System and method for instant and automatic border detection

Information

  • Patent Grant
  • 11172831
  • Patent Number
    11,172,831
  • Date Filed
    Monday, October 7, 2013
    11 years ago
  • Date Issued
    Tuesday, November 16, 2021
    3 years ago
Abstract
The invention generally relates to medical imaging systems that instantly and/or automatically detect borders. Embodiments of the invention provide an imaging system that automatically detects a border at a location within a vessel in response only to navigational input moving the image to that location. In some embodiments, systems and methods of the invention operate such that when a doctor moves an imaging catheter to a new location with in tissue, the system essentially instantly finds, and optionally displays, the border(s), calculates an occlusion, or both.
Description
FIELD OF THE INVENTION

The invention generally relates to medical imaging systems that instantly and automatically detect borders.


BACKGROUND

Blood vessels include three layers—the intima surrounded by the media and then the adventitia. The intima includes an elastic lamina lined with the endothelium—a layer of endothelial cells in direct contact with circulating blood that aids in wound healing and immune function. The inner surface of the endothelium defines the luminal border—the passage through which blood can flow. The media is mostly smooth muscle with some other material. The adventitia is mostly collagen that anchors the blood vessel within its environment.


Debris such as macrophage cells, lipids, and cholesterol can accumulate between the endothelium and the smooth muscle of the media, causing plaques in the arteries surrounded by the medial border, a condition known as atherosclerosis. For many people, the first symptom of atherosclerosis is a heart attack.


Atherosclerosis can be deadly because the plaque can block the flow of blood through arteries. Using intravascular imaging systems, a physician can find the luminal border and the medial border. The space between these two borders gives a measurement of plaque thickness. The thicker the plaque, the smaller the passage defined by the luminal border, and the more severe the atherosclerosis.


Some imaging systems have tools to help locate the borders. These tools typically require moving the imaging tip into place and then switching from the positioning joystick to the computer stand to trigger a border-detection application and then back to the joystick to try for a better position. This leads to a back-and-forth workflow as the doctor tries to zero in on the most occluded part of the artery. The back-and-forth work pattern builds up the time the patient must have the catheter inserted into their body, bringing risks of medical complications. Due to the time required for switching back-and-forth between border detection and navigation, tensions among the doctors and attending staff can be inflamed. Particularly because the additional steps are imposed at a stage of the procedure that is so critical to preventing heart attacks, the inflamed tensions are aggravated and the procedure progresses slowly and imperfectly.


SUMMARY

The invention provides an imaging system that automatically detects a border at a location within a vessel in response only to navigational input. The invention allow near-instantaneous location of borders when a catheter is delivered to a location or to a new location.


Without removing his hands from the navigational controller, a doctor may move from location to location, detecting borders automatically at each location. The automatically detected border can be displayed, for example, as a line drawn over the tissue on the imaging system monitor. Additionally or alternatively, the border can be used in analysis. For example, a ratio of areas defined by the luminal and medial borders can be calculate and used to give a doctor a measure of occlusion in an artery. Since the measure of occlusion, based on the automatically detected border, is delivered to the doctor instantly as he navigates through the tissue, the doctor may smoothly navigate straight to the most severely affected spot in the arteries. The system's ease of use allows the doctor and staff to maintain calm and harmonious dispositions. This allows for a trouble-free imaging procedure which, in turn, allows the doctor and staff to give their full attention to the health of the patient.


In certain aspects, the invention provides a method for examining tissue that includes receiving data for a three-dimensional image of tissue and displaying an image of part of the tissue. An operator provides navigational input to direct the display to a selected portion of the tissue and the method includes responding solely to that navigational input by detecting a location of a border within the selected portion of the tissue and displaying the selected portion of the tissue. The data may be obtained by obtained by performing an intravascular imaging operation such as an intravascular ultrasound (IVUS) operation. The image can be displayed on a computer monitor, allowing the operator to navigate through the patient's vessel on-screen. Operator navigation can be performed using a controller device, such as a joystick, mouse, or other pointer, and the operator's gestures with the device provide both the navigational directions and the signal to provide a detected border. Preferably, the border is detected in response to the navigational input, more specifically, preferably in response to cessation of the navigational input. The border may be detected substantially instantly, e.g., within less than about a second from the cessation of navigation. This can be provided by a detection algorithm, such as a morphological image processing operation. The detected border or borders can be displayed as, for example, an overlay on the monitor for the user. The detected borders can also be used to calculate how occluded a vessel is by atheroma. For example, a ratio of areas associated with a luminal border of vessel and a medial-adventitial border of the vessel can be used to calculate a percent occlusion. In certain embodiments, detecting the location of the border includes approximating a border within a first frame of the three-dimensional image, identifying at least one control point on the border, extrapolating the at least one control point to approximate a second border in a second frame of the three-dimensional image and optionally adjusting the second border in accordance with a frequency factor.


In related aspects, the invention provides an intravascular imaging system that includes an imaging catheter with an image capture device such as a piezoelectric transducer at a distal portion of the imaging catheter and a processing system operably coupled to a proximal portion of the catheter. The processing system includes a memory and processor so that the system can be used to receive data for a three-dimensional image of tissue and display an image of part of the tissue. The system is operable to receive navigational input that directs the display to a selected portion of the tissue and to respond solely to the navigational input by detecting a location of a border within the selected portion of the tissue and displaying the selected portion of the tissue. Preferably the system includes one or more computer monitors for displaying the images, the detected borders, calculated values, other information, or combinations thereof.


In other aspects, the invention provides a method of examining tissue that includes performing an intravascular imaging operation to see a patient's vessel (e.g., on a monitor) and using a pointing device to change the view. When the operator stops the image at a certain spot within the vessel, a system provides, responsive only to the ceasing of the use of the pointing device, data that includes a location of an automatically detected feature within the selected portion of the vessel. In some embodiments, the system detects the border in response only to the cessation of navigation.


Other aspects of the invention generally provide systems and methods for the automatic detection of vessel lumen borders. The lumen border is calculated in a set of two dimensional images using three dimensional data, while a three dimensional image of the vessel is concurrently generated. The user is provided with a three dimensional vessel image in which the lumen border has already been determined, thus eliminating the need for a user to manually draw the lumen border of the vessel in the fully constructed image. Accordingly, systems and methods of the invention save clinician's time and eliminate intra- and inter-observer variability.


The systems and methods of the invention improve the speed at which users can analyze a data set due to the automation of the border detection. In some aspects, the systems and methods of the invention also provide annotation of important vessel metrics (e.g. the minimum and maximum diameter and total area measurements), allowing the clinician to rapidly identify a specific region of interest in the three dimensional image set.


The invention may be applicable to data from image gathering devices that acquire two dimensional data sets from which three dimensional image compositions are derived, for example any tomographic device such as optical coherence tomography (OCT), photo acoustic imaging devices and ultrasound devices, including, but not limited to, intravascular ultrasound spectroscopy (IVUS), and other catheter-based or rotational tomographic imaging technologies.


Through the use of the image processing techniques described herein, the vascular structure border for all imaging frames, or any subsets, in a recorded data set are detected and provided to the user. Corresponding diameter and area measurements are provided to the user in the three dimensional image by these methods. The resulting lumen border may be displayed as the final tomographic image, the image longitudinal display (ILD), splayed image and three dimensional image. User interface graphics provide input for other indicators on a monitor interface, such as a color bar indicating the size of the lumen. The method and system eliminates the need for a clinician to draw manually the border thereby reducing user error. Additionally, the minimum and maximum diameter and lumen area can be derived easily from these automatic detection methods.


In certain aspects, the invention described generally relates to a method for displaying a medical image, for example an optical coherence tomography image, of a lumen of a biological structure through the acquisition of image data with a medical imaging device, processing the data to identify a lumen border of the biological structure, and concurrently generating a three dimensional image of the lumen border of the biological structure for display. In other aspects, the invention generally provides a system for displaying a medical image of a lumen of a biological structure. The system uses a monitor to display an image of the lumen of a biological structure, a central processing unit (CPU), and storage coupled to the CPU for storing instructions that configure the CPU to receive image data of a biological structure from a medical imaging device, process the data to identify a lumen border of the biological structure, and generate a three dimensional image of the biological structure including the identified lumen border. Processing the data may involve identifying a location of edges in the image data, removing edge detections where shadows are located, and calculating a lumen border. The processing step and the generating step occur concurrently, and provide data to display the three dimensional image on the monitor. Systems and methods use, for example, a medical imaging device such as an optical coherence tomography (OCT) catheter providing OCT imaging data.


In certain aspects, a multi-step process removes shadow artifacts from the image device that appear in the lumen edge. In an exemplary embodiment that involves OCT, the first step involves detecting a maximum amplitude data point in an acquired A-scan, followed by determining noise floor amplitude for the A-scan and removing from the A-scan a data point with an amplitude in the range of at least one pre-determined parameter to construct a modified A-scan. The process may further involve calculating a B-scan from the modified A-scan. In certain aspects, the modified A-scans and B-scans can be further processed with a two-dimensional median filter.


Processing the data may also include smoothing the lumen border, and may be accomplished in an exemplary embodiment by identifying a set of seed points in the image data and adjusting the lumen border based upon at least some of the seed points. In embodiments that involve OCT, adjusting may involve interpolating a lumen border in an A-scan using a combination of data points in at least one neighboring frame, an interpolated data point, and a pair of seed points, and storing the smoothed lumen border data to a memory device. The interpolated data point may be at about the midpoint between a pair of seed points, and the seed points may be data points identifying a location of edges in the image data. The data points may be at a corresponding polar coordinate position in an A-scan or across frames. In some aspects, adjusting also involves evaluating interpolated data points that are artifacts due to non-lumen intravascular tissue in contact with an imaging device, and removing the artifacts.


The calculating step, when processing the data, may also be a multistep process. The first step may involve interpolating a lumen border from at least one pair of seed points, then determining an area between an interpolated lumen border and a lumen border from data points identifying a location of edges in the image data for all interpolated lumen borders, selecting the lumen border correlated with the smallest area, and storing the lumen border with the smallest area to a memory device. The seed points may be at least one set of data points identifying a location of edges in the image data.


In certain instances, the calculating and smoothing steps may apply a weighting function to bias a calculated data point. The bias may be applied to the data point according to the data point proximity to an actual lumen data point at both a corresponding coordinate position in the A-scan and at least one neighboring scan. In other instances, the weighting function is a maximum gradient, and the maximum gradient eliminates data points in a neighboring frame for use in evaluating an interpolated lumen border data point.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an imaging system according to certain embodiments.



FIG. 2 diagrams steps by which methods of embodiments of the invention operate.



FIG. 3 diagrams an embodiment of the invention.



FIG. 4 illustrates coupled interactions between a user and a computing device.



FIG. 5 illustrates a display of an imaging system showing a luminal border.



FIG. 6A depicts a defined area around point on a tomographic view.



FIG. 6B shows a corresponding B-scan.



FIG. 7 depicts an exemplary IVUS image of a vascular object.



FIG. 8 illustrates a step in use of a border-detection algorithm.



FIG. 9 shows use of multiple 2D images to produce a 3D image of a tubular object.



FIG. 10 extrapolation of an identified control point to another IVUS image.



FIG. 11 illustrates a luminal border and a medial-adventitial border.



FIG. 12 diagrams a method of identifying a border on a vascular image.



FIG. 13 illustrates a partial cross-sectional view of an imaging catheter suitable for use with a rotational imaging system.



FIG. 14 illustrates a helical scanning pattern for a rotational imaging system.



FIG. 15 illustrates the geometry of a data stream acquired using the helical scanning pattern of FIG. 2.



FIG. 16 shows a photograph of a sample OCT B-Scan.



FIG. 17 shows a tomographic OCT image.



FIG. 18 illustrates five procedural steps of lumen border calculation.



FIG. 19 shows an OCT B-scan from a pig vessel.



FIG. 20 shows an A-scan.



FIG. 21 shows a B-scan after the data points for the internal catheter reflections are set to the noise floor, thereby minimizing the catheter image.



FIG. 22 shows a graph of an edge filter used to identify strong images in a B-scan.



FIG. 23 shows an edge image from convolving a B-Scan with an edge filter.



FIG. 24 illustrates an example of a B-Scan with the vessel having poor blood clearance.



FIG. 25 illustrates an edge image having poor blood clearance that results in a strong sheath signal and weak edge signal.



FIG. 26 shows the initial set of image points from an edge detection in which many of the detections are proximal to the sheath because of poor blood clearance around the sheath.



FIG. 27 illustrates the effect of applying a global and sheath amplitude threshold to detected image points.



FIG. 28 shows a B-Scan image having shadow artifacts present.



FIG. 29 shows an example B-scan requiring removal of stent shadows.



FIG. 30 shows a graph plotting A-scan data points.



FIG. 31 shows a graph of A-scan data point amplitudes across B-scans.



FIG. 32 shows the graph of FIG. 31 after having applied a median filter with a width corresponding to the known guide-wire width.



FIG. 33 shows a graph after having applied a median filter with a width corresponding to the known stent strut width.



FIG. 34 shows a graph of an original signal for a B-scan and the corresponding threshold plots from the median filtered stent and guide-wire signal.



FIG. 35 shows an example plot of one resulting interpolated contour using a first set of seed points.



FIG. 36 shows an example plot of one resulting interpolated contour using a second set of seed points.



FIG. 37 shows a graph of a resulting difference areas plotted against potential seed points determined in an example lumen border calculation.



FIG. 38 shows a final graph of the resulting contour interpolated with a set of seed points yielding a minimum difference area.



FIG. 39 shows a graph of a calculated contour corresponding to a first segment search based on segment length and mid-point position.



FIG. 40 shows a graph of an example weighting scheme.



FIG. 41 shows a graph of the midpoint as shown in FIG. 39, but used for another search position.



FIG. 42 shows an example graph of a difference area between mid-point search position and prior frame edge points.



FIG. 43 shows an example graph of a difference area between the mid-point search position and next-frame edge points.



FIG. 44 shows the difference areas for all search positions for mid-point shown in FIGS. 42 and 43.



FIG. 45 shows a calculated contour from a minimum difference area selected as the final calculated border.



FIG. 46 shows an example where four data points have been defined and the search algorithm has computed an area for a candidate position for the fifth point.



FIG. 47 shows a plot of a final calculated lumen border contour edge points.



FIG. 48 shows a final calculated contour over-laid on a polar image.



FIG. 49 shows a final calculated lumen border transformed to Cartesian coordinates and over-laid on a scan-converted tomographic image.



FIG. 50 shows a tomographic image of a final calculated lumen border with sheath artifacts and over-laid on a scan-converted tomographic image.



FIG. 51 shows a graph plotting edge points with blood artifacts for the lumen border calculated and shown in FIG. 50.



FIG. 52 shows a proper calculated contour having artifact data points removed from contour calculations.



FIG. 53 shows a graph of points that are inside the sheath-interpolated contour (see FIG. 52) and have been removed by mechanisms described herein.



FIG. 54 shows the tomographic display image of the data from the plot in FIG. 53.



FIG. 55 shows a tomographic image of a catheter located against a lumen wall and contact with blood artifacts.



FIG. 56 shows a plot of A-scan data points for the tomographic image of FIG. 55 with sheath smoothed border and points used to generate a sheath-smoothed border.



FIG. 57 shows a plot of final lumen border edge points after artifact points are removed and sheath smooth is complete.



FIG. 58 shows a tomographic image of the final converted border for example shown in FIG. 55 after sheath soothing step had been applied.





DETAILED DESCRIPTION

The present invention provides a system and method of using an intravascular imaging system to instantly and automatically detect borders within a patient's tissue in response to navigational input. Systems and methods of the invention operate with intravascular imaging systems such as, for example, intravascular ultrasound (IVUS), optical coherence tomography (OCT), combined optical-acoustic imaging, others, or a combination thereof.



FIG. 1 illustrates an exemplary imaging system 101 in accordance with one embodiment of the present invention. System 101 is described for illustrative purposes as an IVUS system. It will be appreciated that detection methods described herein can operate with a 3D data set collected via other imaging modalities as well. System 101 includes console 110 electrically connected to a computing device 120 and a transducer 114 via a catheter 112. The transducer 114 is inserted into a blood vessel of a patient lying etherized upon a table and used to gather IVUS data (i.e., blood-vessel data, or data that can be used to identify the shape of a blood vessel, its density, its composition, etc.). The IVUS data is then provided to (or acquired by) the IVUS console 110, where it is used to produce an IVUS image of the vessel. Systems for IVUS suitable for use with the invention are discussed in U.S. Pat. No. 5,771,895; U.S. Pub. 2009/0284332; U.S. Pub. 2009/0195514; U.S. Pub. 2007/0232933; and U.S. Pub. 2005/0249391, the contents of each of which are hereby incorporated by reference in their entirety.


More particularly, IVUS data is typically gathered in segments, either through a rotating transducer or an array of circumferentially positioned transducers, where each segment represents an angular portion of an IVUS image. Thus, it takes a plurality of segments (or a set of IVUS data) to image an entire cross-section of a vascular object. Furthermore, multiple sets of IVUS data are typically gathered from multiple locations within a vascular object (e.g., by moving the transducer linearly through the vessel). These multiple sets of data can then be used to create a plurality of two-dimensional (2D) images or one three-dimensional (3D) image. It should be appreciated that the present invention is not limited to the use of an IVUS device (or the acquisition of IVUS data), and may further include using thermographic devices, optical devices (e.g., an optical coherence tomography (OCT) console), MRI devices, or any vascular imaging devices generally known to those skilled in the art. For example, instant automatic border detection may be provided in OCT systems such as those described in U.S. Pub. 2011/0152771; U.S. Pub. 2010/0220334; U.S. Pub. 2009/0043191; U.S. Pub. 2008/0291463; and U.S. Pub. 2008/0180683, the contents of each of which are hereby incorporated by reference in their entirety. It should further be appreciated that the computing device depicted in FIG. 1 includes, but is not limited to, personal computers or any other data-processing devices (general purpose or application specific) that are generally known to those skilled in the art.



