System and method for inferring user intent from speech inputs

Information

  • Patent Grant
  • 10769385
  • Patent Number
    10,769,385
  • Date Filed
    Thursday, November 29, 2018
    6 years ago
  • Date Issued
    Tuesday, September 8, 2020
    4 years ago
Abstract
A text string with a first and a second portion is provided. A domain of the text string is determined by applying a first word-matching process to the first portion of the text string. It is then determined whether the second portion of the text string matches a word of a set of words associated with the domain by applying a second word-matching process to the second portion of the text string. Upon determining that the second portion of the text string matches the word of the set of words, it is determined whether a user intent from the text string based at least in part on the domain and the word of the set of words.
Description
TECHNICAL FIELD

The disclosed implementations relate generally to digital assistants, and more specifically, to processing a speech input to a infer user intent therefrom.


BACKGROUND

Just like human personal assistants, digital assistants or virtual assistants can perform requested tasks and provide requested advice, information, or services. An assistant's ability to fulfill a user's request is dependent on the assistant's correct comprehension of the request or instructions. Recent advances in natural language processing have enabled users to interact with digital assistants using natural language, in spoken or textual forms, rather than employing a conventional user interface (e.g., menus or programmed commands). Such digital assistants can interpret the user's input to infer the user's intent, translate the inferred intent into actionable tasks and parameters, execute operations or deploy services to perform the tasks, and produce outputs that are intelligible to the user. Ideally, the outputs produced by a digital assistant should fulfill the user's intent expressed during the natural language interaction between the user and the digital assistant.


In order to perform natural language processing on speech inputs, the speech input is first converted to text (e.g., with a speech-to-text processor), and the converted text is then analyzed by a natural language processor to infer the user's intent. Consequently, any errors in the speech-to-text conversion (e.g., incorrect recognition of words in the speech input) will be propagated to the natural language processor, which may be unable to infer the user's intent due to the incorrect transcription of the words. For example, if a user provides a speech input such as “find show times for ‘Hansel and Gretel,”’ and the speech-to-text processor incorrectly converts the input to “find show times for cancel and Gretel,” the natural language processor may be unable to find any movies with the name “cancel and Gretel,” and thus, unable to provide a satisfactory response to the user.


Accordingly, there is a need for systems and methods to infer user intent from a speech input so as to account for possible speech recognition errors.


SUMMARY

The implementations described herein provide natural language processing systems and methods for determining a user's intent from a natural language input.


Natural language processing is specifically designed to free users from having to know arcane syntax and specialized command structures in order to communicate with computers. This feature of natural language processing is particularly useful in the context of digital assistants, because different people will formulate requests in different ways, and the digital assistant should be flexible enough to understand the user's intent regardless of the particular syntax or wording of a request. In particular, a digital assistant should be able to infer that speech inputs such as “set an alarm for six AM” and “wake me up tomorrow at six” are both requesting the same action. Natural language processors are, therefore, able to infer a user's intent by attempting to understand the meaning of the input, rather than by simply processing commands that are input according to a known syntax or command structure.


One technique for accomplishing this, as described herein, is to process inputs using an ontology that is organized into “domains,” where domains relate to real-world concepts and/or tasks that the digital assistant can perform. In some implementations, a text string corresponding to a speech input is analyzed in light of the ontology to determine a domain that the text string most likely implicates. After (or as part of) determining the domain, the natural language processor identifies an “actionable intent” (i.e., a task that can be performed by the digital assistant) to be performed in response to the user's input.


The domain and/or the actionable intent is determined, at least in part, based on the particular words in the text string. In particular, domains are associated with lists of words that relate to the domain. For example, the word “remind” might be included in a word list for a “reminder” domain, but might not appear in a “restaurant reservation” domain. Similarly, the word “reservation” may be associated with a “restaurant reservation” domain, but not with a “reminder” domain.


Moreover, some domains are associated with “named entity” lists that include names of particular people, places, or things of particular salience to the domain. For example, a “movie” domain is associated with a named entity list including a list of known movie names. Similarly, a “communication” domain is associated with a contact list and/or address book including names of contacts. Accordingly, the natural language processor will be able to quickly identify that the phrase “The Breakfast Club” identifies a particular movie; that the phrase “Cheesecake Factory” identifies a particular restaurant; that the name “Andy Bernard” identifies a particular person; and so on.


The natural language processor also determines a confidence score representing how well or to what extent a user input matches a particular domain or actionable intent. The confidence score can be used, for example, to help determine which of two candidate domains is most likely to accurately reflect or represent the intent of the input. The confidence score can also be used to determine whether any of the domains or actionable intents are sufficiently relevant to the user input to justify selection of that domain or actionable intent. For example, in some implementations, the natural language processor is configured so that if no candidate domain satisfies a predetermined confidence threshold, the digital assistant will not provide a response.


Moreover, the natural language processor may be able to determine a likely domain for a given user input, but be unable to determine what the user is specifically requesting. For example, the natural language processor may be able to determine that an input “movie times for Titanic” relates to a movie domain, but it is unable to satisfy the user's request because it does not recognize that the word “Titanic” is a movie name (e.g., because it is not in the list of known movie titles). These problems may be especially apparent where a speech-to-text (STT) process provides imperfect transcriptions. For example, if an STT process mistakenly transcribes the speech input “movie times for Argo” as “movie times for are go,” the natural language processor may be unable to provide a suitable response because, although it can determine that the request relates to a “movie” domain, it cannot identify what movie the user was referring to.


According to some implementations described herein, errors such as those described above are mitigated by performing a domain-specific word-matching process on the text string after the domain is determined. For example, the natural language processor receives a text string corresponding to a speech input, and determines a domain of the text string by applying a first word-matching process (e.g., comparing the words in the text string to words associated with many different domains). Once the domain is determined, if the natural language processor cannot adequately determine the user's intent (e.g., the specific action that the user is requesting), the natural language processor performs a second word-matching process of at least a part of the text string in order to better identify what the user may have said.


For example, in some implementations, the second word-matching process includes applying a more relaxed matching criteria than the first word-matching process. Specifically, the first word-matching process may require an exact match between words in the text string and words in (or associated with) the domains, whereas the second word-matching process requires only an approximate string match or a phonetic match.


Also, in some implementations, the second word-matching process is limited to words that are associated with the domain that was determined for the text string. As a specific example, for a text string “show times for cancel and kettle,” the natural language processor easily determines that the text string relates to a “movie” domain, but does not initially find any matches or relevance to the phrase “cancel and kettle.” Thus, the natural language processor re-processes the text string (or a portion thereof) to search for word matches in a vocabulary that is specific to the “movie” domain (e.g., a list of known movie titles). By limiting the search scope to in-domain words, and/or applying more relaxed matching criteria, the natural language processor can determine that the text actually refers to the movie “Hansel and Gretel,” and thus provide a suitable response to the user where it otherwise may have failed to do so.


Another way to mitigate errors such as those described above is to apply natural language processing to multiple different text strings from the STT processor, identify domains and/or actionable intents for each of the multiple text strings, and adopt the domain and/or actionable intent with the highest confidence score. Specifically, an STT processor typically generates multiple candidate text strings for a given speech input, and selects only what it determines to be the “best” to provide to the natural language processor (e.g., based on a speech recognition confidence score). However, this selection may not always accurately reflect the speech input (e.g., “cancel and kettle,” as described above). Indeed, the correct text string may have even been generated as a candidate text string, but ultimately passed over in favor of another text string.


In some implementations, the natural language processor processes several of the candidate text strings produced by the STT processor to determine a user intent for each text string. The natural language processor then selects one of the text strings based at least partially on a confidence score representing how well or to what extent the text string matches a particular domain or a particular task associated with a domain. Thus, the natural language processor can leverage its powerful intent deduction abilities to help select the text string that most likely reflects the actual words in the speech input.


The implementations disclosed herein provide methods, systems, computer readable storage medium and user interfaces for determining a user intent from a text string and/or a speech input.


According to some implementations, a method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. A text string corresponding to a speech input is provided, wherein the text string comprises a first portion and a second portion. A domain of the text string is determined using natural language processing by applying a first word-matching process to at least the first portion of the text string. It is determined whether the second portion of the text string matches at least one word of a set of words associated with the domain by applying a second word-matching process to the second portion of the text string. Upon determining that the second portion of the text string matches at least one word of the set of words, a user intent is determined from the text string based at least in part on the domain and the at least one word of the set of words.


In some implementations, word-matching criteria applied by the second word-matching process is more relaxed than word-matching criteria applied by the first word-matching process. In some implementations, the first word-matching process requires exact matches between words, and the second word-matching process does not require exact matches between words. In some implementations, the second word-matching process applies approximate string matching techniques.


In some implementations, the second word-matching process comprises determining an edit distance between a word of the second portion of the text string and a word of the set of words associated with the domain. In some implementations, the edit distance is a Levenshtein distance.


In some implementations, the second word-matching process applies phonetic matching techniques.


In some implementations, one or more actions to satisfy the user intent are performed. In some implementations, performing the one or more actions includes making a restaurant reservation, providing information about a movie to a user, initiating a communication with another user, etc.


According to some implementations, a method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. A plurality of candidate text strings for a speech input are provided, wherein the candidate text strings are generated by a speech recognition process. At least a subset of the plurality of candidate text strings is selected, the subset including at least two candidate text strings. A plurality of user intents are determined from the selected subset of the plurality of text strings. A user intent is selected from the plurality of user intents.


In some implementations, the plurality of user intents are associated with a plurality of intent deduction confidence scores. In some implementations, the user intent is selected based on the plurality of intent deduction confidence scores. In some implementations, the selected user intent is the user intent with the highest intent deduction confidence score.


In some implementations, the plurality of candidate text strings are associated with a plurality of speech recognition confidence scores. In some implementations, the user intent is selected based on the speech recognition confidence scores and the intent deduction confidence scores.


In some implementations, a plurality of composite confidence scores are determined for the plurality of user intents. In some implementations, a composite confidence score is a combination of a respective speech recognition confidence score and a respective intent deduction confidence score. In some implementations, a composite confidence score is a sum of a respective speech recognition confidence score and a respective intent deduction confidence score. In some implementations, a composite confidence score is an average of a respective speech recognition confidence score and a respective intent deduction confidence score. In some implementations, a composite confidence score is a weighted average of a respective speech recognition confidence score and a respective intent deduction confidence score.


In some implementations, the selected user intent is the user intent with the highest composite confidence score.


In some implementations, one or more actions to satisfy the user intent are performed. In some implementations, performing the one or more actions includes making a restaurant reservation, providing information about a movie to a user, initiating a communication with another user, etc.


According to some implementations, a method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. A plurality of text strings corresponding to a speech input are provided, wherein the plurality of text strings is associated with a plurality of speech recognition confidence scores and a plurality of user intents, and wherein the plurality of user intents is associated with a plurality of intent deduction confidence scores. One of the plurality of user intents is selected based on one or both of the speech recognition confidence scores and the intent deduction confidence scores.


In some implementations, a plurality of composite confidence scores are determined for the plurality of user intents. In some implementations, a composite confidence score is a combination of a respective speech recognition confidence score and a respective intent deduction confidence score. In some implementations, a composite confidence score is a sum of a respective speech recognition confidence score and a respective intent deduction confidence score. In some implementations, a composite confidence score is an average of a respective speech recognition confidence score and a respective intent deduction confidence score. In some implementations, a composite confidence score is a weighted average of a respective speech recognition confidence score and a respective intent deduction confidence score.


In sonic implementations, the selected user intent is the user intent with the highest composite confidence score.


In some implementations, one or more actions to satisfy the user intent are performed. In some implementations, performing the one or more actions includes making a restaurant reservation, providing information about a movie to a user, initiating a communication with another user, etc.


In accordance with some embodiments, an electronic device includes one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing the operations of any of the methods described above. In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by an electronic device, cause the device to perform the operations of any of the methods described above. In accordance with some embodiments, an electronic device includes: means for performing the operations of any of the methods described above. In accordance with some embodiments, an information processing apparatus, for use in an electronic device, includes means for performing the operations of any of the methods described above.


The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an environment in which a digital assistant operates in accordance with some implementations.



FIG. 2 is a block diagram illustrating a digital assistant client system in accordance with some implementations.



FIG. 3A is a block diagram illustrating a digital assistant system or a server portion thereof in accordance with some implementations.



FIG. 3B is a block diagram illustrating functions of the digital assistant shown in FIG. 3A in accordance with some implementations.



FIG. 3C is a diagram of a portion of an ontology in accordance with some implementations.



FIG. 4 is a diagram illustrating a technique for processing a token sequence using a natural language processor, in accordance with some implementations.



FIG. 5 is a diagram illustrating another technique for processing a token sequence using a natural language processor, in accordance with some implementations.



FIGS. 6-8 are flow diagrams of an exemplary method implemented by a digital assistant for determining a user intent from a text string, in accordance with some implementations.





Like reference numerals refer to corresponding parts throughout the drawings.


DESCRIPTION OF IMPLEMENTATIONS

Figure I is a block diagram of an operating environment 100 of a digital assistant according to some implementations. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant,” refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on a inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g. speech) and/or visual form.


Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request is either provision of the requested informational answer, performance of the requested task, or a combination of the two. For example, a user may ask the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant may answer, “You are in Central Park near the west gate.” The user may also request the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant may acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user' friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.


An example of a digital assistant is described in Applicant's U.S. Utility application Ser. No. 12/987,982 for “Intelligent Automated Assistant,” filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.


As shown in FIG. 1, in some implementations, a digital assistant is implemented according to a client-server model. The digital assistant includes a client-side portion 102a, 102b (hereafter “DA client 102”) executed on a user device 104a, 104b, and a server-side portion 106 (hereafter “DA server 106”) executed on a server system 108. The DA client 102 communicates with the DA server 106 through one or more networks 110. The DA client 102 provides client-side functionalities such as user-facing input and output processing and communications with the DA-server 106. The DA server 106 provides server-side functionalities for any number of DA-clients 102 each residing on a respective user device 104.


In some implementations, the DA server 106 includes a client-facing I/O interface 112, one or more processing modules 114, data and models 116, and an I/O interface to external services 118. The client-facing I/O interface facilitates the client-facing input and output processing for the digital assistant server 106, The one or more processing modules 114 utilize the data and models 116 to determine the user's intent based on natural language input and perform task execution based on inferred user intent. In some implementations, the DA-server 106 communicates with external services 120 through the network(s) 110 for task completion or information acquisition. The I/O interface to external services 118 facilitates such communications.


Examples of the user device 104 include, but are not limited to, a handheld computer, a personal digital assistant (PDA), a tablet computer, a laptop computer, a desktop computer, a cellular telephone, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a media player, a navigation device, a game console, a television, a remote control, or a combination of any two or more of these data processing devices or other data processing devices. More details on the user device 104 are provided in reference to an exemplary user device 104 shown in FIG. 2.


Examples of the communication network(s) 110 include local area networks (“LAN”) and wide area networks (“WAN”), e.g., the Internet. The communication network(s) 110 may be implemented using any known network protocol, including various wired or wireless protocols, such as e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VOIP), Wi-MAX, or any other suitable communication protocol.


The server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some implementations, the server system 108 also employs various virtual devices and/or services of third party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of the server system 108.


Although the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., the DA-client 102) and a server-side portion (e.g., the DA-server 106), in some implementations, the functions of a digital assistant is implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For example, in some implementations, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.



FIG. 2 is a block diagram of a user-device 104 in accordance with some implementations. The user device 104 includes a memory interface 202, one or more processors 204, and a peripherals interface 206. The various components in the user device 104 are coupled by one or more communication buses or signal lines. The user device 104 includes various sensors, subsystems, and peripheral devices that are coupled to the peripherals interface 206. The sensors, subsystems, and peripheral devices gather information and/or facilitate various functionalities of the user device 104.


For example, a motion sensor 210, a light sensor 212, and a proximity sensor 214 are coupled to the peripherals interface 206 to facilitate orientation, light, and proximity sensing functions. One or more other sensors 216, such as a positioning system (e.g., GPS receiver), a temperature sensor, a biometric sensor, a gyro, a compass, an accelerometer, and the like, are also connected to the peripherals interface 206, to facilitate related functionalities.


In some implementations, a camera subsystem 220 and an optical sensor 222 are utilized to facilitate camera functions, such as taking photographs and recording video clips. Communication functions are facilitated through one or more wired and/or wireless communication subsystems 224, which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. An audio subsystem 226 is coupled to speakers 228 and a microphone 230 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.


In some implementations, an I/O subsystem 240 is also coupled to the peripheral interface 206. The I/O subsystem 240 includes a touch screen controller 242 and/or other input controller(s) 244. The touch-screen controller 242 is coupled to a touch screen 246. The touch screen 246 and the touch screen controller 242 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, surface acoustic wave technologies, proximity sensor arrays, and the like. The other input controller(s) 244 can be coupled to other input/control devices 248, such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a pointer device such as a stylus.


In some implementations, the memory interface 202 is coupled to memory 250. The memory 250 can include high-speed random access memory and/or non-volatile memory, such as one or more magnetic disk storage devices, one or more optical storage devices, and/or flash memory (e.g., NAND, NOR).


in some implementations, the memory 250 stores an operating system 252, a communication module 254, a user interface module 256, a sensor processing module 258, a phone module 260, and applications 262. The operating system 252 includes instructions for handling basic system services and for performing hardware dependent tasks. The communication module 254 facilitates communicating with one or more additional devices, one or more computers and/or one or more servers. The user interface module 256 facilitates graphic user interface processing and output processing using other output channels (e.g., speakers). The sensor processing module 258 facilitates sensor-related processing and functions. The phone module 260 facilitates phone-related processes and functions. The application module 262 facilitates various functionalities of user applications, such as electronic-messaging, web browsing, media processing, Navigation, imaging and/or other processes and functions.


As described in this specification, the memory 250 also stores client-side digital assistant instructions (e.g., in a digital assistant client module 264) and various user data 266 (e.g., user-specific vocabulary data, preference data, and/or other data such as the user's electronic address book, to-do lists, shopping lists, user-specified name pronunciations, etc.) to provide the client-side functionalities of the digital assistant.


In various implementations, the digital assistant client module 264 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., the I/O subsystem 244) of the user device 104. The digital assistant client module 264 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, the digital assistant client module 264 communicates with the digital assistant server using the communication subsystems 224.


In some implementations, the digital assistant client module 264 includes a speech synthesis module 265. The speech synthesis module 265 synthesizes speech outputs for presentation to the user. The speech synthesis module 265 synthesizes speech outputs based on text provided by the digital assistant. For example, the digital assistant generates text to provide as an output to a user, and the speech synthesis module 265 converts the text to an audible speech output. The speech synthesis module 265 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including but not limited to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis.


In some implementations, instead of (or in addition to) using the local speech synthesis module 265, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device 104 for output to the user. For example, this occurs in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it may be possible to obtain higher quality speech outputs than would be practical with client-side synthesis.


In some implementations, the digital assistant client module 264 utilizes the various sensors, subsystems and peripheral devices to gather additional information from the surrounding environment of the user device 104 to establish a context associated with a user, the current user interaction, and/or the current user input. In some implementations, the digital assistant client module 264 provides the context information or a subset thereof with the user input to the digital assistant server to help infer the user's intent. In some implementations, the digital assistant also uses the context information to determine how to prepare and delivery outputs to the user.


In some implementations, the context information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some implementations, the context information also includes the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some implementations, information related to the software state of the user device 104, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., of the user device 104 are provided to the digital assistant server as context information associated with a user input.


In some implementations, the DA client module 264 selectively provides information (e.g., user data 266) stored on the user device 104 in response to requests from the digital assistant server. In some implementations, the digital assistant client module 264 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by the digital assistant server 106. The digital assistant client module 264 passes the additional input to the digital assistant server 106 to help the digital assistant server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


In various implementations, the memory 250 includes additional instructions or fewer instructions. Furthermore, various functions of the user device 104 may be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits.



FIG. 3A is a block diagram of an example digital assistant system 300 in accordance with some implementations. In some implementations, the digital assistant system 300 is implemented on a standalone computer system. In some implementations, the digital assistant system 300 is distributed across multiple computers. In some implementations, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on a user device (e.g., the user device 104) and communicates with the server portion (e.g., the server system 108) through one or more networks, e.g., as shown in FIG. 1. In some implementations, the digital assistant system 300 is an implementation of the server system 108 (and/or the digital assistant server 106) shown in FIG. 1. It should be noted that the digital assistant system 300 is only one example of a digital assistant system, and that the digital assistant system 300 may have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown in FIG. 3A may be implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination of thereof.


The digital assistant system 300 includes memory 302, one or more processors 304, an input/output (I/O) interface 306, and a network communications interface 308. These components communicate with one another over one or more communication buses or signal lines 310.


In some implementations, the memory 302 includes a non-transitory computer readable medium, such as high-speed random access memory and/or a non-volatile computer readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).


In some implementations, the I/O interface 306 couples input/output devices 316 of the digital assistant system 300, such as displays, keyboards, touch screens, and microphones, to the user interface module 322. The I/O interface 306, in conjunction with the user interface module 322, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some implementations, e.g., when the digital assistant is implemented on a standalone user device, the digital assistant system 300 includes any of the components and I/O and communication interfaces described with respect to the user device 104 in FIG. 2. In some implementations, the digital assistant system 300 represents the server portion of a digital assistant implementation, and interacts with the user through a client-side portion residing on a user device (e.g., the user device 104 shown in FIG. 2).


In some implementations, the network communications interface 308 includes wired communication port(s) 312 and/or wireless transmission and reception circuitry 314. The wired communication port(s) receive and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 314 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications may use any of a plurality of communications standards, protocols and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. The network communications interface 308 enables communication between the digital assistant system 300 with networks, such as the Internet, an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices.


In some implementations, memory 302, or the computer readable storage media of memory 302, stores programs, modules, instructions, and data structures including all or a subset of: an operating system 318, a communications module 320, a user interface module 322, one or more applications 324, and a digital assistant module 326. The one or more processors 304 execute these programs, modules, and instructions, and reads/writes from/to the data structures.


