun 2016 | A1 |
20160166169 | Badower et al. | Jun 2016 | A1 |
20160166197 | Venkatraman et al. | Jun 2016 | A1 |
20160166199 | Sun et al. | Jun 2016 | A1 |
20160166205 | Ernst et al. | Jun 2016 | A1 |
20160166207 | Falconer | Jun 2016 | A1 |
20160166208 | Girouard et al. | Jun 2016 | A1 |
20160166219 | Majewski et al. | Jun 2016 | A1 |
20160167672 | Krueger | Jun 2016 | A1 |
20160168137 | Van Leyen et al. | Jun 2016 | A1 |
20160170996 | Frank et al. | Jun 2016 | A1 |
20160170998 | Frank et al. | Jun 2016 | A1 |
20160171514 | Frank et al. | Jun 2016 | A1 |
20160174099 | Goldfain | Jun 2016 | A1 |
20160174862 | Yu et al. | Jun 2016 | A1 |
20160174863 | Foerster et al. | Jun 2016 | A1 |
20160174867 | Hatano et al. | Jun 2016 | A1 |
20160174907 | Colman et al. | Jun 2016 | A1 |
20160175557 | Tass | Jun 2016 | A1 |
20160175607 | Deisseroth et al. | Jun 2016 | A1 |
20160176053 | Rognini et al. | Jun 2016 | A1 |
20160178392 | Goldfain | Jun 2016 | A1 |
20160180042 | Menon et al. | Jun 2016 | A1 |
20160180054 | Luo et al. | Jun 2016 | A1 |
20160180055 | Fonte | Jun 2016 | A1 |
20160183812 | Zhang et al. | Jun 2016 | A1 |
20160183828 | Ouyang et al. | Jun 2016 | A1 |
20160183861 | Hayes et al. | Jun 2016 | A1 |
20160183881 | Keenan et al. | Jun 2016 | A1 |
20160184029 | Peng et al. | Jun 2016 | A1 |
20160184596 | Fried et al. | Jun 2016 | A1 |
20160184599 | Segal | Jun 2016 | A1 |
20160187524 | Suhami | Jun 2016 | A1 |
20160191517 | Bae et al. | Jun 2016 | A1 |
20160192841 | Inagaki et al. | Jul 2016 | A1 |
20160192842 | Inagaki | Jul 2016 | A1 |
20160192847 | Inagaki | Jul 2016 | A1 |
20160192879 | Yamashita | Jul 2016 | A1 |
20160193499 | Kim et al. | Jul 2016 | A1 |
20160196185 | Gu et al. | Jul 2016 | A1 |
20160196393 | Avinash et al. | Jul 2016 | A1 |
20160196635 | Cho et al. | Jul 2016 | A1 |
20160196758 | Causevic et al. | Jul 2016 | A1 |
20160198950 | Gross et al. | Jul 2016 | A1 |
20160198963 | Addison et al. | Jul 2016 | A1 |
20160198966 | Uematsu et al. | Jul 2016 | A1 |
20160198968 | Plenz et al. | Jul 2016 | A1 |
20160198973 | Fukuda et al. | Jul 2016 | A1 |
20160199241 | Rapoport | Jul 2016 | A1 |
20160199577 | Hyde et al. | Jul 2016 | A1 |
20160199656 | Phillips | Jul 2016 | A1 |
20160199662 | Wundrich et al. | Jul 2016 | A1 |
20160202755 | Connor | Jul 2016 | A1 |
20160203597 | Chang et al. | Jul 2016 | A1 |
20160203726 | Hibbs et al. | Jul 2016 | A1 |
20160204937 | Edwards et al. | Jul 2016 | A1 |
20160205450 | Gartseev et al. | Jul 2016 | A1 |
20160205489 | Jabri | Jul 2016 | A1 |
20160206236 | Dilorenzo et al. | Jul 2016 | A1 |
20160206241 | Cho et al. | Jul 2016 | A1 |
20160206380 | Sparks et al. | Jul 2016 | A1 |
20160206581 | Wittkowski | Jul 2016 | A1 |
20160206671 | Geng | Jul 2016 | A1 |
20160206871 | Weisend | Jul 2016 | A1 |
20160206877 | Hargrove | Jul 2016 | A1 |
20160206880 | Koubeissi | Jul 2016 | A1 |
20160210872 | Roberts et al. | Jul 2016 | A1 |
20160213261 | Fleischer et al. | Jul 2016 | A1 |
20160213276 | Gadot et al. | Jul 2016 | A1 |
20160213314 | Zuckerman-Stark et al. | Jul 2016 | A1 |
20160213317 | Richardson et al. | Jul 2016 | A1 |
20160213947 | Han et al. | Jul 2016 | A1 |
20160216760 | Trutna et al. | Jul 2016 | A1 |
20160217586 | Dickrell et al. | Jul 2016 | A1 |
20160217595 | Han et al. | Jul 2016 | A1 |
20160219345 | Knight et al. | Jul 2016 | A1 |
20160220133 | Inagaki | Aug 2016 | A1 |
20160220134 | Inagaki | Aug 2016 | A1 |
20160220136 | Schultz | Aug 2016 | A1 |
20160220163 | Yamada et al. | Aug 2016 | A1 |
20160220166 | Thornton | Aug 2016 | A1 |
20160220439 | Wojciechowski et al. | Aug 2016 | A1 |
20160220821 | O'Connell et al. | Aug 2016 | A1 |
20160220836 | Parks | Aug 2016 | A1 |
20160220837 | Jin | Aug 2016 | A1 |
20160220850 | Tyler | Aug 2016 | A1 |
20160222073 | Deisseroth et al. | Aug 2016 | A1 |
20160223622 | Yu et al. | Aug 2016 | A1 |
20160223627 | Shah et al. | Aug 2016 | A1 |
20160223703 | Wu et al. | Aug 2016 | A1 |