FIG. 2 diagrams steps by which methods of embodiments of the invention operate. After being captured through the use of transducer 114, the IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device 120. A portion of the 3D data set is then displayed for the user on, for example, monitor 103. The display will show, in a cross section of a blood vessel, objects within a certain range of transducer 114. Vascular objects include several identifiable borders. For example, the luminal border demarcates the blood-intima interface and the medial border demarcates the external elastic membrane (the boundary between the media and adventitia). As shown in FIG. 2, detecting the luminal border, the medial border, or any other border is coupled to a user's use of a control device 125 to navigate to the target.


At step 131, the system receives a user's navigation to a target area of interest. Navigational input from the user operates to change the display (e.g., as to mimic motion through the tissue until a point is reached at which a user expresses interest by ceasing to navigate). Upon cessation of navigation, the system detects any border within the image that is then presently displayed. The system provides the detected border. The detected border can be provided as one or more lines drawn on the screen (e.g., overlaying the location of the detected border), in the form of a numerical calculation, as a file for later reference, as a diagnostic code, or a combination thereof. As shown in FIG. 2, the system and method can operate iteratively, as optional step 137 can include more navigation by the user causing the system to provide additional border detection. After any optional additional navigation is ceased, the detected border may be provided (again, as a display, a calculation, a file stored in memory, or a combination thereof).


By detecting those borders, the plaque-media complex, which is located there between, can be analyzed and/or calculated. It should be appreciated that the present invention is not limited to the identification of any particular border, and includes all vascular boundaries generally known to those skilled in the art.


Referring back to FIG. 1, the border-detection application is adapted to identify a border on a vascular image (e.g., an IVUS image). In one embodiment of the present invention, this is performed by analyzing the IVUS image, or IVUS data that corresponds the IVUS image, to determine certain gradients located therein. This is because borders of vascular objects can be identified by a change in pixel color (e.g., light-to-dark, dark-to-light, shade1-to-shade2, etc.).



FIG. 3 shows an alternative embodiment of the invention, particularly suited for imaging systems with good processing power. As depicted here, the incoming IVUS data is processed in its entirety and all candidate borders are detected. The information of the detected borders may be stored in non-transitory memory (e.g., even if it is not used or called). While a processor of the system has detected all of the borders the system has operated to display a portion of the imaged tissue. Navigational input from the user operates to change the display (e.g., as to mimic motion through the tissue until a point is reached at which a user expresses interest by ceasing to navigate). Upon cessation of navigation, the system provides the detected border that was already detected previously. It will be appreciated that the methodology as described in reference to FIG. 3 may be desirable to employ for systems with good processing power available such as, for example, systems that use one or more of a graphics-processing-unit (GPU) such as a video card sold by NVIDIA to detect the border.



FIG. 4 illustrates with particularity the coupled interactions between a user and a computing device 120 at step 131 from FIG. 2. An operator/user, such as a physician, views the display 103 to see images from a 3D data set. The user uses joystick 125 to navigate through the view to a position of interest. The invention employs the insight that an easy and intuitive human action is to navigate to (e.g., to “go to”) something of interest and then to stop going. While prior art systems required additional steps, such as queuing up and operating a separate border detection module, systems of the invention respond to the user's simple cessation of navigation to detect a border in the area where the user stopped—the target area. In some embodiments, the system detects or provides a border responsive to a cessation of navigational input. For example, the prompt can be a release of a mouse button, cessation of scrolling of a mouse wheel, lifting a finger off of a touchscreen after tracing a path, or release of a joystick. The system provides the detected border, which the user can view. Depending on how the systems is set up, the system can even automatically and instantly calculate the occlusion (e.g., using a ratio of luminal border to medial border).



FIG. 5 illustrates, in simplified fashion, a display 131 of an imaging system showing a luminal border 320 and a medial border 310. In certain embodiments, the system uses a processor to perform an image processing operation to detect a border. A border may be detected instantly, automatically, solely in response to navigational input or cessation of navigational input, or a combination thereof. Automatically generally refers to an absence of human intervention. Where a system automatically provides a border in response to navigational input, that means that no human action other than the navigational input is required. Instant can mean simultaneously, substantially simultaneously, within a few microseconds, within about a second, or within a few seconds. Any suitable border detection algorithm can be employed. Exemplary border detection systems are discussed in U.S. Pat. Nos. 7,463,759; 6,475,149; 6,120,445; U.S. Pub. 2012/0226153; and U.S. Pub. 2007/0201736, the contents of which are incorporated by reference. For example, in some embodiments, the system uses a radius to detect a control point; uses the control point to define a search area; uses the search area to find a portion of a border; and uses the portion of the border to locate an entire border. Looking at FIG. 5, a first control point 22 may be taken as a point of highest contrast on an arbitrary radius 137 from the center of the screen to an edge (e.g., the “due east” radius at a theta of zero). Starting from the control point 22, system then defines an area 25 around point 22.



FIG. 6A depicts a defined area 25 around point 22. Area 25 operates as a search window. The search window area 25 may be a rectangle, circle, ellipse, polygon, or other shape. It may have a predetermined area (e.g., a certain number of pixels). In some embodiments, a size and shape of area 25 is determined by a combination of input device resolution, screen area subtended by a pixel at the particular polar coordinates, current zoom factor, usability studies, or a combination thereof. Usability studies can be performed to establish a statistical model of user repeatability and reproducibility under controlled conditions.



FIG. 6B depicts a defined area 25 around point 22 shown in a B scan. The system searches for the border within area 25 by performing a processing operation on the corresponding data. The processing operation can be any suitable search algorithm known in the art. In some embodiments, a morphological image processing operation is used. Morphological image processing includes operations such as erosion, dilation, opening, and closing, as well as combination thereof. In some embodiments, these operations involve converting the image data to binary data giving each pixel a binary value. With pixels within area 25 converted to binary, each pixel of a feature such as a border may be black, and the background pixels will predominantly be white (or vice versa). In erosion, every pixel that is touching background is changed into a background pixel. In dilation, every background pixel that is adjacent to the non-background object pixels is changed into an object pixel. Opening is an erosion followed by a dilation, and closing is a dilation followed by an erosion. Morphological image processing is discussed in Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 1997, California Technical Publishing, San Diego, Calif., pp. 436-442.


If a border is not found within area 25, area 25 can be increased and the increased area can be searched. This strategy can exploit the statistical properties of signal-to-noise ratio (SNR) by which the ability to detect an object is proportional to the square root of its area. See Smith, Ibid., pp. 432-436.


With reference to FIG. 6B, once a portion of the border is detected within area 25, the search can then be extended “upwards” and “downwards” into adjacent A-scan lines in the B-scan until the entire border is detected by the processor and its location is determined with precision. In some embodiments, image processing operations incorporate algorithms with pre-set parameters, user-set parameters, or both that optimize results and continuity of results. For example, if a line appears that is not contiguous across an entire 100% of the image (e.g., the entire extent of the B-scan or a full circle in a tomographic view), an accept or reject parameter can be established based on a percent contiguous factor. In some embodiments, lines that are contiguous across less than 75% (or 50% or 90%, depending on applications) are rejected while others are accepted.


While described above as detecting a reference item (e.g., a border) by receiving cessation of navigation followed by using a processor to detect the border, the steps can be performed in other orders. For example, the system can apply morphological processing operations to an entire image and detect every element, or every element that satisfies a certain quality criterion. Then the system can receive the navigation and respond by provided the pre-detected border. Similarly, the steps can be performed simultaneously. Using the methodologies herein, systems of the invention can provide a border detected within an image of an imaging system, such as an IVUS system, with great precision, based on a location that an operator navigates too. As discussed above, any suitable border detection process can be employed. Border detection is described, for example, in U.S. Pat. Nos. 8,050,478; 7,068,852; 6,491,636; U.S. Pub. 2011/0216378; and U.S. Pub. 2003/0016604, the contents of which are incorporated by reference.



FIGS. 7-12 illustrate certain embodiments, in which computing device 120 includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e., another IVUS image), (iii) identify a border on the second IVUS image, and (iv) adjust the border on the second IVUS image. It should be appreciated that the number and/or location of the applications are not intended to limit the present invention, but are merely provided to illustrate the environment in which the present invention operates. Thus, for example, using a single application to perform the application functions, as discussed herein, or remotely locating at least one of the applications (in whole or in part) is within the spirit and scope of the present invention. It should further be appreciated that, while the present invention is discussed in terms of singularities (e.g., identifying a border on one IVUS image, extrapolating control points to another IVUS image, etc.), the present invention is not so limited. In fact, the present invention is particularly useful if it is used on a plurality of IVUS images (e.g., identifying borders on every fifth IVUS image, extrapolating control points from the fifth IVUS image to the next four IVUS images, etc.). It should also be appreciated that the terms “first” and “second,” as those terms are used herein, are used broadly to identify any two IVUS images. Thus, the phrase “second IVUS image” may be used to identify an IVUS image distinct from a first IVUS image (as opposed to the second IVUS image in a series of IVUS images).



FIG. 7 shows a cartoon rendering of an exemplary IVUS image 20 of a vascular object. The image 20 is depicted as including a luminal border 320 and a medial border 310. On a typical IVUS grayscale image, starting from the center and working outward, the catheter will be the first light-to-dark transition. Continuing outward, the next dark-to-light transition (or gradient) identifies the luminal border (i.e., see FIG. 7, 320). The medial border can then be identified by going outward from the luminal border until the next dark-to-light transition (or gradient) is found (see FIG. 7, 310). It should be appreciated that because the IVUS image is constructed using gray-scales, it may be necessary to utilize an algorithm and/or at least one threshold value to identify precisely where the image changes from light to dark (or vice versa). However, it should further be appreciated that the present invention is not limited to any particular algorithm for identifying the aforementioned transitions, and includes all algorithms (and/or threshold values) generally known to those skilled in the art.


Once the border is identified, the border-detection algorithm is further adapted to identify at least one control point on the border. For example, with reference to FIGS. 7 and 8, the border-detection algorithm can be used to identify a plurality of control points 22 on the luminal border 320. It should be appreciated that the location and number of control points depicted in FIG. 8 are not intended to limit the present invention, and are merely provided to illustrate the environment in which the present invention may operate. In an alternate embodiment, the border-detection application is adapted to identify a border using user-identified control points. Embodiments are described in in U.S. Pat. Nos. 8,233,718; 7,978,916; and 6,381,350, the contents of each of which are incorporated by reference in their entirety.


Referring back to FIG. 1, once the border and control point(s) are identified on a first vascular image, the extrapolation application is used to identify at least one control point on at least one other IVUS image. In a preferred embodiment of the present invention, this is done by extrapolating the previously identified control points to at least one other IVUS image. By doing this, multiple 2D images (or at least one 3D image) can be produced. For example, as illustrated in FIG. 9, multiple 2D images (e.g., 20, 52a-52d, etc.) are used to produce a 3D image of a tubular (e.g., vascular) object 50.



FIG. 10 illustrates how an identified control point can be extrapolated to another IVUS image. Specifically, the control points that were illustrated in FIG. 8 (i.e., 22) are extrapolated (or copied) to another IVUS image (e.g., 52d), thus creating a second set of control points 62. In one embodiment of the present invention, the control points are extrapolated using Cartesian coordinates. It should be appreciated that, while FIG. 10 illustrates control points being extrapolated to an adjacent image, the present invention is not so limited. Thus, extracting control points to additional images (e.g., 52c, 52b, etc.) is within the spirit and scope of the present invention.


Once the control points are extrapolated, the extrapolating application is further adapted to identify (or approximate) a border based on the extrapolated points. For example, as shown in FIG. 10, the extrapolated points 62 may be connected using a plurality of lines 64, where the lines are either straight or curved (not shown). In another embodiment of the present invention, the extrapolating application is adapted to use an algorithm (e.g., a cubic-interpolation algorithm, etc.) to identify line shape.


Referring back to FIG. 1, the active-contour application is then used to adjust the border to more closely match the actual border of the vascular object. In doing so, the active-contour application may consider or take into account at least (i) image gradients (i.e., gradient data), (ii) the proximity of the border to each extrapolated point (i.e., continuity or control-point factor), and/or (iii) border curvature or smoothness (i.e., curvature or boundary factor). Specifically, by considering gradient data (or a gradient factor), the border can be adjusted if the neighboring pixels (as opposed to the pixels of the border) include border characteristics (e.g., a dark-to-light transition, etc.). By considering a continuity or control-point factor, the border can be adjusted so that it passes through each extrapolated point. Furthermore, by considering a curvature or boundary factor, the border can be adjusted to prevent sharp transitions (e.g., corners, etc.). In one embodiment of the present invention, the continuity and curvature factors are also used to connect related borders on adjacent images. It should be appreciated that if multiple factors are being considered, then individual factors may be weighted more heavily than others. This becomes important if the factors produce different results (e.g., the gradient factor suggests adjusting the border away from an extrapolated point, etc.). It should further be appreciated that the active-contour application may also be used to adjust the border identified by the border-detection application. It should also be appreciated that the present invention is not limited to the use of the aforementioned factors for border optimization, and that the use of additional factors (e.g., frequency factor, etc.) to adjust (or optimize) a border is within the spirit and scope of the present invention.


In one embodiment of the present invention, the adjusted borders are configured to be manually manipulated. In other words, at least one point on the border can be selected and manually moved to a new location. The active-contour application is then used (as previously discussed) to reconstruct the border accordingly. In another embodiment of the present invention, the active-contour application is further adapted to adjust related borders in adjacent images. This is done by fitting a geometrical model (e.g., a tensor product B-spline, etc.) over the surface of a plurality of related borders (e.g., as identified on multiple IVUS images). A plurality of points on the geometrical model are then parameterized and formulated into a constrained least-squares system of equations. If a point on the border is manually moved, the active-contour application can utilize these equations to calculate a resulting surface (or mesh of control points). The affected borders (e.g., adjacent borders) can then be adjusted accordingly.


Once the border has been sufficiently adjusted, the aforementioned process can be repeated to identify additional borders. In an alternate embodiment of the present invention, multiple borders (e.g., luminal and medial-adventitial borders) are identified concurrently. The multiple border can then be imaged (in either 2D or 3D) and analyzed by either a skilled practitioner or a computer algorithm. For example, as illustrated in FIG. 11, the luminal border 74 and the medial-adventitial border 76 can be used (by either a clinician or an algorithm) to identify the plaque-media complex 78 of a vascular object.


One method of identify a border on a vascular image is illustrated in FIG. 12. Specifically, in step 810, multiple sets of IVUS data are acquired, where each set of IVUS data corresponds to a 2D IVUS image. At step 812, a border is approximated in one IVUS image (e.g., using gradient data, etc.). Control points on the approximated border are then identified at step 814. At step 816, these control points are then used to identify additional control points on additional 2D IVUS images (e.g., via extrapolation, etc.). These additional control points are then used to approximate at least one other border at step 818, which is then adjusted at step 820. In one embodiment, the border is adjusted in accordance with at least gradient data. Other algorithms for border detection are within the scope of the invention and may be employed. Methods of border detection are described in U.S. Pat. Nos. 8,298,147; 8,233,718; 7,831,081; 7,359,554; and 7,215,802, the contents of which are incorporated by reference.


Medical imaging is a general technology class in which sectional and multidimensional anatomic images are constructed from acquired data. The data can be collected from a variety of acquisition systems including, but not limited to, magnetic resonance imaging (MRI), radiography methods including fluoroscopy, x-ray tomography, computed axial tomography and computed tomography, nuclear medicine techniques such as scintigraphy, positron emission tomography and single photon emission computed tomography, photo acoustic imaging ultrasound devices and methods including, but not limited to, intravascular ultrasound spectroscopy (IVUS), ultrasound modulated optical tomography, ultrasound transmission tomography, other tomographic techniques such as electrical capacitance, magnetic induction, functional MRI, optical projection and thermo-acoustic imaging, combinations thereof and combinations with other medical techniques that produce two- and three-dimensional images. At least all of these techniques are contemplated for use with the systems and methods of the present invention.


Images from rotational imaging systems (e.g. OCT and IVUS images) are acquired in the polar domain with coordinates of radius and angle (r, theta) but need to be converted to Cartesian coordinates (x, y) for display or rendering on a computer monitor. Typically, rotational systems consist of an imaging core which rotates and pulls back (or pushes forward) while recording an image video loop. This motion results in a three dimensional dataset of two dimensional image frames, where each frame provides a 360° slice of the vessel at different longitudinal locations.


Although the exemplifications described herein are drawn to the invention as applied to OCT, the systems and methods are applicable to any imaging system.


A particular medical imaging technique contemplated herein is optical coherence tomography (OCT). OCT systems and methods are generally described in Milner et al., U.S. Patent Application Publication No. 2011/0152771, Condit et al., U.S. Patent Application Publication No. 2010/0220334, Castella et al., U.S. Patent Application Publication No. 2009/0043191, Milner et al., U.S. Patent Application Publication No. 2008/0291463, and Kemp, N., U.S. Patent Application Publication No. 2008/0180683, the content of each of which is incorporated by reference in its entirety. OCT is a medical imaging methodology using a specially designed catheter with a miniaturized near infrared light-emitting probe attached to the distal end of the catheter. As an optical signal acquisition and processing method, it captures micrometer-resolution, three-dimensional images from within optical scattering media (e.g., biological tissue). OCT allows the application of interferometric technology to see from inside, for example, blood vessels, visualizing the endothelium (inner wall) of blood vessels in living individuals.


Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in ophthalmology where it can be used to obtain detailed images from within the retina. Recently it has also begun to be used in interventional cardiology to help diagnose coronary artery disease.


Various lumen of biological structures may be imaged with aforementioned imaging technologies in addition to blood vessels, including, but not limited, to vasculature of the lymphatic and nervous systems, various structures of the gastrointestinal tract including lumen of the small intestine, large intestine, stomach, esophagus, colon, pancreatic duct, bile duct, hepatic duct, lumen of the reproductive tract including the vas deferens, vagina, uterus and fallopian tubes, structures of the urinary tract including urinary collecting ducts, renal tubules, ureter, and bladder, and structures of the head and neck and pulmonary system including sinuses, parotid, trachea, bronchi, and lungs.