The operating system 318 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


The communications module 320 facilitates communications between the digital assistant system 300 with other devices over the network communications interface 308. For example, the communication module 320 may communicate with the communication interface 254 of the device 104 shown in FIG. 2. The communications module 320 also includes various components for handling data received by the wireless circuitry 314 and/or wired communications port 312.


The user interface module 322 receives commands and/or inputs from a user via the I/O interface 306 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generates user interface objects on a display. The user interface module 322 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, and light, etc.) to the user via the I/O interface 306 (e.g., through displays, audio channels, speakers, and touch-pads, etc.).


The applications 324 include programs and/or modules that are configured to be executed by the one or more processors 304. For example, if the digital assistant system is implemented on a standalone user device, the applications 324 may include user applications, such as games, a calendar application, a navigation application, or an email application. If the digital assistant system 300 is implemented on a server farm, the applications 324 may include resource management applications, diagnostic applications, or scheduling applications, for example.


The memory 302 also stores the digital assistant module (or the server portion of a digital assistant) 326. In some implementations, the digital assistant module 326 includes the following sub-modules, or a subset or superset thereof: an input/output processing module 328, a speech-to-text (STT) processing module 330, a natural language processing module 332, a dialogue flow processing module 334, a task flow processing module 336, a service processing module 338, and a speech interaction error detection module 339. Each of these modules has access to one or more of the following data and models of the digital assistant 326, or a subset or superset thereof: ontology 360, vocabulary index 344, user data 348, task flow models 354, and service models 356.


In some implementations, using the processing modules, data, and models implemented in the digital assistant module 326, the digital assistant performs at least some of the following: identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, names, intentions, etc.); determining the task flow for fulfilling the inferred intent and executing the task flow to fulfill the inferred intent.


In some implementations, as shown in FIG. 3B, the I/O processing module 328 interacts with the user through the I/O devices 316 in FIG. 3A or with a user device (e.g., a user device 104 in FIG. 1) through the network communications interface 308 in FIG. 3A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. The I/O processing module 328 optionally obtains context information associated with the user input from the user device, along with or shortly after the receipt of the user input. The context information includes user-specific data, vocabulary, and/or preferences relevant to the user input. In some implementations, the context information also includes software and hardware states of the device (e.g., the user device 104 in FIG. 1) at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some implementations, the I/O processing module 328 also sends follow-up questions to, and receives answers from, the user regarding the user request. When a user request is received by the I/O processing module 328 and the user request contains a speech input, the I/O processing module 328 forwards the speech input to the speech-to-text (STT) processing module 330 for speech-to-text conversions.


The speech-to-text processing module 330 (or speech recognizer) receives speech input (e.g., a user utterance captured in a voice recording) through the I/O processing module 328. In some implementations, the STT processing module 330 uses various acoustic and language models to recognize the speech input as a sequence of phonemes, and ultimately, a sequence of words or tokens written in one or more languages. The STT processing module 330 can be implemented using any suitable speech recognition techniques, acoustic models, and language models, such as Hidden Markov Models, Dynamic Time Warping (DTW)-based speech recognition, and other statistical and/or analytical techniques. In some implementations, the speech-to-text processing can be performed at least partially by a third party service or on the user's device. Once the STT processing module 330 obtains the result of the speech-to-text processing, e.g., a sequence of words or tokens, it passes the result to the natural language processing module 332 for intent deduction. In some implementations, the STT module 330 resides on a server computer (e.g., the server system 108), while in some implementations, it resides on a client device (e.g., the user device 104).


In some implementations, the STT processing module 330 provides more than one speech recognition result to the natural language processing module 332 for intent deduction. Specifically, the STT processing module 330 produces a set of candidate text strings, each representing a possible transcription of a speech input. In some implementations, each of the candidate text strings is associated with a speech recognition confidence score representing a confidence that the candidate text string is a correct transcription of the speech input.


In some implementations, the set of candidate text strings represents a portion of the text strings that the STT processing module 330 generates for a given speech input. For example, in some implementations, the set of candidate text strings includes text strings that have a speech recognition confidence score above a predetermined threshold. In some implementations, the set of candidate text strings includes the n-best text strings. (E.g., the 2, 5, 10 or 15 best text strings (or any other appropriate number), based on speech recognition confidence scores.)


When an utterance is received, the STT processing module 330 attempts to identify the phonemes in the utterance (e.g., using an acoustic model), and then attempts to identify words that match the phonemes (e.g., using a language model). For example, if the STT processing module 330 first identifies the sequence of phonemes “tuh-may-doe” in an utterance, it then determines, based on the vocabulary 344, that this sequence corresponds to the word “tomato.”


In some implementations, the STT processing module 330 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 330 can determine that the sequence of phonemes “duh-may-doe” corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate pronunciations for that word.


The natural language processing module 332 (“natural language processor”) of the digital assistant takes the text string or text strings generated by the speech-to-text processing module 330 (also referred to as a sequence of words or tokens, or “token sequence”), and attempts to determine a domain of the token sequence and/or associate the token sequence with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” represents a task that can be performed by the digital assistant, and has an associated task flow implemented in the task flow models 354. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in the task flow models 354, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, is also dependent on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.


In some implementations, in addition to the sequence of words or tokens obtained from the speech-to-text processing module 330, the natural language processor 332 also receives context information associated with the user request, e.g., from the I/O processing module 328. The natural language processor 332 optionally uses the context information to clarify, supplement, and/or further define the information contained in the token sequence received from the speech-to-text processing module 330. The context information includes, for example, user preferences, hardware and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described in this specification, context information is dynamic, and can change with time, location, content of the dialogue, and other factors.


In some implementations, the natural language processing is based on e.g., ontology 360. The ontology 360 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties”. As noted above, an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in the ontology 360 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some implementations, the ontology 360 is made up of actionable intent nodes and property nodes. Within the ontology 360, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 3C, the ontology 360 may include a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the actionable intent node (i.e., the “restaurant reservation” node). In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 3C, the ontology 360 may also include a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for the setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node. Since the property “date/time” is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in the ontology 360.


An actionable intent node, along with its linked concept nodes, may be described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships therebetween) associated with the particular actionable intent. For example, the ontology 360 shown in FIG. 3C includes an example of a restaurant reservation domain 362 and an example of a reminder domain 364 within the ontology 360. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” The reminder domain 364 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some implementations, the ontology 360 is made up of many domains. Each domain may share one or more property nodes with one or more other domains. For example, the “date/time” property node may be associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to the restaurant reservation domain 362 and the reminder domain 364.


While FIG. 3C illustrates two example domains within the ontology 360, other domains (or actionable intents) include, for example, “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” read a list”, “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain is associated with a “send a message” actionable intent node, and may further include property nodes such as “recipient(s)”, “message type”, and “message body.” The property node “recipient” may be further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some implementations, the ontology 360 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some implementations, the ontology 360 may be modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 360.


In some implementations, nodes associated with multiple related actionable intents may be clustered under a “super domain” in the ontology 360. For example, a “travel” super-domain may include a cluster of property nodes and actionable intent nodes related to travels. The actionable intent nodes related to travels may include “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travels” super domain) may have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest” may share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”


In some implementations, each node in the ontology 360 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node is the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node can be stored in the vocabulary index 344 in association with the property or actionable intent represented by the node. For example, returning to FIG. 3B, the vocabulary associated with the node for the property of “restaurant” may include words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” may include words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 344 optionally includes words and phrases in different languages.


The natural language processor 332 receives the token sequence (e.g., a text string) from the speech-to-text processing module 330, and determines what nodes are implicated by the words in the token sequence. In some implementations, if a word or phrase in the token sequence is found to be associated with one or more nodes in the ontology 360 (via the vocabulary index 344), the word or phrase will “trigger” or “activate” those nodes. Based on the quantity and/or relative importance of the activated nodes, the natural language processor 332 will select one of the actionable intents as the task that the user intended the digital assistant to perform. In some implementations, the domain that has the most “triggered” nodes is selected. In some implementations, the domain having the highest confidence score (e.g., based on the relative importance of its various triggered nodes) is selected. In some implementations, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some implementations, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.


In some implementations, the natural language processor 332 determines a domain for a particular token sequence, but cannot initially determine (either at all or to a sufficient degree of confidence) a particular actionable intent for the token sequence. In some implementations, as described herein, the natural language processor 332 processes the token sequence again, for example, by relaxing its search and/or word-matching criteria, and/or by limiting its search to a particular domain or word list. Specifically, in some implementations, the natural language processor 332 relaxes a word-matching criteria relative to the initial processing (e.g., approximate string matching rather than exact string matching; phonetic matching instead of string matching, etc.). In some implementations, the natural Language processor 332 limits its subsequent processing of the token sequence to a particular list of words, such as a list of named entities that are associated with the identified domain (e.g., a list of known movie titles if the domain is a “movie” domain, a list of known restaurant names if the domain is a “restaurant reservation” domain, etc.) Further description of techniques for subsequent processing of a token sequence is provided herein, for example, with reference to FIG. 4.


In some implementations, the natural language processor 332 receives multiple token sequences (e.g., text strings) from the STT processor 330, and processes them to determine a domain and/or an actionable intent for each token sequence (or at least a subset of the token sequences from the STT processing module 330). In some implementations, each domain and/or actionable intent is associated with an intent deduction confidence score representing a confidence that the determined domain and/or actionable intent correctly reflects the intent represented by the token sequence. A further description of techniques for processing multiple token sequences is provided herein, for example, with reference to FIG. 5.


In some implementations, the digital assistant also stores names of specific entities in the vocabulary index 344, so that when one of these names is detected in the user request, the natural language processor 332 will be able to recognize that the name refers to a specific instance of a property or sub-property in the ontology. In some implementations, the names of specific entities are names of businesses, restaurants, people, movies, and the like. In some implementations, the digital assistant searches and identifies specific entity names from other data sources, such as the user's address book, a movies database, a musicians database, and/or a restaurant database. In some implementations, when the natural language processor 332 identifies that a word in the token sequence is a name of a specific entity (such as a name in the user's address book), that word is given additional significance in selecting the actionable intent within the ontology for the user request.


For example, when the words “Mr. Santo” are recognized from the user request, and the last name “Santo” is found in the vocabulary index 344 as one of the contacts in the user's contact list, then it is likely that the user request corresponds to a “send a message” or “initiate a phone call” domain. For another example, when the words “ABC Cafe” are found in the user request, and the term “ABC Cafe” is found in the vocabulary index 344 as the name of a particular restaurant in the user's city, then it is likely that the user request corresponds to a “restaurant reservation” domain.


User data 348 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some implementations, the natural language processor 332 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” the natural language processor 332 is able to access user data 348 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


Other details of searching an ontology based on a token string is described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.


In some implementations, once the natural language processor 332 identifies an actionable intent (or domain) based on the user request, the natural language processor 332 generates a structured query to represent the identified actionable intent. In some implementations, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user may say “Make me a dinner reservation at a sushi place at 7.” In this case, the natural language processor 332 may be able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain may include parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some implementations, based on the information contained in the user's utterance, the natural language processor 332 generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are not specified in the structured query based on the information currently available. In some implementations, the natural language processor 332 populates some parameters of the structured query with received context information. For example, in some implementations, if the user requested a sushi restaurant “near me,” the natural language processor 332 populates a {location} parameter in the structured query with GPS coordinates from the user device 104.


In some implementations, the natural language processor 332 passes the structured query (including any completed parameters) to the task flow processing module 336 (“task flow processor”). The task flow processor 336 is configured to receive the structured query from the natural language processor 332, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some implementations, the various procedures necessary to complete these tasks are provided in task flow models 354. In some implementations, the task flow models include procedures for obtaining additional information from the user, and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, the task flow processor 336 may need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, the task flow processor 336 invokes the dialogue processing module 334 (“dialogue processor 334”) to engage in a dialogue with the user. In some implementations, the dialogue processor 334 determines how (and/or when) to ask the user for the additional information, and receives and processes the user responses. The questions are provided to and answers are received from the users through the I/O processing module 328. In some implementations, the dialogue processor 334 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when the task flow processor 336 invokes the dialogue flow processor 334 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” the dialogue flow processor 335 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, the dialogue flow processor 334 can then populate the structured query with the missing information, or pass the information to the task flow processor 336 to complete the missing information from the structured query.


In some cases, the task flow processor 336 may receive a structured query that has one or more ambiguous properties. For example, a structured query for the “send a message” domain may indicate that the intended recipient is “Bob,” and the user may have multiple contacts named “Bob.” The task flow processor 336 will request that the dialogue processor 334 disambiguate this property of the structured query. In turn, the dialogue processor 334 may ask the user “Which Bob?”, and display (or read) a list of contacts named “Bob” from which the user may choose.


Once the task flow processor 336 has completed the structured query for an actionable intent, the task flow processor 336 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, the task flow processor 336 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” may include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=3/12/2012, time=7 pm, party size=5}, the task flow processor 336 may perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.


In some implementations, the task flow processor 336 employs the assistance of a service processing module 338 (“service processor”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, the service processor 338 can act on behalf of the task flow processor 336 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third party services (e.g. a restaurant reservation portal, a social networking website, a banking portal, etc.). In some implementations, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model among the services models 356. The service processor 338 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by the task flow processor 336, the service processor 338 can establish a network connection with the online reservation service using the web address stored in the service model, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


In some implementations, the natural language processor 332, dialogue processor 334, and task flow processor 336 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent.


In some implementations, after all of the tasks needed to fulfill the user's request have been performed, the digital assistant 326 formulates a confirmation response, and sends the response back to the user through the I/O processing module 328. If the user request seeks an informational answer, the confirmation response presents the requested information to the user. In some implementations, the digital assistant also requests the user to indicate whether the user is satisfied with the response produced by the digital assistant 326.


The error detection module 339 detects errors in interactions between a user and the digital assistant. In some implementations, to detect errors, the error detection module 339 monitors interactions between a user and the digital assistant, and/or between a user and a user device. For example, the error detection module 339 monitors any of the following types of interactions, or a subset thereof: a user's speech inputs to the digital assistant (e.g., if a user says “you got that wrong” or “you are pronouncing that wrong”), button presses (e.g., if a user selects a lock-screen or “home” button (or any other affordance) to cancel an action), movements of the device (e.g., shaking the device, setting the device down in a certain orientation, such as screen-down), termination of actions or suggested actions on the user device (e.g., cancelling a telephone call, email, text message, etc. after the digital assistant initiates or suggests it), initiation of an action shortly after a digital assistant fails to successfully infer an intent or adequately respond to a user, etc. In some implementations, the error detection module 339 monitors other types of interactions to detect errors as well.


In order to detect such errors, in some implementations, the error detection module 339 communicates with or otherwise receives information from various modules and components of the digital assistant system 300 and/or the user device 104, such as the I/O processing module 328 (and/or the I/O devices 316), the STT processing module 330, natural language processing module 332, the dialogue flow processing module 334, the task flow processing module 336, the service processing module 338, the phone module 260, the sensor processing module 258, the I/O subsystem 240, and/or any of the sensors or I/O devices associated therewith.


More details on the digital assistant can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant”, filed Jan. 10, 2011, U.S. Utility Application No. 61/493,201, entitled “Generating and Processing Data Items That Represent Tasks to Perform”, filed Jun. 3, 2011, the entire disclosures of which are incorporated herein by reference.


In most scenarios, when the digital assistant receives a user input from a user, the digital assistant attempts to provide an appropriate response to the user input with as little delay as possible. For example, suppose the user requests certain information (e.g., current traffic information) by providing a speech input (e.g., “How does the traffic look right now?”). Right after the digital assistant receives and processes the speech input, the digital assistant optionally provides a speech output (e.g., “Looking up traffic information . . . ”) acknowledging receipt of the user request. After the digital assistant obtains the requested information in response to the user request, the digital assistant proceeds to provide the requested information to the user without further delay. For example, in response to the user's traffic information request, the digital assistant may provide a series of one or more discrete speech outputs separated by brief pauses (e.g., “There are 2 accidents on the road. <Pause> One accident is on 101 north bound near Whipple Avenue. <Pause> And a second accident is on 85 north near 280.”), immediately after the speech outputs are generated.


For the purpose of this specification, the initial acknowledgement of the user request and the series of one or more discrete speech outputs provided in response to the user request are all considered sub-responses of a complete response to the user request. In other words, the digital assistant initiates an information provision process for the user request upon receipt of the user request, and during the information provision process, the digital assistant prepares and provides each sub-response of the complete response to the user request without requiring further prompts from the user.


Sometimes, additional information or clarification (e.g., route information) is required before the requested information can be obtained. In such scenarios, the digital assistant outputs a question (e.g., “Where are you going?”) to the user asking for the additional information or clarification. In some implementations, the question provided by the digital assistant is considered a complete response to the user request because the digital assistant will not take further actions or provide any additional response to the user request until a new input is received from the user. In some implementations, once the user provides the additional information or clarification, the digital assistant initiates a new information provision process for a “new” user request established based on the original user request and the additional user input.


In some implementations, the digital assistant initiates a new information provision process upon receipt of each new user input, and each existing information provision process terminates either (1) when all of the sub-responses of a complete response to the user request have been provided to the user or (2) when the digital assistant provides a request for additional information or clarification to the user regarding a previous user request that started the existing information provision process.


In general, after a user request for information or performance of a task is received by the digital assistant, it is desirable that the digital assistant provides a response (e.g., either an output containing the requested information, an acknowledgement of a requested task, or an output to request a clarification) as promptly as possible. Real-time responsiveness of the digital assistant is one of the key factors in evaluating performance of the digital assistant. In such cases, a response is prepared as quickly as possible, and a default delivery time for the response is a time immediately after the response is prepared.


Sometimes, however, after an initial sub-response provided immediately after receipt of the user input, the digital assistant provides the remaining one or more sub-responses one at a time over an extended period of time. In some implementations, the information provision process for a user request is stretched out over an extended period of time that is longer than the sum of the time required to provide each sub-response individually. For example, in some implementations, short pauses (i.e., brief periods of silence) are inserted between an adjacent pair of sub-responses (e.g., a pair of consecutive speech outputs) when they are delivered to the user through an audio-output channel.


In some implementations, a sub-response is held in abeyance after it is prepared and is delivered only when a predetermined condition has been met. In some implementations, the predetermined condition is met when a predetermined trigger time has been reached according to a system clock and/or when a predetermined trigger event has occurred. For example, if the user says to the digital assistant “set me a timer for 5 minutes,” the digital assistant initiates an information provision process upon receipt of the user request. During the information provision process, the digital assistant provides a first sub-response (e.g., “OK, timer started.”) right away, and does not provide a second and final sub-response (e.g., “OK, five minutes are up”) until 5 minutes later. In such cases, the default delivery time for the first sub-response is a time immediately after the first sub-response is prepared, and the default delivery time for the second, final sub-response is a time immediately after the occurrence of the trigger event (e.g., the elapse of 5 minutes from the start of the timer). The information provision process is terminated when the digital assistant finishes providing the final sub-response to the user. In various implementations, the second sub-response is prepared any time (e.g., right after the first sub-response is prepared, or until shortly before the default delivery time for the second sub-response) before the default delivery time for the second sub-response.



FIG. 4 illustrates a technique for processing a token sequence using a natural language processor, according to some implementations. In some implementations, the technique described with reference to FIG. 4 uses and/or relates to methods 700 and 800 for determining a user intent from a text string, described below with reference to FIGS. 7-8.



FIG. 4 illustrates a speech input 400, corresponding to the speech input “show times for Argo,” undergoing speech-to-text (STT) processing. (In some implementations, the STT processing is performed by the STT processing module 330.) The results 404 of the STT processing include a plurality of candidate text strings 406 each associated with a speech recognition confidence score 408. The speech recognition score represents a confidence that the candidate text string is a correct transcription of the speech input. As shown in the results 404, the first candidate text string is associated with a 90% recognition score, even though it is incorrect (e.g., because the STT processor did not recognize the significance of the word “Argo” as a movie title), and has given the second candidate text string a lower recognition score (66%), even though it is the correct transcription. If the STT processor simply provided its best-guess text string, it is possible that subsequent natural language processing would be unable to determine the user's intent.


As shown in FIG. 4, however, each candidate text string 406 in the results 404 (which may be only a subset of the results of the STT processing) are provided to a natural language processor for natural language processing. (In some implementations, the natural language processor is the natural language processing module 332.) The candidate text strings 406 are processed by the natural language processor to determine a respective candidate domain 414 for each respective candidate text string 406. (E.g., the natural language processor determines a respective intent for each respective candidate text string, independent of the other text strings.)


The natural language processor also determines an intent deduction confidence score 416 for each of the candidate text strings 406. The intent deduction confidence scores 416 represent a confidence of the natural language processor in the selection of that domain for that text string. For example, the text string “shoe ties for arco” may implicate a “shopping” domain because of the words “shoe” and “ties,” but the intent deduction confidence score is low (e.g., 5%) because the natural language processor cannot identify any particular task from the text string. (If, however, the text string included additional words like “where to buy” or “get prices for,” the intent deduction confidence score for that text string would be higher.) In some implementations, the intent deduction confidence scores are determined independently from each other.


In some implementations, the intent deduction confidence scores 416 are based, at least partially, on the amount and/or quality of word matches between a text string and a domain in the ontology (e.g., the absolute number or the percentage of words in the text string that are also associated with the domain). For example, if most of the words in a text string are associated with a single domain, the intent deduction confidence score for that domain would he high. As a specific example, most of the words and/or phrases in the text string “show times for the movie Argo” would be found in a movie domain (e.g., “show times,” “movie,” “Argo”), so the confidence score for this domain would be high.


In some implementations, the intent deduction confidence scores 416 are based, at least partially, on whether the text string includes one or more named entities associated with the domain (e.g., business names, movie titles, restaurant names, contact names, etc.), as discussed below.