20160224757 | Melkonyan | Aug 2016 | A1 |
20160224803 | Frank et al. | Aug 2016 | A1 |
20160228019 | Grunwald et al. | Aug 2016 | A1 |
20160228028 | Van Der Kooi et al. | Aug 2016 | A1 |
20160228029 | Ware | Aug 2016 | A1 |
20160228059 | Badower | Aug 2016 | A1 |
20160228064 | Jung et al. | Aug 2016 | A1 |
20160228204 | Quaid et al. | Aug 2016 | A1 |
20160228640 | Pindado et al. | Aug 2016 | A1 |
20160228702 | Kempe et al. | Aug 2016 | A1 |
20160228705 | Crowder et al. | Aug 2016 | A1 |
20160231401 | Wang et al. | Aug 2016 | A1 |
20160232330 | Dowson | Aug 2016 | A1 |
20160232625 | Akutagawa et al. | Aug 2016 | A1 |
20160232667 | Taylor | Aug 2016 | A1 |
20160232811 | Connor | Aug 2016 | A9 |
20160235323 | Tadi et al. | Aug 2016 | A1 |
20160235324 | Mershin et al. | Aug 2016 | A1 |
20160235341 | Choi et al. | Aug 2016 | A1 |
20160235351 | Intrator | Aug 2016 | A1 |
20160235352 | DiLorenzo | Aug 2016 | A1 |
20160235359 | Cho et al. | Aug 2016 | A1 |
20160235980 | Berman et al. | Aug 2016 | A1 |
20160235983 | Berman et al. | Aug 2016 | A1 |
20160238673 | Honkura | Aug 2016 | A1 |
20160239084 | Connor | Aug 2016 | A1 |
20160239966 | Parsey et al. | Aug 2016 | A1 |
20160239968 | Parsey et al. | Aug 2016 | A1 |
20160240212 | Wilson et al. | Aug 2016 | A1 |
20160240765 | Washington et al. | Aug 2016 | A1 |
20160242645 | Muller | Aug 2016 | A1 |
20160242659 | Yamashita et al. | Aug 2016 | A1 |
20160242665 | Galloway et al. | Aug 2016 | A1 |
20160242669 | Muraskin et al. | Aug 2016 | A1 |
20160242670 | Suzuki et al. | Aug 2016 | A1 |
20160242690 | Principe et al. | Aug 2016 | A1 |
20160242699 | Das et al. | Aug 2016 | A1 |
20160243362 | Hehrmann et al. | Aug 2016 | A1 |
20160243381 | Alford et al. | Aug 2016 | A1 |
20160245670 | Nelson et al. | Aug 2016 | A1 |
20160245766 | Nelson et al. | Aug 2016 | A1 |
20160245952 | Dupuis et al. | Aug 2016 | A1 |
20160246939 | Taylor | Aug 2016 | A1 |
20160247064 | Yoo et al. | Aug 2016 | A1 |
20160248434 | Govari | Aug 2016 | A1 |
20160248994 | Liu | Aug 2016 | A1 |
20160249826 | Derchak | Sep 2016 | A1 |
20160249841 | Gerber et al. | Sep 2016 | A1 |
20160249846 | Yoo et al. | Sep 2016 | A1 |
20160249857 | Choi et al. | Sep 2016 | A1 |
20160249864 | Kang et al. | Sep 2016 | A1 |
20160250355 | Macknik | Sep 2016 | A1 |
20160250465 | Simon et al. | Sep 2016 | A1 |
20160250473 | Alberts et al. | Sep 2016 | A1 |
20160256063 | Friedman et al. | Sep 2016 | A1 |
20160256086 | Byrd et al. | Sep 2016 | A1 |
20160256105 | Boyle et al. | Sep 2016 | A1 |
20160256108 | Yun et al. | Sep 2016 | A1 |
20160256109 | Semenov | Sep 2016 | A1 |
20160256112 | Brockway et al. | Sep 2016 | A1 |
20160256118 | Iyer et al. | Sep 2016 | A1 |
20160256130 | Hamilton et al. | Sep 2016 | A1 |
20160256690 | Cecchi et al. | Sep 2016 | A1 |
20160256691 | Cecchi et al. | Sep 2016 | A1 |
20160256693 | Parramon | Sep 2016 | A1 |
20160257957 | Greenberg et al. | Sep 2016 | A1 |
20160259085 | Wilson et al. | Sep 2016 | A1 |
20160259905 | Park et al. | Sep 2016 | A1 |
20160260216 | Wu et al. | Sep 2016 | A1 |
20160261962 | Petersen et al. | Sep 2016 | A1 |
20160262623 | Semenov | Sep 2016 | A1 |
20160262664 | Linderman | Sep 2016 | A1 |
20160262680 | Martucci et al. | Sep 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160262695 | Zhang et al. | Sep 2016 | A1 |
20160262703 | MacCallum | Sep 2016 | A1 |
20160263318 | Osorio | Sep 2016 | A1 |
20160263376 | Yoo et al. | Sep 2016 | A1 |
20160263380 | Starr et al. | Sep 2016 | A1 |
20160263393 | Vo-Dinh et al. | Sep 2016 | A1 |
20160267809 | deCharms et al. | Sep 2016 | A1 |
20160270656 | Samec et al. | Sep 2016 | A1 |
20160270723 | Deisseroth et al. | Sep 2016 | A1 |
20160274660 | Publicover et al. | Sep 2016 | A1 |
20160275536 | Anderson | Sep 2016 | A1 |
20160278651 | Lu et al. | Sep 2016 | A1 |
20160278653 | Clark et al. | Sep 2016 | A1 |
20160278662 | Brister et al. | Sep 2016 | A1 |
20160278672 | Cho et al. | Sep 2016 | A1 |
20160278687 | Xia | Sep 2016 | A1 |