The arteries of the heart are particularly useful to examine with imaging devices such as OCT. OCT imaging of the coronary arteries can determine the amount of plaque built up at any particular point in the coronary artery. The accumulation of plaque within the artery wall over decades is the setup for vulnerable plaque which, in turn, leads to heart attack and stenosis (narrowing) of the artery. OCT is useful in determining both plaque volume within the wall of the artery and/or the degree of stenosis of the artery lumen. It can be especially useful in situations in which angiographic imaging is considered unreliable, such as for the lumen of ostial lesions or where angiographic images do not visualize lumen segments adequately. Example regions include those with multiple overlapping arterial segments. It is also used to assess the effects of treatments of stenosis such as with hydraulic angioplasty expansion of the artery, with or without stents, and the results of medical therapy over time.



FIG. 13 illustrates an exemplary catheter 100 for rotational imaging inside a lumen of any anatomical or mechanical conduit, vessel, or tube. The exemplary catheter 100 is suitable for in vivo imaging, particularly for imaging of an anatomical lumen or passageway, such as a cardiovascular, neurovascular, gastrointestinal, genitor-urinary tract, or other anatomical luminal structure. For example, FIG. 13 illustrates a vascular lumen 102 within a vessel 104 including a plaque buildup 106. The exemplary catheter 100 may include a rapid access lumen 108 suitable for guiding the catheter 100 over a guide-wire 110.


The exemplary catheter 100 is disposed over an exemplary rotational imaging modality 112 that rotates about a longitudinal axis 114 thereof as indicated by arrow 116. The exemplary rotational imaging modality 112 may comprise, in one embodiment, an OCT system. OCT is an optical interferometric technique for imaging subsurface tissue structure with micrometer-scale resolution. In another embodiment, the exemplary rotational imaging modality 112 may comprise an ultrasound imaging modality, such as an IVUS system, either alone or in combination with an OCT imaging system. The OCT system may include a tunable laser or broadband light source or multiple tunable laser sources with corresponding detectors, and may be a spectrometer based OCT system or a Fourier Domain OCT system, as disclosed in U.S. Patent Application Publication No. 2009/0046295, herein incorporated by reference. The exemplary catheter 100 may be integrated with IVUS by an OCT-IVUS system for concurrent imaging, as described in, for example, Castella et al. U.S. Patent Application Publication No. 2009/0043191 and Dick et al. U.S. Patent Application Publication No. 2009/0018393, both incorporated by reference in their entirety herein.


Referring to FIGS. 13 and 14, the rotational imaging modality 112 may be longitudinally translated during rotation, as indicated by line 118 in FIG. 13. Thus, the rotational imaging modality 112 acquires data along a path 120 that includes a combination of rotation and/or longitudinal translation of the rotational imaging modality 112. FIG. 14 illustrates an exemplary path 120, which is a helical scanning pattern 120, resulting from such a combination. Because FIG. 14 is a cross-sectional view, the helical scanning pattern 120 is illustrated as would be traced on a rear half of a luminal surface 122 of the scanned vessel 104. The helical scanning pattern 120 facilitates scanning a three-dimensional space within and beneath the luminal surface 122 longitudinally as desired, but also introduces a data artifact commonly known as a seam line artifact during reconstruction of the data into a display frame, as will be further discussed herein below.


Referring to FIGS. 13 and 14, the longitudinal axis 114 is illustrated as linear for simplicity and clarity. However, the longitudinal axis 114 is not necessarily linear as illustrated. The longitudinal axis 114 may be curvilinear having a curvature following a tortuosity of the vessel 104. It will be understood that vessel 104 need not be linear, but may in fact have a curvilinear longitudinal axis 104 following the vessel 104 along a tortuous geometry, and that the present invention equally applicable to an imaging modality 112 longitudinally translated along the vessel 104 having a longitudinally linear and/or tortuous geometry.


Referring to FIG. 15, a portion of the three dimensional space within and beneath the luminal surface 122 scanned within a single rotational period is projected into a planar (two-dimensional) format. In this format, line 126 represents a circumferential axis plotted horizontally. The geometry of a data stream acquired utilizing the above-described helical scan pattern 120 relative to the geometry of the luminal surface 122 may be represented by the parallelogram 124 disposed over the horizontal line 126 in FIG. 15. Starting at a fixed data acquisition angle 200 (hereinafter a “FDAA 200”) conveniently denoted as zero degrees (0°) in FIG. 15, the rotational imaging modality 112 acquires data following a rotational path indicated by line 128 (parallel to the line 126) in FIG. 15. However, because the rotational imaging modality 112 may also be translated longitudinally, as indicated by line 130 in FIG. 15, the two-dimensional representation of the scanned three-dimensional space within and beneath the luminal surface 122 comprises the shape of the parallelogram 124. This means that at the end of one full rotation of the rotational imaging modality 112 as denoted in FIG. 15 by the FDAA 200 having a value of 360°, the rotational imaging modality 112 has translated longitudinally by a distance Z. Shown in FIG. 16 is an example of an OCT polar coordinate B-Scan with 660 A-scans. The corresponding scan-converted image is displayed in FIG. 17.


The systems and methods of the invention are for identifying the lumen border in the polar coordinate system of an OCT acquired data set using the signal from each A-scan to form the border. Once the border is identified, it can then be easily transformed to Cartesian coordinates and displayed as a tomographic image. These frames provide a clinician with valuable topological data of the vasculature lumen being examined, for example the severity of stenosis and changes in disease state over time, image data which ultimately aids in accurately assessing a condition for an appropriate clinical treatment plan.


The automatic border detection systems and methods may be broken down into five main procedures or steps corresponding to the five blocks as shown in FIG. 18 and described herein. Block 600 is for the identification of strong or robust edges in the images directly detected with the imaging device. Block 601 is for the evaluation of edge points within a shadow caused by, for example, stent or guide-wires attenuating the OCT light source from properly reaching a strong or robust edge. Block 602 is for the cycling through remaining edge points and selecting one or more sets of seed points that most closely match the position of the starting data points. Block 603 is for the identification of seed points used to define a midpoint, which itself is used to refine the calculated lumen border. Block 604 is for identifying data artifacts arising from blood being caught on or near the imaging device to be evaluated and removed. The five procedural blocks are discussed in more detail as follows.


Referring to FIG. 18, block 600 is for the identification of strong or robust edges in the images directly detected with the imaging device. An important early step in the process of generating two and three dimensional images of lumen of biological structures is the automatic determination of lumen borders or edges. Since the lumen border typically appears as a strong edge in the OCT image, this step may be accomplished using standard image processing edge detection methods.


One technique contemplated for lumen border detection is through the use of an edge detector. Edge detector algorithms are commonly applied to image processing, with variations and applications familiar to those in with skill the art. These algorithms are notably specific to areas of high-resolution image feature processing that identifies regions of an image in which the image brightness changes sharply or has discontinuities. Such an edge detector algorithm can result in an interrupted or uninterrupted curve or line indicating the boundary or edge of a structure. In other situations, the edge detector may be used to identify structural artifacts while preserving the important structural features of an image. Examples of edge detectors useful for the present invention include a Sobel detector, Scharr detector, Prewitt detector, or Roberts-cross operator, Magic Kemal unsampling operator, a simple differencing algorithm, or Canny edge detectors, and any variants thereof, all utilizing smoothing filters such as, for example, exponential or Gaussian filters.


The typical intensity profile of an A-scan of a vessel usually includes a low amplitude signal (noise) followed by a high amplitude signal at or near the vessel lumen. The OCT light wavelength often is capable of penetrating into the vessel wall and therefore a high amplitude signal due to the vessel appears at or near the actual vessel lumen. The uncertainty in the image data corresponding to the lumen border is due to optical depth penetration as the amplitude of reflected light slowly drops off and returns to the noise floor. These OCT data properties are illustrated in FIGS. 19 and 20, which shows a sample B-scan of a pig vessel (FIG. 19), and an A-scan data line (FIG. 20) corresponding to an A-scan number of FIG. 19. The transition areas of high amplitude signal, noise signal and intermediate signal can be identified in FIG. 20.


Prior to computing the edge image for edge detection, data corresponding to internal reflections from the catheter region (arising from a fiber optic cable, mirror, sheath, or other internal components of the imaging device) and present in the B-scan can be removed, for example, by setting the pixel intensity amplitude inside the outer diameter of the sheath equal to the noise floor. Removal of the internal catheter reflections allows the prevention of image data signals from interfering with an edge detection procedure for the determination of the vessel lumen. The image data amplitudes corresponding to the outer diameter of the sheath can then be identified by calibration locations (manual or automatic calibration positions). Shown in FIG. 21 is the B-scan of FIG. 19 in which the internal catheter amplitude reflections are set equal to the noise floor, attenuating the catheter data signal.


As described herein, it is contemplated that any of a variety of image processing algorithms (e.g., a Sobel operator, Canny edge detector, or a simple differencing algorithm) are utilized in the identification of edges in an image. Since the vessel lumen typically appears to have some width due to the penetration of light into the vessel lumen epithelial cell layer, a wide gradient operator can be utilized with the edge detector algorithm to identify vessel lumen edges in the image. By using a wide edge detection filter, edges caused by noise spikes or image artifacts may be suppressed. In FIG. 22 shows a graph of one such edge filter which can be convolved with a B-scan to identify strong edges in an acquired image. The filter in FIG. 22 is shaped such that the amplitude of the signal closest to the center will have a higher impact on the edge calculation. Data points further from the center data point corresponding to the highest amplitude lumen border signal are preferred to contribute less to the overall calculation used in the algorithm, and the bias to the edge calculation preferentially drops off. This approach may result in a stronger edge whenever the image data signal is low amplitude for some depth (based on the filter) followed by high amplitude signal for the same depth, i.e., signals that follow the same general (reversed) shape as the filter are likely to have the highest amplitude contributing to the edge point border determination. In FIG. 23 is shown an example of a resulting edge image from convolving the filter shown in FIG. 22 with a B-scan.


Noise spikes in the image data set can result in low amplitude edge points due to the mismatch in the shape of the noise (i.e., the impulse) and the shape, including the width, of the edge filter. In certain embodiments, the width of the filter may be altered (e.g. a priori guidance from the user) for a preferred weight to be applied to the image data based the expected tissue characteristics. In another embodiment, different weights can be applied depending on the particular imaging systems/configurations (e.g. different light wavelengths may yield data needing different weighting). A sample edge image is provided in FIG. 23, where the x-axis corresponds to the pixel depth, the y-axis corresponds to A-scan number and the shading corresponds to the edge strength. Therefore, it is contemplated that the size and shape of a filter used in conjunction with an edge detector algorithm may vary, and is not limited to these examples in the present invention.


In other certain embodiments of the invention, signal amplitude thresholds can be applied to the edge image to identify a set of edge points for further processing. Once the edge image has been computed, peaks along each A-scan can be identified. For each A-scan, two peaks often are identified and are herein cumulatively referred to as edge points. Under nominal vessel imaging conditions, a first peak is the location of the vessel lumen. However, when blood or vessel side-branches are present, the first peak may not be the vessel lumen. A first peak often is the maximum pixel in each A-scan in the edge image, and a second peak is often the next highest peak that is at least some pre-defined number of pixels, dmins, away from the first peak. Setting the next highest peak at a pre-determined distance away from the first peak can be done to avoid having two detections from the same edge location (i.e. neighboring pixel locations). In one embodiment, the edge points and corresponding edge amplitudes are referred to as Pn and En as described in Equation 1 below.

Pn(a,1)=mlocation(1)  Equation 1a:
Pn(a,2)=mlocation(2)  Equation 1b:
En(a,1)=mamplitude(1)  Equation 1c:
En(a,2)=mamplitude(2)  Equation 1d:


where “a” is the a-scan number, “n” is the frame number, “mamplitude(1)” is the amplitude of the maximum edge for a-scan a, “mlocation(1)” is the pixel location of “mamplitude(1)”, “mamplitude(2)” is the amplitude of the pixel with the maximum edge amplitude for a-scan “a” and is a minimum distance dmin, from the first peak, and mlocation(2) is the pixel location of mamplitude(2). Once the initial set of edge points have been identified, a threshold (Emin) is applied to remove any points below a pre-determined value.


In another embodiment, in addition to the global threshold Emin, another threshold is applied to peaks close to the imaging device sheath. Images with poor blood clearance will often result in detections around the sheath due to the edge created by setting the region inside the sheath outer diameter to the noise floor. In one embodiment, the threshold for points close to the sheath is computed based on the maximum signal in the image. The amplitude of data points close to the sheath may be within 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% of the maximum amplitude signal in the edge image. In FIG. 24 is provided an example of a B-scan of a vessel with poor blood clearance. The edge image shown in FIG. 25, having poor blood clearance, shows strong sheath signal and weak lumen edge signal. In FIG. 26 is shown the initial set of edge detections, in which many of the detections are close to the sheath because of poor blood clearance. In FIG. 27 is shown the set of remaining detections after the global and sheath thresholds are applied.


In a particular embodiment, below is provided a basic algorithmic outline of thresholds applied to the edge points:














if (En (a, 1) < Emin){hacek over ( )} [(Pn(a, 1) < SOD + ds) {circumflex over ( )} (En(a, 1) < tamp · max(En)]


then Pn(a,1) = NaN


elseif (En (a, 2) < Emin) {hacek over ( )} [(Pn(a, 2) < SOD + ds) {circumflex over ( )} (En(a, 2) < tamp ·


max(En)]


then Pn(a, 2) = NaN









where Emin is a predefined threshold for the minimum edge amplitude, SOD is the outer diameter position of the sheath, ds is the distance from the sheath outer diameter to apply the threshold parameter, tamp is the threshold scaling applied to the maximum edge amplitude for points close to the sheath. A variety of different threshold schemes may be applied to remove detections and the scope of this invention is not limited to the threshold scheme presented here.


Referring to FIG. 18, block 601 is for the evaluation of edge points within a shadow caused by, for example, stent or guide-wires attenuating the OCT light source from properly reaching a strong or robust edge. After a data set of edge points has been determined through the use of, for example, an edge detection algorithm, artifacts may be removed from the data set. Since an objective is to find the vessel lumen border, it is preferred that other detection artifacts be removed that may otherwise lead to erroneous border calculations. Artifacts can include “shadows” arising from the OTC catheter, for example stent and guide-wire shadows. In FIG. 28 provides an example B-scan with shadows present arising from guide-wire and stents. Stent struts and guide-wires may appear in an A-scan as a high amplitude signal followed by a shadow. It is desirable to remove shadows in the image and any points within A-scans containing these artifacts to prevent an automatic border detection algorithm from incorporating the signal from stent struts or guide-wires into the border detection calculations. In one embodiment, a shadow detection step can identify A-scans containing features such as guide-wires and removes all points within those A-scans.


In order to identify artifact shadows in the image, a computational amplitude threshold is applied to each A-scan in the image, and data points are removed based on their value relative to the threshold value. This threshold value can be, for example, computed based on a maximum amplitude signal in individual A-scans. In one example, points less than or greater than an amplitude of about 5 dB, 10 dB, 15 dB, 20 dB, 25 dB, 30 dB, 35 dB, 35 dB, 40 dB, 45 dB, 50 dB, 55 dB, 60 dB, 65 dB, 70 dB, 75 dB, 80 dB, 85 dB, 90 dB, 95 dB, 100 dB of the peak value and more than 1 dB, 2 dB, 3 dB, 4 dB, 5 dB, 6 dB, 7 dB, 8 dB, 9 dB, 10 dB, 15 dB, 20 dB, 25 dB, 30 dB, 35 dB, 40 dB, 45 dB, 50 dB above the noise floor for an individual A-scan can be included in the data set for computing an edge border. This threshold can then be applied to all A-scans across all frames.


An example of an individual B-scan frame containing a stent and requiring removal of stent shadows is shown in FIG. 29. FIG. 30 shows a graph with A-scan data points following the shadow profiles of the B-scan shown in FIG. 29. Regions containing a shadow can have a lower number of detections than neighboring regions with vessel tissue. FIG. 31 provides a graph of the A-scan signal amplitude across all B-scan frames where the guide-wire and stent struts are identified. The x-axis indicates the A-scan number, the y-axis indicates the frame number, and the shading indicates the number of points above the threshold.


In other embodiments, once all frames have been processed for shadows, the resulting signal can be filtered to identify regions with a low number of detected image data points relative to neighboring A-scans and B-scan frames. A variety of filters may be applied. In one example, a median filter is employed in one dimension. In another example, a two-dimensional median filter is employed. The median filter can use any appropriate window size of neighboring data points, for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100. In certain embodiments the window size is directed at the specific artifact being filtered. In other embodiments, two or more median filters can be applied. In a particular example, two two-dimensional median filters are employed. A first median filter is used and sized to filter over stent regions; therefore the width can be at least twice or larger the size of the expected stent width in A-scans and wherein the frame dimension is determined based on the pullback speed. A second median filter can be employed and sized to filter over the guide-wire regions; therefore the width can be at least twice the size or more of the expected guide-wire width and wherein the frame dimension is also determined based on the pullback speed. In a related example, all points less than a predetermined value “x %” of the median filtered value can be classified as shadow detection. In FIG. 32 is shown a graph of the A-scan signal amplitude across all B-scan frames where the guide-wire and stent struts are identified and after the guide-wire median filter is applied. In FIG. 33 is shown a graph of the A-scan signal amplitude across all B-scan frames where the guide-wire and stent struts are identified and after the stent median filter is applied. For FIGS. 32 and 33, the x-axis indicates the A-scan number, the y-axis indicates the frame number, and the shading indicates the number of points above the threshold. In FIG. 34 is provided a graph of an original signal for a B-scan and the corresponding thresholds plots from the median filtered stent and guide-wire signals. In FIG. 34, the black points indicate A-scans having data point amplitude values below the threshold values and therefore are selected as A-scans with shadows. Any remaining edge points which lie in an A-scan with a shadow can then be removed from the edge point data set using, as one example, the following basic algorithm:




















if shadow(a)=true





Pn(a,1)= NaN





Pn(a,2)= NaN





end










where shadow(a) is a Boolean array indicating if a shadow is present in a-scan a. After all filtering steps are completed for the present example, the number of remaining edge points per A-scan may range from 0 to 2.