In some implementations, the particular domain determined for a text string does not affect the intent deduction confidence score (i.e., the intent deduction confidence scores do not reflect any preference or ranking for particular domains). For example, the fact that the domain for “shoe ties for arco” relates to a shopping domain does not affect the intent deduction confidence score. Rather, the (low) score is based on the fact that there are only two words that match the shopping domain, and that no particular task within the shopping domain can be determined from the text string.


Returning to FIG. 4, the natural language processor determines that the first candidate text string “show times for our go” corresponds to a “movie” domain, for example, because the words “show times” match words that are particularly salient to the “movie” domain. However, because it cannot determine the movie for which the user is requesting show times (e.g., because “our go” does not match any known movies), the intent deduction confidence score is relatively low (40%). On the other hand, the second candidate text string “show times for Argo” also corresponds to a movie domain, but has a high intent deduction confidence score (99%), for example, because the natural language processor recognized the word “Argo” as a known movie name.


Accordingly, the natural language processor can select the domain and/or task determined from the second candidate text string, even though it was ranked lower by the STT processor, because it has the highest intent deduction score 416. In some implementations, the natural language processor selects the domain and/or task determined from the candidate text string with the highest intent deduction score.


In some implementations, the natural language processor selects the domain and/or task based on a combination of the intent deduction score 416 and the recognition score 408. For example, in some implementations, the natural language processor produces an average score 418 representing an arithmetic mean value of a respective recognition score and a respective intent deduction score 416. In some implementations, the scores are combined using different mathematical operations and/or algorithms (e.g., a weighted average, a sum, etc.).


The scales and/or value ranges used to illustrate recognition and intent deduction scores in FIG. 4 are merely exemplary, any appropriate scale and/or value range may be used instead or in addition to those shown above.



FIG. 5 illustrates a technique for processing a token sequence using a natural language processor, according to some implementations. In some implementations, the technique described with reference to FIG. 5 uses and/or relates to a method 600 for determining a user intent from a text string, described below with reference to FIG. 6.



FIG. 5 illustrates a speech input 500, corresponding to the speech input “show times for Argo,” undergoing speech-to-text (STT) processing. (In some implementations, the STT processing is performed by the STT processing module 330.) The result 504 of the STT processing includes one or more text strings 504, including, for example, “show times for our go.” In some implementations, the one or more text strings 504 correspond to one or more best-guess transcriptions of the speech input 500 by the STT processor. In some implementations, the result 504 is the top best-guess transcription of the speech input 500 by the STT processor.


The one or more text strings 504 are provided to a natural language processor for initial natural language processing. (In some implementations, the natural language processor is the natural language processing module 332.) As shown in FIG. 5, the initial natural language processing results in a determination of a domain 514 for the one or more text strings, but is unable to determine a specific task 516 that the user is requesting. For example, the natural language processor may be able to determine the domain because of the high likelihood that the terms “show times for” relate to a movie domain, but unable to determine a specific task because it cannot identify any movie that matches the words “our go.” This error may be caused, for example, because the natural language processor performs a word-matching process to match words in the text string to words in an ontology (e.g., in order to determine a domain and/or an actionable intent for the text string), and the word-matching process did not return any salient results for the words “our go,” or did not find any words in the text string that matched a known movie title (e.g., because “our go” did not match any results in a list of known movie titles).


Accordingly, as shown in FIG. 5, the results of the initial natural language processing are provided to the natural language processor to undergo supplemental natural language processing. In some implementations, the supplemental natural Language processing uses a different word-matching process than the initial natural language processing. For example, in some implementations, the supplemental natural language processing uses a more relaxed string matching criteria than the first processing, such as an approximate string match or a phonetic match (as opposed to an exact match criteria of the initial natural Language processing). Thus, the natural language processor is more likely to determine that the words “our go” are similar enough to the movie title “Argo” that the speech input 500 most likely included the latter.


In some implementations, for the supplemental natural language processing, the natural language processor limits its word-matching to the domain 514 identified by the initial natural language processing (and/or word lists that are specific to that domain). For example, natural language processor will search for words within the movie domain and/or words lists associated with the movie domain that match (or are substantially similar to) words in the text string 504, rather than re-searching multiple domains of the ontology. Because the search space is limited to a single domain, the natural language processor can apply the relaxed criteria without returning too many potentially incorrect and/or irrelevant results (as may occur if the relaxed criteria were applied to a search of the entire ontology).


In some implementations, the natural language processor only attempts to match a portion of the text string 504. For example, the natural language processor may determine that the words “our go” are in a position in the text string that would typically include a movie title, and process only those words in a supplemental natural language processing phase.


As shown in FIG. 5, the results 512 of the supplemental natural language processing 512 include a task “retrieve show times for Argo,” indicating that the supplemental processing successfully identified a task for the text string.


As noted above, in some implementations, the results 504 of the STT processing include only one text string, such as a text string corresponding to the best-guess transcription by an STT processor. However, in some implementations, the results 504 include multiple text strings. In some implementations, the initial natural language processing includes one or more of the techniques described above with respect to FIG. 4. For example, in some implementations, each respective text string of the results 504 is processed to determine a respective domain for the text strings. In some implementations, each domain determination is associated with a speech recognition score and/or an intent deduction confidence score, as discussed above. In some implementations, the natural language processor selects one of the candidate text strings for which to perform supplemental natural language processing (e.g., the candidate text string with the highest intent deduction confidence score or average score). Applying supplemental natural language processing to a single candidate text string is discussed above.


In some implementations, however, the natural language processor selects more than one candidate text string for which to perform supplemental natural language processing. In some implementations, all of the candidate text strings are selected. In some implementations, a subset of the candidate text strings is selected. For example, in some implementations, the natural language processor selects: the n-best candidate text strings (e.g., as judged by the intent deduction confidence score or average score); the n-best candidate text strings having a common domain (e.g., the n-best candidate text strings for which a “movie” domain was determined); or all (or some) of the text strings that correspond to a domain having the most candidate text strings (e.g., if the “movie” domain is the most commonly determined domain among the candidate text strings, all of the text strings for which the “movie” domain was determined are selected).


As shown in FIG. 5, a “movie” domain is determined for the text strings “show times for our go” and “show times for are go.” Thus, the natural Language processor performs supplemental natural language processing for these two text strings, and ignores the others (e.g., based on their lower speech recognition and/or intent deduction scores, etc.).


As described above, the supplemental natural language processing applies relaxed string matching criteria (e.g., approximate string matching instead of exact string matching). Applying supplemental natural language processing to multiple candidate text strings increases the likelihood that a satisfactory domain will be identified, especially where none of the candidate text strings accurately reflect the speech input. For example, the text strings “show times for our go” and “show times for are go” each include a different incorrect transcription of the movie title “Argo.” The supplemental natural language processing may be able to determine a match to the correct movie title from one of these but not the other. For this specific example, the words “are go” may be a closer phonetic and approximate string match to the movie title “Argo” than “our go.” Accordingly, applying supplemental natural language processing to multiple text strings increases the chances that a domain and/or an actionable intent will be determined.


In some implementations, if the natural language processor cannot determine a domain and/or an actionable intent even after the techniques in FIGS. 4 and/or 5 are applied, the digital assistant requests additional information from the user, such as by engaging in a dialog with the user, as described above. Continuing the examples from above, the digital assistant will ask a user “what movie are you searching for?”, and may ask the user to type the movie title in order to bypass the speech-to-text process and ensure that the natural language processor has an accurate text string to process. Techniques for engaging in a dialog with a user (e.g., to acquire additional information necessary to complete a task) are described above.



FIG. 6 is a flow diagram of an exemplary method 600 implemented by a digital assistant for determining a user intent from a text string. In some implementations, the method 600 is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. For example, in some implementations, the method 600 is performed at the user device 104 and/or the server system 108. In some implementations, the method 600 is performed by the digital assistant system 300 (FIG. 3A), which, as noted above, may be implemented on a standalone computer system (e.g., either the user device 104 or the server system 108) or distributed across multiple computers (e.g., the user device 104, the server system 108, and/or additional or alternative devices or systems). While the following discussion describes the method 600 as being performed by a digital assistant (e.g., the digital assistant system 300), the method is not limited to performance by any particular device or combination of devices. Moreover, the individual steps of the method may be distributed among the one or more computers, systems, or devices in any appropriate manner.


The digital assistant provides a text string corresponding to a speech input, wherein the text string comprises a first portion and a second portion (603). In some implementations, the digital assistant generates the text string with a speech-to-text processor (e.g., the STT processing module 330) (602). In some implementations, the digital assistant receives the speech input (601) (e.g., via the microphone 230 of the user device 104).


In some implementations, the first portion of the text string precedes the second portion of the text string, while in other implementations, the second portion precedes the first. In some implementations, the first and the second portions of the text string comprise a plurality of words.


The digital assistant determines a domain of the text string using natural language processing by applying a first word-matching process to at least the first portion of the text string (604). In some implementations, the first word-matching process requires exact word matches (e.g., all characters must match exactly). in some implementations, determining the domain of the text string includes processing the text string using a natural language processor that includes an ontology, where the natural language processor (e.g., the natural language processing module 332) determines what nodes in the ontology are implicated by the words in the text string, as described above with reference to FIGS. 3A-3C.


The digital assistant determines whether the second portion of the text string matches at least one word of a set of words associated with the domain by applying a second word-matching process to the second portion of the text string (606). In some implementations, word-matching criteria applied by the second word-matching process are more relaxed than word-matching criteria applied by the first word-matching process (608). For example, in some implementations, the first word-matching process requires exact matches between words (as described above), and the second word-matching process does not require exact matches between words.


In some implementations, the second word-matching process applies approximate string matching techniques (610). Continuing the example from FIGS. 4-5, the second word-matching process can determine that the words “are go” likely match the word “Argo,” because these text strings are very similar to each other.


In some implementations, the second word-matching process comprises determining an edit distance between a word of the second portion of the text string and a word of the set of words associated with the domain (612). In some implementations, the edit distance is a Levenshtein distance.


In some implementations, the second word-matching process applies phonetic matching techniques (614). Specifically, the natural language processing module 332 can determine whether words in a text string sound like any of the words associated with an ontology, rather than whether words in the text string are spelled the same as (or similar to) the words associated with the ontology. In some implementations, the natural language processing module 332 determines a set of phonemes for one or more words of the text string, and attempts to match the phonemes (e.g., using exact or approximate matching techniques) to words associated with the ontology. Accordingly, continuing the example from FIGS. 4-5, the second word-matching process can determine that the words “are go” likely match the word “Argo” because they can be mapped to the same or substantially the same phonemes (e.g., “ar-go”).


Upon determining that the second portion of the text string matches at least one word of the set of words, the digital assistant determines a user intent from the text string based at least in part on the domain and the at least one word of the set of words (615). In some implementations, determining the user intent includes determining an actionable intent, i.e., a task that the digital assistant is capable of performing. Examples of tasks that the digital assistant can perform are described above. For example, in some implementations, the digital assistant can make (and/or facilitate the making of) a restaurant reservation, set a reminder, provide driving directions to a user, etc. Continuing the example from FIGS. 4-5, the digital assistant can determine the user's intent as a request to receive show times for the movie “Argo.”


In some implementations, the digital assistant performs one or more actions to satisfy the user intent (616). Continuing once again the example from FIGS. 4-5, the digital assistant can retrieve show times for the movie “Argo,” and present them to the user (e.g., on a display device, or via speech output). Other examples of actions that the digital assistant can perform to satisfy a user intent are described above.



FIG. 7 is a flow diagram of an exemplary method 700 implemented by a digital assistant for determining a user intent from a text string. In some implementations, the method 700 is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. For example, in some implementations, the method 700 is performed at the user device 104 or the server system 108. In some implementations, the method 700 is performed by the digital assistant system 300 (FIG. 3A), which, as noted above, may be implemented on a standalone computer system (e.g., either the user device 104 or the server system 108) or distributed across multiple computers (e.g., the user device 104, the server system 108, and/or additional or alternative devices or systems). While the following discussion describes the method 700 as being performed by a digital assistant (e.g., the digital assistant system 300), the method is not limited to performance by any particular device or combination of devices. Moreover, the individual steps of the method may be distributed among the one or more computers, systems, or devices in any appropriate manner.


The digital assistant provides a plurality of candidate text strings for a speech input, wherein the candidate text strings are generated by a speech recognition process (703). In some implementations, the speech recognition process is performed by the STT processing module 330. In some implementations, the digital assistant generates the candidate text strings with a speech-to-text processor (e.g., the STT processing module 330) (702). In some implementations, the digital assistant receives the speech input (701) (e.g., via the microphone 230 of the user device 104).


In some implementations, the plurality of candidate text strings are associated with a plurality of speech recognition confidence scores (704). Speech recognition confidence scores represent a confidence that a candidate text string is a correct transcription of the speech input (e.g., as determined by the STT processing module 330). In some implementations, the speech recognition confidence score is based, at least partially, on a statistical model associated with one or both of an acoustic model and a language model applied by the STT processing module 330.


In some implementations, the plurality of candidate text strings correspond to the n-best text strings generated by the speech recognition process, as determined by the speech recognition confidence scores of the text strings generated by the speech recognition process. In some implementations, the plurality of candidate text strings correspond to the 5 best, 10 best, or any other appropriate number of text strings.


In some implementations, the plurality of candidate text strings are text strings generated by the speech recognition process that satisfy a predetermined speech recognition confidence threshold. For example, in some implementations, the plurality of candidate text strings includes any candidate text strings that have a speech recognition confidence score greater than 50%, 75%, 90%, or any other appropriate threshold. The speech recognition confidence scores are represented here as percentages, but may be represented by values of any appropriate metric, scale, and/or value range.


The digital assistant selects at least a subset of the plurality of candidate text strings, the subset including at least two candidate text strings (705). In some implementations, the digital assistant selects the top 2, 3, 4, or 5 (or any appropriate number) of the plurality of candidate text strings.


The digital assistant determines a plurality of user intents from the selected subset of the plurality of text strings (706). For example, the digital assistant determines a respective user intent for each respective one of the text strings selected at step (705). In some implementations, determining the user intent includes determining an actionable intent, i.e., a task that the digital assistant is capable of performing. Examples of actions that the digital assistant can perform are described above. For example, in some implementations, the digital assistant can make (and/or facilitate the making of) a restaurant reservation, set a reminder, provide driving directions to a user, etc.


In some implementations, the plurality of user intents are associated with a plurality of intent deduction confidence scores (707). Intent deduction confidence scores are discussed above in reference to FIG. 4.


The digital assistant selects a user intent from the plurality of user intents (708). In some implementations, the digital assistant selects the user intent based on the plurality of intent deduction confidence scores. For example, in some implementations, the digital assistant selects the user intent having the highest intent deduction confidence score as the selected user intent (710).


In some implementations, the digital assistant selects the user intent based on the speech recognition confidence scores and the intent deduction confidence scores (712).


In some implementations, the digital assistant determines a plurality of composite confidence scores for the plurality of user intents (714).


In some implementations, a composite confidence score is any of the following: a combination of a respective speech recognition confidence score and a respective intent deduction confidence score; a sum of a respective speech recognition confidence score and a respective intent deduction confidence score; an average of a respective speech recognition confidence score and a respective intent deduction confidence score; or a weighted average of a respective speech recognition confidence score and a respective intent deduction confidence score.


In some implementations, the user intent selected at step (708) is the user intent with the highest composite confidence score (715).


In some implementations, the digital assistant performs one or more actions to satisfy the user intent (716). Examples of actions that the digital assistant can perform to satisfy a user intent are described above.



FIG. 8 is a flow diagram of an exemplary method 800 implemented by a digital assistant for determining a user intent from a text string. In some implementations, the method 800 is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. For example, in some implementations, the method 800 is performed at the user device 104 or the server system 108. In some implementations, the method 700 is performed by the digital assistant system 300 (FIG. 3A), which, as noted above, may be implemented on a standalone computer system (e.g., either the user device 104 or the server system 108) or distributed across multiple computers (e.g., the user device 104, the server system 108, and/or additional or alternative devices or systems). While the following discussion describes the method 800 as being performed by a digital assistant (e.g., the digital assistant system 300), the method is not limited to performance by any particular device or combination of devices. Moreover, the individual steps of the method may be distributed among the one or more computers, systems, or devices in any appropriate manner.


The digital assistant provides a plurality of text strings corresponding to a speech input, wherein the plurality of text strings is associated with a plurality of speech recognition confidence scores and a plurality of user intents, and wherein the plurality of user intents is associated with a plurality of intent deduction confidence scores (804). In some implementations, the digital assistant generates the candidate text strings with a speech-to-text processor (e.g., the STT processing module 330) (802). In some implementations, the digital assistant receives the speech input (801) (e.g., via the microphone 230 of the user device 104).


In some implementations, the text strings and the plurality of speech recognition confidence scores are generated by the STT processing module 330. As described above, speech recognition confidence scores represent a confidence that a candidate text string is a correct transcription of the speech input (e.g., as determined by the STT processing module 330). In some implementations, the speech recognition confidence score is based, at least partially, on a statistical model associated with one or both of an acoustic model and a language model applied by the STT processing module 330.


The digital assistant selects one of the plurality of user intents based on one or both of the speech recognition confidence scores and the intent deduction confidence scores (804). In some implementations, selecting one of the plurality of user intents includes selecting the user intent with the highest composite confidence score (806).


In some implementations, the digital assistant determines a plurality of composite confidence scores for the plurality of user intents (808). As described above, in some implementations, a composite confidence score is any of the following: a combination of a respective speech recognition confidence score and a respective intent deduction confidence score; a sum of a respective speech recognition confidence score and a respective intent deduction confidence score; an average of a respective speech recognition confidence score and a respective intent deduction confidence score; or a weighted average of a respective speech recognition confidence score and a respective intent deduction confidence score.


In some implementations, the digital assistant performs one or more actions to satisfy the user intent (810). Examples of actions that the digital assistant can perform to satisfy a user intent are described above.


The operations described above with reference to FIGS. 6-8 are, optionally, implemented by components depicted in FIG. 2 and/or FIG. 3. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIG. 2 and/or FIG. 3.


It should be understood that the particular order in which the operations have been described above is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein.