20160278697 | John et al. | Sep 2016 | A1 |
20160278713 | Aran et al. | Sep 2016 | A1 |
20160278736 | Hamilton et al. | Sep 2016 | A1 |
20160278870 | Quaid et al. | Sep 2016 | A1 |
20160279021 | Hyde et al. | Sep 2016 | A1 |
20160279022 | Hyde et al. | Sep 2016 | A1 |
20160279023 | Hyde et al. | Sep 2016 | A1 |
20160279024 | Hyde et al. | Sep 2016 | A1 |
20160279025 | Hyde et al. | Sep 2016 | A1 |
20160279267 | Deisseroth et al. | Sep 2016 | A1 |
20160279410 | Simon et al. | Sep 2016 | A1 |
20160279417 | Kilgard et al. | Sep 2016 | A1 |
20160279435 | Hyde et al. | Sep 2016 | A1 |
20160282113 | Lee | Sep 2016 | A1 |
20160282941 | Aksenova et al. | Sep 2016 | A1 |
20160284082 | Varkuti | Sep 2016 | A1 |
20160287117 | Breakspear et al. | Oct 2016 | A1 |
20160287118 | Sarma et al. | Oct 2016 | A1 |
20160287120 | Sun et al. | Oct 2016 | A1 |
20160287142 | Han et al. | Oct 2016 | A1 |
20160287157 | Simpson | Oct 2016 | A1 |
20160287162 | Bardakjian et al. | Oct 2016 | A1 |
20160287166 | Tran | Oct 2016 | A1 |
20160287169 | Kortelainen et al. | Oct 2016 | A1 |
20160287308 | Grant et al. | Oct 2016 | A1 |
20160287334 | Grant et al. | Oct 2016 | A1 |
20160287436 | Wingeier et al. | Oct 2016 | A1 |
20160287869 | Errico et al. | Oct 2016 | A1 |
20160287871 | Bardakjian et al. | Oct 2016 | A1 |
20160287889 | Bokil et al. | Oct 2016 | A1 |
20160287895 | Deisseroth et al. | Oct 2016 | A1 |
20160296157 | Girouard | Oct 2016 | A1 |
20160296287 | Taylor | Oct 2016 | A1 |
20160296746 | Wingeier et al. | Oct 2016 | A1 |
20160298449 | Orban | Oct 2016 | A1 |
20160299568 | Segal | Oct 2016 | A1 |
20160300252 | Frank et al. | Oct 2016 | A1 |
20160300352 | Raj | Oct 2016 | A1 |
20160302683 | Lawrence et al. | Oct 2016 | A1 |
20160302704 | Lynn et al. | Oct 2016 | A9 |
20160302709 | Mossbridge | Oct 2016 | A1 |
20160302711 | Frank et al. | Oct 2016 | A1 |
20160302720 | John et al. | Oct 2016 | A1 |
20160302737 | Watson et al. | Oct 2016 | A1 |
20160303322 | John | Oct 2016 | A1 |
20160303396 | Deisseroth et al. | Oct 2016 | A9 |
20160303397 | Hirschman et al. | Oct 2016 | A1 |
20160303402 | Tyler | Oct 2016 | A1 |
20160306844 | Frank et al. | Oct 2016 | A1 |
20160306942 | Rapaka et al. | Oct 2016 | A1 |
20160310031 | Sarkar | Oct 2016 | A1 |
20160310070 | Sabesan | Oct 2016 | A1 |
20160310071 | Kim | Oct 2016 | A1 |
20160313408 | Hatano et al. | Oct 2016 | A1 |
20160313417 | Kawabata et al. | Oct 2016 | A1 |
20160313418 | Fujii et al. | Oct 2016 | A1 |
20160313798 | Connor | Oct 2016 | A1 |
20160317056 | Moon et al. | Nov 2016 | A1 |
20160317060 | Connor | Nov 2016 | A1 |
20160317077 | Sillay | Nov 2016 | A1 |
20160317383 | Stanfield et al. | Nov 2016 | A1 |
20160317824 | Moffitt et al. | Nov 2016 | A1 |
20160320210 | Nelson et al. | Nov 2016 | A1 |
20160321742 | Phillips et al. | Nov 2016 | A1 |
20160324445 | Kim et al. | Nov 2016 | A1 |
20160324457 | Dagum | Nov 2016 | A1 |
20160324465 | Osvath et al. | Nov 2016 | A1 |
20160324478 | Goldstein | Nov 2016 | A1 |
20160324580 | Esterberg | Nov 2016 | A1 |
20160324677 | Hyde et al. | Nov 2016 | A1 |
20160324942 | Lester et al. | Nov 2016 | A1 |
20160325111 | Bourke, Jr. et al. | Nov 2016 | A1 |
20160331264 | Helms-Tillery et al. | Nov 2016 | A1 |
20160331307 | Purdon et al. | Nov 2016 | A1 |
20160331952 | Faltys et al. | Nov 2016 | A1 |
20160331970 | Lozano | Nov 2016 | A1 |
20160331974 | Lyons et al. | Nov 2016 | A1 |
20160331982 | Chow et al. | Nov 2016 | A1 |
20160334475 | Ueno | Nov 2016 | A1 |
20160334534 | Mandviwala et al. | Nov 2016 | A1 |
20160334866 | Mazed et al. | Nov 2016 | A9 |
20160338608 | Nagasaka et al. | Nov 2016 | A1 |
20160338634 | Neu et al. | Nov 2016 | A1 |
20160338644 | Connor | Nov 2016 | A1 |
20160338798 | Vora et al. | Nov 2016 | A1 |
20160338825 | Wortz et al. | Nov 2016 | A1 |
20160339237 | Ahmed et al. | Nov 2016 | A1 |
20160339238 | Ahmed et al. | Nov 2016 | A1 |
20160339239 | Yoo et al. | Nov 2016 | A1 |
