Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Embodiments are described more fully below with reference to the accompanying drawings, which form a part hereof and show, by way of illustration, specific exemplary embodiments. These embodiments are disclosed in sufficient detail to enable those skilled in the art to practice the invention. However, embodiments may be implemented in many different forms and should not be construed as being limited to the embodiments set forth herein. The following detailed description is, therefore, not to be taken in a limiting sense in that the scope of the present invention is defined only by the appended claims.
The injection system 10 of the present invention is generally provided with an injection device 12, having a forward end portion 14 and a rearward end portion 16. A container 18 or attachment made via hose to a container, should be provided for holding an injectable liquid. The container 18 should be operatively coupled with the injection device 12 so that the liquid disposed within the container 18 may be selectively dispensed through the injection device 12. An elongated needle 20, having an open rearward end portion 22, is operatively coupled with the forward end portion 14 of the injection device 12 so that the rearward end portion 22 is placed in open communication with the injection device 12 and the container 18. The needle 20 is further provided with an open inner chamber 24 that is in open communication with the rearward end portion 22 and at least one ejector hole 26 which is formed in a sidewall 28 of the needle 20, adjacent a forward end portion 30 thereof. Accordingly, fluid is permitted to be selectively transferred in a first flow direction from the injection device 12 through the needle 20 and out the at least one ejector hole 26.
In use, the injection system 10 is assembled and an injectable liquid is provided within the container 18. An elongated needle 20 is then removably coupled to the forward end portion 14 of the injection device 12. Injection system 10 is then placed closely adjacent the trunk of a tree having an outer bark layer that covers inner wood layers including an inner bark layer, a cambium layer, a sapwood layer and a heartwood portion. The forward end portion 30 of the needle 20 is placed against the outer bark layer of the tree. Injection system 10 may then be pushed forward, disposing the needle 20 at least partially within the tree trunk. Preferably, the needle 20 is inserted into the tree trunk so that the injector holes 26 are located interiorly of the outer bark layer and exteriorly of the heartwood portion of the tree trunk.
With the injection system 10 properly in place, the individual may then inject the liquid into the tree trunk so that the liquid is transferred from the container 18 through the injection device 12, through the needle 20 and out one or more of the ejector holes 26. Means should be associated with the needle 20 that substantially prevents the liquid from flowing in an opposite, second flow direction out the needle 20 once the liquid is transferred out the ejector holes 26 into the tree. In one preferred embodiment, the one or more ejector holes 26 are shaped and sized to be self-sealing during an injection process. Specifically, the ejector holes 26 should be sized and shaped to permit the passage of the injectable liquid while being too small to allow the passage of tree material, such as tree fiber, therethrough. Experimentation with various diameters of ejector holes 26 has demonstrated that ejector holes having a diameter greater than approximately 0.02 inches permits the passage of injectable liquids but are not self sealing. In such an instance, the tree sap and injectable liquid will pass the ejector holes 26, into the open inner chamber 24 and out the open rearward end portion 22 of the needle 20. To the ability of the tree to expel foreign material, it is possible that substantial quantities of the injected liquid may be expelled from the tree along with tree sap. However, ejector holes 26 provided with a diameter of approximately 0.02 inches and smaller allowed the passage of injectable liquids but not tree sap. Accordingly, as the injectable liquid is disbursed into the tree trunk, natural tree material such as tree fiber and oftentimes sap comes into contact with the injector holes 26 and effectively seals the injector holes 26, substantially prevented the passage of tree sap or the injectable liquid into the open inner chamber 24 and out the open rearward end portion 22 of the needle 20.
In another preferred embodiment, the means for preventing the liquid from flowing in an opposite, second flow direction out the needle 20 is comprised of a check valve that is associated with the needle 20. It is contemplated that several different forms of check valves may be used. In one example, depicted in
It is contemplated that the needle 20 may be disposed at various depths within the tree to attain a successful injection. However, it will be preferred that the needle 20 be inserted into the tree trunk so that at least one or more ejector holes 26 is located within the sapwood layer of the tree trunk, which will facilitate an adequate dispersal of the injectable liquid throughout the tree. Once the liquid has been injected into the tree, the user may simply disengage the injection device 12 with the tree trunk and the needle 20 so that the needle 20 is at least temporarily left within the tree trunk. It is contemplated that the needle 20 could be left within the tree trunk indefinitely. Constructing the needle 20 of stainless steel or a sufficiently rigid polymer will limit the disruption or contamination of the injected tree. Moreover, forming the needles 20 so that they are roughly 14 gauge in size or smaller will allow the needles 20 to be successfully inserted into most trees without bending or fracturing the needles 20. Moreover, 14 gauge and smaller needles left within a tree will pose little, if any, risk to cutting implements, such as a chainsaw, used to later cut the tree down for any reason. However, it is contemplated that an individual injecting the tree could simply wait a small amount of time, such as a half an hour, and remove the needle 20 entirely. The amount of time required to leave the needle in place will depend upon the time of the year and the type of tree being injected. Some trees, at various times of the year, may require longer periods of time in order to disperse the injected fluid to permit removal of the needle 20.
Although the invention has been described in language that is specific to structural features and/or methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are described as forms of implementing the claimed invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This is a continuation-in-part application of Petitioner's earlier application Ser. No. 11/238,783 filed Sep. 29, 2005, entitled SYSTEM AND METHOD FOR INJECTING TREES.
Number | Date | Country | |
---|---|---|---|
Parent | 11238783 | Sep 2005 | US |
Child | 11522256 | US |