The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various implementations with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with one or more processors and memory, cause the device to: receive audio input containing a user utterance;perform speech-to-text processing on the audio input to determine a plurality of text representations of the user utterance and a plurality of speech recognition scores for the plurality of text representations;perform natural language processing on each of the plurality of text representations to determine a plurality of candidate user intents and a plurality of intent deduction scores for the plurality of candidate user intents;determine a plurality of composite scores for the plurality of candidate user intents based on a combination of the plurality of speech recognition scores and the plurality of intent deduction scores;select a user intent from the plurality of candidate user intents based on the plurality of composite scores; andperform a task corresponding to the selected user intent.
  • 2. The computer readable storage medium of claim 1, wherein each intent deduction score of the plurality of intent deduction scores is based on a number of words in a respective text representation of the plurality of text representations that correspond to a domain of a respective candidate user intent of the plurality of candidate user intents.
  • 3. The computer readable storage medium of claim 1, wherein each intent deduction score of the plurality of intent deduction scores is based on a quality of match between words in a respective text representation of the plurality of text representations and predefined words corresponding to a domain of a respective candidate user intent of the plurality of candidate user intents.
  • 4. The computer readable storage medium of claim 1, wherein each intent deduction score of the plurality of intent deduction scores is based on whether or not a property of a domain of a respective candidate user intent of the plurality of candidate user intents can be resolved from a respective text representation of the plurality of text representations.
  • 5. The computer readable storage medium of claim 1, wherein each intent deduction score of the plurality of intent deduction scores is based on whether or not a natural language processor is able to identify a specific task from a respective text representation of the plurality of text representations.
  • 6. The computer readable storage medium of claim 1, wherein the selected user intent is determined from a first text representation of the plurality of text representations, and wherein an intent deduction score for the selected user intent is a highest score among the plurality of intent deduction scores, and wherein a speech recognition score for the first text representation is not a highest score among the plurality of speech recognition scores.
  • 7. The computer readable storage medium of claim 1, wherein the instructions further cause the device to: rank the plurality of candidate user intents according to the plurality of composite scores, wherein the selected user intent has a highest composite score of the plurality of composite scores.
  • 8. An electronic device, comprising: one or more processors;memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: receiving audio input containing a user utterance;performing speech-to-text processing on the audio input to determine a plurality of text representations of the user utterance and a plurality of speech recognition scores for the plurality of text representations;performing natural language processing on each of the plurality of text representations to determine a plurality of candidate user intents and a plurality of intent deduction scores for the plurality of candidate user intents;determining a plurality of composite scores for the plurality of candidate user intents based on a combination of the plurality of speech recognition scores and the plurality of intent deduction scores;selecting a user intent from the plurality of candidate user intents based on the plurality of composite scores; andperforming a task corresponding to the selected user intent.
  • 9. The device of claim 8, wherein each intent deduction score of the plurality of intent deduction scores is based on a number of words in a respective text representation of the plurality of text representations that correspond to a domain of a respective candidate user intent of the plurality of candidate user intents.
  • 10. The device of claim 8, wherein each intent deduction score of the plurality of intent deduction scores is based on a quality of match between words in a respective text representation of the plurality of text representations and predefined words corresponding to a domain of a respective candidate user intent of the plurality of candidate user intents.
  • 11. The device of claim 8, wherein each intent deduction score of the plurality of intent deduction scores is based on whether or not a property of a domain of a respective candidate user intent of the plurality of candidate user intents can be resolved from a respective text representation of the plurality of text representations.
  • 12. The device of claim 8, wherein each intent deduction score of the plurality of intent deduction scores is based on whether or not a natural language processor is able to identify a specific task from a respective text representation of the plurality of text representations.
  • 13. The device of claim 8, wherein the selected user intent is determined from a first text representation of the plurality of text representations, and wherein an intent deduction score for the selected user intent is a highest score among the plurality of intent deduction scores, and wherein a speech recognition score for the first text representation is not a highest score among the plurality of speech recognition scores.
  • 14. The device of claim 8, wherein the one or more programs further include instructions for: ranking the plurality of candidate user intents according to the plurality of composite scores, wherein the selected user intent has a highest composite score of the plurality of composite scores.
  • 15. A method for inferring user intent from speech input, comprising: at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors: receiving audio input containing a user utterance;performing speech-to-text processing on the audio input to determine a plurality of text representations of the user utterance and a plurality of speech recognition scores for the plurality text representations;performing natural language processing on each of the plurality of text representations to determine a plurality of candidate user intents and a plurality of intent deduction scores for the plurality of candidate user intents;determining a plurality of composite scores for the plurality of candidate user intents based on a combination of the plurality of speech recognition scores and the plurality of intent deduction scores;selecting a user intent from the plurality of candidate user intents based on the plurality of composite scores; andperforming a task corresponding to the selected user intent.
  • 16. The method of claim 15, wherein each intent deduction score of the plurality of intent deduction scores is based on a number of words in a respective text representation of the plurality of text representations that correspond to a domain of a respective candidate user intent of the plurality of candidate user intents.
  • 17. The method of claim 15, wherein each intent deduction score of the plurality of intent deduction scores is based on a quality of match between words in a respective text representation of the plurality of text representations and predefined words corresponding to a domain of a respective candidate user intent of the plurality of candidate user intents.
  • 18. The method of claim 15, wherein each intent deduction score of the plurality of intent deduction scores is based on whether or not a property of a domain of a respective candidate user intent of the plurality of candidate user intents can be resolved from a respective text representation of the plurality of text representations.
  • 19. The method of claim 15, wherein each intent deduction score of the plurality of intent deduction scores is based on whether or not a natural language processor is able to identify a specific task from a respective text representation of the plurality of text representations.
  • 20. The method of claim 15, wherein the selected user intent is determined from a first text representation of the plurality of text representations, and wherein an intent deduction score for the selected user intent is a highest score among the plurality of intent deduction scores, and wherein a speech recognition score for the first text representation is not a highest score among the plurality of speech recognition scores.
  • 21. The method of claim 15, further comprising: ranking the plurality of candidate user intents according to the plurality of composite scores, wherein the selected user intent has a highest composite score of the plurality of composite scores.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Ser. No. 14/298,725, filed on Jun. 6, 2014, entitled SYSTEM AND METHOD FOR INFERRING USER INTENT FROM SPEECH INPUTS, which claims priority from U.S. Provisional Ser. No. 61/832,896, filed on Jun. 9, 2013, entitled SYSTEM AND METHOD FOR INFERRING USER INTENT FROM SPEECH INPUTS, which are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (2785)
Number Name Date Kind
7315809 Xun Jan 2008 B2
7315818 Stevens et al. Jan 2008 B2
7318020 Kim Jan 2008 B1
7319957 Robinson et al. Jan 2008 B2
7321783 Kim, II Jan 2008 B2
7322023 Shulman et al. Jan 2008 B2
7324833 White et al. Jan 2008 B2
7324947 Jordan et al. Jan 2008 B2
7328155 Endo et al. Feb 2008 B2
7328250 Wang et al. Feb 2008 B2
7333998 Heckerman et al. Feb 2008 B2
7337108 Florencio et al. Feb 2008 B2
7345670 Armstrong Mar 2008 B2
7345671 Robbin et al. Mar 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7353139 Burrell et al. Apr 2008 B1
7356748 Taleb Apr 2008 B2
7359493 Wang et al. Apr 2008 B1
7359671 Richenstein et al. Apr 2008 B2
7359851 Tong et al. Apr 2008 B2
7360158 Beeman Apr 2008 B1
7362738 Taube et al. Apr 2008 B2
7363227 Mapes-Riordan et al. Apr 2008 B2
7363586 Briggs et al. Apr 2008 B1
7365260 Kawashima Apr 2008 B2
7366461 Brown Apr 2008 B1
7369984 Fairweather May 2008 B2
7369993 Atal May 2008 B1
7373291 Garst May 2008 B2
7373612 Risch et al. May 2008 B2
7376556 Bennett May 2008 B2
7376632 Sadek et al. May 2008 B1
7376645 Bernard May 2008 B2
7378963 Begault et al. May 2008 B1
7379874 Schmid et al. May 2008 B2
7380203 Keely et al. May 2008 B2
7383170 Mills et al. Jun 2008 B2
7386110 Petrunka et al. Jun 2008 B2
7386438 Franz et al. Jun 2008 B1
7386449 Sun et al. Jun 2008 B2
7386799 Clanton et al. Jun 2008 B1
7389224 Elworthy Jun 2008 B1
7389225 Jensen et al. Jun 2008 B1
7392185 Bennett Jun 2008 B2
7394947 Li et al. Jul 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7401300 Nurmi Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7403941 Bedworth et al. Jul 2008 B2
7404143 Freelander et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7409347 Bellegarda Aug 2008 B1
7412389 Yang Aug 2008 B2
7412470 Masuno et al. Aug 2008 B2
7415100 Cooper et al. Aug 2008 B2
7415469 Singh et al. Aug 2008 B2
7418382 Maes Aug 2008 B1
7418389 Chu et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7426468 Coifman et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7428541 Houle Sep 2008 B2
7430508 Williamson et al. Sep 2008 B2
7433869 Gollapudi Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7436947 Wadler et al. Oct 2008 B2
7441184 Frerebeau et al. Oct 2008 B2
7443316 Lim Oct 2008 B2
7444589 Zellner Oct 2008 B2
7447360 Li et al. Nov 2008 B2
7447624 Fuhrmann et al. Nov 2008 B2
7447635 Konopka et al. Nov 2008 B1
7447637 Grant et al. Nov 2008 B1
7451081 Gajic et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7460652 Chang Dec 2008 B2
7461043 Hess Dec 2008 B2
7467087 Gillick et al. Dec 2008 B1
7467164 Marsh Dec 2008 B2
7472061 Alewine et al. Dec 2008 B1
7472065 Aaron et al. Dec 2008 B2
7475010 Chao Jan 2009 B2
7475015 Epstein et al. Jan 2009 B2
7475063 Datta et al. Jan 2009 B2
7477238 Fux et al. Jan 2009 B2
7477240 Yanagisawa Jan 2009 B2
7478037 Strong Jan 2009 B2
7478091 Mojsilovic et al. Jan 2009 B2
7478129 Chemtob Jan 2009 B1
7479948 Kim et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7487093 Mutsuno et al. Feb 2009 B2
7490034 Finnigan et al. Feb 2009 B2
7490039 Shaffer et al. Feb 2009 B1
7493251 Gao et al. Feb 2009 B2
7493560 Kipnes et al. Feb 2009 B1
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7499923 Kawatani Mar 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508324 Suraqui Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7516123 Betz et al. Apr 2009 B2
7519327 White Apr 2009 B2
7519398 Hirose Apr 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523036 Akabane et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7526738 Ording et al. Apr 2009 B2
7528713 Singh et al. May 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7529677 Wittenber May 2009 B1
7535997 McQuaide, Jr. et al. May 2009 B1
7536029 Choi et al. May 2009 B2
7536565 Girish et al. May 2009 B2
7538685 Cooper et al. May 2009 B1
7539619 Seligman et al. May 2009 B1
7539656 Fratkina et al. May 2009 B2
7541940 Upton Jun 2009 B2
7542967 Hurst-Hiller et al. Jun 2009 B2
7542971 Thione et al. Jun 2009 B2
7543232 Easton, Jr. et al. Jun 2009 B2
7546382 Healey et al. Jun 2009 B2
7546529 Reynar et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552045 Barliga et al. Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7555496 Lantrip et al. Jun 2009 B1
7558381 Ali et al. Jul 2009 B1
7558730 Davis et al. Jul 2009 B2
7559026 Girish et al. Jul 2009 B2
7561069 Horstemeyer Jul 2009 B2
7562007 Hwang Jul 2009 B2
7562032 Abbosh et al. Jul 2009 B2
7565104 Brown et al. Jul 2009 B1
7565380 Venkatachary Jul 2009 B1
7568151 Bargeron et al. Jul 2009 B2
7571092 Nieh Aug 2009 B1
7571106 Cao et al. Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari et al. Aug 2009 B1
7580576 Wang et al. Aug 2009 B2
7580839 Tamura et al. Aug 2009 B2
7584092 Brockett et al. Sep 2009 B2
7584093 Potter et al. Sep 2009 B2
7584278 Rajarajan et al. Sep 2009 B2
7584429 Fabritius Sep 2009 B2
7593868 Margiloff et al. Sep 2009 B2
7596269 King et al. Sep 2009 B2
7596499 Anguera et al. Sep 2009 B2
7596606 Codignotto Sep 2009 B2
7596765 Almas Sep 2009 B2
7599918 Shen et al. Oct 2009 B2
7603349 Kraft et al. Oct 2009 B1
7603381 Burke et al. Oct 2009 B2
7606444 Erol et al. Oct 2009 B1
7606712 Smith et al. Oct 2009 B1
7607083 Gong et al. Oct 2009 B2
7609179 Diaz-Gutierrez et al. Oct 2009 B2
7610258 Yuknewicz et al. Oct 2009 B2
7613264 Wells et al. Nov 2009 B2
7614008 Ording Nov 2009 B2
7617094 Aoki et al. Nov 2009 B2
7620407 Donald et al. Nov 2009 B1
7620549 Di Cristo et al. Nov 2009 B2
7620894 Kahn Nov 2009 B1
7623119 Autio et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7627481 Kuo et al. Dec 2009 B1
7630900 Strom Dec 2009 B1
7630901 Omi Dec 2009 B2
7633076 Huppi et al. Dec 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7634413 Kuo et al. Dec 2009 B1
7634718 Nakajima Dec 2009 B2
7634732 Blagsvedt et al. Dec 2009 B1
7636657 Ju et al. Dec 2009 B2
7640158 Detlef et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7643990 Bellegarda Jan 2010 B1
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7656393 King et al. Feb 2010 B2
7657424 Bennett Feb 2010 B2
7657828 Lucas et al. Feb 2010 B2
7657844 Gibson et al. Feb 2010 B2
7657849 Chaudhri et al. Feb 2010 B2
7660715 Thambiratnam Feb 2010 B1
7663607 Hotelling et al. Feb 2010 B2
7664558 Lindahl et al. Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7668710 Doyle Feb 2010 B2
7669134 Christie et al. Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson et al. Mar 2010 B2
7673238 Girish et al. Mar 2010 B2
7673251 Wibisono Mar 2010 B1
7673340 Cohen et al. Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang et al. Mar 2010 B2
7676463 Thompson et al. Mar 2010 B2
7679534 Kay et al. Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7683893 Kim Mar 2010 B2
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7689245 Cox et al. Mar 2010 B2
7689408 Chen et al. Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689412 Wu et al. Mar 2010 B2
7689421 Li et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7703091 Martin et al. Apr 2010 B1
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707221 Dunning et al. Apr 2010 B1
7707226 Tonse Apr 2010 B1
7707267 Lisitsa et al. Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl et al. May 2010 B2
7711550 Feinberg et al. May 2010 B1
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford et al. May 2010 B2
7716056 Weng et al. May 2010 B2
7716216 Harik et al. May 2010 B1
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721226 Barabe et al. May 2010 B2
7721301 Wong et al. May 2010 B2
7724242 Hillis et al. May 2010 B2
7724696 Parekh May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7735012 Naik Jun 2010 B2
7739588 Reynar et al. Jun 2010 B2
7742953 King et al. Jun 2010 B2
7743188 Haitani et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756707 Garner et al. Jul 2010 B2
7756708 Cohen et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7756871 Yacoub et al. Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757182 Elliott et al. Jul 2010 B2
7761296 Bakis et al. Jul 2010 B1
7763842 Hsu et al. Jul 2010 B2
7774202 Spengler et al. Aug 2010 B2
7774204 Mozer et al. Aug 2010 B2
7774388 Runchey Aug 2010 B1
7777717 Fux et al. Aug 2010 B2
7778432 Larsen Aug 2010 B2
7778595 White et al. Aug 2010 B2
7778632 Kurlander et al. Aug 2010 B2
7778830 Davis et al. Aug 2010 B2
7779353 Grigoriu et al. Aug 2010 B2
7779356 Griesmer Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7788590 Taboada et al. Aug 2010 B2
7788663 Illowsky et al. Aug 2010 B2
7796980 McKinney et al. Sep 2010 B1
7797265 Brinker et al. Sep 2010 B2
7797269 Rieman et al. Sep 2010 B2
7797331 Theimer et al. Sep 2010 B2
7797629 Fux et al. Sep 2010 B2
7801721 Rosart et al. Sep 2010 B2
7801728 Ben-David et al. Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809550 Barrows Oct 2010 B1
7809565 Coifman Oct 2010 B2
7809569 Attwater et al. Oct 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski et al. Oct 2010 B2
7818165 Carlgren et al. Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7818215 King et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818672 Mccormack et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7827047 Anderson et al. Nov 2010 B2
7831246 Smith et al. Nov 2010 B1
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin et al. Nov 2010 B2
7835504 Donald et al. Nov 2010 B1
7836437 Kacmarcik et al. Nov 2010 B2
7840348 Kim et al. Nov 2010 B2
7840400 Levi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7840581 Ross et al. Nov 2010 B2
7840912 Elias et al. Nov 2010 B2
7844394 Kim Nov 2010 B2
7848924 Nurminen et al. Dec 2010 B2
7848926 Goto et al. Dec 2010 B2
7853444 Wang et al. Dec 2010 B2
7853445 Bachenko et al. Dec 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853577 Sundaresan et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7853900 Nguyen et al. Dec 2010 B2
7865817 Ryan et al. Jan 2011 B2
7869998 Di Fabbrizio et al. Jan 2011 B1
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7870133 Krishnamoorthy et al. Jan 2011 B2
7873149 Schultz et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881283 Cormier et al. Feb 2011 B2
7881936 Longe et al. Feb 2011 B2
7885390 Chaudhuri et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7886233 Rainisto et al. Feb 2011 B2
7889101 Yokota Feb 2011 B2
7889184 Blumenberg et al. Feb 2011 B2
7889185 Blumenberg et al. Feb 2011 B2
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7895039 Braho et al. Feb 2011 B2
7895531 Radtke et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7904297 Mirkovic et al. Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal et al. Mar 2011 B2
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur et al. Mar 2011 B1
7912828 Bonnet et al. Mar 2011 B2
7913185 Benson et al. Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7936339 Marggraff et al. May 2011 B2
7936861 Martin et al. May 2011 B2
7936863 John et al. May 2011 B2
7937075 Zellner May 2011 B2
7941009 Li et al. May 2011 B2
7945294 Zhang et al. May 2011 B2
7945470 Cohen et al. May 2011 B1
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7949752 Lange et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7957975 Burns et al. Jun 2011 B2
7958136 Curtis et al. Jun 2011 B1
7962179 Huang Jun 2011 B2
7974835 Balchandran et al. Jul 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf et al. Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7992085 Wang-Aryattanwanich et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7996589 Schultz et al. Aug 2011 B2
7996769 Fux et al. Aug 2011 B2
7996792 Anzures et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8014308 Gates et al. Sep 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8018431 Zehr et al. Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8019604 Ma Sep 2011 B2
8020104 Robarts et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8024415 Horvitz et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8031943 Chen et al. Oct 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8042053 Darwish et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8046374 Bromwich et al. Oct 2011 B1
8050500 Batty et al. Nov 2011 B1
8054180 Scofield et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8056070 Goller et al. Nov 2011 B2
8060824 Brownrigg, Jr. et al. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8068604 Leeds et al. Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8073695 Hendricks et al. Dec 2011 B1
8077153 Benko et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longe et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099395 Pabla et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke et al. Feb 2012 B2
8121413 Hwang et al. Feb 2012 B2
8121837 Agapi et al. Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8130929 Wilkes et al. Mar 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140330 Cevik et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8145489 Freeman et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160877 Nucci et al. Apr 2012 B1
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8166032 Sommer et al. Apr 2012 B2
8170790 Lee et al. May 2012 B2
8175872 Kristjansson et al. May 2012 B2
8175876 Bou-Ghazale et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8190596 Nambiar et al. May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8195468 Kennewick et al. Jun 2012 B2
8200489 Baggenstoss Jun 2012 B1
8200495 Braho et al. Jun 2012 B2
8201109 Van Os et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8213911 Williams et al. Jul 2012 B2