20160339242 | Cook et al. | Nov 2016 | A1 |
20160339243 | Wingeier et al. | Nov 2016 | A1 |
20160339300 | Todasco | Nov 2016 | A1 |
20160341684 | Choi | Nov 2016 | A1 |
20160342241 | Chung et al. | Nov 2016 | A1 |
20160342762 | Goetz | Nov 2016 | A1 |
20160345856 | Semenov | Dec 2016 | A1 |
20160345895 | Loetsch et al. | Dec 2016 | A1 |
20160345901 | Connor | Dec 2016 | A1 |
20160345911 | Leuthardt et al. | Dec 2016 | A1 |
20160346530 | Jeffery et al. | Dec 2016 | A1 |
20160346542 | Simon et al. | Dec 2016 | A1 |
20160351069 | Faubert et al. | Dec 2016 | A1 |
20160354003 | Baker et al. | Dec 2016 | A1 |
20160354027 | Benson et al. | Dec 2016 | A1 |
20160356911 | Wilson et al. | Dec 2016 | A1 |
20160357003 | Hanger et al. | Dec 2016 | A1 |
20160357256 | Siefert | Dec 2016 | A1 |
20160360100 | Kim et al. | Dec 2016 | A1 |
20160360965 | Tran | Dec 2016 | A1 |
20160360970 | Tzvieli et al. | Dec 2016 | A1 |
20160361021 | Salehizadeh et al. | Dec 2016 | A1 |
20160361027 | Jang et al. | Dec 2016 | A1 |
20160361041 | Barsimantov et al. | Dec 2016 | A1 |
20160361532 | Wingeier et al. | Dec 2016 | A1 |
20160361534 | Weisend | Dec 2016 | A9 |
20160361540 | Simon et al. | Dec 2016 | A9 |
20160361546 | Salam et al. | Dec 2016 | A1 |
20160363483 | Tzvieli et al. | Dec 2016 | A1 |
20160364859 | Taylor | Dec 2016 | A1 |
20160364860 | Taylor | Dec 2016 | A1 |
20160364861 | Taylor | Dec 2016 | A1 |
20160366462 | Klappert et al. | Dec 2016 | A1 |
20160367138 | Kim et al. | Dec 2016 | A1 |
20160367186 | Freeman et al. | Dec 2016 | A1 |
20160367195 | Park et al. | Dec 2016 | A1 |
20160367198 | Chon et al. | Dec 2016 | A1 |
20160367204 | Won et al. | Dec 2016 | A1 |
20160367209 | Odry et al. | Dec 2016 | A1 |
20160367808 | Simon et al. | Dec 2016 | A9 |
20160367812 | De Ridder | Dec 2016 | A1 |
20160371387 | Serena | Dec 2016 | A1 |
20160371455 | Taylor | Dec 2016 | A1 |
20160371721 | Bogdon et al. | Dec 2016 | A1 |
20160374581 | Jensen | Dec 2016 | A1 |
20160374616 | Mullins et al. | Dec 2016 | A1 |
20160374618 | Giovangrandi | Dec 2016 | A1 |
20160374990 | Teegarden et al. | Dec 2016 | A1 |
20160375245 | Frei et al. | Dec 2016 | A1 |
20160375259 | Davis et al. | Dec 2016 | A1 |
20160378608 | Kong et al. | Dec 2016 | A1 |
20160378965 | Choe et al. | Dec 2016 | A1 |
20170000324 | Samec et al. | Jan 2017 | A1 |
20170000325 | Samec et al. | Jan 2017 | A1 |
20170000326 | Samec et al. | Jan 2017 | A1 |
20170000329 | Samec et al. | Jan 2017 | A1 |
20170000330 | Samec et al. | Jan 2017 | A1 |
20170000331 | Samec et al. | Jan 2017 | A1 |
20170000332 | Samec et al. | Jan 2017 | A1 |
20170000333 | Samec et al. | Jan 2017 | A1 |
20170000334 | Samec et al. | Jan 2017 | A1 |
20170000335 | Samec et al. | Jan 2017 | A1 |
20170000337 | Samec et al. | Jan 2017 | A1 |
20170000340 | Samec et al. | Jan 2017 | A1 |
20170000341 | Samec et al. | Jan 2017 | A1 |
20170000342 | Samec et al. | Jan 2017 | A1 |
20170000343 | Samec et al. | Jan 2017 | A1 |
20170000345 | Samec et al. | Jan 2017 | A1 |
20170000404 | Leininger et al. | Jan 2017 | A1 |
20170000422 | Moturu et al. | Jan 2017 | A1 |
20170000454 | Samec et al. | Jan 2017 | A1 |
20170000683 | Samec et al. | Jan 2017 | A1 |
20170001016 | De Ridder | Jan 2017 | A1 |
20170001032 | Samec et al. | Jan 2017 | A1 |
20170006931 | Guez et al. | Jan 2017 | A1 |
20170007111 | Samec et al. | Jan 2017 | A1 |
20170007115 | Samec et al. | Jan 2017 | A1 |
20170007116 | Samec et al. | Jan 2017 | A1 |
20170007122 | Samec et al. | Jan 2017 | A1 |
20170007123 | Samec et al. | Jan 2017 | A1 |
20170007165 | Jain et al. | Jan 2017 | A1 |
20170007173 | Adamczyk et al. | Jan 2017 | A1 |
20170007182 | Samec et al. | Jan 2017 | A1 |
20170007450 | Samec et al. | Jan 2017 | A1 |
20170007799 | Samec et al. | Jan 2017 | A1 |
20170007820 | Simon et al. | Jan 2017 | A9 |
20170007828 | Monteiro | Jan 2017 | A1 |
20170007843 | Samec et al. | Jan 2017 | A1 |
20170010469 | Samec et al. | Jan 2017 | A1 |