Referring to FIG. 18, block 602 is for the cycling through remaining edge points and selecting one or more sets of seed points that most closely match the position of the starting data points. A set of seed points may be selected from the set of edge points and used for border calculation. Seed points can be any set of edge points of at least two seed points. There are several ways in which seed points can be selected, for example the user may manually choose points from a displayed data set. In one example, seed points are automatically generated. An automated approach may be to select a subset of points from the set of edge points as a function of the seed point amplitude or location. In a particular example, an algorithm is employed to select a pair of seed points by iterating through each of the edge points and identifying the second data point closest to being 180° away (for example, half the number of A-scans away). The algorithm can then, for example, interpolate a full 360° closed contour using those two points.


Certain interpolation schemes are desirable for a particular class of interpolants, and thus may be chosen accordingly. Interpolative schemes can be confined to regression analysis or simple curve fitting. In other examples, interpolation of trigonometric functions may include, when better suited to the data, using trigonometric polynomials. Other interpolation schemes contemplated herein include, but are not limited to, linear interpolation, polynomial interpolation and spline interpolation. Still other interpolative forms can use rational functions or wavelets. Multivariate interpolation is the interpolation of functions of more than one variable, and in other examples multivariate interpolation is completed with include bilinear interpolation and bicubic interpolation in two dimensions, and tri-linear interpolation in three dimensions. To ascertain the accuracy of the interpolated or calculated contour, the numerical distance (the difference in the depth) between the calculated contour and the closest edge point for each A-scan can be computed and summed. An interpolation and distance summation is preferably computed for every available edge point and corresponding point at the interpolated contour. Equation 2 provides on example for the area calculation:

Aseed(s)=Ea=1N min[|Cint erp(a)−Pn(a,1)|,|Cint erp(a)−Pn(a,2)|]  EQUATION 2:


where s refers to a potential seed point; s is the index of a point from the set of all edge points not equal to NaN; Cint erp (a) is the interpolated contour for potential seed point s at a-scan a; Pn (a,1) and Pn (a,2) are the remaining edge points as defined in the previous steps for frame n, if an edge point is NaN it is not included in the sum; N is the total number of a-scans in frame n.


The set of points with the smallest area (i.e. smallest difference between edge points and interpolated contour) may be selected as the set of seed points for use in the final lumen border calculation. Shown in FIG. 35 is an example of the resulting interpolation contour using a first set of candidate seed points. The area encompassed by the horizontal lines, corresponding to the area difference between the contour and the originally detected data points, is summed and recorded for each potential set of seed points shown as large dots on the contour. If an A-scan contains multiple points (as described herein), the point closest to the contour is used to compute the area. Shown in FIG. 36 is another example of a set of potential seed points, the corresponding interpolated contour and difference area between the raw data points and the contour. In this example there is a large gap between the contour and the edge points, therefore this set of points will have a large area and is unlikely to be selected for incorporation as a set of seed points. Shown in FIG. 37 is a graph of the resulting difference area plotted against all potential seed points determined with this example lumen border calculation, and presents the set with a minimum difference area. Shown in FIG. 38 is a final graph of the resulting contour interpolated with seed points yielding a minimum difference area. As shown therein, the calculated contour from the set of seed points with the smallest summed area difference closely follows a majority of the lumen edge points in the image.


Referring to FIG. 18, block 603 is for the identification of seed points used to define a midpoint, which itself is used to refine the calculated lumen border. The seed points and corresponding interpolated contour can be utilized to begin the optimal border selection procedure. In this exemplification, the method for identifying the border is very similar to the method of seed point selection in that it utilizes interpolation and difference area calculation to select the optimal border location.


For each segment created by the seed points, the mid-point is preferentially shifted in the axis indicating A-scan number. For example, for any A-scan, the mid-point is shifted away from the calculated contour position and toward the data point indicating the catheter sheath amplitude threshold cutoff, and/or away from the contour and away from the data point indicating the catheter sheath amplitude threshold cutoff. The total horizontal distance the mid-point is shifted is based on the length of the segment. In FIG. 39 is provided a graph of a calculated contour corresponding to a first segment search, based on segment length and mid-point position. In FIG. 41 is provided a graph of the same mid-point, used for another search position. At each of the shift points a new contour is constructed by interpolating the contour with seed points and a segment mid-point location. The difference area is then computed between a calculated contour and the closest edge point in each A-scan, with the total difference area summed for each set of seed points.


In another example, the difference area can be weighted or biased based on the distance from the mid-point. For example, points closest to the mid-point can be weighted more than those further away. In FIG. 40 is provided a graph of an example of a weighting scheme used for the difference area calculation, in which positions further away from the segment mid-point have different weighting bias than those positions close to the segment mid-point. In these examples a weighting function is used where points further from the segment midpoint are biased based on a predetermined Gaussian (or normal) shaped curve. Gaussian curve variants, including but not limited to the Laplacian-Gaussian or multivariate and univariate forms, are contemplated, but any weighting function designed to achieve the desired cutoff characteristic for determining a data point as being included as part of a lumen border can be incorporated into the methods and systems presented herein.


In another particular embodiment, the distance of the calculated contour to the edge data points in the neighboring frames may be incorporated in the calculation for determining the search location of the interpolated contour having a minimum difference area. In some exemplifications, the weighting scheme can be applied to the frames such that the current frame has the most weight or highest preferential bias for determining the optimal border location, although it is contemplated that the weighting formulating can be differentially or equally applied for a predetermined window size of frames.


In FIG. 42 and FIG. 43 are shown graphs demonstrating the difference area calculation for the mid-point search position in the frame before and after the current frame. The resulting difference area calculations for each search position are provided in graphical form in FIG. 44. The location of the calculated contour providing the minimum difference area is selected as the final border; the corresponding contour is provided in FIG. 45, wherein the position with the smallest difference area has been selected for the seed points used in graphs shown in FIGS. 38-45. In FIG. 46 is provided an example where four data points have been defined and the algorithm has computed the area for a candidate position for the fifth point. This is iteratively repeated for every segment until all segments have been defined. A plot of the final calculated contour is provided in FIG. 47. In FIG. 48 is shown the final calculated lumen border plotted on the original polar-coordinate image. In FIG. 49 is shown the final calculated lumen border transformed to Cartesian coordinates and plotted on the scan-converted tomographic image, showing that the border closely follows the vessel lumen border despite poor blood clearance.


An exemplary equation for computing the difference area, Aborder, between the edge points and interpolated contour at a search position x is provided in Equation 3:











A
border



(
x
)


=




w
image



(
n
)




(




a
=
1

N





w
ascan



(
a
)


·

min


[






C

int





erp




(
a
)


-


P
n



(

a
,
1

)





,





C

int





erp




(
a
)


-


P
n



(

a
,
2

)






]




)






a
=
1

N





w
ascan



(
a
)


·


p
n



(
a
)





+



w
image



(

n
+
1

)




(




a
=
1

N





w
ascan



(
a
)


·

min


[






C

int





erp




(
a
)


-


P

n
+
1




(

a
,
1

)





,





C

int





erp




(
a
)


-


P

n
+
1




(

a
,
2

)






]




)






a
=
1

N





w
ascan



(
a
)


·


p

n
+
1




(
a
)





+



w
image



(

n
-
1

)




(




a
=
1

N





w
ascan



(
a
)


·

min


[






C

int





erp




(
a
)


-


P

n
-
1




(

a
,
1

)





,





C

int





erp




(
a
)


-


P

n
-
1




(

a
,
2

)






]




)






a
=
1

N





w
ascan



(
a
)


·


p

n
-
1




(
a
)










EQUATION





3







where x refers to one of the candidate mid-point positions; Cint erp (a) is the interpolated contour for all completed points and segment mid-point position x; Pn (a,1) and Pn (a,2) are the remaining edge points as defined in the previous steps for frame n; if an edge point is NaN it is not included in the sum; Pn is an array of 0 and 1, where pn (a) is 0 if both Pn (a,1) and Pn (a,2) are NaN, otherwise pn (a) is 1; N is the total number of a-scans in a frame (assuming constant across all frames); wascan (a) indicates the weight applied to a-scan a; wimage (n) indicates the weight applied to the summation for frame n.


Alternate approaches to the final border selection step described herein also may lead to accurate border calculations. In one example, a method encompasses setting a selected mid-point position to be biased with a maximum gradient within the search distance. This method selects the position of the maximum gradient as the mid-point position for every segment but does not compute the difference area for the searched contour positions. This approach, therefore, preempts utilizing neighboring A-scan information or neighboring B-scan frame information to calculate a lumen border location. Another approach is a hybrid of the area difference method and the maximum gradient method. In this exemplification, the difference area method can be used when the search distance is larger than a predefined value. The difference area method may be better utilized for large search regions because it incorporates information from neighboring A-scans and neighboring B-scan frames to calculate a preferred lumen border location. Choice of mid-point where the search position is below a pre-defined threshold then uses a maximum gradient method which is likely to be sufficient for refining the lumen border since the mid-point has a very limited search region (being less than a pre-defined threshold) and is expected already to be relatively close to the actual lumen border location.


Referring to FIG. 18, block 604 is for identifying data artifacts arising from blood being caught on or near the imaging device to be evaluated and removed. In some instances, it may be desirable to smooth out data points that identify that the catheter is likely to be caught on false detections due to blood around the sheath. FIG. 50 shows a tomographic image of a final calculated lumen border with sheath artifacts and over-laid on a scan-converted tomographic image.



FIG. 51 shows a graph plotting edge points with blood artifacts for the lumen border calculated and shown in FIG. 50. The discontinuous edge data points identify data regions reflecting where the border is incorrectly caught on blood close to the sheath. This type of artifact found on the catheter sheath typically is found when the sheath is close to or touching the vessel wall.


To accomplish the smoothing of data points corresponding to the catheter sheath, a region close to the sheath can be chosen to identify all border points identified as being within some pre-defined distance of the sheath. The rotational angle covered by each sheath segment can then be computed. In certain examples, if the points cover less than a predetermined “Xmin” degrees (for example, 90°), those corresponding data points initially modeled as due to blood artifacts and temporarily removed from smoothing calculations. In other certain examples, if the points cover more than “Xmin” degrees but less than “Xmax” degrees (for example, 270°), the corresponding N number of points in the middle of the segments are kept for smoothing calculations as they initially are modeled to be a part of the catheter sheath, and all other points in the sheath segments are temporarily removed. If a segment covers more than “Xmin” degrees, some portion of the vessel likely is up against the sheath outer diameter and therefore a portion of the border is correct. If the sheath segment covers more than “Xmax” degrees, no points are removed and the border is left as is, and it is unlikely that points around the sheath need to be smoothed as blood artifacts are likely not present.


For the plot of signal depth versus A-scan number shown in FIG. 51, all segments close to the sheath covered less than Xmin degrees, and therefore were removed. With data points removed, the algorithm can be designed to interpolate across the missing data points, resulting in a proper contour as shown in the graph in FIG. 52. The original set of edge points can then be compared to this new contour; if it is determined they are inside (i.e. to the left) of the interpolated contour and within the predetermined cutoff amplitude of the catheter sheath, those data points are permanently removed. The resulting final calculated lumen border contour for this example is shown graphically in FIG. 53 and in a tomographic image in FIG. 54.


Another example is provided in FIGS. 55-58. FIG. 55 shows a tomographic image of a catheter located against a lumen wall and with blood artifacts in contact; the sheath caught segment covers more than 90° but less than 270°. FIG. 56 shows a plot of A-scan data points for the B-scan of FIG. 55. FIG. 57 shows the plot of FIG. 56, having removed A-scan data points. Because the sheath segments cover more than “Xmin” degrees but less than “Xmax” degrees, the sheath segment mid-points are not kept when generating the intermediate interpolated contour. All points outside this contour are kept and the final border is properly smoothed across points where the sheath, vessel and blood meet. A final tomographic image of a sheath that has been smoothed is shown in FIG. 58.


The systems and methods of use described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the systems and methods of use described herein may take the form of an entirely hardware based embodiment, an entirely software based embodiment, or an embodiment combining software and hardware aspects. The systems and methods of use described herein can be performed using any type of computing device, such as a computer, that includes a processor or any combination of computing devices where each device performs at least part of the process or method.


Suitable computing devices typically include non-transitory memory coupled to a processor and an input-output device. Memory generally includes tangible storage media such as solid-state drives, flash drives, USB drives, RAM, ROM, EEPROM, flash memory, or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, or others. A processor generally includes a chip such as one made by INTEL or AMD, or a specially programmed chip such as an application specific integrated circuit or a field-programmable gate array. Exemplary input-output devices include a monitor, keyboard, mouse, touchpad, touchscreen, modem, Wi-Fi card, network interface card, Ethernet jack, USB port, disk drive, pointing device, joystick, etc. A system generally includes one or more of a computing device, a medical imaging instrument (e.g., for OCT or IVUS), others, or a combination thereof. A medical imaging instrument will generally include any or all of the components of a computing device as well as one or more structures such as those discussed herein for gathering images of a body.


The foregoing and other features and advantages of the invention are apparent from the following detailed description of exemplary embodiments, read in conjunction with the accompanying drawing. The systems and methods of use described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the systems and methods of use described herein may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. The systems and methods of use described herein can be performed using any type of computing device, such as a computer, that includes a processor or any combination of computing devices where each device performs at least part of the process or method.


Methods of communication between devices or components of a system can include both wired and wireless (e.g., radiofrequency, optical or infrared, optics including fiber-optics and or lens systems) communications methods and such methods provide any other type of computer readable communications media. Such communications media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media.


As used herein, the word “or” means “and or or”, sometimes seen or referred to as “and/or”, unless indicated otherwise.


INCORPORATION BY REFERENCE

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


EQUIVALENTS

Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.

Claims
  • 1. A method for examining tissue having a border, the method comprising: providing an imaging system, wherein the imaging system comprises: an imaging catheter comprising an image capture device at a distal portion of the imaging catheter, wherein the imaging catheter is configured to capture, via the image capture device, imaging data associated with a vessel of a patient while positioned within the vessel; anda processing system operably coupled to the imaging catheter, the processing system comprising a processor coupled to a memory and a display device in communication with the processor;capturing, with the image capture device, the imaging data while the imaging catheter, including the image capture device, is positioned within the vessel, wherein the vessel comprises a vessel wall comprising a luminal border and a medial-adventitial border;receiving, with the processor, the imaging data;generating, with the processor, a plurality of two-dimensional cross-sectional image frames of the vessel based on the imaging data;receiving, at the processor, a navigational input to navigate sequentially through the plurality of two-dimensional cross-sectional image frames;sequentially displaying, with the display device, the plurality of two-dimensional cross-sectional image frames in a manner representing motion through the vessel, while the navigational input is received; andin response to a cessation of the navigational input: stopping said sequential displaying of the plurality of two-dimensional cross-sectional image frames at a target two-dimensional cross-sectional image frame, wherein the target two-dimensional cross-sectional image frame is a two-dimensional cross-sectional image, of the sequentially displayed plurality of two-dimensional cross-sectional image frames, that was being displayed at the time of the cessation of the navigational input;displaying, with the display device, the target two-dimensional cross-sectional image frame; andautomatically detecting, with the processor, a location, within the target two-dimensional cross-sectional image frame, of a vessel wall border of the vessel wall, wherein the vessel wall border comprises at least one of the luminal border or the medial-adventitial border;determining an outline of the vessel wall border based on the detected location of the vessel wall border; anddisplaying, with the display device, the target two-dimensional cross-sectional image frame and the outline of the vessel wall border overlaid on the vessel in the target two-dimensional cross-sectional image frame.
  • 2. The method of claim 1, wherein the processing system further comprises a computer pointing device, and wherein said receiving the navigational input comprises: receiving user input from a user via the computer pointing device; andcommunicating the user input, as the navigational input, from the computer pointing device to the processor.
  • 3. The method of claim 1, wherein said detecting the location, within the target two-dimensional cross-sectional image frame, of the vessel wall border comprises detecting the location of the vessel wall border within a second of the cessation of the navigational input.
  • 4. The method of claim 1, wherein said detecting the location of the vessel wall border comprises performing, with the processor, a detection algorithm.
  • 5. The method of claim 4, wherein said detecting the location of the vessel wall border further comprises determining, with the processor, an occlusion of the vessel.
  • 6. The method of claim 5, wherein said determining the occlusion includes comparing the luminal border of the vessel to the medial-adventitial border of the vessel.
  • 7. The method of claim 1, wherein said detecting the location of the vessel wall border comprises: approximating the vessel wall border within a first two-dimensional cross-sectional image frame;identifying at least one control point on the vessel wall border;extrapolating the at least one control point to approximate a second vessel wall border in a second two-dimensional cross-sectional image frame; andadjusting the second vessel wall border in accordance with a frequency factor.
  • 8. The method of claim 1, further comprising selecting, with the processor, a two-dimensional cross-sectional image frame from the plurality of two-dimensional cross-sectional image frames.
  • 9. The method of claim 8, further comprising displaying, with the display device, the vessel wall border in the selected two-dimensional cross-sectional image frame.
  • 10. The method of claim 1, wherein said providing the imaging system comprises operably coupling the processing system to a proximal portion of the imaging catheter.
  • 11. A system for examining tissue having a border, the system comprising: an imaging catheter comprising an image capture device at a distal portion of the imaging catheter, wherein the imaging catheter is configured to capture, via the image capture device, imaging data associated with a vessel of a patient while the imaging catheter, including the image capture device, is positioned within the vessel, wherein the vessel comprises a vessel wall comprising a luminal border and a medial-adventitial border; anda processing system operably coupled to the imaging catheter, the processing system comprising a processor coupled to a memory and a display device in communication with the processor, wherein the processing system is configured to: receive, with the processor, the imaging data;generate, with the processor, a plurality of two-dimensional cross-sectional image frames of the vessel based on the imaging data;receive, at the processor, a navigational input to navigate sequentially through the plurality of two-dimensional cross-sectional image frames;sequentially display, with the display device, the plurality of two-dimensional cross-sectional image frames in a manner representing motion through the vessel, while the navigational input is received; andin response to a cessation of the navigational input: stop said sequential display of the plurality of two-dimensional cross-sectional image frames at a target two-dimensional cross-sectional image frame, wherein the target two-dimensional cross-sectional image frame is a two-dimensional cross-sectional image, of the sequentially displayed plurality of two-dimensional cross-sectional image frames, that was being displayed at the time of the cessation of the navigational input;display, with the display device, the target two-dimensional cross-sectional image frame; andautomatically detect, with the processor, within the target two-dimensional cross-sectional image frame, of a vessel wall border of the vessel wall, wherein the vessel wall border comprises at least one of the luminal border or the medial-adventitial border;determine an outline of the vessel wall border based on the detected location of the vessel wall border; anddisplay, with the display device, the target two-dimensional cross-sectional image frame and the outline of the vessel wall border overlaid on the vessel in the target two-dimensional cross-sectional image frame.
  • 12. The system of claim 11, wherein the processing system further comprises a computer pointing device, and wherein, to receive the navigational input, the processing system is configured to: receive a user input from a user via the computer pointing device; andcommunicate the user input, as the navigational input, from the computer pointing device to the processor.
  • 13. The system of claim 11, wherein, to detect the location, within the target two-dimensional cross-sectional image frame, of the vessel wall border, the processing system is configured to: detect the location of the vessel wall border within a second of the cessation of the navigational input.
  • 14. The system of claim 11, wherein, to detect the location of the vessel wall border, the processing system is configured to: perform, with the processor, a detection algorithm.
  • 15. The system of claim 14, wherein, to detect the location of the vessel wall border, the processing system is further configured to: determine, with the processor, an occlusion of the vessel.
  • 16. The system of claim 15, wherein to determine the occlusion, the processing system is configured to: compare the luminal border of the vessel to the medial-adventitial border of the vessel.
  • 17. The system of claim 11, wherein, to detect the location of the vessel wall border, the processing system is configured to: approximate the vessel wall border within a first two-dimensional cross-sectional image frame;identify at least one control point on the vessel wall border;extrapolate the at least one control point to approximate a second vessel wall border in a second two-dimensional cross-sectional image frame; andadjust the second vessel wall border in accordance with a frequency factor.
  • 18. The system of claim 11, wherein the processing system is further configured to: select, with the processor, a two-dimensional cross-sectional image frame from the plurality of two-dimensional cross-sectional image frames.
  • 19. The system of claim 18, wherein the processing system is further configured to: display, with the display device, the vessel wall border in the selected two-dimensional cross-sectional image frame.
  • 20. The system of claim 11, wherein the processing system is operably coupled to a proximal portion of the imaging catheter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Application 61/710,401, filed Oct. 5, 2012, and U.S. Provisional Application 61/739,920, filed Dec. 20, 2012, the contents of each of which are incorporated by reference.