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219608 alSafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8228299 Maloney et al. Jul 2012 B1
8233919 Haag et al. Jul 2012 B2
8234111 Lloyd et al. Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8239207 Seligman et al. Aug 2012 B2
8244712 Serlet et al. Aug 2012 B2
8250071 Killalea et al. Aug 2012 B1
8254829 Kindred et al. Aug 2012 B1
8255216 White Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8260247 Lazaridis et al. Sep 2012 B2
8260617 Dhanakshirur et al. Sep 2012 B2
8270933 Riemer et al. Sep 2012 B2
8271287 Kermani Sep 2012 B1
8275621 Alewine et al. Sep 2012 B2
8279171 Hirai et al. Oct 2012 B2
8280438 Barbera Oct 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296124 Holsztynska et al. Oct 2012 B1
8296145 Clark et al. Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly et al. Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300776 Davies et al. Oct 2012 B2
8300801 Sweeney et al. Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311189 Champlin et al. Nov 2012 B2
8311834 Gazdzinski Nov 2012 B1
8311835 Lecoeuche Nov 2012 B2
8311838 Lindahl et al. Nov 2012 B2
8312017 Martin et al. Nov 2012 B2
8321786 Lunati et al. Nov 2012 B2
8326627 Kennewick et al. Dec 2012 B2
8332205 Krishnan et al. Dec 2012 B2
8332218 Cross et al. Dec 2012 B2
8332224 Di Cristo et al. Dec 2012 B2
8332748 Karam Dec 2012 B1
8335689 Wittenstein et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8345665 Vieri et al. Jan 2013 B2
8346563 Hjelm et al. Jan 2013 B1
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370145 Endo et al. Feb 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8375320 Kotler et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8380507 Herman et al. Feb 2013 B2
8381107 Rottler et al. Feb 2013 B2
8381135 Hotelling et al. Feb 2013 B2
8386485 Kerschberg et al. Feb 2013 B2
8386926 Matsuoka Feb 2013 B1
8391844 Lamiraux et al. Mar 2013 B2
8396714 Rogers et al. Mar 2013 B2
8401163 Kirchhoff et al. Mar 2013 B1
8406745 Upadhyay et al. Mar 2013 B1
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8433572 Caskey et al. Apr 2013 B2
8433778 Shreesha et al. Apr 2013 B1
8442821 Vanhoucke May 2013 B1
8447612 Gazdzinski May 2013 B2
8452597 Bringert et al. May 2013 B2
8457959 Kaiser Jun 2013 B2
8458115 Cai et al. Jun 2013 B2
8458278 Christie et al. Jun 2013 B2
8464150 Davidson et al. Jun 2013 B2
8473289 Jitkoff et al. Jun 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8484027 Murphy Jul 2013 B1
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8514197 Shahraray et al. Aug 2013 B2
8515750 Lei et al. Aug 2013 B1
8521513 Millett et al. Aug 2013 B2
8521531 Kim Aug 2013 B1
8527276 Senior et al. Sep 2013 B1
8537033 Gueziec Sep 2013 B2
8543375 Hong Sep 2013 B2
8543397 Nguyen Sep 2013 B1
8543398 Strope et al. Sep 2013 B1
8560229 Park et al. Oct 2013 B1
8571851 Tickner et al. Oct 2013 B1
8583416 Huang et al. Nov 2013 B2
8583511 Hendrickson Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8589911 Sharkey et al. Nov 2013 B1
8595004 Koshinaka Nov 2013 B2
8600743 Lindahl et al. Dec 2013 B2
8600746 Lei et al. Dec 2013 B1
8600930 Sata et al. Dec 2013 B2
8606090 Eyer Dec 2013 B2
8606568 Tickner et al. Dec 2013 B1
8606576 Barr et al. Dec 2013 B1
8620659 Di Cristo et al. Dec 2013 B2
8620662 Bellegarda Dec 2013 B2
8626681 Jurca et al. Jan 2014 B1
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645137 Bellegarda et al. Feb 2014 B2
8645138 Weinstein et al. Feb 2014 B1
8654936 Tofighbakhsh et al. Feb 2014 B1
8655646 Lee et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660843 Falcon et al. Feb 2014 B2
8660849 Gruber et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer et al. Feb 2014 B2
8661340 Goldsmith et al. Feb 2014 B2
8670979 Gruber et al. Mar 2014 B2
8675084 Bolton et al. Mar 2014 B2
8676904 Lindahl et al. Mar 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8681950 Vlack et al. Mar 2014 B2
8682667 Haughay et al. Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara et al. Apr 2014 B2
8688453 Joshi et al. Apr 2014 B1
8695074 Saraf et al. Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth et al. Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8713119 Lindahl et al. Apr 2014 B2
8713418 King et al. Apr 2014 B2
8719006 Bellegarda et al. May 2014 B2
8719014 Wagner et al. May 2014 B2
8719039 Sharifi May 2014 B1
8731610 Appaji May 2014 B2
8731912 Tickner et al. May 2014 B1
8731942 Cheyer et al. May 2014 B2
8739208 Rodriguez et al. May 2014 B2
8744852 Seymour et al. Jun 2014 B1
8760537 Johnson et al. Jun 2014 B2
8762145 Ouchi et al. Jun 2014 B2
8762156 Chen et al. Jun 2014 B2
8762469 Lindahl et al. Jun 2014 B2
8768693 Lempel et al. Jul 2014 B2
8768702 Boettcher et al. Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775931 Fux et al. Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara et al. Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805690 LeBeau et al. Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8838457 Cerra et al. Sep 2014 B2
8855915 Furuhata et al. Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottler et al. Oct 2014 B2
8868409 Mengibar et al. Oct 2014 B1
8880405 Cerra et al. Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8898568 Bull et al. Nov 2014 B2
8903716 Chen et al. Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8930176 Li et al. Jan 2015 B2
8930191 Gruber et al. Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938450 Spivack et al. Jan 2015 B2
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill et al. Jan 2015 B2
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer et al. Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9009046 Stewart Apr 2015 B1
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9037967 Al-Jefri et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9049255 MacFarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9070366 Mathias et al. Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kalns et al. Jul 2015 B2
9081482 Zhai et al. Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9098467 Blanksteen et al. Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9123338 Sanders et al. Sep 2015 B1
9164983 Liu et al. Oct 2015 B2
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9190062 Haughay Nov 2015 B2
9208153 Zaveri et al. Dec 2015 B1
9218809 Bellegarda Dec 2015 B2
9218819 Stekkelpak et al. Dec 2015 B1
9223537 Brown et al. Dec 2015 B2
9255812 Maeoka et al. Feb 2016 B2
9258604 Bilobrov et al. Feb 2016 B1
9262612 Cheyer Feb 2016 B2
9280535 Varma et al. Mar 2016 B2
9286910 Li et al. Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9299344 Braho et al. Mar 2016 B2
9300718 Khanna Mar 2016 B2
9305543 Fleizach et al. Apr 2016 B2
9305548 Kennewick et al. Apr 2016 B2
9311912 Swietlinski et al. Apr 2016 B1
9313317 LeBeau et al. Apr 2016 B1
9318108 Gruber et al. Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330720 Lee May 2016 B2
9338493 Van Os et al. May 2016 B2
9349368 LeBeau et al. May 2016 B1
9361084 Costa Jun 2016 B1
9367541 Servan et al. Jun 2016 B1
9377871 Waddell et al. Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9383827 Faaborg et al. Jul 2016 B1
9390726 Smus et al. Jul 2016 B1
9396722 Chung et al. Jul 2016 B2
9401147 Jitkoff et al. Jul 2016 B2
9406224 Sanders et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9423266 Clark et al. Aug 2016 B2
9424840 Hart et al. Aug 2016 B1
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9465833 Aravamudan et al. Oct 2016 B2
9471566 Zhang et al. Oct 2016 B1
9484021 Mairesse et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9535906 Lee et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9569549 Jenkins et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9607612 Deleeuw Mar 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9665567 Liu et al. May 2017 B2
9668121 Naik et al. May 2017 B2
9672725 Dotan-Cohen et al. Jun 2017 B2
9691378 Meyers et al. Jun 2017 B1
9697827 Lilly et al. Jul 2017 B1
9720907 Bangalore et al. Aug 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9755605 Li et al. Sep 2017 B1
9842584 Hart et al. Dec 2017 B1
9934785 Hulaud Apr 2018 B1
9948728 Linn et al. Apr 2018 B2
9966068 Cash et al. May 2018 B2
9967381 Kashimba et al. May 2018 B1
9990176 Gray Jun 2018 B1
10037758 Jing et al. Jul 2018 B2
10049663 Orr et al. Aug 2018 B2
10074360 Kim Sep 2018 B2
10096319 Jin et al. Oct 2018 B1
10102359 Cheyer Oct 2018 B2
20060149544 Hakkani-Tur et al. Jul 2006 A1
20080001785 Elizarov et al. Jan 2008 A1
20080010050 Fux et al. Jan 2008 A1
20080010355 Vieri et al. Jan 2008 A1
20080010605 Frank et al. Jan 2008 A1
20080012950 Lee et al. Jan 2008 A1
20080013751 Hiselius Jan 2008 A1
20080015863 Agapi et al. Jan 2008 A1
20080015864 Ross et al. Jan 2008 A1
20080016575 Vincent et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080021886 Wang-Aryattanwanich et al. Jan 2008 A1
20080022208 Morse Jan 2008 A1
20080027711 Rajendran et al. Jan 2008 A1
20080027726 Hansen et al. Jan 2008 A1
20080031475 Goldstein Feb 2008 A1
20080033719 Hall et al. Feb 2008 A1
20080033723 Jang et al. Feb 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080034044 Bhakta et al. Feb 2008 A1
20080034081 Marshall et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080040339 Zhou et al. Feb 2008 A1
20080042970 Liang et al. Feb 2008 A1
20080043936 Liebermann Feb 2008 A1
20080043943 Sipher et al. Feb 2008 A1
20080046239 Boo Feb 2008 A1
20080046250 Agapi et al. Feb 2008 A1
20080046422 Lee et al. Feb 2008 A1
20080046820 Lee et al. Feb 2008 A1
20080046948 Verosub Feb 2008 A1
20080048908 Sato Feb 2008 A1
20080050027 Bashyam et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080052073 Goto et al. Feb 2008 A1
20080052077 Bennett et al. Feb 2008 A1
20080052080 Narayanan et al. Feb 2008 A1
20080052262 Kosinov et al. Feb 2008 A1
20080055194 Baudino et al. Mar 2008 A1
20080056459 Vallier et al. Mar 2008 A1
20080056579 Guha Mar 2008 A1
20080057922 Kokes et al. Mar 2008 A1
20080059190 Chu et al. Mar 2008 A1
20080059200 Puli Mar 2008 A1
20080059876 Hantler et al. Mar 2008 A1
20080062141 Chaudhri Mar 2008 A1
20080065382 Gerl et al. Mar 2008 A1
20080065387 Cross et al. Mar 2008 A1
20080066135 Brodersen et al. Mar 2008 A1
20080071529 Silverman et al. Mar 2008 A1
20080071544 Beaufays et al. Mar 2008 A1
20080071742 Yang et al. Mar 2008 A1
20080072143 Assadollahi Mar 2008 A1
20080075296 Lindahl et al. Mar 2008 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080077310 Murlidar et al. Mar 2008 A1
20080077384 Agapi et al. Mar 2008 A1
20080077386 Gao et al. Mar 2008 A1
20080077391 Chino et al. Mar 2008 A1
20080077393 Gao et al. Mar 2008 A1
20080077406 Ganong, III Mar 2008 A1
20080077859 Schabes et al. Mar 2008 A1
20080079566 Singh et al. Apr 2008 A1
20080080411 Cole Apr 2008 A1
20080082332 Mallett et al. Apr 2008 A1
20080082338 O″Neil et al. Apr 2008 A1
20080082390 Hawkins et al. Apr 2008 A1
20080082576 Bodin et al. Apr 2008 A1
20080082651 Singh et al. Apr 2008 A1
20080084974 Dhanakshirur Apr 2008 A1
20080085689 Zellner Apr 2008 A1
20080086306 Hirota et al. Apr 2008 A1
20080091406 Baldwin et al. Apr 2008 A1
20080091426 Rempel et al. Apr 2008 A1
20080091428 Bellegarda Apr 2008 A1
20080091443 Strope et al. Apr 2008 A1
20080096531 Mcquaide et al. Apr 2008 A1
20080096533 Manfredi et al. Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080097937 Hadjarian Apr 2008 A1
20080098302 Roose Apr 2008 A1
20080098480 Henry et al. Apr 2008 A1
20080100579 Robinson et al. May 2008 A1
20080101584 Gray et al. May 2008 A1
20080103774 White May 2008 A1
20080109222 Liu May 2008 A1
20080109402 Wang et al. May 2008 A1
20080114480 Harb May 2008 A1
20080114598 Prieto et al. May 2008 A1
20080114604 Wei et al. May 2008 A1
20080114841 Lambert May 2008 A1
20080115084 Scott et al. May 2008 A1
20080118143 Gordon et al. May 2008 A1
20080119953 Reed May 2008 A1
20080120102 Rao May 2008 A1
20080120112 Jordan et al. May 2008 A1
20080120196 Reed et al. May 2008 A1
20080120311 Reed May 2008 A1
20080120312 Reed May 2008 A1
20080120330 Reed May 2008 A1
20080120342 Reed et al. May 2008 A1
20080122796 Jobs et al. May 2008 A1
20080124695 Myers et al. May 2008 A1
20080126075 Thorn et al. May 2008 A1
20080126077 Thorn May 2008 A1
20080126091 Clark et al. May 2008 A1
20080126093 Sivadas May 2008 A1
20080126100 Grost et al. May 2008 A1
20080126491 Portele et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080130867 Bowen Jun 2008 A1
20080131006 Oliver Jun 2008 A1
20080132221 Willey et al. Jun 2008 A1
20080132295 Horowitz Jun 2008 A1
20080133215 Sarukkai Jun 2008 A1
20080133228 Rao Jun 2008 A1
20080133230 Herforth et al. Jun 2008 A1
20080133241 Baker et al. Jun 2008 A1
20080133244 Bodin et al. Jun 2008 A1
20080133245 Proulx et al. Jun 2008 A1
20080133479 Zelevinsky et al. Jun 2008 A1
20080133956 Fadell Jun 2008 A1
20080140413 Millman et al. Jun 2008 A1
20080140415 Shostak Jun 2008 A1
20080140416 Shostak Jun 2008 A1
20080140652 Millman et al. Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080140702 Reed et al. Jun 2008 A1
20080141125 Ghassabian et al. Jun 2008 A1
20080141180 Reed et al. Jun 2008 A1
20080141182 Barsness et al. Jun 2008 A1
20080146245 Appaji Jun 2008 A1
20080146290 Sreeram et al. Jun 2008 A1
20080147408 Da Palma et al. Jun 2008 A1
20080147411 Dames et al. Jun 2008 A1
20080147874 Yoneda et al. Jun 2008 A1
20080150900 Han Jun 2008 A1
20080154577 Kim et al. Jun 2008 A1
20080154599 Muschett et al. Jun 2008 A1
20080154600 Tian et al. Jun 2008 A1
20080154603 Oddo Jun 2008 A1
20080154612 Evermann et al. Jun 2008 A1
20080154828 Antebi et al. Jun 2008 A1
20080157867 Krah Jul 2008 A1
20080161113 Hansen et al. Jul 2008 A1
20080162120 Mactavish et al. Jul 2008 A1
20080162137 Saitoh et al. Jul 2008 A1
20080162471 Bernard Jul 2008 A1
20080163119 Kim et al. Jul 2008 A1
20080163131 Hirai et al. Jul 2008 A1
20080165144 Forstall et al. Jul 2008 A1
20080165980 Pavlovic et al. Jul 2008 A1
20080165994 Caren et al. Jul 2008 A1
20080167013 Novick et al. Jul 2008 A1
20080167858 Christie et al. Jul 2008 A1
20080167876 Bakis et al. Jul 2008 A1
20080168052 Ott et al. Jul 2008 A1
20080168144 Lee Jul 2008 A1
20080168366 Kocienda et al. Jul 2008 A1
20080172698 Berger et al. Jul 2008 A1
20080183473 Nagano et al. Jul 2008 A1
20080186960 Kocheisen et al. Aug 2008 A1
20080189099 Friedman et al. Aug 2008 A1
20080189106 Low et al. Aug 2008 A1
20080189110 Freeman et al. Aug 2008 A1
20080189114 Fail et al. Aug 2008 A1
20080189360 Kiley et al. Aug 2008 A1
20080189606 Rybak Aug 2008 A1
20080195312 Aaron et al. Aug 2008 A1
20080195388 Bower et al. Aug 2008 A1
20080195391 Marple et al. Aug 2008 A1
20080195601 Ntoulas et al. Aug 2008 A1
20080195630 Exartier et al. Aug 2008 A1
20080195940 Gail et al. Aug 2008 A1
20080200142 Abdel-Kader et al. Aug 2008 A1
20080201000 Heikkila et al. Aug 2008 A1
20080201306 Cooper et al. Aug 2008 A1
20080201375 Khedouri et al. Aug 2008 A1
20080201434 Holmes et al. Aug 2008 A1
20080204379 Perez-Noguera Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208585 Ativanichayaphong et al. Aug 2008 A1
20080208587 Ben-David et al. Aug 2008 A1
20080208864 Cucerzan et al. Aug 2008 A1
20080212796 Denda Sep 2008 A1
20080215678 Coletrane et al. Sep 2008 A1
20080219641 Sandrew et al. Sep 2008 A1
20080221866 Katragadda et al. Sep 2008 A1
20080221879 Cerra et al. Sep 2008 A1
20080221880 Cerra et al. Sep 2008 A1
20080221887 Rose et al. Sep 2008 A1
20080221889 Cerra et al. Sep 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080222118 Scian et al. Sep 2008 A1
20080226130 Kansal et al. Sep 2008 A1
20080228463 Mori et al. Sep 2008 A1
20080228485 Owen Sep 2008 A1
20080228490 Fischer et al. Sep 2008 A1
20080228495 Cross et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080228928 Donelli et al. Sep 2008 A1
20080229185 Lynch Sep 2008 A1
20080229218 Maeng Sep 2008 A1
20080235017 Satomura et al. Sep 2008 A1
20080235018 Eggen et al. Sep 2008 A1
20080235023 Kennewick et al. Sep 2008 A1
20080235024 Goldberg et al. Sep 2008 A1
20080235027 Cross Sep 2008 A1
20080240569 Tonouchi Oct 2008 A1
20080242280 Shapiro et al. Oct 2008 A1
20080242322 Scott et al. Oct 2008 A1
20080242363 Onda et al. Oct 2008 A1
20080243501 Hafsteinsson et al. Oct 2008 A1
20080243834 Rieman et al. Oct 2008 A1
20080244390 Fux et al. Oct 2008 A1
20080244446 Lefevre et al. Oct 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080247529 Barton et al. Oct 2008 A1
20080248797 Freeman et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080249778 Barton et al. Oct 2008 A1
20080253577 Eppolito Oct 2008 A1
20080254419 Cohen Oct 2008 A1
20080254425 Cohen et al. Oct 2008 A1
20080255837 Kahn et al. Oct 2008 A1
20080255842 Simhi et al. Oct 2008 A1
20080255845 Bennett Oct 2008 A1
20080256613 Grover Oct 2008 A1
20080259022 Mansfield et al. Oct 2008 A1
20080261572 Tsui et al. Oct 2008 A1
20080262828 Och et al. Oct 2008 A1
20080262838 Nurminen et al. Oct 2008 A1
20080262846 Burns et al. Oct 2008 A1
20080263139 Martin Oct 2008 A1
20080267416 Goldstein et al. Oct 2008 A1
20080270118 Kuo et al. Oct 2008 A1
20080270138 Knight et al. Oct 2008 A1
20080270139 Shi et al. Oct 2008 A1
20080270140 Hertz et al. Oct 2008 A1
20080270151 Mahoney et al. Oct 2008 A1
20080270344 Yurick et al. Oct 2008 A1
20080273672 Didcock et al. Nov 2008 A1
20080277473 Kotlarsky et al. Nov 2008 A1
20080281510 Shahine Nov 2008 A1
20080281582 Hsu et al. Nov 2008 A1
20080288259 Chambers et al. Nov 2008 A1
20080288460 Poniatowski et al. Nov 2008 A1
20080292112 Valenzuela et al. Nov 2008 A1
20080294418 Cleary et al. Nov 2008 A1
20080294517 Hill Nov 2008 A1
20080294651 Masuyama et al. Nov 2008 A1
20080294981 Balzano et al. Nov 2008 A1
20080298563 Rondeau et al. Dec 2008 A1
20080298766 Wen et al. Dec 2008 A1
20080299523 Chai et al. Dec 2008 A1
20080300857 Barbaiani et al. Dec 2008 A1
20080300871 Gilbert Dec 2008 A1
20080300877 Gilbert et al. Dec 2008 A1
20080300878 Bennett Dec 2008 A1
20080300886 Patch Dec 2008 A1
20080301567 Martin et al. Dec 2008 A1
20080303645 Seymour et al. Dec 2008 A1
20080306727 Thurmair et al. Dec 2008 A1
20080312909 Hermansen et al. Dec 2008 A1
20080312926 Vair et al. Dec 2008 A1
20080312928 Goebel et al. Dec 2008 A1
20080313335 Jung et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080319735 Kambhatla et al. Dec 2008 A1
20080319738 Liu et al. Dec 2008 A1
20080319753 Hancock Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20080319783 Yao et al. Dec 2008 A1
20090003115 Lindahl et al. Jan 2009 A1
20090005012 Van Heugten Jan 2009 A1
20090005891 Batson et al. Jan 2009 A1
20090006096 Li et al. Jan 2009 A1
20090006097 Etezadi et al. Jan 2009 A1
20090006099 Sharpe et al. Jan 2009 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090006345 Platt et al. Jan 2009 A1
20090006488 Lindahl et al. Jan 2009 A1
20090006671 Batson et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090011709 Akasaka et al. Jan 2009 A1
20090012748 Beish et al. Jan 2009 A1
20090012775 El Hady et al. Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090018829 Kuperstein Jan 2009 A1
20090018834 Cooper et al. Jan 2009 A1
20090018835 Cooper et al. Jan 2009 A1
20090018839 Cooper et al. Jan 2009 A1
20090018840 Lutz et al. Jan 2009 A1
20090022329 Mahowald Jan 2009 A1
20090024595 Chen Jan 2009 A1
20090028435 Wu et al. Jan 2009 A1
20090030685 Cerra et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090030978 Johnson et al. Jan 2009 A1
20090043580 Mozer et al. Feb 2009 A1
20090043583 Agapi et al. Feb 2009 A1
20090043763 Peng Feb 2009 A1
20090044094 Rapp et al. Feb 2009 A1
20090048821 Yam et al. Feb 2009 A1
20090048841 Pollet et al. Feb 2009 A1
20090048845 Burckart et al. Feb 2009 A1
20090049067 Murray Feb 2009 A1
20090055168 Wu et al. Feb 2009 A1
20090055175 Terrell et al. Feb 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090055186 Lance et al. Feb 2009 A1
20090055380 Peng et al. Feb 2009 A1
20090055381 Wu et al. Feb 2009 A1
20090055648 Kim et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090058860 Fong et al. Mar 2009 A1
20090060351 Li et al. Mar 2009 A1
20090060472 Bull et al. Mar 2009 A1
20090063974 Bull et al. Mar 2009 A1
20090064031 Bull et al. Mar 2009 A1
20090070097 Wu et al. Mar 2009 A1
20090070102 Maegawa Mar 2009 A1
20090070109 Didcock et al. Mar 2009 A1
20090070114 Staszak Mar 2009 A1
20090074214 Bradford et al. Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090076798 Oh et al. Mar 2009 A1
20090076819 Wouters et al. Mar 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090076825 Bradford et al. Mar 2009 A1
20090077047 Cooper et al. Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090077464 Goldsmith et al. Mar 2009 A1
20090079622 Seshadri et al. Mar 2009 A1
20090083034 Hernandez et al. Mar 2009 A1
20090083035 Huang et al. Mar 2009 A1
20090083036 Zhao et al. Mar 2009 A1
20090083037 Gleason et al. Mar 2009 A1
20090083047 Lindahl et al. Mar 2009 A1
20090089058 Bellegarda Apr 2009 A1
20090091537 Huang et al. Apr 2009 A1
20090092239 Macwan Apr 2009 A1
20090092260 Powers Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090092262 Costa et al. Apr 2009 A1
20090094029 Koch et al. Apr 2009 A1
20090094033 Mozer et al. Apr 2009 A1
20090097634 Nambiar et al. Apr 2009 A1
20090097637 Boscher et al. Apr 2009 A1
20090098903 Donaldson et al. Apr 2009 A1
20090100049 Cao Apr 2009 A1
20090100454 Weber Apr 2009 A1
20090104898 Harris Apr 2009 A1
20090106026 Ferrieux Apr 2009 A1
20090106376 Tom et al. Apr 2009 A1
20090106397 O'Keefe Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112576 Jackson et al. Apr 2009 A1
20090112592 Candelore et al. Apr 2009 A1
20090112596 Syrdal et al. Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090112892 Cardie et al. Apr 2009 A1
20090119587 Allen et al. May 2009 A1
20090123021 Jung et al. May 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu et al. May 2009 A1
20090125602 Bhatia et al. May 2009 A1
20090125813 Shen et al. May 2009 A1
20090125947 Ibaraki May 2009 A1
20090128505 Partridge et al. May 2009 A1
20090132253 Bellegarda May 2009 A1
20090132255 Lu May 2009 A1
20090137286 Luke et al. May 2009 A1
20090138263 Shozakai et al. May 2009 A1
20090138430 Nambiar et al. May 2009 A1
20090138736 Chin May 2009 A1
20090138828 Schultz et al. May 2009 A1
20090144036 Jorgensen et al. Jun 2009 A1
20090144049 Haddad et al. Jun 2009 A1
20090144428 Bowater et al. Jun 2009 A1
20090144609 Liang et al. Jun 2009 A1
20090146848 Ghassabian Jun 2009 A1
20090150147 Jacoby et al. Jun 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090152349 Bonev et al. Jun 2009 A1
20090153288 Hope et al. Jun 2009 A1
20090154669 Wood et al. Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090157384 Toutanova et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090158200 Palahnuk et al. Jun 2009 A1
20090158323 Bober et al. Jun 2009 A1
20090158423 Orlassino et al. Jun 2009 A1
20090160761 Moosavi et al. Jun 2009 A1
20090160803 Hashimoto Jun 2009 A1
20090163243 Barbera Jun 2009 A1
20090164301 O'Sullivan et al. Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090164655 Pettersson et al. Jun 2009 A1
20090164937 Alviar et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090171578 Kim et al. Jul 2009 A1