20170010470 | Samec et al. | Jan 2017 | A1 |
20170013562 | Lim et al. | Jan 2017 | A1 |
20170014037 | Coppola et al. | Jan 2017 | A1 |
20170014080 | Macia Barber et al. | Jan 2017 | A1 |
20170014083 | Diab et al. | Jan 2017 | A1 |
20170014625 | Rosenbluth et al. | Jan 2017 | A1 |
20170014630 | Fried et al. | Jan 2017 | A1 |
20170017083 | Samec et al. | Jan 2017 | A1 |
20170020434 | Walker et al. | Jan 2017 | A1 |
20170020447 | Grossman et al. | Jan 2017 | A1 |
20170020454 | Keteyian et al. | Jan 2017 | A1 |
20170020627 | Tesar et al. | Jan 2017 | A1 |
20170021158 | Wingeier et al. | Jan 2017 | A1 |
20170021161 | De Ridder | Jan 2017 | A1 |
20170024886 | Dickrell et al. | Jan 2017 | A1 |
20170027467 | Hagedorn | Feb 2017 | A1 |
20170027517 | Le et al. | Feb 2017 | A9 |
20170027521 | Geva et al. | Feb 2017 | A1 |
20170027539 | Uber | Feb 2017 | A1 |
20170027651 | Esterberg | Feb 2017 | A1 |
20170027812 | Hyde et al. | Feb 2017 | A1 |
20170028563 | Hemken | Feb 2017 | A1 |
20170031440 | Randolph | Feb 2017 | A1 |
20170031441 | Muller et al. | Feb 2017 | A1 |
20170032098 | Anjan et al. | Feb 2017 | A1 |
20170032221 | Wu et al. | Feb 2017 | A1 |
20170032524 | Dickrell et al. | Feb 2017 | A1 |
20170032527 | Murthy et al. | Feb 2017 | A1 |
20170032544 | Dempsey et al. | Feb 2017 | A1 |
20170034638 | Anastas | Feb 2017 | A1 |
20170035309 | Kang et al. | Feb 2017 | A1 |
20170035317 | Jung et al. | Feb 2017 | A1 |
20170035344 | Tzvieli et al. | Feb 2017 | A1 |
20170035392 | Grunwald et al. | Feb 2017 | A1 |
20170036024 | Hershey et al. | Feb 2017 | A1 |
20170039591 | Knight et al. | Feb 2017 | A1 |
20170039706 | Mikhno et al. | Feb 2017 | A1 |
20170041699 | Mackellar et al. | Feb 2017 | A1 |
20170042430 | Kovacs | Feb 2017 | A1 |
20170042444 | Bardy et al. | Feb 2017 | A1 |
20170042469 | Prerau et al. | Feb 2017 | A1 |
20170042474 | Widge et al. | Feb 2017 | A1 |
20170042475 | Verghese et al. | Feb 2017 | A1 |
20170042476 | Reiman | Feb 2017 | A1 |
20170042485 | Chung et al. | Feb 2017 | A1 |
20170042713 | Nurmikko et al. | Feb 2017 | A1 |
20170042827 | Margel et al. | Feb 2017 | A1 |
20170043160 | Goodall et al. | Feb 2017 | A1 |
20170043166 | Choi et al. | Feb 2017 | A1 |
20170043167 | Widge et al. | Feb 2017 | A1 |
20170043178 | Vo-Dinh et al. | Feb 2017 | A1 |
20170045601 | Akhtari | Feb 2017 | A1 |
20170046052 | Lee et al. | Feb 2017 | A1 |
20170046971 | Moreno | Feb 2017 | A1 |
20170050046 | Walder et al. | Feb 2017 | A1 |
20170052170 | Shekdar et al. | Feb 2017 | A1 |
20170053082 | Pereira et al. | Feb 2017 | A1 |
20170053088 | Walker et al. | Feb 2017 | A1 |
20170053092 | Taylor | Feb 2017 | A1 |
20170053461 | Pal et al. | Feb 2017 | A1 |
20170053513 | Savolainen et al. | Feb 2017 | A1 |
20170053665 | Quatieri, Jr. et al. | Feb 2017 | A1 |
20170055839 | Levinson et al. | Mar 2017 | A1 |
20170055898 | Bandyopadhyay et al. | Mar 2017 | A1 |
20170055900 | Jain et al. | Mar 2017 | A1 |
20170055913 | Bandyopadhyay et al. | Mar 2017 | A1 |
20170056363 | Goodenowe | Mar 2017 | A1 |
20170056467 | Deisseroth et al. | Mar 2017 | A1 |
20170056642 | Moffitt et al. | Mar 2017 | A1 |
20170056655 | Lineaweaver | Mar 2017 | A1 |
20170056663 | Kaemmerer et al. | Mar 2017 | A1 |
20170060298 | Hwang et al. | Mar 2017 | A1 |
20170061034 | Ritchey et al. | Mar 2017 | A1 |
20170061589 | Kuo et al. | Mar 2017 | A1 |
20170061760 | Lee et al. | Mar 2017 | A1 |
20170065199 | Meisel | Mar 2017 | A1 |
20170065218 | Leininger et al. | Mar 2017 | A1 |
20170065229 | Howard | Mar 2017 | A1 |
20170065349 | Ourselin et al. | Mar 2017 | A1 |
20170065379 | Cowburn et al. | Mar 2017 | A1 |
20170065638 | Fraser | Mar 2017 | A1 |
20170065816 | Wingeier et al. | Mar 2017 | A1 |
20170066806 | Deisseroth et al. | Mar 2017 | A1 |
20170067323 | Katterbauer et al. | Mar 2017 | A1 |
20170069306 | Asaei et al. | Mar 2017 | A1 |
20170071495 | Denison et al. | Mar 2017 | A1 |
20170071521 | Mestha et al. | Mar 2017 | A1 |
20170071523 | Jain et al. | Mar 2017 | A1 |
