System and method for integrated flow supply line

Information

  • Patent Grant
  • 12152711
  • Patent Number
    12,152,711
  • Date Filed
    Tuesday, June 6, 2023
    a year ago
  • Date Issued
    Tuesday, November 26, 2024
    2 months ago
Abstract
A hydraulic fracturing system for fracturing a subterranean formation includes an electric powered pump having an inlet and an outlet, the outlet coupled to a well associated with the subterranean formation and powered by at least one electric motor. The system also includes a fluid source, coupled to the inlet of the electric powered pump, the fluid source providing a slurry for injection into the subterranean formation. The system further includes a hose extending between the fluid source and the electric powered pump, the hose being flexible and having a first diameter. The system includes a fitting between the hose and the electric powered pump, the fitting having a first end for receiving the hose at the first diameter and a second end for coupling to the electric powered pump at a second diameter, the second diameter being larger than the first diameter.
Description
BACKGROUND
1. Technical Field

This disclosure relates generally to hydraulic fracturing and more particularly to systems and methods for fluid supply lines utilized in hydraulic fracturing.


2. Background

With advancements in technology over the past few decades, the ability to reach unconventional sources of hydrocarbons has tremendously increased. Horizontal drilling and hydraulic fracturing are two such ways that new developments in technology have led to hydrocarbon production from previously unreachable shale formations. Hydraulic fracturing (fracturing) operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, hydraulic fracturing usually includes pumps that inject fracturing fluid down the wellbore, blenders that mix proppant into the fluid, cranes, wireline units, and many other components that all must perform different functions to carry out fracturing operations.


Hydraulic fracturing operations often try to increase flow rates through fracturing pumps in order to reduce operational times and save costs. However, typical fracturing systems have established component sizes and non-standard components are challenging to incorporate and may lead to errors, as operators may be unfamiliar with the new components. One such instance is in fluid flow lines (e.g., hoses) utilize to supply fracturing fluid to the pumps. Many flow lines utilized in the industry have a 4 inch diameter. However, this flow diameter limits fluid inlet into the pumps, which may be undesirable, because pumps operating at lower flow rates and/or pressures than desired may experience premature wear and failures. Moreover, merely increasing hose sizes is not practical because of component fittings on the pump and potential problems with flow rates, as flow rates that drop below a threshold may experience drop out of particulates, leading to blockages and other problems at the well site.


SUMMARY

Applicant recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, for operating electric fracturing pumps.


In an embodiment, a hydraulic fracturing system for fracturing a subterranean formation includes an electric powered, multi-plunger pump having an inlet and an outlet, the outlet coupled to a well associated with the subterranean formation and powered by at least one electric motor, the electric powered pump configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. The system also includes a fluid source, coupled to the inlet of the electric powered pump, the fluid source providing a slurry for injection into the subterranean formation. The system further includes a hose extending between the fluid source and the electric powered pump, the hose being flexible and having a first diameter. The system includes a fitting between the hose and the electric powered pump, the fitting having a first end for receiving the hose at the first diameter and a second end for coupling to the electric powered pump at a second diameter, the second diameter being larger than the first diameter. The system also includes a distribution system, positioned between the wellbore and the electric powered pump, the distribution system collecting the slurry from electric powered pumps for injection into the subterranean formation.


In an embodiment, a hydraulic fracturing system for fracturing a subterranean formation includes an electric powered, multi-plunger pump having an inlet and an outlet, the outlet coupled to a well associated with the subterranean formation and powered by at least one electric motor, the electric powered pump configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. The system also includes a fluid source, coupled to the inlet of the electric powered pump, the fluid source providing a slurry for injection into the subterranean formation. The system includes a hose extending between the fluid source and the electric powered pump, the hose including a first end, for coupling to the fluid source, having a first diameter, a second end, for coupling to the inlet of the electric powered pump, having a second diameter, and a body between the first end and the second end having a third diameter, the third diameter being less than both the first diameter and the second diameter. The system further includes a pair of fittings, a first fitting forming the first end and a second fitting forming the second end, each fitting of the pair of fittings having a shank end for receiving at least a portion of the body and a union for engaging the respective fluid source and electric powered pump.


In an embodiment, a method for selecting a hose diameter for a flow line utilized in fracturing operations includes determining a first end connection size is a first diameter. The method also includes determining a second end connection size is a second diameter. The method further includes determining a first flow rate, associated with a first hose diameter, is below a threshold. The method includes determining a second flow rate, associated with a second hose diameter, exceeds the threshold. The method also includes forming the flow line using the second hose diameter.





BRIEF DESCRIPTION OF DRAWINGS

Some of the features and benefits of the present disclosure having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic plan view of an embodiment of a fracturing operation, in accordance with embodiments of the present disclosure;



FIGS. 2A and 2B are side views of an embodiment of a fitting, in accordance with embodiments of the present disclosure;



FIG. 3 is a schematic perspective view of an embodiment of a flow line, in accordance with embodiments of the present disclosure; and



FIG. 4 is a graphical representation of suction pipe flow rates, in accordance with embodiments of the present disclosure.





While the disclosure will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the disclosure to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the disclosure as defined by the appended claims.


DETAILED DESCRIPTION

The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.


It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.


When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions. Additionally, recitations of steps of a method should be understood as being capable of being performed in any order unless specifically stated otherwise. Furthermore, the steps may be performed in series or in parallel unless specifically stated otherwise. Particular dimensions may be referred to herein along with their accompanying abbreviations, including but not limited to: inches (in, ″), meters (m), centimeters (cm), pounds per square inch (PSI), pascals (Pa), feet per second (ft/s), barrels per minute (BPM), and the like.