20090171662 Huang et al. Jul 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090172108 Singh Jul 2009 A1
20090172542 Girish et al. Jul 2009 A1
20090174667 Kocienda et al. Jul 2009 A1
20090174677 Gehani et al. Jul 2009 A1
20090177300 Lee Jul 2009 A1
20090177461 Ehsani et al. Jul 2009 A1
20090177966 Chaudhri Jul 2009 A1
20090182445 Girish et al. Jul 2009 A1
20090182549 Anisimovich et al. Jul 2009 A1
20090182702 Miller Jul 2009 A1
20090183070 Robbins Jul 2009 A1
20090187402 Scholl Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090187950 Nicas et al. Jul 2009 A1
20090190774 Wang et al. Jul 2009 A1
20090191895 Singh et al. Jul 2009 A1
20090192782 Drewes Jul 2009 A1
20090192787 Roon Jul 2009 A1
20090192798 Basson et al. Jul 2009 A1
20090198497 Kwon Aug 2009 A1
20090204402 Marhawa et al. Aug 2009 A1
20090204409 Mozer et al. Aug 2009 A1
20090204478 Kaib et al. Aug 2009 A1
20090204596 Brun et al. Aug 2009 A1
20090204601 Grasset Aug 2009 A1
20090204620 Thione et al. Aug 2009 A1
20090210230 Schwarz et al. Aug 2009 A1
20090210232 Sanchez et al. Aug 2009 A1
20090213134 Stephanick et al. Aug 2009 A1
20090215466 Ahl et al. Aug 2009 A1
20090215503 Zhang et al. Aug 2009 A1
20090216396 Yamagata Aug 2009 A1
20090216528 Gemello et al. Aug 2009 A1
20090216540 Tessel et al. Aug 2009 A1
20090216704 Zheng et al. Aug 2009 A1
20090219166 MacFarlane et al. Sep 2009 A1
20090221274 Venkatakrishnan et al. Sep 2009 A1
20090222257 Sumita et al. Sep 2009 A1
20090222270 Likens et al. Sep 2009 A2
20090222488 Boerries et al. Sep 2009 A1
20090228126 Spielberg et al. Sep 2009 A1
20090228273 Wang et al. Sep 2009 A1
20090228277 Bonforte et al. Sep 2009 A1
20090228281 Singleton et al. Sep 2009 A1
20090228439 Manolescu et al. Sep 2009 A1
20090228792 Van Os et al. Sep 2009 A1
20090228842 Westerman et al. Sep 2009 A1
20090233264 Rogers et al. Sep 2009 A1
20090234638 Ranjan et al. Sep 2009 A1
20090234651 Basir et al. Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090235280 Tannier et al. Sep 2009 A1
20090239202 Stone Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090240485 Dalal et al. Sep 2009 A1
20090241054 Hendricks Sep 2009 A1
20090241760 Georges Oct 2009 A1
20090247237 Mittleman et al. Oct 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090248395 Alewine et al. Oct 2009 A1
20090248402 Ito et al. Oct 2009 A1
20090248420 Basir et al. Oct 2009 A1
20090248422 Li et al. Oct 2009 A1
20090248456 Fahmy et al. Oct 2009 A1
20090249198 Davis et al. Oct 2009 A1
20090249247 Tseng et al. Oct 2009 A1
20090252350 Seguin Oct 2009 A1
20090253457 Seguin Oct 2009 A1
20090253463 Shin et al. Oct 2009 A1
20090254339 Seguin Oct 2009 A1
20090254345 Fleizach et al. Oct 2009 A1
20090254819 Song et al. Oct 2009 A1
20090254823 Barrett Oct 2009 A1
20090259472 Schroeter Oct 2009 A1
20090259475 Yamagami et al. Oct 2009 A1
20090259969 Pallakoff Oct 2009 A1
20090265171 Davis Oct 2009 A1
20090265368 Crider et al. Oct 2009 A1
20090271109 Lee et al. Oct 2009 A1
20090271175 Bodin et al. Oct 2009 A1
20090271176 Bodin et al. Oct 2009 A1
20090271178 Bodin et al. Oct 2009 A1
20090271188 Agapi et al. Oct 2009 A1
20090271189 Agapi et al. Oct 2009 A1
20090274315 Carnes et al. Nov 2009 A1
20090274376 Selvaraj et al. Nov 2009 A1
20090278804 Rubanovich et al. Nov 2009 A1
20090281789 Weibel et al. Nov 2009 A1
20090284471 Longe et al. Nov 2009 A1
20090284482 Chin Nov 2009 A1
20090286514 Lichorowic et al. Nov 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090292987 Sorenson Nov 2009 A1
20090296552 Hicks et al. Dec 2009 A1
20090298474 George Dec 2009 A1
20090298529 Mahajan Dec 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090300391 Jessup et al. Dec 2009 A1
20090300488 Salamon et al. Dec 2009 A1
20090304198 Herre et al. Dec 2009 A1
20090305203 Okumura et al. Dec 2009 A1
20090306967 Nicolov et al. Dec 2009 A1
20090306969 Goud et al. Dec 2009 A1
20090306979 Jaiswal et al. Dec 2009 A1
20090306980 Shin Dec 2009 A1
20090306981 Cromack et al. Dec 2009 A1
20090306985 Roberts et al. Dec 2009 A1
20090306988 Chen et al. Dec 2009 A1
20090306989 Kaji Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20090307201 Dunning et al. Dec 2009 A1
20090307584 Davidson et al. Dec 2009 A1
20090307594 Kosonen et al. Dec 2009 A1
20090309352 Walker et al. Dec 2009 A1
20090313014 Shin et al. Dec 2009 A1
20090313020 Koivunen Dec 2009 A1
20090313023 Jones Dec 2009 A1
20090313026 Coffman et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090316943 Frigola Munoz et al. Dec 2009 A1
20090318119 Basir et al. Dec 2009 A1
20090318198 Carroll Dec 2009 A1
20090319257 Blume et al. Dec 2009 A1
20090319266 Brown et al. Dec 2009 A1
20090319342 Shilman et al. Dec 2009 A1
20090326923 Yan et al. Dec 2009 A1
20090326936 Nagashima Dec 2009 A1
20090326938 Marila et al. Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20090327977 Bachfischer et al. Dec 2009 A1
20100004918 Lee et al. Jan 2010 A1
20100004930 Strope et al. Jan 2010 A1
20100004931 Ma et al. Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100010803 Ishikawa et al. Jan 2010 A1
20100010814 Patel Jan 2010 A1
20100010948 Ito et al. Jan 2010 A1
20100013760 Hirai et al. Jan 2010 A1
20100013796 Abileah et al. Jan 2010 A1
20100017212 Attwater et al. Jan 2010 A1
20100017382 Katragadda et al. Jan 2010 A1
20100019834 Zerbe et al. Jan 2010 A1
20100020035 Ryu et al. Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100023331 Duta et al. Jan 2010 A1
20100026526 Yokota Feb 2010 A1
20100030549 Lee et al. Feb 2010 A1
20100030928 Conroy et al. Feb 2010 A1
20100031143 Rao et al. Feb 2010 A1
20100036653 Kim et al. Feb 2010 A1
20100036655 Cecil et al. Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100036829 Leyba Feb 2010 A1
20100036928 Granito et al. Feb 2010 A1
20100037183 Miyashita et al. Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100042576 Roettger et al. Feb 2010 A1
20100046842 Conwell et al. Feb 2010 A1
20100049498 Cao et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100050064 Liu et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100057435 Kent et al. Mar 2010 A1
20100057443 Di Cristo et al. Mar 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100057461 Neubacher et al. Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100058200 Jablokov et al. Mar 2010 A1
20100060646 Unsal et al. Mar 2010 A1
20100063804 Sato et al. Mar 2010 A1
20100063825 Williams et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100064113 Lindahl et al. Mar 2010 A1
20100064218 Bull et al. Mar 2010 A1
20100064226 Stefaniak et al. Mar 2010 A1
20100066546 Aaron Mar 2010 A1
20100066684 Shahraray et al. Mar 2010 A1
20100067723 Bergmann et al. Mar 2010 A1
20100067867 Lin et al. Mar 2010 A1
20100070281 Conkie et al. Mar 2010 A1
20100070517 Ghosh et al. Mar 2010 A1
20100070521 Clinchant et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100071003 Bychkov et al. Mar 2010 A1
20100076760 Kraenzel et al. Mar 2010 A1
20100076993 Klawitter et al. Mar 2010 A1
20100077350 Lim et al. Mar 2010 A1
20100079501 Ikeda et al. Apr 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca et al. Apr 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100081487 Chen et al. Apr 2010 A1
20100082286 Leung Apr 2010 A1
20100082327 Rogers et al. Apr 2010 A1
20100082328 Rogers et al. Apr 2010 A1
20100082329 Silverman et al. Apr 2010 A1
20100082333 Al-Shammari Apr 2010 A1
20100082346 Rogers et al. Apr 2010 A1
20100082347 Rogers et al. Apr 2010 A1
20100082348 Silverman et al. Apr 2010 A1
20100082349 Bellegarda et al. Apr 2010 A1
20100082567 Rosenblatt et al. Apr 2010 A1
20100082970 Lindahl et al. Apr 2010 A1
20100086152 Rank et al. Apr 2010 A1
20100086153 Hagen et al. Apr 2010 A1
20100086156 Rank et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088093 Lee et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100094632 Davis et al. Apr 2010 A1
20100098231 Wohlert et al. Apr 2010 A1
20100100212 Lindahl et al. Apr 2010 A1
20100100384 Ju et al. Apr 2010 A1
20100100385 Davis et al. Apr 2010 A1
20100100816 Mccloskey et al. Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106486 Hua et al. Apr 2010 A1
20100106498 Morrison et al. Apr 2010 A1
20100106500 McKee et al. Apr 2010 A1
20100106503 Farrell et al. Apr 2010 A1
20100114856 Kuboyama May 2010 A1
20100114887 Conway et al. May 2010 A1
20100121637 Roy et al. May 2010 A1
20100125456 Weng et al. May 2010 A1
20100125458 Franco et al. May 2010 A1
20100125460 Mellott et al. May 2010 A1
20100125811 Moore et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100131498 Linthicum et al. May 2010 A1
20100131899 Hubert May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100138680 Brisebois et al. Jun 2010 A1
20100138759 Roy Jun 2010 A1
20100138798 Wilson et al. Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju et al. Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100145707 Ljolje et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100150321 Harris et al. Jun 2010 A1
20100153114 Shih et al. Jun 2010 A1
20100153115 Klee et al. Jun 2010 A1
20100153448 Harpur et al. Jun 2010 A1
20100161311 Massuh Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161337 Pulz et al. Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100169075 Raffa et al. Jul 2010 A1
20100169093 Washio Jul 2010 A1
20100169097 Nachman et al. Jul 2010 A1
20100169098 Patch Jul 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100174544 Heifets Jul 2010 A1
20100175066 Paik Jul 2010 A1
20100179932 Yoon et al. Jul 2010 A1
20100179991 Lorch et al. Jul 2010 A1
20100180218 Boston et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100185949 Jaeger Jul 2010 A1
20100191520 Gruhn et al. Jul 2010 A1
20100197359 Harris Aug 2010 A1
20100199180 Brichter et al. Aug 2010 A1
20100199215 Seymour et al. Aug 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100211379 Gorman et al. Aug 2010 A1
20100211644 Lavoie et al. Aug 2010 A1
20100216509 Riemer et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100222033 Scott et al. Sep 2010 A1
20100222098 Garg Sep 2010 A1
20100223055 Mclean Sep 2010 A1
20100223056 Kadirkamanathan et al. Sep 2010 A1
20100223131 Scott et al. Sep 2010 A1
20100225599 Danielsson et al. Sep 2010 A1
20100225809 Connors et al. Sep 2010 A1
20100227642 Kim et al. Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228549 Herman et al. Sep 2010 A1
20100228691 Yang et al. Sep 2010 A1
20100229082 Karmarkar et al. Sep 2010 A1
20100229100 Miller et al. Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100235729 Kocienda et al. Sep 2010 A1
20100235732 Bergman Sep 2010 A1
20100235770 Ording et al. Sep 2010 A1
20100235780 Westerman et al. Sep 2010 A1
20100241418 Maeda et al. Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt et al. Sep 2010 A1
20100255858 Juhasz Oct 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100263015 Pandey et al. Oct 2010 A1
20100268537 Al-Telmissani Oct 2010 A1
20100268539 Xu et al. Oct 2010 A1
20100269040 Lee Oct 2010 A1
20100274753 Liberty et al. Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100281034 Petrou et al. Nov 2010 A1
20100286984 Wandinger et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100287514 Cragun et al. Nov 2010 A1
20100290632 Lin Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100295645 Falldin et al. Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100302056 Dutton et al. Dec 2010 A1
20100304342 Zilber Dec 2010 A1
20100304705 Hursey et al. Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100305947 Schwarz et al. Dec 2010 A1
20100312547 Van Os et al. Dec 2010 A1
20100312566 Odinak et al. Dec 2010 A1
20100318366 Sullivan et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324709 Starmen Dec 2010 A1
20100324895 Kurzweil et al. Dec 2010 A1
20100324896 Attwater et al. Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100325131 Dumais et al. Dec 2010 A1
20100325158 Oral et al. Dec 2010 A1
20100325573 Estrada et al. Dec 2010 A1
20100325588 Reddy et al. Dec 2010 A1
20100330908 Maddern et al. Dec 2010 A1
20100332220 Hursey et al. Dec 2010 A1
20100332224 Mäkelä et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332236 Tan Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332428 Mchenry et al. Dec 2010 A1
20100332976 Fux et al. Dec 2010 A1
20100333030 Johns Dec 2010 A1
20100333163 Daly Dec 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110004475 Bellegarda Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009107 Guba et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110010644 Merrill et al. Jan 2011 A1
20110015928 Odell et al. Jan 2011 A1
20110016150 Engstrom et al. Jan 2011 A1
20110016421 Krupka et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110021211 Ohki Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen et al. Jan 2011 A1
20110022388 Wu et al. Jan 2011 A1
20110022393 Waller et al. Jan 2011 A1
20110022394 Wide et al. Jan 2011 A1
20110022472 Zon et al. Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110030067 Wilson Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110034183 Haag et al. Feb 2011 A1
20110035144 Okamoto et al. Feb 2011 A1
20110035434 Lockwood Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110040707 Theisen et al. Feb 2011 A1
20110045841 Kuhlke et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047149 Vaananen Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110047266 Yu et al. Feb 2011 A1
20110047605 Sontag et al. Feb 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110050592 Kim et al. Mar 2011 A1
20110054647 Chipchase Mar 2011 A1
20110054894 Phillips et al. Mar 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060589 Weinberg et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110064387 Mendeloff et al. Mar 2011 A1
20110065456 Brennan et al. Mar 2011 A1
20110066366 Ellanti et al. Mar 2011 A1
20110066436 Bezar Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110072033 White et al. Mar 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110077943 Miki et al. Mar 2011 A1
20110080260 Wang et al. Apr 2011 A1
20110081889 Gao et al. Apr 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110087685 Lin et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110092187 Miller Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110093271 Bernard et al. Apr 2011 A1
20110093272 Isobe et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110106892 Nelson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110111724 Baptiste May 2011 A1
20110112825 Bellegarda May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112837 Kurki-Suonio et al. May 2011 A1
20110112838 Adibi May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110116610 Shaw et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110119623 Kim May 2011 A1
20110119715 Chang et al. May 2011 A1
20110123004 Chang et al. May 2011 A1
20110125498 Pickering et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110125701 Nair et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 DiCristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110137636 Srihari et al. Jun 2011 A1
20110141141 Kankainen Jun 2011 A1
20110143726 de Silva Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144857 Wingrove et al. Jun 2011 A1
20110144901 Wang Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110145718 Ketola et al. Jun 2011 A1
20110151830 Blanda et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153322 Kwak et al. Jun 2011 A1
20110153324 Ballinger et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110153373 Dantzig et al. Jun 2011 A1
20110154193 Creutz et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161072 Terao et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161079 Gruhn et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110161852 Vainio et al. Jun 2011 A1
20110166851 LeBeau et al. Jul 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110183650 Mckee et al. Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110184736 Slotznick Jul 2011 A1
20110184737 Nakano et al. Jul 2011 A1
20110184768 Norton et al. Jul 2011 A1
20110185288 Gupta et al. Jul 2011 A1
20110191108 Friedlander Aug 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110196670 Deng et al. Aug 2011 A1
20110197128 Assadollahi et al. Aug 2011 A1
20110199312 Okuta Aug 2011 A1
20110201385 Higginbotham et al. Aug 2011 A1
20110201387 Peek et al. Aug 2011 A1
20110202526 Lee et al. Aug 2011 A1
20110205149 Tom et al. Aug 2011 A1
20110208511 Sikstrom et al. Aug 2011 A1
20110208524 Haughay Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110216093 Griffin Sep 2011 A1
20110218806 Alewine et al. Sep 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110219018 Bailey et al. Sep 2011 A1
20110223893 Lau et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110228913 Cochinwala et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231432 Sate et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238191 Kristjansson et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110239111 Grover Sep 2011 A1
20110242007 Gray et al. Oct 2011 A1
20110244888 Ohki Oct 2011 A1
20110246471 Rakib et al. Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110250570 Mack et al. Oct 2011 A1
20110257966 Rychlik Oct 2011 A1
20110258188 Abdalmageed et al. Oct 2011 A1
20110260829 Lee Oct 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110264999 Bells et al. Oct 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276595 Kirkland et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110276944 Bergman et al. Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110282663 Talwar et al. Nov 2011 A1
20110282888 Koperski et al. Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110283189 McCarty Nov 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110288855 Roy Nov 2011 A1
20110288861 Kurzweil et al. Nov 2011 A1
20110288863 Rasmussen Nov 2011 A1
20110288866 Rasmussen Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110301943 Patch Dec 2011 A1
20110302162 Xiao et al. Dec 2011 A1
20110302645 Headley Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110307241 Weibel et al. Dec 2011 A1
20110307254 Hunt et al. Dec 2011 A1
20110307491 Fisk et al. Dec 2011 A1
20110307810 Hilerio et al. Dec 2011 A1
20110313775 Laligand et al. Dec 2011 A1
20110314003 Ju et al. Dec 2011 A1
20110314032 Bennett et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20110320187 Motik et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120005602 Anttila et al. Jan 2012 A1
20120008754 Mukherjee et al. Jan 2012 A1
20120010886 Razavilar Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120013609 Reponen et al. Jan 2012 A1
20120015629 Olsen et al. Jan 2012 A1
20120016658 Wu et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120019400 Patel et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120022967 Bachman et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120023095 Wadycki et al. Jan 2012 A1
20120023462 Rosing et al. Jan 2012 A1
20120029661 Jones et al. Feb 2012 A1
20120029910 Medlock et al. Feb 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 Lebeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035925 Friend et al. Feb 2012 A1
20120035926 Ambler Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120035935 Park et al. Feb 2012 A1
20120036556 LeBeau et al. Feb 2012 A1
20120039539 Boiman et al. Feb 2012 A1
20120041752 Wang et al. Feb 2012 A1
20120042014 Desai et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120053815 Montanari et al. Mar 2012 A1
20120053829 Agarwal et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120059655 Cartales Mar 2012 A1
20120059813 Sejnoha et al. Mar 2012 A1
20120062473 Xiao et al. Mar 2012 A1
20120066212 Jennings Mar 2012 A1
20120066581 Spalink Mar 2012 A1
20120075054 Ge et al. Mar 2012 A1
20120077479 Sabotta et al. Mar 2012 A1
20120078611 Soltani et al. Mar 2012 A1
20120078624 Yook et al. Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120078747 Chakrabarti et al. Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120083286 Kim et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120084634 Wong et al. Apr 2012 A1
20120088219 Briscoe et al. Apr 2012 A1
20120089331 Schmidt et al. Apr 2012 A1
20120101823 Weng et al. Apr 2012 A1
20120108166 Hymel May 2012 A1
20120108221 Thomas et al. May 2012 A1
20120110456 Larco et al. May 2012 A1
20120116770 Chen et al. May 2012 A1
20120117499 Mori et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120128322 Shaffer et al. May 2012 A1
20120130709 Bocchieri et al. May 2012 A1
20120136572 Norton May 2012 A1
20120136649 Freising et al. May 2012 A1
20120136855 Ni et al. May 2012 A1
20120136985 Popescu et al. May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149342 Cohen et al. Jun 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150544 McLoughlin et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158399 Tremblay et al. Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120163710 Skaff et al. Jun 2012 A1
20120166196 Ju et al. Jun 2012 A1
20120173222 Wang et al. Jul 2012 A1
20120173244 Kwak et al. Jul 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120174121 Treat et al. Jul 2012 A1
20120179457 Newman et al. Jul 2012 A1
20120179467 Williams Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120185480 Ni et al. Jul 2012 A1
20120185781 Guzman et al. Jul 2012 A1
20120191461 Lin et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197743 Grigg et al. Aug 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120201362 Crossan et al. Aug 2012 A1
20120209853 Desai et al. Aug 2012 A1
20120209874 Wong et al. Aug 2012 A1
20120210266 Jiang et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120215762 Hall et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120221552 Reponen et al. Aug 2012 A1
20120223889 Medlock et al. Sep 2012 A1
20120223936 Aughey et al. Sep 2012 A1
20120232885 Barbosa et al. Sep 2012 A1
20120232886 Capuozzo et al. Sep 2012 A1
20120232906 Lindahl et al. Sep 2012 A1
20120233207 Mohajer Sep 2012 A1
20120233266 Hassan et al. Sep 2012 A1
20120239661 Giblin Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120242482 Elumalai et al. Sep 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245939 Braho et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120246064 Balkow Sep 2012 A1
20120250858 Iqbal et al. Oct 2012 A1
20120252367 Gaglio et al. Oct 2012 A1
20120252540 Kirigaya Oct 2012 A1
20120253785 Hamid et al. Oct 2012 A1
20120253791 Heck et al. Oct 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120254152 Park et al. Oct 2012 A1
20120254290 Naaman Oct 2012 A1
20120259615 Morin et al. Oct 2012 A1
20120262296 Bezar Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271634 Lenke Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271640 Basir Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120275377 Lehane et al. Nov 2012 A1
20120284015 Drewes Nov 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290291 Shelley et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120295708 Hernandez-Abrego et al. Nov 2012 A1
20120296638 Patwa Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120296654 Hendrickson et al. Nov 2012 A1
20120296891 Rangan Nov 2012 A1
20120297348 Santoro Nov 2012 A1