20170071529 | Haugland et al. | Mar 2017 | A1 |
20170071532 | Greco | Mar 2017 | A1 |
20170071537 | Jain et al. | Mar 2017 | A1 |
20170071546 | Jain et al. | Mar 2017 | A1 |
20170071551 | Jain et al. | Mar 2017 | A1 |
20170071552 | Harpe et al. | Mar 2017 | A1 |
20170076452 | Yui et al. | Mar 2017 | A1 |
20170079538 | Liang et al. | Mar 2017 | A1 |
20170079543 | Sadeghian-Motahar | Mar 2017 | A1 |
20170079573 | Osorio | Mar 2017 | A1 |
20170079588 | Ghaffari et al. | Mar 2017 | A1 |
20170079589 | Ghaffari et al. | Mar 2017 | A1 |
20170079596 | Teixeira | Mar 2017 | A1 |
20170080050 | Deisseroth et al. | Mar 2017 | A1 |
20170080234 | Gillespie et al. | Mar 2017 | A1 |
20170080256 | Kim et al. | Mar 2017 | A1 |
20170080320 | Smith | Mar 2017 | A1 |
20170084175 | Sedlik et al. | Mar 2017 | A1 |
20170084187 | Mollicone et al. | Mar 2017 | A1 |
20170085547 | De Aguiar et al. | Mar 2017 | A1 |
20170085855 | Roberts et al. | Mar 2017 | A1 |
20170086672 | Tran | Mar 2017 | A1 |
20170086695 | Mullins et al. | Mar 2017 | A1 |
20170086727 | Dagum | Mar 2017 | A1 |
20170086729 | Bruno | Mar 2017 | A1 |
20170086763 | Verma et al. | Mar 2017 | A1 |
20170087302 | Osorio | Mar 2017 | A1 |
20170087330 | Kahn et al. | Mar 2017 | A1 |
20170087354 | Stevenson et al. | Mar 2017 | A1 |
20170087355 | Stevenson et al. | Mar 2017 | A1 |
20170087356 | Stevenson et al. | Mar 2017 | A1 |
20170087364 | Cartledge et al. | Mar 2017 | A1 |
20170087367 | Weisend | Mar 2017 | A1 |
20170090475 | Choi et al. | Mar 2017 | A1 |
20170091418 | Chen et al. | Mar 2017 | A1 |
20170091567 | Wang et al. | Mar 2017 | A1 |
20170094385 | Lee et al. | Mar 2017 | A1 |
20170095157 | Tzvieli et al. | Apr 2017 | A1 |
20170095174 | Fokas et al. | Apr 2017 | A1 |
20170095199 | Kranck | Apr 2017 | A1 |
20170095670 | Ghaffari et al. | Apr 2017 | A1 |
20170095676 | Caparso et al. | Apr 2017 | A1 |
20170095721 | Bleich et al. | Apr 2017 | A1 |
20170099479 | Browd et al. | Apr 2017 | A1 |
20170099713 | Perez et al. | Apr 2017 | A1 |
20170100051 | Honkura | Apr 2017 | A1 |
20170100540 | Hyde et al. | Apr 2017 | A1 |
20170100591 | Nudo et al. | Apr 2017 | A1 |
20170103440 | Xing et al. | Apr 2017 | A1 |
20170105647 | Duffy | Apr 2017 | A1 |
20170106193 | Carcieri | Apr 2017 | A1 |
20170107575 | Umansky et al. | Apr 2017 | A1 |
20170108926 | Moon et al. | Apr 2017 | A1 |
20170112379 | Swiston et al. | Apr 2017 | A1 |
20170112403 | Doidge et al. | Apr 2017 | A1 |
20170112427 | Simon et al. | Apr 2017 | A1 |
20170112446 | Dagum | Apr 2017 | A1 |
20170112577 | Bonutti et al. | Apr 2017 | A1 |
20170112671 | Goldstein | Apr 2017 | A1 |
20170112947 | Abebe | Apr 2017 | A1 |
20170113042 | Goodall et al. | Apr 2017 | A1 |
20170113046 | Fried et al. | Apr 2017 | A1 |
20170113056 | Stocco et al. | Apr 2017 | A1 |
20170113057 | Goodall et al. | Apr 2017 | A1 |
20170117866 | Stevenson et al. | Apr 2017 | A1 |
20170119270 | Juan et al. | May 2017 | A1 |
20170119271 | Leuthardt et al. | May 2017 | A1 |
20170119994 | Argaman | May 2017 | A1 |
20170120041 | Wenger et al. | May 2017 | A1 |
20170120043 | John | May 2017 | A1 |
20170120052 | Simon et al. | May 2017 | A9 |
20170120054 | Moffitt et al. | May 2017 | A1 |
20170120066 | Phillips et al. | May 2017 | A1 |
20170127727 | Davidson et al. | May 2017 | A1 |
20170127946 | Levinson et al. | May 2017 | A1 |
20170128006 | Seo et al. | May 2017 | A1 |
20170128015 | Rogers et al. | May 2017 | A1 |
20170128032 | Buchert et al. | May 2017 | A1 |
20170131293 | Haslett et al. | May 2017 | A1 |
20170132816 | Aston et al. | May 2017 | A1 |
20170133576 | Marcus et al. | May 2017 | A1 |
20170133577 | Cybart et al. | May 2017 | A1 |
20170135594 | Hartings et al. | May 2017 | A1 |
20170135597 | Mann | May 2017 | A1 |
20170135604 | Kent et al. | May 2017 | A1 |
20170135626 | Singer | May 2017 | A1 |
20170135629 | Kent et al. | May 2017 | A1 |
20170135631 | Zuckerman-Stark et al. | May 2017 | A1 |