US Referenced Citations (1002)
Number Name Date Kind
3301258 Werner Jan 1967 A
3617880 Cormack et al. Nov 1971 A
3789841 Antoshkiw Feb 1974 A
3841308 Tate Oct 1974 A
4140364 Yamashita et al. Feb 1979 A
4274423 Mizuno et al. Jun 1981 A
4344438 Schultz Aug 1982 A
4398791 Dorsey Aug 1983 A
4432370 Hughes et al. Feb 1984 A
4552554 Gould et al. Nov 1985 A
4577543 Wilson Mar 1986 A
4676980 Segal et al. Jun 1987 A
4682895 Costello Jul 1987 A
4733665 Palmaz Mar 1988 A
4744619 Cameron May 1988 A
4762129 Bonzel Aug 1988 A
4766386 Oliver et al. Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4794931 Yock Jan 1989 A
4800886 Nestor Jan 1989 A
4803639 Steele et al. Feb 1989 A
4816567 Cabilly et al. Mar 1989 A
4819740 Warrington Apr 1989 A
4821731 Martinelli et al. Apr 1989 A
4824435 Giesy et al. Apr 1989 A
4830023 de Toledo et al. May 1989 A
4834093 Littleford et al. May 1989 A
4841977 Griffith et al. Jun 1989 A
4864578 Proffitt et al. Sep 1989 A
4873690 Adams Oct 1989 A
4877314 Kanamori Oct 1989 A
4887606 Yock et al. Dec 1989 A
4917085 Smith Apr 1990 A
4917097 Proudian et al. Apr 1990 A
4928693 Goodin et al. May 1990 A
4932413 Shockey et al. Jun 1990 A
4932419 de Toledo Jun 1990 A
4948229 Soref Aug 1990 A
4951677 Crowley et al. Aug 1990 A
4969742 Falk et al. Nov 1990 A
4987412 Vaitekunas et al. Jan 1991 A
4993412 Murphy-Chutorian Feb 1991 A
4998972 Chin et al. Mar 1991 A
5000185 Yock Mar 1991 A
5024234 Leary et al. Jun 1991 A
5025445 Anderson et al. Jun 1991 A
5032123 Katz et al. Jul 1991 A
5037169 Chun Aug 1991 A
5039193 Snow et al. Aug 1991 A
5040548 Yock Aug 1991 A
5041108 Fox et al. Aug 1991 A
5054492 Scribner et al. Oct 1991 A
5065010 Knute Nov 1991 A
5065769 de Toledo Nov 1991 A
5085221 Ingebrigtsen et al. Feb 1992 A
5095911 Pomeranz Mar 1992 A
5100424 Jang et al. Mar 1992 A
5120308 Hess Jun 1992 A
5125137 Corl et al. Jun 1992 A
5135486 Eberle et al. Aug 1992 A
5135516 Sahatjian et al. Aug 1992 A
5155439 Holmbo et al. Oct 1992 A
5158548 Lau et al. Oct 1992 A
5163445 Christian et al. Nov 1992 A
5167233 Eberle et al. Dec 1992 A
5174295 Christian et al. Dec 1992 A
5176141 Bom et al. Jan 1993 A
5176674 Hofmann Jan 1993 A
5178159 Christian Jan 1993 A
5183048 Eberle Feb 1993 A
5188632 Goldenberg Feb 1993 A
5201316 Pomeranz et al. Apr 1993 A
5202745 Sorin et al. Apr 1993 A
5203779 Muller et al. Apr 1993 A
5220922 Barany Jun 1993 A
5224953 Morgentaler Jul 1993 A
5226421 Frisbie et al. Jul 1993 A
5240003 Lancee et al. Aug 1993 A
5240437 Christian Aug 1993 A
5242460 Klein et al. Sep 1993 A
5243988 Sieben et al. Sep 1993 A
5257974 Cox Nov 1993 A
5266302 Peyman et al. Nov 1993 A
5267954 Nita Dec 1993 A
5301001 Murphy et al. Apr 1994 A
5312425 Evans et al. May 1994 A
5313949 Yock May 1994 A
5313957 Little May 1994 A
5319492 Dorn et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5325198 Hartley et al. Jun 1994 A
5336178 Kaplan et al. Aug 1994 A
5346689 Peyman et al. Sep 1994 A
5348017 Thornton et al. Sep 1994 A
5348481 Ortiz Sep 1994 A
5353798 Sieben Oct 1994 A
5358409 Obara Oct 1994 A
5358478 Thompson et al. Oct 1994 A
5368037 Eberle et al. Nov 1994 A
5373845 Gardineer et al. Dec 1994 A
5373849 Maroney et al. Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5383853 Jung et al. Jan 1995 A
5387193 Miraki Feb 1995 A
5396328 Jestel et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5405377 Cragg Apr 1995 A
5411016 Kume et al. May 1995 A
5419777 Hofling May 1995 A
5421338 Crowley et al. Jun 1995 A
5423806 Dale et al. Jun 1995 A
5427118 Nita et al. Jun 1995 A
5431673 Summers et al. Jul 1995 A
5436759 Dijaili et al. Jul 1995 A
5439139 Brovelli Aug 1995 A
5443457 Ginn et al. Aug 1995 A
5453575 O'Donnell et al. Sep 1995 A
5456693 Conston et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5480388 Zadini et al. Jan 1996 A
5485845 Verdonk et al. Jan 1996 A
5492125 Kim et al. Feb 1996 A
5496997 Pope Mar 1996 A
5507761 Duer Apr 1996 A
5512044 Duer Apr 1996 A
5514128 Hillsman et al. May 1996 A
5529674 Hedgcoth Jun 1996 A
5541730 Chaney Jul 1996 A
5546717 Penczak et al. Aug 1996 A
5546948 Hamm et al. Aug 1996 A
5565332 Hoogenboom et al. Oct 1996 A
5573520 Schwartz et al. Nov 1996 A
5581638 Givens et al. Dec 1996 A
5586054 Jensen et al. Dec 1996 A
5592939 Martinelli Jan 1997 A
5596079 Smith et al. Jan 1997 A
5598844 Diaz et al. Feb 1997 A
5609606 O'Boyle Mar 1997 A
5630806 Inagaki et al. May 1997 A
5651366 Liang et al. Jul 1997 A
5660180 Malinowski et al. Aug 1997 A
5667499 Welch et al. Sep 1997 A
5667521 Keown Sep 1997 A
5672877 Liebig et al. Sep 1997 A
5674232 Halliburton Oct 1997 A
5693015 Walker et al. Dec 1997 A
5713848 Dubrul et al. Feb 1998 A
5745634 Garrett et al. Apr 1998 A
5771895 Slager Jun 1998 A
5779731 Leavitt Jul 1998 A
5780958 Strugach et al. Jul 1998 A
5798521 Froggatt Aug 1998 A
5800450 Lary et al. Sep 1998 A
5803083 Buck et al. Sep 1998 A
5814061 Osborne et al. Sep 1998 A
5817025 Alekseev et al. Oct 1998 A
5820594 Fontirroche et al. Oct 1998 A
5824520 Mulligan-Kehoe Oct 1998 A
5827313 Ream Oct 1998 A
5830222 Makower Nov 1998 A
5848121 Gupta et al. Dec 1998 A
5851464 Davila et al. Dec 1998 A
5857974 Eberle et al. Jan 1999 A
5872829 Wischmann et al. Feb 1999 A
5873835 Hastings et al. Feb 1999 A
5882722 Kydd Mar 1999 A
5912764 Togino Jun 1999 A
5916194 Jacobsen et al. Jun 1999 A
5921931 O'Donnell et al. Jul 1999 A
5925055 Adrian et al. Jul 1999 A
5949929 Hamm Sep 1999 A
5951586 Berg et al. Sep 1999 A
5974521 Akerib Oct 1999 A
5976120 Chow et al. Nov 1999 A
5978391 Das et al. Nov 1999 A
5997523 Jang Dec 1999 A
6021240 Murphy et al. Feb 2000 A
6022319 Willard et al. Feb 2000 A
6031071 Mandeville et al. Feb 2000 A
6036889 Kydd Mar 2000 A
6043883 Leckel et al. Mar 2000 A
6050949 White et al. Apr 2000 A
6059738 Stoltze et al. May 2000 A
6068638 Makower May 2000 A
6074362 Jang et al. Jun 2000 A
6078831 Belef et al. Jun 2000 A
6080109 Baker et al. Jun 2000 A
6091496 Hill Jul 2000 A
6094591 Foltz et al. Jul 2000 A
6095976 Nachtomy et al. Aug 2000 A
6097755 Guenther, Jr. et al. Aug 2000 A
6099471 Torp et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6102938 Evans et al. Aug 2000 A
6106476 Corl et al. Aug 2000 A
6120445 Grunwald Sep 2000 A
6123673 Eberle et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6141089 Thoma et al. Oct 2000 A
6146328 Chiao et al. Nov 2000 A
6148095 Prause et al. Nov 2000 A
6151433 Dower et al. Nov 2000 A
6152877 Masters Nov 2000 A
6152878 Nachtomy et al. Nov 2000 A
6159225 Makower Dec 2000 A
6165127 Crowley Dec 2000 A
6176842 Tachibana et al. Jan 2001 B1
6179809 Khairkhahan et al. Jan 2001 B1
6186949 Hatfield et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6200268 Vince et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6208415 De Boer et al. Mar 2001 B1
6210332 Chiao et al. Apr 2001 B1
6210339 Kiepen et al. Apr 2001 B1
6212308 Donald Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6245066 Morgan et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6254543 Grunwald et al. Jul 2001 B1
6256090 Chen et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6261246 Pantages et al. Jul 2001 B1
6275628 Jones et al. Aug 2001 B1
6275724 Dickinson Aug 2001 B1
6283921 Nix et al. Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6295308 Zah Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6312384 Chiao Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328696 Fraser Dec 2001 B1
6343168 Murphy et al. Jan 2002 B1
6343178 Burns et al. Jan 2002 B1
6350240 Song et al. Feb 2002 B1
6364841 White et al. Apr 2002 B1
6366722 Murphy et al. Apr 2002 B1
6367984 Stephenson et al. Apr 2002 B1
6373970 Dong et al. Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375618 Chiao et al. Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6376830 Froggatt et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6381350 Klingensmith et al. Apr 2002 B1
6387124 Buscemi et al. May 2002 B1
6396976 Little et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6417948 Chowdhury et al. Jul 2002 B1
6419644 White et al. Jul 2002 B1
6421164 Tearney et al. Jul 2002 B2
6423012 Kato et al. Jul 2002 B1
6426796 Pulliam et al. Jul 2002 B1
6428041 Wohllebe et al. Aug 2002 B1
6428498 Uflacker Aug 2002 B2
6429421 Meller et al. Aug 2002 B1
6440077 Jung et al. Aug 2002 B1
6443903 White et al. Sep 2002 B1
6450964 Webler Sep 2002 B1
6457365 Stephens et al. Oct 2002 B1
6459844 Pan Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6475149 Sumanaweera Nov 2002 B1
6480285 Hill Nov 2002 B1
6491631 Chiao et al. Dec 2002 B2
6491636 Chenal et al. Dec 2002 B2
6501551 Tearney et al. Dec 2002 B1
6504286 Porat et al. Jan 2003 B1
6508824 Flaherty et al. Jan 2003 B1
6514237 Maseda Feb 2003 B1
6520269 Geiger et al. Feb 2003 B2
6520677 Iizuka Feb 2003 B2
6535764 Imran et al. Mar 2003 B2
6538778 Leckel et al. Mar 2003 B1
6544217 Gulachenski Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6545760 Froggatt et al. Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6551250 Khalil Apr 2003 B2
6566648 Froggatt May 2003 B1
6570894 Anderson May 2003 B2
6572555 White et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6584335 Haar et al. Jun 2003 B1
6592612 Samson et al. Jul 2003 B1
6594448 Herman et al. Jul 2003 B2
6602241 Makower et al. Aug 2003 B2
6611322 Nakayama et al. Aug 2003 B1
6611720 Hata et al. Aug 2003 B2
6612992 Hossack et al. Sep 2003 B1
6615062 Ryan et al. Sep 2003 B2
6615072 Izatt et al. Sep 2003 B1
6621562 Durston Sep 2003 B2
6631284 Nutt et al. Oct 2003 B2
6638227 Bae Oct 2003 B2
6645152 Jung et al. Nov 2003 B1
6646745 Verma et al. Nov 2003 B2
6655386 Makower et al. Dec 2003 B1
6659957 Vardi et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6663565 Kawagishi et al. Dec 2003 B2
6665456 Dave et al. Dec 2003 B2
6669716 Gilson et al. Dec 2003 B1
6671055 Wavering et al. Dec 2003 B1
6673015 Glover et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6685648 Flaherty et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6689144 Gerberding Feb 2004 B2
6696173 Naundorf et al. Feb 2004 B1
6701044 Arbore et al. Mar 2004 B2
6701176 Halperin et al. Mar 2004 B1
6709444 Makower Mar 2004 B1
6712836 Berg et al. Mar 2004 B1
6714703 Lee et al. Mar 2004 B2
6719717 Johnson et al. Apr 2004 B1
6725073 Motamedi et al. Apr 2004 B1
6726677 Flaherty et al. Apr 2004 B1
6730107 Kelley et al. May 2004 B2
6733474 Kusleika May 2004 B2
6738144 Dogariu May 2004 B1
6740113 Vrba May 2004 B2
6746464 Makower Jun 2004 B1
6780157 Stephens et al. Aug 2004 B2
6795188 Ruck et al. Sep 2004 B2
6795196 Funakawa Sep 2004 B2
6798522 Stolte et al. Sep 2004 B2
6822798 Wu et al. Nov 2004 B2
6830559 Schock Dec 2004 B2
6832024 Gerstenberger et al. Dec 2004 B2
6842639 Winston et al. Jan 2005 B1
6847449 Bashkansky et al. Jan 2005 B2
6855115 Fonseca et al. Feb 2005 B2
6856138 Bohley Feb 2005 B2
6856400 Froggatt Feb 2005 B1
6856472 Herman et al. Feb 2005 B2
6860867 Seward et al. Mar 2005 B2
6866670 Rabiner et al. Mar 2005 B2
6878113 Miwa et al. Apr 2005 B2
6886411 Kjellman et al. May 2005 B2
6891984 Petersen et al. May 2005 B2
6895106 Wang et al. May 2005 B2
6898337 Averett et al. May 2005 B2
6900897 Froggatt May 2005 B2
6912051 Jensen Jun 2005 B2
6916329 Zhao Jul 2005 B1
6922498 Shah Jul 2005 B2
6937346 Nebendahl et al. Aug 2005 B2
6937696 Mostafavi Aug 2005 B1
6943939 DiJaili et al. Sep 2005 B1
6947147 Motamedi et al. Sep 2005 B2
6947787 Webler Sep 2005 B2
6949094 Yaron Sep 2005 B2
6952603 Gerber et al. Oct 2005 B2
6954737 Kalantar et al. Oct 2005 B2
6958042 Honda Oct 2005 B2
6961123 Wang et al. Nov 2005 B1
6966891 Ookubo et al. Nov 2005 B2
6969293 Thai Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6985234 Anderson Jan 2006 B2
7004963 Wang et al. Feb 2006 B2
7006231 Ostrovsky et al. Feb 2006 B2
7010458 Wilt Mar 2006 B2
7024025 Sathyanarayana Apr 2006 B2
7027211 Ruffa Apr 2006 B1
7027743 Tucker et al. Apr 2006 B1
7033347 Appling Apr 2006 B2
7035484 Silberberg et al. Apr 2006 B2
7037269 Nix et al. May 2006 B2
7042573 Froggatt May 2006 B2
7044915 White et al. May 2006 B2
7044964 Jang et al. May 2006 B2
7048711 Rosenman et al. May 2006 B2
7049306 Konradi et al. May 2006 B2
7058239 Singh et al. Jun 2006 B2
7060033 White et al. Jun 2006 B2
7060421 Naundorf et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7068852 Braica Jun 2006 B2
7074188 Nair et al. Jul 2006 B2
7095493 Harres Aug 2006 B2
7110119 Maestle Sep 2006 B2
7113875 Terashima et al. Sep 2006 B2
7123777 Rondinelli et al. Oct 2006 B2
7130054 Ostrovsky et al. Oct 2006 B2
7139440 Rondinelli et al. Nov 2006 B2
7153299 Tu et al. Dec 2006 B1
7171078 Sasaki et al. Jan 2007 B2
7175597 Vince et al. Feb 2007 B2
7177491 Dave et al. Feb 2007 B2
7190464 Alphonse Mar 2007 B2
7215802 Klingensmith et al. May 2007 B2
7218811 Shigenaga et al. May 2007 B2
7236812 Ballerstadt et al. Jun 2007 B1
7245125 Harer et al. Jul 2007 B2
7245789 Bates et al. Jul 2007 B2
7249357 Landman et al. Jul 2007 B2
7291146 Steinke et al. Nov 2007 B2
7292715 Furnish Nov 2007 B2
7292885 Scott et al. Nov 2007 B2
7294124 Eidenschink Nov 2007 B2
7300460 Levine et al. Nov 2007 B2
7335161 Von Arx et al. Feb 2008 B2
7337079 Park et al. Feb 2008 B2
7355716 de Boer et al. Apr 2008 B2
7356367 Liang et al. Apr 2008 B2
7358921 Snyder et al. Apr 2008 B2
7359062 Chen et al. Apr 2008 B2
7359554 Klingensmith et al. Apr 2008 B2
7363927 Ravikumar Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7387636 Cohn et al. Jun 2008 B2
7391520 Zhou et al. Jun 2008 B2
7397935 Kimmel et al. Jul 2008 B2
7399095 Rondinelli Jul 2008 B2
7408648 Kleen et al. Aug 2008 B2
7414779 Huber et al. Aug 2008 B2
7440087 Froggatt et al. Oct 2008 B2
7447388 Bates et al. Nov 2008 B2
7449821 Dausch Nov 2008 B2
7450165 Ahiska Nov 2008 B2
RE40608 Glover et al. Dec 2008 E
7458967 Appling et al. Dec 2008 B2
7463362 Lasker et al. Dec 2008 B2
7463759 Klingensmith et al. Dec 2008 B2
7491226 Palmaz et al. Feb 2009 B2
7515276 Froggatt et al. Apr 2009 B2
7527594 Vardi et al. May 2009 B2
7534251 WasDyke May 2009 B2
7535797 Peng et al. May 2009 B2
7547304 Johnson Jun 2009 B2
7564949 Sattler et al. Jul 2009 B2
7577471 Camus et al. Aug 2009 B2
7583857 Xu et al. Sep 2009 B2
7603165 Townsend et al. Oct 2009 B2
7612773 Magnin et al. Nov 2009 B2
7633627 Choma et al. Dec 2009 B2
7645229 Armstrong Jan 2010 B2
7658715 Park et al. Feb 2010 B2
7660452 Zwirn et al. Feb 2010 B2
7660492 Bates et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7672790 McGraw et al. Mar 2010 B2
7680247 Atzinger et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7711413 Feldman et al. May 2010 B2
7720322 Prisco May 2010 B2
7728986 Lasker et al. Jun 2010 B2
7734009 Brunner et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7743189 Brown et al. Jun 2010 B2
7762954 Nix et al. Jul 2010 B2
7766896 Kornkven Volk et al. Aug 2010 B2