20120303369 Brush et al. Nov 2012 A1
20120303371 Labsky et al. Nov 2012 A1
20120304124 Chen et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120310922 Johnson et al. Dec 2012 A1
20120311478 Van Os et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120316875 Nyquist et al. Dec 2012 A1
20120316878 Singleton et al. Dec 2012 A1
20120317194 Tian Dec 2012 A1
20120317498 Logan et al. Dec 2012 A1
20120321112 Schubert et al. Dec 2012 A1
20120324391 Tocci et al. Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20120329529 van der Raadt Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20120330990 Chen et al. Dec 2012 A1
20130002716 Walker et al. Jan 2013 A1
20130005405 Prociw Jan 2013 A1
20130006633 Grokop et al. Jan 2013 A1
20130006637 Kanevsky et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130007648 Gamon et al. Jan 2013 A1
20130009858 Lacey Jan 2013 A1
20130010575 He et al. Jan 2013 A1
20130013313 Shechtman et al. Jan 2013 A1
20130013319 Grant et al. Jan 2013 A1
20130018659 Chi Jan 2013 A1
20130024576 Dishneau et al. Jan 2013 A1
20130027875 Zhu et al. Jan 2013 A1
20130030787 Cancedda et al. Jan 2013 A1
20130030789 Dalce Jan 2013 A1
20130030804 Zavaliagko et al. Jan 2013 A1
20130030815 Madhvanath et al. Jan 2013 A1
20130030913 Zhu et al. Jan 2013 A1
20130030955 David Jan 2013 A1
20130031162 Willis et al. Jan 2013 A1
20130031476 Coin et al. Jan 2013 A1
20130033643 Kim et al. Feb 2013 A1
20130035086 Chardon et al. Feb 2013 A1
20130035942 Kim et al. Feb 2013 A1
20130035961 Yegnanarayanan Feb 2013 A1
20130041647 Ramerth et al. Feb 2013 A1
20130041654 Walker et al. Feb 2013 A1
20130041661 Lee et al. Feb 2013 A1
20130041665 Jang et al. Feb 2013 A1
20130041667 Longe et al. Feb 2013 A1
20130041968 Cohen et al. Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130050089 Neels et al. Feb 2013 A1
20130054550 Bolohan Feb 2013 A1
20130054609 Rajput et al. Feb 2013 A1
20130054613 Bishop Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130054706 Graham et al. Feb 2013 A1
20130055099 Yao et al. Feb 2013 A1
20130055147 Vasudev et al. Feb 2013 A1
20130063611 Papakipos et al. Mar 2013 A1
20130066832 Sheehan et al. Mar 2013 A1
20130067307 Tian et al. Mar 2013 A1
20130073286 Bastea-Forte et al. Mar 2013 A1
20130073346 Chun et al. Mar 2013 A1
20130080152 Brun et al. Mar 2013 A1
20130080162 Chang et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130080251 Dempski Mar 2013 A1
20130082967 Hillis et al. Apr 2013 A1
20130085755 Bringert et al. Apr 2013 A1
20130085761 Bringert et al. Apr 2013 A1
20130090921 Liu et al. Apr 2013 A1
20130091090 Spivack et al. Apr 2013 A1
20130095805 Lebeau et al. Apr 2013 A1
20130096909 Brun et al. Apr 2013 A1
20130096917 Edgar et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130097682 Zeljkovic et al. Apr 2013 A1
20130100268 Mihailidis et al. Apr 2013 A1
20130103391 Millmore et al. Apr 2013 A1
20130103405 Namba et al. Apr 2013 A1
20130106742 Lee et al. May 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130110943 Menon et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111365 Chen et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130111581 Griffin et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130124189 Baldwin et al. May 2013 A1
20130132084 Stonehocker et al. May 2013 A1
20130132089 Fanty et al. May 2013 A1
20130132871 Zeng et al. May 2013 A1
20130141551 Kim Jun 2013 A1
20130142317 Reynolds Jun 2013 A1
20130142345 Waldmann Jun 2013 A1
20130144594 Bangalore et al. Jun 2013 A1
20130144616 Bangalore et al. Jun 2013 A1
20130151339 Kim et al. Jun 2013 A1
20130152092 Yadgar et al. Jun 2013 A1
20130154811 Ferren et al. Jun 2013 A1
20130157629 Lee et al. Jun 2013 A1
20130158977 Senior Jun 2013 A1
20130159847 Banke et al. Jun 2013 A1
20130165232 Nelson et al. Jun 2013 A1
20130166303 Chang et al. Jun 2013 A1
20130166442 Nakajima et al. Jun 2013 A1
20130170738 Capuozzo et al. Jul 2013 A1
20130172022 Seymour et al. Jul 2013 A1
20130173258 Liu et al. Jul 2013 A1
20130174034 Brown et al. Jul 2013 A1
20130176244 Yamamoto et al. Jul 2013 A1
20130176592 Sasaki Jul 2013 A1
20130179172 Nakamura et al. Jul 2013 A1
20130179440 Gordon Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130185059 Riccardi et al. Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130185336 Singh et al. Jul 2013 A1
20130187850 Schulz et al. Jul 2013 A1
20130187857 Griffin et al. Jul 2013 A1
20130191117 Atti et al. Jul 2013 A1
20130197911 Wei et al. Aug 2013 A1
20130204813 Master et al. Aug 2013 A1
20130204897 McDougall Aug 2013 A1
20130207898 Sullivan et al. Aug 2013 A1
20130218553 Fujii et al. Aug 2013 A1
20130218560 Hsiao et al. Aug 2013 A1
20130219333 Palwe et al. Aug 2013 A1
20130222249 Pasquero et al. Aug 2013 A1
20130225128 Gomar Aug 2013 A1
20130226935 Bai et al. Aug 2013 A1
20130231917 Naik Sep 2013 A1
20130234947 Kristensson et al. Sep 2013 A1
20130235987 Arroniz-Escobar et al. Sep 2013 A1
20130238326 Kim et al. Sep 2013 A1
20130238647 Thompson Sep 2013 A1
20130244615 Miller et al. Sep 2013 A1
20130246048 Nagase et al. Sep 2013 A1
20130246050 Yu et al. Sep 2013 A1
20130246329 Pasquero et al. Sep 2013 A1
20130253911 Petri et al. Sep 2013 A1
20130253912 Medlock et al. Sep 2013 A1
20130268263 Park et al. Oct 2013 A1
20130275117 Winer Oct 2013 A1
20130275138 Gruber et al. Oct 2013 A1
20130275164 Gruber et al. Oct 2013 A1
20130275199 Proctor, Jr. et al. Oct 2013 A1
20130275625 Taivalsaari et al. Oct 2013 A1
20130275875 Gruber et al. Oct 2013 A1
20130275899 Schubert et al. Oct 2013 A1
20130282709 Zhu et al. Oct 2013 A1
20130283168 Brown et al. Oct 2013 A1
20130285913 Griffin et al. Oct 2013 A1
20130289991 Eshwar et al. Oct 2013 A1
20130289993 Rao et al. Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130291015 Pan Oct 2013 A1
20130297317 Lee et al. Nov 2013 A1
20130297319 Kim Nov 2013 A1
20130297348 Cardoza et al. Nov 2013 A1
20130300645 Fedorov Nov 2013 A1
20130300648 Kim et al. Nov 2013 A1
20130303106 Martin Nov 2013 A1
20130304479 Teller et al. Nov 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130304815 Puente et al. Nov 2013 A1
20130305119 Kern et al. Nov 2013 A1
20130307855 Lamb et al. Nov 2013 A1
20130307997 O'Keefe et al. Nov 2013 A1
20130308922 Sano et al. Nov 2013 A1
20130311184 Badavne et al. Nov 2013 A1
20130311997 Gruber et al. Nov 2013 A1
20130316746 Miller et al. Nov 2013 A1
20130322634 Bennett et al. Dec 2013 A1
20130325436 Wang et al. Dec 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20130325447 Levien et al. Dec 2013 A1
20130325448 Levien et al. Dec 2013 A1
20130325481 Van Os et al. Dec 2013 A1
20130325484 Chakladar et al. Dec 2013 A1
20130325967 Parks et al. Dec 2013 A1
20130325970 Roberts et al. Dec 2013 A1
20130325979 Mansfield et al. Dec 2013 A1
20130329023 Suplee, III et al. Dec 2013 A1
20130331127 Sabatelli et al. Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130332162 Keen Dec 2013 A1
20130332164 Nalk Dec 2013 A1
20130332168 Kim et al. Dec 2013 A1
20130332172 Prakash et al. Dec 2013 A1
20130332400 González Dec 2013 A1
20130339256 Shroff Dec 2013 A1
20130346068 Solem et al. Dec 2013 A1
20130346347 Patterson et al. Dec 2013 A1
20140006012 Zhou et al. Jan 2014 A1
20140006025 Krishnan et al. Jan 2014 A1
20140006027 Kim et al. Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012580 Ganong et al. Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140019116 Lundberg et al. Jan 2014 A1
20140019133 Bao et al. Jan 2014 A1
20140019460 Sambrani et al. Jan 2014 A1
20140028735 Williams et al. Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140033071 Gruber et al. Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140039893 Weiner Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040274 Aravamudan et al. Feb 2014 A1
20140040748 Lemay et al. Feb 2014 A1
20140040801 Patel et al. Feb 2014 A1
20140040918 Li et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra et al. Feb 2014 A1
20140053082 Park et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140059030 Hakkani-Tur et al. Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140068751 Last et al. Mar 2014 A1
20140074454 Brown et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche et al. Mar 2014 A1
20140074472 Lin et al. Mar 2014 A1
20140074483 Van Os Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140078065 Akkok et al. Mar 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140081619 Solntseva et al. Mar 2014 A1
20140081633 Badaskar et al. Mar 2014 A1
20140082501 Bae et al. Mar 2014 A1
20140086458 Rogers et al. Mar 2014 A1
20140087711 Geyer et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140095171 Lynch et al. Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140108017 Mason et al. Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140118155 Bowers et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122086 Kapur et al. May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni et al. May 2014 A1
20140136187 Wolverton et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140136212 Kwon et al. May 2014 A1
20140136946 Matas May 2014 A1
20140136987 Rodriguez May 2014 A1
20140142922 Liang et al. May 2014 A1
20140142923 Jones et al. May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki et al. May 2014 A1
20140146200 Scott et al. May 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140153709 Byrd et al. Jun 2014 A1
20140155031 Lee et al. Jun 2014 A1
20140156262 Yuen et al. Jun 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140157422 Livshits et al. Jun 2014 A1
20140163951 Nikoulina et al. Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164532 Lynch et al. Jun 2014 A1
20140164533 Lynch et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140172878 Clark et al. Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim et al. Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140188477 Zhang Jul 2014 A1
20140195226 Yun et al. Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140198048 Unruh et al. Jul 2014 A1
20140203939 Harrington et al. Jul 2014 A1
20140205076 Kumar et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207466 Smadi et al. Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140218372 Missig et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140223377 Shaw et al. Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232656 Pasquero et al. Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed et al. Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro et al. Aug 2014 A1
20140244258 Song et al. Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244266 Brown et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave et al. Sep 2014 A1
20140247926 Gainsboro et al. Sep 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn et al. Sep 2014 A1
20140257809 Goel et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140258857 Dykstra-Erickson et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin et al. Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140274005 Luna et al. Sep 2014 A1
20140274203 Ganong et al. Sep 2014 A1
20140274211 Sejnoha et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura et al. Sep 2014 A1
20140278413 Pitschel et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong et al. Sep 2014 A1
20140278436 Khanna et al. Sep 2014 A1
20140278443 Gunn et al. Sep 2014 A1
20140278513 Prakash et al. Sep 2014 A1
20140280138 Li et al. Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney et al. Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140281983 Xian et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282045 Ayanam et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282203 Pasquero et al. Sep 2014 A1
20140282586 Shear et al. Sep 2014 A1
20140282743 Howard et al. Sep 2014 A1
20140288990 Moore et al. Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa et al. Oct 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140304605 Ohmura et al. Oct 2014 A1
20140309996 Zhang Oct 2014 A1
20140310001 Kalns et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140316585 Boesveld et al. Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140330569 Kolavennu et al. Nov 2014 A1
20140337048 Brown et al. Nov 2014 A1
20140337266 Wolverton et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337751 Lim et al. Nov 2014 A1
20140337814 Kalns et al. Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durham et al. Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory et al. Nov 2014 A1
20140358519 Mirkin et al. Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson et al. Dec 2014 A1
20140365895 Paulson et al. Dec 2014 A1
20140365922 Yang Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20140379341 Seo et al. Dec 2014 A1
20140380285 Gabel et al. Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Andrade Silva et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider et al. Jan 2015 A1
20150012271 Peng et al. Jan 2015 A1
20150019219 Tzirkel-hancock et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150031416 Wells et al. Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150033275 Natani et al. Jan 2015 A1
20150039292 Suleman et al. Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150045003 Vora et al. Feb 2015 A1
20150045068 Soffer et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150050633 Christmas et al. Feb 2015 A1
20150058013 Pakhomov et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065200 Namgung et al. Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano et al. Mar 2015 A1
20150066516 Nishikawa et al. Mar 2015 A1
20150067485 Kim et al. Mar 2015 A1
20150067822 Randall Mar 2015 A1
20150071121 Patil et al. Mar 2015 A1
20150073788 Allauzen et al. Mar 2015 A1
20150073804 Senior et al. Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150074615 Han et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150088511 Bharadwaj et al. Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150095031 Conkie et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150100316 Williams et al. Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150113407 Hoffert et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150127348 Follis May 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150133109 Freeman et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150142420 Sarikaya et al. May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150148013 Baldwin et al. May 2015 A1
20150149177 Kalns et al. May 2015 A1
20150149182 Kalns et al. May 2015 A1
20150149354 Mccoy May 2015 A1
20150149469 Xu et al. May 2015 A1
20150154185 Waibel Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150160855 Bi Jun 2015 A1
20150161370 North et al. Jun 2015 A1
20150161521 Shah et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169284 Quest et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150170664 Doherty et al. Jun 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150178388 Winnemoeller et al. Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150186012 Coleman et al. Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186154 Brown et al. Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown et al. Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko et al. Jul 2015 A1
20150193392 Greenblatt et al. Jul 2015 A1
20150194152 Katuri et al. Jul 2015 A1
20150195379 Zhang et al. Jul 2015 A1
20150195606 McDevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo et al. Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150205858 Xie et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150227505 Morimoto Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150230095 Smith et al. Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Patrick et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150243278 Kibre et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein et al. Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein et al. Sep 2015 A1
20150261496 Faaborg et al. Sep 2015 A1
20150261850 Mittal Sep 2015 A1
20150269139 McAteer et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294377 Chow Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150309997 Lee et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150324041 Varley et al. Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang et al. Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150339049 Kasemset et al. Nov 2015 A1
20150339391 Kang et al. Nov 2015 A1
20150340033 Di Fabbrizio et al. Nov 2015 A1
20150340040 Mun et al. Nov 2015 A1
20150340042 Sejnoha et al. Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Bellegarda Dec 2015 A1
20150347382 Dolfing et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348547 Paulik et al. Dec 2015 A1
20150348548 Piernot et al. Dec 2015 A1
20150348549 Giuli et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150363587 Ahn et al. Dec 2015 A1
20150364140 Thorn Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang et al. Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150382047 Napolitano et al. Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20160004690 Bangalore et al. Jan 2016 A1
20160005320 deCharms et al. Jan 2016 A1
20160012038 Edwards et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160018900 Tu et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil et al. Jan 2016 A1
20160028666 Li Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034042 Joo Feb 2016 A1
20160034811 Paulik et al. Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160072940 Cronin Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160091967 Prokofieva et al. Mar 2016 A1
20160092447 Venkataraman et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Bellegarda et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094700 Lee et al. Mar 2016 A1
20160094979 Naik et al. Mar 2016 A1
20160098991 Luo et al. Apr 2016 A1
20160104486 Penilla et al. Apr 2016 A1
20160111091 Bakish Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160118048 Heide Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160132488 Clark et al. May 2016 A1
20160133254 Vogel et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160140951 Agiomyrgiannakis et al. May 2016 A1
20160147725 Patten et al. May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160180844 Vanblon et al. Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160182709 Kim et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189717 Kannan et al. Jun 2016 A1
20160198319 Huang et al. Jul 2016 A1
20160210981 Lee Jul 2016 A1
20160212488 Os et al. Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung et al. Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160253312 Rhodes Sep 2016 A1
20160253528 Gao et al. Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labsk et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay et al. Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Biadsy et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160284005 Daniel et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160286045 Sheltiel et al. Sep 2016 A1
20160293168 Chen Oct 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160307566 Bellegarda Oct 2016 A1
20160313906 Kilchenko et al. Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160322045 Hatfeild et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160328205 Agrawal et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160336007 Hanazawa Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160342781 Jeon Nov 2016 A1
20160351190 Binder et al. Dec 2016 A1
20160352567 Robbins et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarda et al. Dec 2016 A1
20160357861 Carlhian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358598 Williams et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160360336 Gross et al. Dec 2016 A1
20160360382 Gross et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160365101 Foy et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160372112 Miller et al. Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379091 Lin et al. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379633 Lehman et al. Dec 2016 A1
20160379641 Liu et al. Dec 2016 A1
20170004824 Yoo et al. Jan 2017 A1
20170011303 Annapureddy et al. Jan 2017 A1
20170011742 Jing et al. Jan 2017 A1
20170018271 Khan et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170032783 Lord et al. Feb 2017 A1
20170032791 Elson et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170055895 Des Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170068423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076721 Bargetzi et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170090569 Levesque Mar 2017 A1
20170091168 Bellegarda et al. Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170103749 Zhao et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170116177 Walia Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170124190 Wang et al. May 2017 A1
20170125016 Wang May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170131778 Iyer May 2017 A1
20170132199 Vescovi et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170154055 Dimson et al. Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170161268 Badaskar Jun 2017 A1
20170169818 VanBlon et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170185375 Martel et al. Jun 2017 A1
20170185581 Bojja et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170200066 Wang et al. Jul 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170243468 Dotan-Cohen et al. Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170263247 Kang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170264451 Yu et al. Sep 2017 A1
20170278514 Mathias et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170295446 Thagadur Shivappa Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316782 Haughay et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358301 Raitio et al. Dec 2017 A1
20170358302 Orr et al. Dec 2017 A1
20170358303 Walker, II et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20170371885 Aggarwal et al. Dec 2017 A1
20180007060 Leblang et al. Jan 2018 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180054505 Hart et al. Feb 2018 A1
20180060312 Won Mar 2018 A1
20180063624 Boesen Mar 2018 A1
20180067914 Chen et al. Mar 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180107945 Gao et al. Apr 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180130470 Lemay et al. May 2018 A1
20180137856 Gilbert May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180144748 Leong May 2018 A1
20180190273 Karimli et al. Jul 2018 A1
20180196683 Radebaugh et al. Jul 2018 A1
20180213448 Segal et al. Jul 2018 A1
20180218735 Hunt et al. Aug 2018 A1
20180308485 Kudurshian et al. Oct 2018 A1
20180308486 Saddler et al. Oct 2018 A1
20180322112 Bellegarda et al. Nov 2018 A1
20180329677 Gruber et al. Nov 2018 A1
20180329957 Frazzingaro et al. Nov 2018 A1
20180329982 Patel et al. Nov 2018 A1
20180330714 Paulik et al. Nov 2018 A1
20180330723 Acero et al. Nov 2018 A1
20180330730 Garg et al. Nov 2018 A1
20180330731 Zeitlin et al. Nov 2018 A1
20180330737 Paulik et al. Nov 2018 A1
20180332118 Phipps et al. Nov 2018 A1
20180336275 Graham et al. Nov 2018 A1
20180336894 Graham et al. Nov 2018 A1