20170135633 | Connor | May 2017 | A1 |
20170135640 | Gunasekar et al. | May 2017 | A1 |
20170136238 | Hartig et al. | May 2017 | A1 |
20170136240 | Mogul | May 2017 | A1 |
20170136264 | Hyde et al. | May 2017 | A1 |
20170136265 | Hyde et al. | May 2017 | A1 |
20170138132 | Wilson et al. | May 2017 | A1 |
20170140124 | Sehgal et al. | May 2017 | A1 |
20170143231 | Ostberg et al. | May 2017 | A1 |
20170143249 | Davis et al. | May 2017 | A1 |
20170143255 | Babaeizadeh et al. | May 2017 | A1 |
20170143257 | Kent et al. | May 2017 | A1 |
20170143259 | Kent et al. | May 2017 | A1 |
20170143266 | Kovacs et al. | May 2017 | A1 |
20170143267 | Kovacs et al. | May 2017 | A1 |
20170143268 | Kovacs et al. | May 2017 | A1 |
20170143273 | Osorio et al. | May 2017 | A1 |
20170143280 | Kent et al. | May 2017 | A1 |
20170143282 | Kovacs et al. | May 2017 | A1 |
20170143442 | Tesar et al. | May 2017 | A1 |
20170143550 | Kilgard et al. | May 2017 | A1 |
20170143960 | Kent et al. | May 2017 | A1 |
20170143963 | Osorio | May 2017 | A1 |
20170143966 | Reymers et al. | May 2017 | A1 |
20170143986 | Deisseroth et al. | May 2017 | A1 |
20170146386 | Wiard et al. | May 2017 | A1 |
20170146387 | Wiard et al. | May 2017 | A1 |
20170146390 | Kovacs | May 2017 | A1 |
20170146391 | Kovacs et al. | May 2017 | A1 |
20170146615 | Wolf et al. | May 2017 | A1 |
20170146801 | Stempora | May 2017 | A1 |
20170147578 | Hecht et al. | May 2017 | A1 |
20170147754 | Kovacs | May 2017 | A1 |
20170148213 | Thomas et al. | May 2017 | A1 |
20170148240 | Kovacs et al. | May 2017 | A1 |
20170148340 | Popa-Simil et al. | May 2017 | A1 |
20170148592 | Tabib-Azir | May 2017 | A1 |
20170149945 | Lee et al. | May 2017 | A1 |
20170150896 | Lu et al. | Jun 2017 | A9 |
20170150916 | Osorio | Jun 2017 | A1 |
20170150921 | Yun et al. | Jun 2017 | A1 |
20170150925 | Jung | Jun 2017 | A1 |
20170151433 | Simon et al. | Jun 2017 | A1 |
20170151435 | Deadwyler et al. | Jun 2017 | A1 |
20170151436 | Flaherty et al. | Jun 2017 | A1 |
20170154167 | Ovtchinnikov | Jun 2017 | A1 |
20170156593 | Ferber et al. | Jun 2017 | A1 |
20170156606 | Ferber et al. | Jun 2017 | A1 |
20170156622 | Mahoor et al. | Jun 2017 | A1 |
20170156655 | Austin et al. | Jun 2017 | A1 |
20170156662 | Goodall et al. | Jun 2017 | A1 |
20170156674 | Hochman | Jun 2017 | A1 |
20170157343 | Davidson et al. | Jun 2017 | A1 |
20170157402 | Osorio | Jun 2017 | A1 |
20170157410 | Moffitt et al. | Jun 2017 | A1 |
20170160360 | Deisseroth et al. | Jun 2017 | A1 |
20170162072 | Horseman et al. | Jun 2017 | A1 |
20170164861 | Cahan et al. | Jun 2017 | A1 |
20170164862 | Dolev et al. | Jun 2017 | A1 |
20170164876 | Hyde et al. | Jun 2017 | A1 |
20170164878 | Connor | Jun 2017 | A1 |
20170164893 | Narayan et al. | Jun 2017 | A1 |
20170164894 | Yoo et al. | Jun 2017 | A1 |
20170164895 | Howard | Jun 2017 | A1 |
20170164901 | Shusterman | Jun 2017 | A1 |
20170165020 | Martel | Jun 2017 | A1 |
20170165481 | Menon | Jun 2017 | A1 |
20170165496 | Pilla et al. | Jun 2017 | A1 |
20170168121 | Yu et al. | Jun 2017 | A1 |
20170168566 | Osterhout et al. | Jun 2017 | A1 |
20170168568 | Petrov | Jun 2017 | A1 |
20170169714 | Lin et al. | Jun 2017 | A1 |
20170171441 | Kearns et al. | Jun 2017 | A1 |
20170172414 | Nierenberg et al. | Jun 2017 | A1 |
20170172446 | Kuzum et al. | Jun 2017 | A1 |
20170172499 | Yoo | Jun 2017 | A1 |
20170172501 | Badower et al. | Jun 2017 | A1 |
20170172520 | Kannan et al. | Jun 2017 | A1 |
20170172527 | Uber | Jun 2017 | A1 |
20170173262 | Veltz | Jun 2017 | A1 |
20170173326 | Bloch et al. | Jun 2017 | A1 |
20170173391 | Wiebe et al. | Jun 2017 | A1 |
20170177023 | Simon et al. | Jun 2017 | A1 |
20170178001 | Anderson et al. | Jun 2017 | A1 |
20170178340 | Schadewaldt et al. | Jun 2017 | A1 |
20170180558 | Li et al. | Jun 2017 | A1 |
20170181252 | Wouhaybi et al. | Jun 2017 | A1 |
20170181693 | Kim et al. | Jun 2017 | A1 |
20170182176 | Satchi-Fainaro et al. | Jun 2017 | A1 |