7773792 Kimmel et al. Aug 2010 B2
7775981 Guracar et al. Aug 2010 B1
7777399 Eidenschink et al. Aug 2010 B2
7781724 Childers et al. Aug 2010 B2
7783337 Feldman et al. Aug 2010 B2
7787127 Galle et al. Aug 2010 B2
7792342 Barbu et al. Sep 2010 B2
7801343 Unal et al. Sep 2010 B2
7801590 Feldman et al. Sep 2010 B2
7813609 Petersen et al. Oct 2010 B2
7831081 Li Nov 2010 B2
7846101 Eberle et al. Dec 2010 B2
7853104 Oota et al. Dec 2010 B2
7853316 Milner et al. Dec 2010 B2
7860555 Saadat Dec 2010 B2
7862508 Davies et al. Jan 2011 B2
7872759 Tearney et al. Jan 2011 B2
7880868 Aoki Feb 2011 B2
7881763 Brauker et al. Feb 2011 B2
7909844 Alkhatib et al. Mar 2011 B2
7921854 Hennings et al. Apr 2011 B2
7927784 Simpson Apr 2011 B2
7929148 Kemp Apr 2011 B2
7930014 Huennekens et al. Apr 2011 B2
7930104 Baker et al. Apr 2011 B2
7936462 Jiang et al. May 2011 B2
7942852 Mas et al. May 2011 B2
7947012 Spurchise et al. May 2011 B2
7951186 Eidenschink et al. May 2011 B2
7952719 Brennan, III May 2011 B2
7972353 Hendriksen et al. Jul 2011 B2
7976492 Brauker et al. Jul 2011 B2
7977950 Maslen Jul 2011 B2
7978916 Klingensmith et al. Jul 2011 B2
7981041 McGahan Jul 2011 B2
7981151 Rowe Jul 2011 B2
7983737 Feldman et al. Jul 2011 B2
7993333 Oral et al. Aug 2011 B2
7995210 Tearney et al. Aug 2011 B2
7996060 Trofimov et al. Aug 2011 B2
7999938 Wang Aug 2011 B2
8021377 Eskuri Sep 2011 B2
8021420 Dolan Sep 2011 B2
8036732 Milner Oct 2011 B2
8040586 Smith et al. Oct 2011 B2
8047996 Goodnow et al. Nov 2011 B2
8049900 Kemp et al. Nov 2011 B2
8050478 Li et al. Nov 2011 B2
8050523 Younge et al. Nov 2011 B2
8052605 Muller et al. Nov 2011 B2
8057394 Dala-Krishna Nov 2011 B2
8059923 Bates et al. Nov 2011 B2
8070800 Lock et al. Dec 2011 B2
8080800 Hoctor et al. Dec 2011 B2
8088102 Adams et al. Jan 2012 B2
8100838 Wright et al. Jan 2012 B2
8104479 Glynn et al. Jan 2012 B2
8108030 Castella et al. Jan 2012 B2
8114102 Galdonik et al. Feb 2012 B2
8116605 Petersen et al. Feb 2012 B2
8125648 Milner et al. Feb 2012 B2
8126239 Sun et al. Feb 2012 B2
8133199 Weber et al. Mar 2012 B2
8133269 Flechsenhar et al. Mar 2012 B2
8140708 Zaharia et al. Mar 2012 B2
8148877 Jiang et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8172757 Jaffe et al. May 2012 B2
8177809 Mavani et al. May 2012 B2
8187191 Hancock et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8187830 Hu et al. May 2012 B2
8199218 Lee et al. Jun 2012 B2
8206429 Gregorich et al. Jun 2012 B2
8208995 Tearney et al. Jun 2012 B2
8222906 Wyar et al. Jul 2012 B2
8233681 Aylward et al. Jul 2012 B2
8233718 Klingensmith et al. Jul 2012 B2
8238624 Doi et al. Aug 2012 B2
8239938 Simeral et al. Aug 2012 B2
8277386 Ahmed et al. Oct 2012 B2
8280470 Milner et al. Oct 2012 B2
8289284 Glynn et al. Oct 2012 B2
8289522 Tearney et al. Oct 2012 B2
8298147 Huennekens et al. Oct 2012 B2
8298149 Hastings et al. Oct 2012 B2
8301000 Sillard et al. Oct 2012 B2
8309428 Lemmerhirt et al. Nov 2012 B2
8317713 Davies et al. Nov 2012 B2
8323201 Towfiq et al. Dec 2012 B2
8329053 Martin et al. Dec 2012 B2
8336643 Harleman Dec 2012 B2
8349000 Schreck Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8353954 Cai et al. Jan 2013 B2
8357981 Martin et al. Jan 2013 B2
8361097 Patel et al. Jan 2013 B2
8386560 Ma et al. Feb 2013 B2
8398591 Mas et al. Mar 2013 B2
8412312 Judell et al. Apr 2013 B2
8417491 Trovato et al. Apr 2013 B2
8449465 Nair et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8454686 Alkhatib Jun 2013 B2
8475522 Jimenez et al. Jul 2013 B2
8478384 Schmitt et al. Jul 2013 B2
8486062 Belhe et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8491567 Magnin et al. Jul 2013 B2
8500798 Rowe et al. Aug 2013 B2
8550911 Sylla Oct 2013 B2
8594757 Boppart et al. Nov 2013 B2
8597349 Alkhatib Dec 2013 B2
8600477 Beyar et al. Dec 2013 B2
8600917 Schimert et al. Dec 2013 B1
8601056 Lauwers et al. Dec 2013 B2
8620055 Barratt et al. Dec 2013 B2
8644910 Rousso et al. Feb 2014 B2
20010007940 Tu et al. Jul 2001 A1
20010029337 Pantages et al. Oct 2001 A1
20010037073 White et al. Nov 2001 A1
20010046345 Snyder et al. Nov 2001 A1
20010049548 Vardi et al. Dec 2001 A1
20020034276 Hu et al. Mar 2002 A1
20020041723 Ronnekleiv et al. Apr 2002 A1
20020069676 Kopp, II et al. Jun 2002 A1
20020089335 Williams Jul 2002 A1
20020099289 Crowley Jul 2002 A1
20020163646 Anderson Nov 2002 A1
20020186818 Arnaud et al. Dec 2002 A1
20020196446 Roth et al. Dec 2002 A1
20020197456 Pope Dec 2002 A1
20030004412 Izatt et al. Jan 2003 A1
20030016604 Hanes Jan 2003 A1
20030018273 Corl et al. Jan 2003 A1
20030023153 Izatt et al. Jan 2003 A1
20030032886 Dgany et al. Feb 2003 A1
20030050871 Broughton Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069723 Hegde Apr 2003 A1
20030077043 Hamm et al. Apr 2003 A1
20030085635 Davidsen May 2003 A1
20030090753 Takeyama et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030093059 Griffin et al. May 2003 A1
20030103212 Westphal et al. Jun 2003 A1
20030152259 Belykh et al. Aug 2003 A1
20030181802 Ogawa Sep 2003 A1
20030187369 Lewis et al. Oct 2003 A1
20030194165 Silberberg et al. Oct 2003 A1
20030195419 Harada Oct 2003 A1
20030208116 Liang et al. Nov 2003 A1
20030212491 Mitchell et al. Nov 2003 A1
20030219202 Loeb et al. Nov 2003 A1
20030220749 Chen et al. Nov 2003 A1
20030228039 Green Dec 2003 A1
20040015065 Panescu et al. Jan 2004 A1
20040023317 Motamedi et al. Feb 2004 A1
20040028333 Lomas Feb 2004 A1
20040037742 Jen et al. Feb 2004 A1
20040042066 Kinoshita et al. Mar 2004 A1
20040054287 Stephens Mar 2004 A1
20040067000 Bates et al. Apr 2004 A1
20040068161 Couvillon Apr 2004 A1
20040082844 Vardi et al. Apr 2004 A1
20040092830 Scott et al. May 2004 A1
20040106853 Moriyama Jun 2004 A1
20040111552 Arimilli et al. Jun 2004 A1
20040126048 Dave et al. Jul 2004 A1
20040143160 Couvillon Jul 2004 A1
20040146546 Gravett et al. Jul 2004 A1
20040186369 Lam Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040195512 Crosetto Oct 2004 A1
20040220606 Goshgarian Nov 2004 A1
20040225220 Rich Nov 2004 A1
20040239938 Izatt Dec 2004 A1
20040242990 Brister et al. Dec 2004 A1
20040248439 Gernhardt et al. Dec 2004 A1
20040260236 Manning et al. Dec 2004 A1
20050013778 Green et al. Jan 2005 A1
20050031176 Hertel et al. Feb 2005 A1
20050036150 Izatt et al. Feb 2005 A1
20050078317 Law et al. Apr 2005 A1
20050101859 Maschke May 2005 A1
20050140582 Lee et al. Jun 2005 A1
20050140682 Sumanaweera et al. Jun 2005 A1
20050140981 Waelti Jun 2005 A1
20050140984 Hitzenberger Jun 2005 A1
20050147303 Zhou et al. Jul 2005 A1
20050165439 Weber et al. Jul 2005 A1
20050171433 Boppart et al. Aug 2005 A1
20050171438 Chen et al. Aug 2005 A1
20050182297 Gravenstein et al. Aug 2005 A1
20050196028 Kleen et al. Sep 2005 A1
20050197585 Brockway et al. Sep 2005 A1
20050213103 Everett et al. Sep 2005 A1
20050215942 Abrahamson et al. Sep 2005 A1
20050234445 Conquergood et al. Oct 2005 A1
20050243322 Lasker et al. Nov 2005 A1
20050249391 Kimmel et al. Nov 2005 A1
20050251567 Ballew et al. Nov 2005 A1
20050254059 Alphonse Nov 2005 A1
20050264823 Zhu et al. Dec 2005 A1
20060013523 Childlers et al. Jan 2006 A1
20060015126 Sher Jan 2006 A1
20060029634 Berg et al. Feb 2006 A1
20060036167 Shina Feb 2006 A1
20060038115 Maas Feb 2006 A1
20060039004 de Boer et al. Feb 2006 A1
20060041180 Viswanathan et al. Feb 2006 A1
20060045536 Arahira Mar 2006 A1
20060055936 Yun et al. Mar 2006 A1
20060058622 Tearney et al. Mar 2006 A1
20060064009 Webler et al. Mar 2006 A1
20060067620 Shishkov et al. Mar 2006 A1
20060072808 Grimm et al. Apr 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060098927 Schmidt et al. May 2006 A1
20060100694 Globerman May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060132790 Gutin Jun 2006 A1
20060135870 Webler Jun 2006 A1
20060142703 Carter et al. Jun 2006 A1
20060142733 Forsberg Jun 2006 A1
20060173299 Romley et al. Aug 2006 A1
20060179255 Yamazaki Aug 2006 A1
20060184048 Saadat Aug 2006 A1
20060187537 Huber et al. Aug 2006 A1
20060195269 Yeatman et al. Aug 2006 A1
20060204119 Feng et al. Sep 2006 A1
20060229591 Lee Oct 2006 A1
20060239312 Kewitsch et al. Oct 2006 A1
20060241342 Macaulay et al. Oct 2006 A1
20060241465 Huennekens et al. Oct 2006 A1
20060241503 Schmitt et al. Oct 2006 A1
20060244973 Yun et al. Nov 2006 A1
20060258895 Maschke Nov 2006 A1
20060264743 Kleen et al. Nov 2006 A1
20060267756 Kates Nov 2006 A1
20060270976 Savage et al. Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060279742 Tearney et al. Dec 2006 A1
20060279743 Boesser et al. Dec 2006 A1
20060285638 Boese et al. Dec 2006 A1
20060287595 Maschke Dec 2006 A1
20060293597 Johnson et al. Dec 2006 A1
20070015969 Feldman et al. Jan 2007 A1
20070016029 Donaldson et al. Jan 2007 A1
20070016034 Donaldson Jan 2007 A1
20070016062 Park et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070036417 Argiro et al. Feb 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070038121 Feldman et al. Feb 2007 A1
20070038125 Kleen et al. Feb 2007 A1
20070043292 Camus et al. Feb 2007 A1
20070043597 Donaldson Feb 2007 A1
20070049847 Osborne Mar 2007 A1
20070060973 Ludvig et al. Mar 2007 A1
20070065077 Childers et al. Mar 2007 A1
20070066888 Maschke Mar 2007 A1
20070066890 Maschke Mar 2007 A1
20070066983 Maschke Mar 2007 A1
20070084995 Newton et al. Apr 2007 A1
20070100226 Yankelevitz et al. May 2007 A1
20070135887 Maschke Jun 2007 A1
20070142707 Wiklof et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070161893 Milner et al. Jul 2007 A1
20070161896 Adachi et al. Jul 2007 A1
20070161963 Smalling Jul 2007 A1
20070162860 Muralidharan et al. Jul 2007 A1
20070165141 Srinivas et al. Jul 2007 A1
20070167710 Unal et al. Jul 2007 A1
20070167804 Park et al. Jul 2007 A1
20070191682 Rolland et al. Aug 2007 A1
20070201736 Klingensmith Aug 2007 A1
20070206193 Pesach Sep 2007 A1
20070208276 Kornkven Volk et al. Sep 2007 A1
20070225220 Ming et al. Sep 2007 A1
20070225590 Ramos Sep 2007 A1
20070229801 Tearney et al. Oct 2007 A1
20070232872 Prough et al. Oct 2007 A1
20070232874 Ince Oct 2007 A1
20070232890 Hirota Oct 2007 A1
20070232891 Hirota Oct 2007 A1
20070232892 Hirota Oct 2007 A1
20070232893 Tanioka Oct 2007 A1
20070232933 Gille et al. Oct 2007 A1
20070238957 Yared Oct 2007 A1
20070247033 Eidenschink et al. Oct 2007 A1
20070250000 Magnin et al. Oct 2007 A1
20070250036 Volk et al. Oct 2007 A1
20070258094 Izatt et al. Nov 2007 A1
20070260138 Feldman et al. Nov 2007 A1
20070278389 Ajgaonkar et al. Dec 2007 A1
20070287914 Cohen Dec 2007 A1
20080002183 Yatagai et al. Jan 2008 A1
20080013093 Izatt et al. Jan 2008 A1
20080021275 Tearney et al. Jan 2008 A1
20080027481 Gilson et al. Jan 2008 A1
20080043024 Schiwietz et al. Feb 2008 A1
20080045842 Furnish Feb 2008 A1
20080051660 Kakadaris et al. Feb 2008 A1
20080063304 Russak et al. Mar 2008 A1
20080085041 Breeuwer Apr 2008 A1
20080095465 Mullick et al. Apr 2008 A1
20080095714 Castella et al. Apr 2008 A1
20080097194 Milner Apr 2008 A1
20080101667 Begelman et al. May 2008 A1
20080108867 Zhou May 2008 A1
20080114254 Matcovitch et al. May 2008 A1
20080119739 Vardi et al. May 2008 A1
20080124495 Horn et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080139897 Ainsworth et al. Jun 2008 A1
20080143707 Mitchell Jun 2008 A1
20080146941 Dala-Krishna Jun 2008 A1
20080147111 Johnson et al. Jun 2008 A1
20080154128 Milner Jun 2008 A1
20080161696 Schmitt et al. Jul 2008 A1
20080171944 Brenneman et al. Jul 2008 A1
20080175465 Jiang et al. Jul 2008 A1
20080177183 Courtney et al. Jul 2008 A1
20080180683 Kemp Jul 2008 A1
20080181477 Izatt et al. Jul 2008 A1
20080187201 Liang et al. Aug 2008 A1
20080228086 Ilegbusi et al. Sep 2008 A1
20080247622 Aylward et al. Oct 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080262470 Lee et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080269599 Csavoy et al. Oct 2008 A1
20080281205 Naghavi et al. Nov 2008 A1
20080281248 Angheloiu et al. Nov 2008 A1
20080285043 Fercher et al. Nov 2008 A1
20080287795 Klingensmith et al. Nov 2008 A1
20080291463 Milner et al. Nov 2008 A1
20080292173 Hsieh et al. Nov 2008 A1
20080294034 Krueger et al. Nov 2008 A1
20080298655 Edwards Dec 2008 A1
20080306766 Ozeki et al. Dec 2008 A1
20090009801 Tabuki Jan 2009 A1
20090018393 Dick et al. Jan 2009 A1
20090034813 Dikmen et al. Feb 2009 A1
20090043191 Castella et al. Feb 2009 A1
20090046295 Kemp et al. Feb 2009 A1
20090052614 Hempel et al. Feb 2009 A1
20090069843 Agnew Mar 2009 A1
20090079993 Yatagai et al. Mar 2009 A1
20090088650 Corl Apr 2009 A1
20090093980 Kemp et al. Apr 2009 A1
20090122320 Petersen et al. May 2009 A1
20090138544 Wegenkittl et al. May 2009 A1
20090149739 Maschke Jun 2009 A9
20090156941 Moore Jun 2009 A1
20090174886 Inoue Jul 2009 A1
20090174931 Huber et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090177183 Pinkernell et al. Jul 2009 A1
20090195514 Glynn et al. Aug 2009 A1
20090196470 Carl et al. Aug 2009 A1
20090198125 Nakabayashi et al. Aug 2009 A1
20090203991 Papaioannou et al. Aug 2009 A1
20090264768 Courtney et al. Oct 2009 A1
20090269014 Winberg et al. Oct 2009 A1
20090270695 McEowen Oct 2009 A1
20090284322 Harrison et al. Nov 2009 A1
20090284332 Moore et al. Nov 2009 A1
20090284749 Johnson et al. Nov 2009 A1
20090290167 Flanders et al. Nov 2009 A1
20090292048 Li et al. Nov 2009 A1
20090299195 Muller et al. Dec 2009 A1
20090299284 Holman et al. Dec 2009 A1
20090318951 Kashkarov et al. Dec 2009 A1
20090326634 Vardi Dec 2009 A1
20100007669 Bethune et al. Jan 2010 A1
20100030042 Denninghoff et al. Feb 2010 A1
20100061611 Xu et al. Mar 2010 A1
20100063400 Hall et al. Mar 2010 A1
20100087732 Eberle et al. Apr 2010 A1
20100094125 Younge et al. Apr 2010 A1
20100094127 Xu Apr 2010 A1
20100094135 Fang-Yen et al. Apr 2010 A1
20100094143 Mahapatra et al. Apr 2010 A1
20100113919 Maschke May 2010 A1
20100125238 Lye et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100125648 Zaharia et al. May 2010 A1
20100128348 Taverner May 2010 A1
20100152717 Keeler Jun 2010 A1
20100160788 Davies et al. Jun 2010 A1
20100161023 Cohen et al. Jun 2010 A1
20100168714 Burke et al. Jul 2010 A1
20100179421 Tupin Jul 2010 A1
20100179426 Davies et al. Jul 2010 A1
20100220334 Condit et al. Sep 2010 A1
20100226607 Zhang et al. Sep 2010 A1
20100234736 Corl Sep 2010 A1
20100249601 Courtney Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100272432 Johnson Oct 2010 A1
20100284590 Peng et al. Nov 2010 A1
20100290693 Cohen et al. Nov 2010 A1
20100331950 Strommer Dec 2010 A1
20110010925 Nix et al. Jan 2011 A1
20110021926 Spencer et al. Jan 2011 A1
20110025853 Richardson Feb 2011 A1
20110026797 Declerck et al. Feb 2011 A1
20110032533 Izatt et al. Feb 2011 A1
20110034801 Baumgart Feb 2011 A1
20110044546 Pan et al. Feb 2011 A1