20180336905 Kim et al. Nov 2018 A1
Foreign Referenced Citations (394)
Number Date Country
2015203483 Jul 2015 AU
2694314 Aug 2010 CA
2792412 Jul 2011 CA
2666438 Jun 2013 CA
101162153 Apr 2008 CN
101174366 May 2008 CN
101179754 May 2008 CN
101183525 May 2008 CN
101188644 May 2008 CN
101228503 Jul 2008 CN
101233741 Jul 2008 CN
101246020 Aug 2008 CN
101247301 Aug 2008 CN
101271689 Sep 2008 CN
101277501 Oct 2008 CN
101281745 Oct 2008 CN
101292282 Oct 2008 CN
101297541 Oct 2008 CN
101325756 Dec 2008 CN
101416471 Apr 2009 CN
101427244 May 2009 CN
101448340 Jun 2009 CN
101453498 Jun 2009 CN
101499156 Aug 2009 CN
101500041 Aug 2009 CN
101515952 Aug 2009 CN
101535983 Sep 2009 CN
101547396 Sep 2009 CN
101557432 Oct 2009 CN
101601088 Dec 2009 CN
101604521 Dec 2009 CN
101632316 Jan 2010 CN
101636736 Jan 2010 CN
101673544 Mar 2010 CN
101751387 Jun 2010 CN
101833286 Sep 2010 CN
101847405 Sep 2010 CN
101894547 Nov 2010 CN
101939740 Jan 2011 CN
101951553 Jan 2011 CN
102137193 Jul 2011 CN
102160043 Aug 2011 CN
102201235 Sep 2011 CN
102246136 Nov 2011 CN
202035047 Nov 2011 CN
102282609 Dec 2011 CN
202092650 Dec 2011 CN
102368256 Mar 2012 CN
102405463 Apr 2012 CN
102498457 Jun 2012 CN
102629246 Aug 2012 CN
102682769 Sep 2012 CN
102682771 Sep 2012 CN
102685295 Sep 2012 CN
102693725 Sep 2012 CN
102792320 Nov 2012 CN
102801853 Nov 2012 CN
102870065 Jan 2013 CN
102917004 Feb 2013 CN
102918493 Feb 2013 CN
103035240 Apr 2013 CN
103038728 Apr 2013 CN
103093334 May 2013 CN
103135916 Jun 2013 CN
103365279 Oct 2013 CN
103744761 Apr 2014 CN
103795850 May 2014 CN
103930945 Jul 2014 CN
104038621 Sep 2014 CN
104090652 Oct 2014 CN
104144377 Nov 2014 CN
104284257 Jan 2015 CN
104423625 Mar 2015 CN
104463552 Mar 2015 CN
104516522 Apr 2015 CN
104854583 Aug 2015 CN
104951077 Sep 2015 CN
105247511 Jan 2016 CN
105264524 Jan 2016 CN
105471705 Apr 2016 CN
107919123 Apr 2018 CN
102008024258 Nov 2009 DE
202016008226 May 2017 DE
1892700 Feb 2008 EP
1912205 Apr 2008 EP
1939860 Jul 2008 EP
1944997 Jul 2008 EP
651543 Sep 2008 EP
1909263 Jan 2009 EP
1335620 Mar 2009 EP
2069895 Jun 2009 EP
2081185 Jul 2009 EP
2094032 Aug 2009 EP
2096840 Sep 2009 EP
2107553 Oct 2009 EP
2109295 Oct 2009 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2309491 Apr 2011 EP
2329348 Jun 2011 EP
2339576 Jun 2011 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2523188 Nov 2012 EP
2551784 Jan 2013 EP
2555536 Feb 2013 EP
2575128 Apr 2013 EP
2632129 Aug 2013 EP
2669889 Dec 2013 EP
2683175 Jan 2014 EP
2733598 May 2014 EP
2760015 Jul 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2849177 Mar 2015 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
2950307 Dec 2015 EP
3035329 Jun 2016 EP
3224708 Oct 2017 EP
3246916 Nov 2017 EP
3300074 Mar 2018 EP
2983065 Aug 2018 EP
2911201 Jul 2008 FR
2445436 Jul 2008 GB
2445667 Jul 2008 GB
2008-009120 Jan 2008 JP
2008-21002 Jan 2008 JP
2008-26381 Feb 2008 JP
2008-39928 Feb 2008 JP
2008-58813 Mar 2008 JP
2008-064687 Mar 2008 JP
2008-90545 Apr 2008 JP
2008-97003 Apr 2008 JP
2008-134949 Jun 2008 JP
2008-158510 Jul 2008 JP
2008-526101 Jul 2008 JP
2008-185693 Aug 2008 JP
2008-198022 Aug 2008 JP
2008-217468 Sep 2008 JP
2008-228129 Sep 2008 JP
2008-233678 Oct 2008 JP
2008-236448 Oct 2008 JP
2008-252161 Oct 2008 JP
2008-268684 Nov 2008 JP
2008-269480 Nov 2008 JP
2008-271481 Nov 2008 JP
2008-275731 Nov 2008 JP
2008-299221 Dec 2008 JP
2009-2850 Jan 2009 JP
2009-503623 Jan 2009 JP
2009-36999 Feb 2009 JP
2009-505142 Feb 2009 JP
2009-47920 Mar 2009 JP
2009-069062 Apr 2009 JP
2009-98490 May 2009 JP
2009-110300 May 2009 JP
2009-134409 Jun 2009 JP
2009-140444 Jun 2009 JP
2009-186989 Aug 2009 JP
2009-193448 Aug 2009 JP
2009-193457 Aug 2009 JP
2009-193532 Aug 2009 JP
2009-205367 Sep 2009 JP
2009-223840 Oct 2009 JP
2009-294913 Dec 2009 JP
2009-294946 Dec 2009 JP
2009-543166 Dec 2009 JP
2010-66519 Mar 2010 JP
2010-78979 Apr 2010 JP
2010-108378 May 2010 JP
2010-518475 May 2010 JP
2010-518526 May 2010 JP
2010-146347 Jul 2010 JP
2010-157207 Jul 2010 JP
2010-166478 Jul 2010 JP
2010-205111 Sep 2010 JP
2010-224236 Oct 2010 JP
4563106 Oct 2010 JP
2010-535377 Nov 2010 JP
2010-287063 Dec 2010 JP
2011-33874 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-45005 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-81541 Apr 2011 JP
2011-525045 Sep 2011 JP
2011-238022 Nov 2011 JP
2011-250027 Dec 2011 JP
2012-014394 Jan 2012 JP
2012-33997 Feb 2012 JP
2012-508530 Apr 2012 JP
2012-089020 May 2012 JP
2012-116442 Jun 2012 JP
2012-142744 Jul 2012 JP
2012-147063 Aug 2012 JP
2012-518847 Aug 2012 JP
2013-37688 Feb 2013 JP
2013-511214 Mar 2013 JP
2013-65284 Apr 2013 JP
2013-73240 Apr 2013 JP
2013-513315 Apr 2013 JP
2013-080476 May 2013 JP
2013-517566 May 2013 JP
2013-134430 Jul 2013 JP
2013140520 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-528012 Jul 2013 JP
2013-156349 Aug 2013 JP
2013-200423 Oct 2013 JP
2013-205999 Oct 2013 JP
2013-238936 Nov 2013 JP
2014-10688 Jan 2014 JP
2014-026629 Feb 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-077969 May 2014 JP
2014109889 Jun 2014 JP
2014-124332 Jul 2014 JP
2014-145842 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-222514 Nov 2014 JP
2015-8001 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-41845 Mar 2015 JP
2015-94848 May 2015 JP
2015-519675 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2016-119615 Jun 2016 JP
10-0801227 Feb 2008 KR
10-0810500 Mar 2008 KR
10-2008-0033070 Apr 2008 KR
10-0819928 Apr 2008 KR
10-2008-0049647 Jun 2008 KR
10-2008-0059332 Jun 2008 KR
10-2008-0109322 Dec 2008 KR
10-2009-0001716 Jan 2009 KR
10-2009-0028464 Mar 2009 KR
10-2009-0030117 Mar 2009 KR
10-2009-0086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2009-0122944 Dec 2009 KR
10-2009-0127961 Dec 2009 KR
10-2009-0129192 Dec 2009 KR
10-2010-0015958 Feb 2010 KR
10-2010-0048571 May 2010 KR
10-2010-0053149 May 2010 KR
10-2010-0119519 Nov 2010 KR
10-2011-0043644 Apr 2011 KR
10-1032792 May 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0086492 Jul 2011 KR
10-2011-0100620 Sep 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2012-0020164 Mar 2012 KR
10-2012-0031722 Apr 2012 KR
10-1178310 Aug 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137440 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0139827 Dec 2012 KR
10-1193668 Dec 2012 KR
10-2013-0035983 Apr 2013 KR
10-2013-0108563 Oct 2013 KR
10-1334342 Nov 2013 KR
10-2013-0131252 Dec 2013 KR
10-2013-0133629 Dec 2013 KR
10-2014-0031283 Mar 2014 KR
10-2014-0033574 Mar 2014 KR
10-2014-0147557 Dec 2014 KR
10-2015-0043512 Apr 2015 KR
10-2016-0010523 Jan 2016 KR
2349970 Mar 2009 RU
2353068 Apr 2009 RU
2364917 Aug 2009 RU
200801988 Jan 2008 TW
I301373 Sep 2008 TW
M348993 Jan 2009 TW
200943903 Oct 2009 TW
201018258 May 2010 TW
201027515 Jul 2010 TW
201028996 Aug 2010 TW
201110108 Mar 2011 TW
2011-42823 Dec 2011 TW
201227715 Jul 2012 TW
201245989 Nov 2012 TW
201312548 Mar 2013 TW
2008030970 Mar 2008 WO
2008071231 Jun 2008 WO
2008085742 Jul 2008 WO
2008098900 Aug 2008 WO
2008109835 Aug 2008 WO
2008120036 Oct 2008 WO
2008130095 Oct 2008 WO
2008140236 Nov 2008 WO
2008142472 Nov 2008 WO
2008153639 Dec 2008 WO
2009009240 Jan 2009 WO
2009016631 Feb 2009 WO
2009017280 Feb 2009 WO
2009034686 Mar 2009 WO
2009075912 Jun 2009 WO
2009104126 Aug 2009 WO
2009156438 Dec 2009 WO
2009156978 Dec 2009 WO
2010054373 May 2010 WO
2010075623 Jul 2010 WO
2010100937 Sep 2010 WO
2010141802 Dec 2010 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
2011088053 Jul 2011 WO
2011093025 Aug 2011 WO
2011116309 Sep 2011 WO
2011133543 Oct 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012019637 Feb 2012 WO
2012129231 Sep 2012 WO
2012135157 Oct 2012 WO
2012154317 Nov 2012 WO
2012155079 Nov 2012 WO
2012167168 Dec 2012 WO
2013009578 Jan 2013 WO
2013022135 Feb 2013 WO
2013022223 Feb 2013 WO
2013048880 Apr 2013 WO
2013049358 Apr 2013 WO
2013163113 Oct 2013 WO
2013169842 Nov 2013 WO
2013173504 Nov 2013 WO
2013173511 Nov 2013 WO
2013176847 Nov 2013 WO
2013184953 Dec 2013 WO
2013184990 Dec 2013 WO
2014003138 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014047047 Mar 2014 WO
2014066352 May 2014 WO
2014070872 May 2014 WO
2014078965 May 2014 WO
2014096506 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144579 Sep 2014 WO
2014159581 Oct 2014 WO
2014197336 Dec 2014 WO
2014200728 Dec 2014 WO
2014204659 Dec 2014 WO
2015018440 Feb 2015 WO
2015029379 Mar 2015 WO
2015030796 Mar 2015 WO
2015041892 Mar 2015 WO
2015084659 Jun 2015 WO
2015092943 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
2015099939 Jul 2015 WO
2015116151 Aug 2015 WO
2015151133 Oct 2015 WO
2015157013 Oct 2015 WO
2015183401 Dec 2015 WO
2015183699 Dec 2015 WO
2015184186 Dec 2015 WO
2015200207 Dec 2015 WO
2016027933 Feb 2016 WO
2016028946 Feb 2016 WO
2016033257 Mar 2016 WO
2016054230 Apr 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016085775 Jun 2016 WO
2016100139 Jun 2016 WO
2016111881 Jul 2016 WO
2016144840 Sep 2016 WO
2016144982 Sep 2016 WO
2016175354 Nov 2016 WO
2016209444 Dec 2016 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
Non-Patent Literature Citations (146)
Entry
“Alexa, Turn Up the Heat!”, Smartthings Samsung [online], Available online at https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/, Mar. 3, 2016, 3 pages.
“Galaxy S7: How to Adjust Screen Timeout & Lock Screen Timeout”, Available online at:—“https://www.youtube.com/watch?v=n6e1WKUS2ww”, Jun. 9, 2016, 1 page.
“Hey Google: How to Create a Shopping List with Your Google Assistant”, Available online at:—https://www.youtube.com/watch?v=w9NCsElax1Y, May 25, 2018, 1 page.
“How to Enable Google Assistant on Galaxy 57 and other Android Phones (No Root)”, Available online at:—“https://www.youtube.com/watch?v=HeklQbWyksE”, Mar. 20, 2017, 1 page.
“How to Use Ok Google Assistant Even Phone is Locked”, Available online at:—“https://www.youtube.com/watch?v=9B_gP4j_SP8”, Mar. 12, 2018, 1 page.
“SmartThings +Amazon Echo”, Smartthings Samsung [online], Available online at <https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
“Ask Alexa—Things That Are Smart Wiki”, Available online at <URL:http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, [retrieved from internet on Aug. 2, 2017], Jun. 8, 2016, pp. 1-31.
“DIRECTV™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages.
“The world of Virtual Assistants—more SemTech . . . ”, End of Business as Usual—Glenn's External blog, Online Available at <https://web.archive.org/web/20091101840940/http://glennas.wordpress.com/2009/10/17/the-world-of-virtual-assistants-more-semtech/>, Oct. 17, 2009, 5 pages.
Anania, Peter, “Amazon Echo with Home Automation (Smartthings)”, Available online at https://www.youtube.com/watch?v=LMW6aXmsWNE, Dec. 20, 2015, 1 page.
Asakura et al., “What LG thinks; How the TV should be in the Living Room”, HiVi, vol. 31, No. 7 (Jul. 2013), Stereo Sound Publishing, Inc., Jun. 17, 2013, pp. 68-71 (Official Copy Only). (See Communication under 37 CFR § 1.98(a) (3)).
Ashbrook, Daniel L.., “Enabling Mobile Microinteractions”, Retrieved from the Internet: URL: “http://danielashbrook.com/wp-content/uploads/2012/06/2009-Ashbrook-Thesis.pdf”, May 2010, 186 pages.
Ashingtondctech & Gaming, “SwipeStatusBar—Reveal the Status Bar in a Fullscreen App”, Online Available at: <https://www.youtube.com/watch?v=wA_tT9lAreQ>, Jul. 1, 2013, 3 pages.
Cambria et al., “Jumping NLP Curves: A Review of Natural Language Processing Research”, IEEE Computational Intelligence Magazine, 2014, vol. 9, May 2014, pp. 48-57.
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, Iberspeech 2012—Vii Jornadas En Tecnologia Del Habla and Iii Iberiansl Tech Workshop, Nov. 21, 2012, pp. 1-10.
Castleos, “Whole House Voice Control Demonstration”, available online at : https://www.youtube.com/watch?v=9SRCoxrZ_W4, Jun. 2, 2012, 26 pages.
Deedeevuu, “Amazon Echo Alarm Feature”, Available online at https://www.youtube.com/watch?v=fdjU8eRLk7c, Feb. 16, 2015, 1 page.
EARTHLING1984, “Samsung Galaxy Smart Stay Feature Explained”, Available online at:—“https://www.youtube.com/watch?v=RpjBNtSjupl”, May 29, 2013, 1 page.
Filipowicz, Luke, “How to use the Quick Type Keyboard in iOS 8”, available online at <https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Finkel et al., “Joint Parsing and Named Entity Recognition”, Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, Jun. 2009, pp. 326-334.
Gomez et al., “Mouth Gesture and Voice Command Based Robot Command Interface”, IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 333-338.
Google Developers, “Voice Search in Your App”, Available online at:—https://www.youtube.com/watch?v=PS1FbB5qWEI, Nov. 12, 2014, 1 page.
Gruber, Thomas R., et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion” 13 pages.
Hashimoto, Yoshiyuki, “Simple Guide for iPhone Siri, Which Can Be Operated with Your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131.
INEWS and Tech, “How to Use the QuickType Keyboard in iOS 8”, Available online at:—“http://www.inewsandtech.com/how-to-use-the-quicktype-keyboard-in-ios-8/”, Sep. 17, 2014, 6 pages.
IOS 8 Release, “Quick Type Keyboard on iOS 8 Makes Typing Easier”, Retrieved from the Internet: URL:https://www.youtube.com/watch?v=0CidLR4fhVU, [Retrieved on Nov. 23, 2018], XP054978896, Jun. 3, 2014, 1 page.
Jonsson et al, “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Karn, Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Liou et al., “Autoencoder for Words”, Neurocomputing, vol. 139, Sep. 2014, pp. 84-96.
Majerus, Wesley, “Cell Phone Accessibility for your Blind Child”, Retrieved from the Internet <URL:https://web.archive.org/web/20100210001100/https://nfb.org/images/nfb/publications/fr/fr28/3/fr280314.htm>, 2010, pp. 1-5.
Manning et al., “Introduction to Information Retrieval”, New York, Cambridge University Press, 2008, 504 pages.
Marketing Land, “Amazon Echo: Play Music”, Online Available at: <https://www.youtube.com/watch?v=A7V5NPbsXi4>, Apr. 27, 2015, 3 pages.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Mikolov et al., “Linguistic Regularities in Continuous Space Word Representations”, Proceedings of NAACL-HLT, Jun. 9-14, 2013, pp. 746-751.
Morrison, Jonathan, “iPhone 5 Siri Demo”, Online Available at <https://www.youtube.com/watch?v=_wHWwG5lhWc>, Sep. 21, 2012, 3 pages.
Nakamura, Satoshi, “Overcoming the Language Barrier with Speech Translation Technology, Science & Technology Trends”, Quarterly Review No. 31, Apr. 2009, pp. 36-49.
Nakazawa et al., “Detection and Labeling of Significant Scenes from TV program based on Twitter Analysis”, Proceedings of the 3rd Forum on Data Engineering and Information Management (deim 2011 proceedings), IEICE Data Engineering Technical Group. Available online at: http://db-event.jpn.org/deim2011/proceedings/pdf/f5-6.pdf, Feb. 28, 2011, 10 pages (Official Copy Only). (See Communication under 37 CFR § 1.98(a) (3)).
Nozawa, Naoki et al., “iPhone 4S Perfect Manual”, vol. 1, First Edition, Nov. 11, 2011, 5 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)).
Okuno et al., “System for Japanese Input Method based on the Internet”, Technical Report of Information Processing Society of Japan, Natural Language Processing, Japan, Information Processing Society of Japan, vol. 2009, No. 36, Mar. 18, 2009, 8 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)).
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, In: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages.
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7.
Pennington et al., “GloVe: Global Vectors for Word Representation”, Proceedings of the Conference on Empirical Methods Natural Language Processing (EMNLP), Oct. 25-29, 2014, pp. 1532-1543.
Perlow, Jason, “Alexa Loop Mode With Playlist for Sleep Noise”, Online Available at: <https://www.youtube.com/watch?v=nSkSuXziJSg>, Apr. 11, 2016, 3 pages.
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, available at http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance, May 4, 2010, 3 pages.
Routines, “SmartThings Support”, Available online at <https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 2 pages.
Samsung, “SGH-a885 Series—Portable Quad-Band Mobile Phone-User Manual”, Retrieved from the Internet: URL: “http://web.archive.org/web/20100106113758/http://www.comparecellular.com/images/phones/userguide1896.pdf”, Jan. 1, 2009, 144 pages.
Seehafer, Brent, “Activate google assistant on Galaxy S7 with screen off”, Available online at:—“https://productforums.google.com/forum/#!topic/websearch/lp3qlGBHLVI”, Mar. 8, 2017, 4 pages.
Selfrifge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
Spivack, Nova, “Sneak Preview of Siri—Part Two—Technical Foundations—Interview with Tom Gruber, CTO of Siri”, Online Available at <https://web.archive.org/web/20100114234454/http://www.twine.com/item/12vhy39k4-22m/interview-with-tom-gruber-of-siri>, Jan. 14, 2010, 5 pages.
Sundermeyer et al., “From Feedforward to Recurrent LSTM Neural Networks for Language Modeling”, IEEE Transactions to Audio, Speech, and Language Processing, 2015, vol. 23, Mar. 2015, pp. 517-529.
Sundermeyer et al., “LSTM Neural Networks for Language Modeling”, Interspeech 2012, ISCA's 13″ Annual Conference, Sep. 9-13, 2012, pp. 194-197.
Tanaka, Tatsuo, “Next Generation IT Channel Strategy Through “Experience Technology””, Intellectual Resource Creation, Japan, Nomura Research Institute Ltd. vol. 19, No. 1, Dec. 20, 2010, 17 pages. (Official Copy only) (See Communication under 37 CFR § 1.98(a) (3)).
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Available online at—“https://www.youtube.com/watch?v=6kOd6Gr8uFE”, Aug. 22, 2012, 1 page.
X.Ai, “How it Works”, May 2016, 6 pages.
Xu, Yuhong, “Policy optimization of dialogue management in spoken dialogue system for out-of-domain utterances”, 2016 International Conference on Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Yan et al., “A Scalable Approach to Using DNN-Derived Features in GMM-HMM Based Acoustic Modeling for LVCSR”, InInterspeech, 2013, pp. 104-108.
Yates, Michael C., “How can I exit Google Assistant after i'm finished with it”, Available online at:—“https://productforums.google.com/forum/#!msg/phone-by-google/faECnR2RJwA/gKNtOkQgAQAJ”, Jan. 11, 2016, 2 pages.
Young et al., “The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management”, Computer Speech & Language, vol. 24, Issue 2, 2010, pp. 150-174.
Zangerle et al., “Recommending #-Tag in Twitter”, Proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12.
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Api.Ai, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Apple Computer, “Knowledge Navigator”, published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pages.
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, May 19, 2014, 3 pages.
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages.
Chamberlain, Kim, “Quick Start Guide Natural Reader”, available online at <http://atrc.colostate.edu/files/quickstarts/Natural_Reader_Quick_Start_Guide.>, Apr. 2008, 5 pages.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask For”, PSFK Report, Feb. 9, 2012, 9 pages.
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84.
Erol et al., “Multimedia Clip Generation From Documents for Browsing on Mobile Devices”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, 13 pages.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Final Office Action received for U.S. Appl. No. 14/298,725, dated May 10, 2018, 15 pages.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40.
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40.
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages.
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Headset Button Controller v7.3 APK Full APP Download for Android, Blackberry, iPhone, Jan. 27, 2014, 11 pages.
Hear voice from Google translate, Available on URL:https://www.youtube.com/watch?v=18AvMhFqD28, Jan. 28, 2011, 1 page.
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages.
Interactive Voice, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Jiang et al., “A Syllable-based Name Transliteration System”, Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99.
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE, 2012, pp. 4821-4824.
Kane et al., “Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques”, Assets, Oct. 13-15, 2008, pp. 73-80.
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages.
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page.
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages.
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages.
Martins et al., “Extracting and Exploring the Geo-Temporal Semantics of Textual Resources”, Semantic Computing, IEEE International Conference, 2008, pp. 1-9.
Meet Ivee, Your Wi-Fi Voice Activated Assistant, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
Mel Scale, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel_scale>, 2 pages.
Microsoft, “Turn On and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx>, retrieved on Jun. 6, 2009.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Minimum Phase, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages.
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
Morton, Philip, “Checking If an Element Is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Naone, Erica, “TR10: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages.
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 69 pages.
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Ng, Simon, “Google's Task List Now Comes to Iphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 3 pages.
Notice of Allowance received for U.S. Appl. No. 14/298,725, dated Aug. 29, 2018, 10 pages.
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages.
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010, pp. 1821-1826.
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
Reddi, “The Parser”.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
Speaker Recognition, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396.
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
TextnDrive, “Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages.
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Tur et al., “The CALO Meeting Speech Recognition and Understanding System”, Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store”, Press Release, Dec. 3, 2008, 2 pages.
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
VoiceontheGo, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJqpWgQS98w>, Jul. 27, 2009, 1 page.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 4 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 12 pages.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 12 pages.
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.
Youtube, “New bar search for Facebook”, available at “https://www.youtube.com/watch?v=vwgN1WbvCas”, 2 pages.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Related Publications (1)
Number Date Country
20190179890 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
61832896 Jun 2013 US
Continuations (1)
Number Date Country
Parent 14298725 Jun 2014 US
Child 16204467 US