20170182285 | Tyler et al. | Jun 2017 | A1 |
20170182312 | Durand et al. | Jun 2017 | A1 |
20170185149 | Oluwafemi et al. | Jun 2017 | A1 |
20170185714 | Halter et al. | Jun 2017 | A1 |
20170185741 | Moffitt et al. | Jun 2017 | A1 |
20170188862 | Kale et al. | Jul 2017 | A1 |
20170188865 | Nierenberg et al. | Jul 2017 | A1 |
20170188866 | Kale et al. | Jul 2017 | A1 |
20170188868 | Kale et al. | Jul 2017 | A1 |
20170188869 | Kale et al. | Jul 2017 | A1 |
20170188870 | Hilty | Jul 2017 | A1 |
20170188872 | Hughes et al. | Jul 2017 | A1 |
20170188876 | Marci et al. | Jul 2017 | A1 |
20170188905 | Lee et al. | Jul 2017 | A1 |
20170188916 | Wang et al. | Jul 2017 | A1 |
20170188922 | Lee et al. | Jul 2017 | A1 |
20170188932 | Singer et al. | Jul 2017 | A1 |
20170188933 | Huggins et al. | Jul 2017 | A1 |
20170188947 | Connor | Jul 2017 | A1 |
20170188992 | O'Brien et al. | Jul 2017 | A1 |
20170189685 | Steinke et al. | Jul 2017 | A1 |
20170189686 | Steinke et al. | Jul 2017 | A1 |
20170189687 | Steinke et al. | Jul 2017 | A1 |
20170189688 | Steinke et al. | Jul 2017 | A1 |
20170189689 | Steinke et al. | Jul 2017 | A1 |
20170189691 | De Ridder | Jul 2017 | A1 |
20170189700 | Moffitt et al. | Jul 2017 | A1 |
20170189707 | Zabara | Jul 2017 | A1 |
20170190765 | El-Agnaf | Jul 2017 | A1 |
20170193161 | Sapiro et al. | Jul 2017 | A1 |
20170193831 | Walter et al. | Jul 2017 | A1 |
20170196497 | Ray et al. | Jul 2017 | A1 |
20170196501 | Watson et al. | Jul 2017 | A1 |
20170196503 | Narayan et al. | Jul 2017 | A1 |
20170196519 | Miller et al. | Jul 2017 | A1 |
20170197080 | Wagner et al. | Jul 2017 | A1 |
20170197081 | Charlesworth et al. | Jul 2017 | A1 |
20170197086 | Howard et al. | Jul 2017 | A1 |
20170198017 | Deisseroth et al. | Jul 2017 | A1 |
20170198349 | Rice | Jul 2017 | A1 |
20170199251 | Fujii et al. | Jul 2017 | A1 |
20170202474 | Banerjee et al. | Jul 2017 | A1 |
20170202475 | Leuthardt | Jul 2017 | A1 |
20170202476 | Desain et al. | Jul 2017 | A1 |
20170202518 | Furman et al. | Jul 2017 | A1 |
20170202621 | Taylor | Jul 2017 | A1 |
20170202633 | Liu | Jul 2017 | A1 |
20170203154 | Solinsky | Jul 2017 | A1 |
20170205259 | Jang et al. | Jul 2017 | A1 |
20170206654 | Shiroishi et al. | Jul 2017 | A1 |
20170206691 | Harrises et al. | Jul 2017 | A1 |
20170206913 | Nahman et al. | Jul 2017 | A1 |
20170209043 | Gross et al. | Jul 2017 | A1 |
20170209044 | Ito et al. | Jul 2017 | A1 |
20170209053 | Pantelopoulos et al. | Jul 2017 | A1 |
20170209062 | Iwasaki et al. | Jul 2017 | A1 |
20170209083 | Zarandi et al. | Jul 2017 | A1 |
20170209094 | Derchak et al. | Jul 2017 | A1 |
20170209225 | Wu | Jul 2017 | A1 |
20170209389 | Toth et al. | Jul 2017 | A1 |
20170209737 | Tadi et al. | Jul 2017 | A1 |
20170212188 | Kikitsu et al. | Jul 2017 | A1 |
20170213339 | Hibbard et al. | Jul 2017 | A1 |
20170214786 | Lee et al. | Jul 2017 | A1 |
20170216595 | Geva et al. | Aug 2017 | A1 |
20170221206 | Han et al. | Aug 2017 | A1 |
20170224990 | Goldwasser et al. | Aug 2017 | A1 |
20170224994 | Kilgard et al. | Aug 2017 | A1 |
20170231560 | Hyde et al. | Aug 2017 | A1 |
20170239486 | Suryavanshi | Aug 2017 | A1 |
20170239489 | Bourke, Jr. et al. | Aug 2017 | A1 |
20170319817 | Morishima | Nov 2017 | A1 |
20180169430 | Kamei | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
1304073 | Apr 2003 | EP |
1304073 | Sep 2003 | EP |
WO2000025668 | Sep 2003 | WO |
WO2001087153 | Sep 2003 | WO |
Entry |
---|
Michelle Ma, UW study shows direct brain interface between humans, Nov. 2014, UW News (washington.edu/news/2014/11/05/uw-study-shows-direct-brain-interface-between-humans/). (Year: 2014). |
Rao RPN, Stocco A, Bryan M, Sarma D, YoungquistTM, et al. (2014) A Direct Brain-to-Brain Interface in Humans. PLOS ONE 9(11): e111332. https://doi.org/10.1371/journal.pone.0111332 (Year: 2014). |
Number | Date | Country | |
---|---|---|---|
20190321583 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62660839 | Apr 2018 | US |