20110066073 Kuiper et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110072405 Chen et al. Mar 2011 A1
20110077528 Kemp et al. Mar 2011 A1
20110080591 Johnson et al. Apr 2011 A1
20110087104 Moore et al. Apr 2011 A1
20110137140 Tearney et al. Jun 2011 A1
20110144502 Zhou et al. Jun 2011 A1
20110152771 Milner et al. Jun 2011 A1
20110157597 Lu et al. Jun 2011 A1
20110160586 Li et al. Jun 2011 A1
20110178413 Schmitt et al. Jul 2011 A1
20110190586 Kemp Aug 2011 A1
20110216378 Poon et al. Sep 2011 A1
20110220985 Son et al. Sep 2011 A1
20110238061 van der Weide et al. Sep 2011 A1
20110238083 Moll et al. Sep 2011 A1
20110245669 Zhang Oct 2011 A1
20110249094 Wang et al. Oct 2011 A1
20110257545 Suri Oct 2011 A1
20110264125 Wilson et al. Oct 2011 A1
20110274329 Mathew et al. Nov 2011 A1
20110282334 Groenhoff Nov 2011 A1
20110301684 Fischell et al. Dec 2011 A1
20110306995 Moberg Dec 2011 A1
20110319752 Steinberg Dec 2011 A1
20120004529 Tolkowsky et al. Jan 2012 A1
20120004668 Wallace et al. Jan 2012 A1
20120013914 Kemp et al. Jan 2012 A1
20120016344 Kusakabe Jan 2012 A1
20120016395 Olson Jan 2012 A1
20120022360 Kemp Jan 2012 A1
20120026503 Lewandowski et al. Feb 2012 A1
20120029007 Graham et al. Feb 2012 A1
20120033866 Masumoto Feb 2012 A1
20120059253 Wang et al. Mar 2012 A1
20120059368 Takaoka et al. Mar 2012 A1
20120062843 Ferguson et al. Mar 2012 A1
20120065481 Hunter et al. Mar 2012 A1
20120065511 Jamello, III Mar 2012 A1
20120071823 Chen Mar 2012 A1
20120071838 Fojtik Mar 2012 A1
20120075638 Rollins et al. Mar 2012 A1
20120083696 Kitamura Apr 2012 A1
20120095340 Smith Apr 2012 A1
20120095372 Sverdlik et al. Apr 2012 A1
20120108943 Bates et al. May 2012 A1
20120113108 Dala-Krishna May 2012 A1
20120116353 Arnold et al. May 2012 A1
20120130243 Balocco et al. May 2012 A1
20120130247 Waters et al. May 2012 A1
20120136259 Milner et al. May 2012 A1
20120136427 Palmaz et al. May 2012 A1
20120137075 Vorbach May 2012 A1
20120155734 Barratt et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120162660 Kemp Jun 2012 A1
20120165661 Kemp et al. Jun 2012 A1
20120170848 Kemp et al. Jul 2012 A1
20120172698 Teo et al. Jul 2012 A1
20120176607 Ott Jul 2012 A1
20120184853 Waters Jul 2012 A1
20120184859 Shah et al. Jul 2012 A1
20120184977 Wolf Jul 2012 A1
20120215094 Rahimian et al. Aug 2012 A1
20120220836 Alpert et al. Aug 2012 A1
20120220851 Razansky et al. Aug 2012 A1
20120220865 Brown et al. Aug 2012 A1
20120220874 Hancock et al. Aug 2012 A1
20120220883 Manstrom et al. Aug 2012 A1
20120224751 Kemp et al. Sep 2012 A1
20120226153 Brown et al. Sep 2012 A1
20120230565 Steinberg et al. Sep 2012 A1
20120232400 Dickinson et al. Sep 2012 A1
20120238869 Schmitt et al. Sep 2012 A1
20120238956 Yamada et al. Sep 2012 A1
20120244043 Leblanc et al. Sep 2012 A1
20120250028 Schmitt et al. Oct 2012 A1
20120253186 Simpson et al. Oct 2012 A1
20120253192 Cressman Oct 2012 A1
20120253276 Govari et al. Oct 2012 A1
20120257210 Whitney et al. Oct 2012 A1
20120262720 Brown et al. Oct 2012 A1
20120265077 Gille et al. Oct 2012 A1
20120265268 Blum et al. Oct 2012 A1
20120265296 McNamara et al. Oct 2012 A1
20120271170 Emelianov et al. Oct 2012 A1
20120271175 Moore et al. Oct 2012 A1
20120271339 O'Beirne et al. Oct 2012 A1
20120274338 Baks et al. Nov 2012 A1
20120276390 Ji et al. Nov 2012 A1
20120277722 Gerber et al. Nov 2012 A1
20120279764 Jiang et al. Nov 2012 A1
20120283758 Miller et al. Nov 2012 A1
20120289987 Wilson et al. Nov 2012 A1
20120299439 Huang Nov 2012 A1
20120310081 Adler et al. Dec 2012 A1
20120310332 Murray et al. Dec 2012 A1
20120319535 Dausch Dec 2012 A1
20120323075 Younge et al. Dec 2012 A1
20120323127 Boyden et al. Dec 2012 A1
20120330141 Brown et al. Dec 2012 A1
20130015975 Huennekens et al. Jan 2013 A1
20130023762 Huennekens et al. Jan 2013 A1
20130023763 Huennekens et al. Jan 2013 A1
20130026655 Lee et al. Jan 2013 A1
20130030295 Huennekens et al. Jan 2013 A1
20130030303 Ahmed et al. Jan 2013 A1
20130030410 Drasler et al. Jan 2013 A1
20130053949 Pintor et al. Feb 2013 A1
20130109958 Baumgart et al. May 2013 A1
20130109959 Baumgart et al. May 2013 A1
20130137980 Waters et al. May 2013 A1
20130150716 Stigall et al. Jun 2013 A1
20130158594 Carrison et al. Jun 2013 A1
20130218201 Obermiller et al. Aug 2013 A1
20130218267 Braido et al. Aug 2013 A1
20130223789 Lee et al. Aug 2013 A1
20130223798 Jenner et al. Aug 2013 A1
20130296704 Magnin et al. Nov 2013 A1
20130303907 Corl Nov 2013 A1
20130303920 Corl Nov 2013 A1
20130310698 Judell et al. Nov 2013 A1
20130331820 Itou et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130339958 Droste et al. Dec 2013 A1
20140039294 Jiang Feb 2014 A1
20140180067 Stigall et al. Jun 2014 A1
20140180128 Corl Jun 2014 A1
20140200438 Millett et al. Jul 2014 A1
Foreign Referenced Citations (80)
Number Date Country
1041373 Oct 2000 EP
01172637 Jan 2002 EP
2438877 Apr 2012 EP
2280261 Jan 1995 GB
2000-262461 Sep 2000 JP
2000-292260 Oct 2000 JP
2001-125009 May 2001 JP
2001-272331 Oct 2001 JP
2002-374034 Dec 2002 JP
2003-143783 May 2003 JP
2003-172690 Jun 2003 JP
2003-256876 Sep 2003 JP
2003-287534 Oct 2003 JP
2005-274380 Oct 2005 JP
2006-184284 Jul 2006 JP
2006-266797 Oct 2006 JP
2006-313158 Nov 2006 JP
2007-024677 Feb 2007 JP
2009-233001 Oct 2009 JP
2011-56786 Mar 2011 JP
9101156 Feb 1991 WO
9216865 Oct 1992 WO
9306213 Apr 1993 WO
9308829 May 1993 WO
9838907 Sep 1998 WO
9857583 Dec 1998 WO
0011511 Mar 2000 WO
00044296 Aug 2000 WO
0111409 Feb 2001 WO
03062802 Jul 2003 WO
03073950 Sep 2003 WO
2004010856 Feb 2004 WO
2004023992 Mar 2004 WO
2004096049 Nov 2004 WO
2005047813 May 2005 WO
2005106695 Nov 2005 WO
2006029634 Mar 2006 WO
2006037132 Apr 2006 WO
2006039091 Apr 2006 WO
2006061829 Jun 2006 WO
2006068875 Jun 2006 WO
2006111704 Oct 2006 WO
2006119416 Nov 2006 WO
2006121851 Nov 2006 WO
2006130802 Dec 2006 WO
2007002685 Jan 2007 WO
2007025230 Mar 2007 WO
2007045690 Apr 2007 WO
2007058895 May 2007 WO
2007067323 Jun 2007 WO
2007084995 Jul 2007 WO
2008058084 May 2008 WO
2008069991 Jun 2008 WO
2008107905 Sep 2008 WO
2009009799 Jan 2009 WO
2009009801 Jan 2009 WO
2009046431 Apr 2009 WO
2009121067 Oct 2009 WO
2009137704 Nov 2009 WO
201106886 Jan 2011 WO
2011038048 Mar 2011 WO
2011081688 Jul 2011 WO
2012003369 Jan 2012 WO
2012061935 May 2012 WO
2012071388 May 2012 WO
2012087818 Jun 2012 WO
2012098194 Jul 2012 WO
2012109676 Aug 2012 WO
WO 2012109676 Aug 2012 WO
2012130289 Oct 2012 WO
2012154767 Nov 2012 WO
2012155040 Nov 2012 WO
2013033414 Mar 2013 WO
2013033415 Mar 2013 WO
2013033418 Mar 2013 WO
2013033489 Mar 2013 WO
2013033490 Mar 2013 WO
2013033592 Mar 2013 WO
2013126390 Aug 2013 WO
2014109879 Jul 2014 WO
Non-Patent Literature Citations (190)
Entry
Little et al., 1991, The underlying coronary lesion in myocardial infarction:implications for coronary angiography, Clinica Cardiology, 14(11):868-874.
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40.
Machine translation of JP 2000-097846.
Machine translation of JP 2000-321034.
Machine translation of JP 2000-329534.
Machine translation of JP 2004-004080.
Maintz et al., 1998, An Overview of Medical Image Registration Methods, Technical Report UU-CS, (22 pages).
Mamas et al., 2010, Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve, Journal of Invasive Cardiology 22(6):260-265.
Marks et al., 1991, By-passing Immunization Human Antibodies from V-gene Libraries Displayed on Phage, J. Mol. Biol. 222:581-597.
Marks et al., 1992, By-Passing Immunization:Building High Affinity Human Antibodies by Chain Shuffling, BioTechnol., 10:779-783.
Maruno et al., 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148.
McCafferty et al., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552-554.
Mendieta et al., 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46.
Mickley, 2008, Steal Syndrome-strategies to preserve vascular access and extremity, Nephrol Dial Transplant 23:19-24.
Miller et al., 2010, The MILLER banding procedure is an effective method for treating dialysis-associated steal syndrome, Kidney International 77:359-366.
Milstein et al., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540.
Mindlin et al., 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202.
Morrison et al., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855.
Munson et al., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239.
Nezam, 2008, High Speed Polygon-Scanner-Based Wavelength-Swept Laser Source in the Telescope-Less Configurations with Application in Optical Coherence Tomography, Optics Letters 33(15):1741-1743.
Nissan, 2001, Coronary Angiography and Intravascular Ultrasound, American Journal of Cardiology, 87(suppl):15A-20A.
Nitenberg et al., 1995, Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results, Eur Heart J. 16(Suppl 1):7-21.
Notice of Reason(s) for Refusal dated Apr. 30, 2013, for Japanese Patent Application No. 2011-508677 for Optical Imaging Catheter for Aberation Balancing to Volcano Corporation, which application is a Japanese national stage entry of PCT/US2009/043181 with international filing date May 7, 2009, of the same title, published on Nov. 12, 2009, as WO 2009/137704, and accompanying English translation of the Notice of Reason(s) for Refusal and machine translations of JP11-56786 and JP2004-290548 (56 pages).
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412.
Oesterle et al., 1986, Angioplasty at coronary bifurcations: single-guide, two-wire technique, Cathet Cardiovasc Diagn., 12:57-63.
Okuno et al., 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30.
Oldenburg et al., 1998, Nanoengineering of Optical Resonances, Chemical Physics Letters 288:243-247.
Oldenburg et al., 2003, Fast-Fourier-Domain Delay Line for In Vivo Optical Coherence Tomography with a Polygonal Scanner, Applied Optics, 42(22):4606-4611.
Othonos, 1997, Fiber Bragg gratings, Review of Scientific Instruments 68(12):4309-4341.
Owens et al., 2007, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum 26(1):80-113.
Pain et al., 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30.
Park et al., 2005, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um., Optics Express 13(11):3931-3944.
Pasquesi et al., 2006, In vivo detection of exercise induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography, Optics Express 14(4):1547-1556.
Pepe et al., 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890.
Persson et al., 1985, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics, 23(2):83-89.
Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Medical Physics 39(1):4-17.
Rabbani et al., 1999, Review: Strategies to achieve coronary arterial plaque stabilization, Cardiovascular Research 41:402-417.
Radvany et al., 2008, Plaque Excision in Management of Lower Extremity Peripheral Arterial Disease with the SilverHawk Atherectomy Catheter, Seminars in Interventional Radiology, 25(1):11-19.
Reddy et al., 1996, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE Transaction on Image Processing 5(8):1266-1271.
Riechmann et al., 1988, Reshaping human antibodies for therapy, Nature, 332:323-327.
Rivers et al., 1992, Correction of steal syndrome secondary to hemodialysis access fistulas: a simplified quantitative technique, Surgery, 112(3):593-7.
Robbin et al., 2002, Hemodialysis Arteriovenous Fistula Maturity: US Evaluation, Radiology 225:59-64.
Rollins et al., 1998, In vivo video rate optical coherence tomography, Optics Express 3:219-229.
Sarunic et al., 2005, Instantaneous Complex Conjugate Resolved Spectral Domain and Swept-Source OCT Using 3x3 Fiber Couplers, Optics Express 13(3):957-967.
Satiani et al., 2009, Predicted Shortage of Vascular Surgeons in the United States, J. Vascular Surgery 50:946-952.
Schneider et al., 2006, T-banding: A technique for flow reduction of a hyper-functioning arteriovenous fistula, J Vase Surg. 43(2):402-405.
Sen et al., 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402.
Setta et al., 2005, Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis, Human Reproduction, 20(11):3114-3121.
Seward et al., 1996, Ultrasound Cardioscopy: Embarking on New Journey, Mayo Clinic Proceedings 71(7):629-635.
Shen et al., 2006, Eigengene-based linear discriminant model for tumor classification using gene expression microarray data, Bioinformatics 22(21):2635-2642.
Sihan et al., 2008, A novel approach to quantitative analysis of intraluminal optical coherence tomography imaging, Comput. Cardiol:1089-1092.
Siwy et al., 2003, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Applied Physics A: Materials Science & Processing 76:781-785.
Smith et al., 1989, Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer, Applied Optics, 28(16):3339-3342.
Smith, 1997, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA:432-436.
Soller, 2003, Polarization diverse optical frequency domain interferometry:All coupler implementation, Bragg Grating, Photosensitivity, and Poling in Glass Waveguides Conference MB4:30-32.
Song et al., 2012, Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography, Optics Express, 20(21):23414-23421.
Stenqvist et al., 1983, Stiffness of central venous catheters, Acta Anaesthesiol Scand., 2:153-157.
Strickland, 1970, Time-Domain Reflectometer Measurements, Tektronix, Beaverton, OR, (107 pages).
Strobl et al., 2009, An Introduction to Recursive Partitioning:Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests, Psychol Methods., 14(4):323-348.
Sutcliffe et al., 1986, Dynamics of UV laser ablation of organic polymer surfaces, Journal of Applied Physics, 60(9):3315-3322.
Suzuki, 2013, A novel guidewire approach for handling acute-angle bifurcations, J Inv Cardiol 25(1):48-54.
Tanimoto et al., 2008, A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection, Cathet Cardiovascular Intervent., 72(2):228-235.
Tearney et al., 1997, In vivo Endoscopic Optical Biopsy with Optical Coherence Tomography, Science, 276:2037-2039.
Tonino et al., 2009, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention, The New England Journal of Medicine, 360:213-224.
Toregeani et al., 2008, Evaluation of hemodialysis arteriovenous fistula maturation by color-flow Doppler ultrasound, J Vasc. Bras. 7(3):203-213.
Translation of Notice of Reason(s) for Refusal dated Apr. 30, 2014, for Japanese Patent Application No. 2011-508677, (5 pages).
Translation of Notice of Reason(s) for Refusal dated May 25, 2012, for Japanese Patent Application No. 2009-536425, (3 pages).
Translation of Notice of Reason(s) for Refusal dated Nov. 22, 2012, for Japanese Patent Application No. 2010-516304, (6 pages).
Traunecker et al., 1991, Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells EMBO J., 10:3655-3659.
Trolier-McKinstry et. al., 2004, Thin Film Piezoelectric for MEMS, Journal of Electroceramics 12:7-17.
Tuniz et al., 2010, Weaving the invisible thread: design of an optically invisible metamaterial fibre, Optics Express 18(17):18095-18105.
Turk et al., 1991, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3(1):71-86.
Tuzel et al., 2006, Region Covariance: A Fast Descriptor for Detection and Classification, European Conference on Computer Vision (ECCV).
Urban et al., 2010, Design of a Pressure Sensor Based on Optical Bragg Grating Lateral Deformation, Sensors (Basel), 10(12):11212-11225.
Vakhtin et al., 2003, Common-path interferometer for frequency-domain optical coherence tomography, Applied Optics, 42(34):6953-6958.
Vakoc et al., 2005, Phase-Resolved Optical Frequency Domain Imaging, Optics Express 13(14):5483-5493.
Verhoeyen et al., 1988, Reshaping human antibodies: grafting an antilysozyme activity, Science, 239:1534-1536.
Villard et al., 2002, Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography, Circulation, 105:1843-1849.
Wang et al., 2002, Optimizing the Beam Patten of a Forward-Viewing Ring-Annular Ultrasound Array for Intravascular Imaging, Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(12).
Wang et al., 2006, Multiple biomarkers for the prediction of first major cardiovascular events and death, The New England Journal of Medicine, 355(25):2631-2639.
Wang et al., 2009, Robust Guidewire Tracking in Fluoroscopy, IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2009:691-698.
Wang et al., 2011, In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation, J. Biomed. Opt. 0001 16(11):110505-1 (3 pages).
Waterhouse et. al., 1993, Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires, Nucleic Acids Res., 21:2265-2266.
Wegener, 2011, 3D Photonic Metamaterials and Invisibility Cloaks: The Method of Making, MEMS 2011, Cancun, Mexico, Jan. 23-27, 2011.
West et al., 1991, Arterial insufficiency in hemodialysis access procedures: correction by banding technique, Transpl Proc 23(2):1838-40.
Wyawahare et al., 2009, Image registration techniques: an overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3):11-28.
Yaqoob et al., 2006, Methods and application areas of endoscopic optical coherence tomography, J. Biomed. Opt., 11, 063001-1-063001-19.
Yasuno et al., 2004, Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples, Applied Physics Letters 85(15):3023-3025.
Zhang et al., 2004, Full range polarization-sensitive Fourier domain optical coherence tomography, Optics Express, 12(24):6033-6039.
Zitova et al., 2003, Image registration methods: A survey. Image and Vision Computing, 21(11):977-1000.
International Search Report and Written Opinion dated Nov. 2, 2012, for International Patent Application No. PCT/US12/53168, filed Aug. 30, 2013 (8 pages).
International Search Report and Written Opinion dated Apr. 14, 2014, for International Patent Application No. PCT/US2013/076148, filed Dec. 18, 2013 (8 pages).
International Search Report and Written Opinion dated Apr. 21, 2014, for International Patent Application No. PCT/US2013/076015, filed Dec. 18, 2013 (7 pages).
International Search Report and Written Opinion dated Apr. 23, 2014, for International Patent Application No. PCT/US2013/075328, filed Dec. 16, 2013 (8 pages).
International Search Report and Written Opinion dated Apr. 29, 2014, for International Patent Application No. PCT/US13/76093, filed Dec. 18, 2013 (6 pages).
International Search Report and Written Opinion dated Apr. 9, 2014, for International Patent Application No. PCT/US13/75089, filed Dec. 13, 2013 (7 pages).
International Search Report and Written Opinion dated Feb. 21, 2014, for International Patent Application No. PCT/US13/76053, filed Dec. 18, 2013 (9 pages).
International Search Report and Written Opinion dated Feb. 21, 2014, for International Patent Application No. PCT/US2013/076965, filed Dec. 20, 2013 (6 pages).
International Search Report and Written Opinion dated Feb. 27, 2014, for International Patent Application No. PCT/US13/75416, filed Dec. 16, 2013 (7 pages).
International Search Report and Written Opinion dated Feb. 28, 2014, for International Patent Application No. PCT/US13/75653, filed Dec. 17, 2013 (7 pages).
International Search Report and Written Opinion dated Feb. 28, 2014, for International Patent Application No. PCT/US13/75990, filed Dec. 18, 2013 (7 pages).
International Search Report and Written Opinion dated Jan. 16, 2009, for International Patent Application No. PCT/US08/78963 filed on Oct. 6, 2008 (7 Pages).
International Search Report and Written Opinion dated Jul. 30, 2014, for International Patent Application No. PCT/US14/21659, filed Mar. 7, 2014 (15 pages).
International Search Report and Written Opinion dated Mar. 10, 2014, for International Patent Application No. PCT/US2013/076212, filed Dec. 18, 2013 (8 pages).
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/76173, filed Dec. 16, 2013 (9 pages).
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/76449, filed Dec. 19, 2013 (9 pages).
International Search Report and Written Opinion dated Mar. 18, 2014, for International Patent Application No. PCT/US2013/076502, filed Dec. 19, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 18, 2014, for International Patent Application No. PCT/US2013/076788, filed Dec. 20, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US13/75349, filed Dec. 16, 2013 (10 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US2013/076587, filed Dec. 19, 2013 (10 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US2013/076909, filed Dec. 20, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076304, filed Dec. 18, 2013 (9 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076480, filed Dec. 19, 2013 (8 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076512, filed Dec. 19, 2013 (8 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076531, filed Dec. 19, 2013 (10 pages).
Jakobovits et al., 1993, Analysis of homozygous mutant chimeric mice:deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255.
Jakobovits et al., 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258.
Jang et al., 2002, Visualization of Coronary Atherosclerotic Plaques in Patients Using Optical Coherence Tomography: Comparison With Intravascular Ultrasound, Journal of the American College of Cardiology 39:604-609.
Jiang et al., 1992, Image registration of multimodality 3-D medical images by chamfer matching, Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, 356-366.
Johnson et al., 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571.
Jones et al., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525.
Juviler et al., 2008, Anorectal sepsis and fistula-in-ano, Surgical Technology International, 17:139-149.
Karapatis et al., 1998, Direct rapid tooling:a review of current research, Rapid Prototyping Journal, 4(2):77-89.
Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470.
Kelly et al., 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336.
Kemp et al., 2005, Depth Resolved Optic Axis Orientation in Multiple Layered Anisotropic Tissues Measured with Enhanced Polarization Sensitive Optical Coherence Tomography, Optics Express 13(12):4507-4518.
Kersey et al., 1991, Polarization insensitive fiber optic Michelson interferometer, Electron. Lett. 27:518-520.
Kheir et al., 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages).
Khuri-Yakub et al., 2011, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, J Micromech Microeng. 21(5):054004-054014.
Kirkman, 1991, Technique for flow reduction in dialysis access fistulas, Surg Gyn Obstet, 172(3):231-3.
Kohler et al., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7.
Koo et al., 2011, Diagnosis of IschemiaCausing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms, J Am Coll Cardiol 58(19):1989-1997.
Kozbor et al., 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005.
Kruth et al., 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371.
Kumagai et al., 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852.
Larin et al., 2002, Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography: a pilot study in human subjects, Diabetes Care, 25(12):2263-7.
Larin et al., 2004, Measurement of Refractive Index Variation of Physiological Analytes using Differential Phase OCT, Proc of SPIE 5325:31-34.
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162.
Lefevre et al., 2001, Stenting of bifurcation lesions:a rational approach, J. Interv. Cardiol., 14(6):573-585.
Li et al., 2000, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, 32(12):921-930.
Abdi et al., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2:433-459.
Adler et al., 2007, Phase-Sensitive Optical Coherence Tomography at up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers, Optics Letters, 32(6):626-628.
Agresti, 1996, Models for Matched Pairs, Chapter 8, An Introduction to Categorical Data Analysis, Wiley-Interscience A John Wiley & Sons, Inc., Publication, Hoboken, New Jersey.
Akasheh et al., 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287.
Amini et al., 1990, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855-867.
Bail et al., 1996, Optical coherence tomography with the “Spectral Radar”-Fast optical analysis in volume scatterers by short coherence interferometry, Optics Letters 21(14):1087-1089.
Bain, 2011, Privacy protection and face recognition, Chapter 3, Handbook of Face Recognition, Stan et al., Springer-Verlag.
Barnea et al., 1972, A class of algorithms for fast digital image registration, IEEE Trans. Computers, 21(2):179-186.
Blanchet et al., 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721.
Bonnema, 2008, Imaging Tissue Engineered Blood Vessel Mimics with Optical Tomography, College of Optical Sciences dissertation, University of Arizona (252 pages).
Bouma et al., 1999, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters, 24(8):531-533.
Breiman, 2001, Random forests, Machine Learning 45:5-32.
Brown, 1992, A survey of image registration techniques, ACM Computing Surveys 24(4):325-376.
Bruining et al., 2009, Intravascular Ultrasound Registration/Integration with Coronary Angiography, Cardiology Clinics, 27(3):531-540.
Brummer, 1997, An euclidean distance measure between covariance matrices of speechcepstra for text-independent speaker recognition, in Proc. South African Symp. Communications and Signal Processing:167-172.
Burr et al., 2005, Searching for the Center of an Ellipse in Proceedings of the 17th Canadian Conference on Computational Geometry:260-263.
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698.
Cavalli et al., 2010, Nanosponge formulations as oxygen delivery systems, International Journal of Pharmaceutics 402:254-257.
Choma et al., 2003, Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography, Optics Express 11(18):2183-2189.
Clarke et al., 1995, Hypoxia and myocardial ischaemia during peripheral angioplasty, Clinical Radiology, 50(5):301-303.
Collins, 1993, Coronary flow reserve, British Heart Journal 69:279-281.
Communication Mechanisms for Distributed Real-Time Applications, NI Developer Zone, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007.
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35.
D'Agostino et al., 2001, Validation of the Framingham coronary heart disease prediction score: results of a multiple ethnic group investigation, JAMA 286:180-187.
David et al., 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021.
Davies et al., 1985, Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, British Heart Journal 53:363-373.
Davies et al., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, British Heart Journal 69:377-381.
Deterministic Data Streaming in Distributed Data Acquisition Systems, NI Developer Zone, “What is Developer Zone?”, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007.
Eigenwillig, 2008, K-Space Linear Fourier Domain Mode Locked Laser and Applications for Optical Coherence Tomography, Optics Express 16(12):8916-8937.
Elghanian et al., 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080.
Ergun et al., 2003, Capacitive Micromachined Ultrasonic Transducers:Theory and Technology, Journal of Aerospace Engineering, 16(2):76-84.
Evans et al., 2006, Optical coherence tomography to identify intramucosa carcinoma and high-grade dysplasia in Barrett's esophagus, Clin Gast Hepat 4(1):38-43.
Fatemi et al., 1999, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, PNAS U.S.A., 96(12):6603-6608.
Felzenszwalb et al., 2005, Pictorial Structures for Object Recognition, International Journal of Computer Vision, 61(1):55-79.
Ferring et al., 2008, Vasculature ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence, Nephrol. Dial. Transplant. 23(6):1809-1815.
Fischler et al., 1973, The representation and matching of pictorial structures, IEEE Transactions on Computer 22:67-92.
Fleming et al., 2010, Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter, Journal of Biomedical Optics 15 (3):030516-1 (3 pages).
Fookes et al., 2002, Rigid and non-rigid image registration and its association with mutual information:A review, Technical Report ISBN:1 86435 569 7, RCCVA, QUT.
Forstner & Moonen, 1999, A metric for covariance matrices, in Technical Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, 113-128.
Goel et al., 2006, Minimally Invasive Limited Ligation Endoluminal-assisted Revision (MILLER) for treatment of dialysis access-associated steal syndrome, Kidney Int 70(4):765-70.
Gotzinger et al., 2005, High speed spectral domain polarization sensitive optical coherence tomography of the human retina, Optics Express 13(25):10217-10229.
Gould et al., 1974, Physiologic basis for assessing critical coronary stenosis, American Journal of Cardiology, 33:87-94.
Griffiths et al., 1993, Human anti-self antibodies with high specificity from phage display libraries, The EMBO Journal, 12:725-734.
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, The EMBO Journal, 13(14):3245-3260.
Grund et al., 2010, Analysis of biomarker data:logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479.
Harrison et al., 2011, Guidewire Stiffness: What's in a name?, J Endovasc Ther, 18(6):797-801.
Huber et al., 2005, Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles, Optics Express 13(9):3513-3528.
Huber et al., 2006, Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography, Optics Express 14(8):3225-3237.
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/75675, filed Dec. 17, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US13/075353, filed Dec. 16, 2013 (8 pages).
Related Publications (1)
Number Date Country
20140100440 A1 Apr 2014 US
Provisional Applications (2)
Number Date Country
61739920 Dec 2012 US
61710401 Oct 2012 US