Embodiments of the present disclosure include specialty-sized hoses developed in order to allow greater flow/supply to frac pumps (e.g., positive displacement, multi plunger pumps). This increased flow capability reduces cavitation events and prolongs equipment life. Specially selecting a 5″ (0.127 m) diameter hose allows for fluid velocity to be maintained above a threshold at which sand particles would begin to fall out and eventually cause a blockage (sand off) the hose itself. In order to utilize this diameter/size hose in a large-scale function, a connection point was developed to enable use of standard 6″ (0.1524 m) components, such as but not limited to hammer unions, butterfly valves, and other 6″ steel pipe components. Embodiments include a hybrid of 5″ hose and 6″ end connectors. This then results in an improvement to existing methods of supplying fluid to a positive displacement pump.


Embodiments of the present disclosure present an improvement over existing systems by removing the standard 4″ (0.1016 m) supply hoses while maintaining standard 6″ connection types by utilizing a particularly designed ferrule. The standard 4″ supply hose provides an insufficient volume of fracturing fluid to a pump utilizing in hydraulic fracturing operation. These problems may be compounded when 4″ connections are also used. Using a 5″ diameter hose supplies more volume, reduces pressure drop, and reduces cavitation and other poor conditions pumps can experience when not supplied adequately.



FIG. 1 is a plan schematic view of an embodiment of a hydraulic fracturing system 10 positioned at a well site 12. In the illustrated embodiment, pump units 14, which make up a pumping system 16, are used to pressurize a slurry solution for injection into a wellhead 18. An optional hydration unit 20 receives fluid from a fluid source 22 via a line, such as a tubular, and also receives additives from an additive source 24. In an embodiment, the fluid is water and the additives are mixed together and transferred to a blender unit 26 where proppant from a proppant source 28 may be added to form the slurry solution (e.g., fracturing slurry) which is transferred to the pumping system 16. The pump units 14 may receive the slurry solution at a first pressure (e.g., 80 psi to 160 psi) and boost the pressure to around 15,000 psi for injection into the wellhead 18. In certain embodiments, the pump units 14 are powered by electric motors.


After being discharged from the pump system 16, a distribution system 30, such as a missile, receives the slurry solution for injection into the wellhead 18. The distribution system 30 consolidates the slurry solution from each of the pump units 14 and includes discharge piping 32 coupled to the wellhead 18. In this manner, pressurized solution for hydraulic fracturing may be injected into the wellhead 18.


In the illustrated embodiment, one or more sensors 34, 36 are arranged throughout the hydraulic fracturing system 10 to measure various properties related to fluid flow, vibration, and the like.


It should be appreciated that while various embodiments of the present disclosure may describe electric motors powering the pump units 14, in embodiments, electrical generation can be supplied by various different options, as well as hybrid options. Hybrid options may include two or more of the following electric generation options: Gas turbine generators with fuel supplied by field gas, CNG, and/or LNG, diesel turbine generators, diesel engine generators, natural gas engine generators, batteries, electrical grids, and the like. Moreover, these electric sources may include a single source type unit or multiple units. For example, there may be one gas turbine generator, two gas turbines generators, two gas turbine generators coupled with one diesel engine generator, and various other configurations.


In various embodiments, equipment at the well site may utilize 3-phase, 60 Hz, 690V electrical power. However, it should be appreciated that in other embodiments different power specifications may be utilized, such as 4160V or at different frequencies, such as 50 Hz. Accordingly, discussions herein with a particular type of power specification should not be interpreted as limited only the particularly discussed specification unless otherwise explicitly stated. Furthermore, systems described herein are designed for use in outdoor, oilfield conditions with fluctuations in temperature and weather, such as intense sunlight, wind, rain, snow, dust, and the like. In embodiments, the components are designed in accordance with various industry standards, such as NEMA, ANSI, and NFPA.



FIG. 2A is a side view of an embodiment of a fitting 200 (e.g., ferrule) that may be utilized with embodiments of the present disclosure to incorporate 5″ hoses into systems using 4″ hoses and 6″ fittings. In the illustrated embodiment, the fitting 200 includes a cutaway region 202 illustrating a coupling location 204 between a union 206 and a stem assembly 208. In the illustrated embodiment, the union 206 is configured to couple to a 6″ coupling, for example on a pump. However, as illustrated, the stem assembly 208 includes a reducer 210 and a shank end 212 to receive a 5″ hose (not pictured). For example, an end of the hose may be inserted into the shank end 212 and crimped, thereby joining the hose to the fitting 200. As a result, 5″ hoses may be utilized in embodiments that include 6″ fittings without significantly overhauling and/or modifying existing equipment. As discussed herein, 5″ hoses provide numerous advantages including reduced pressure drop, greater capacity, and flow velocities greater than a threshold level corresponding to particulate drop out.


In the illustrated embodiment, various rigid couplings 214 are included along the fitting 200, for example, as welds utilizing to secure one or more components together. For example, there is a rigid coupling 214 between the union 206 and the reducer 210, as well as a rigid coupling 214 between the reducer 210 and the shank end 214. Accordingly, the components forming the fitting 200 may be particularly selected, based on one or more properties, for use with fracturing operations. For example, different fittings 200 may include different components. By way of example only, the union 206 may be replaced with a flanged end connection or the like.


Embodiments of the present disclosure that utilize the fitting 200 provide improved operations at a well site at least because greater volumes of fluid may be provided to fracturing pumps while maintaining flow rates above a threshold amount where particulates begin to drop out of the flow. For example, a 5″ hose may meet rate demands while maintaining flow velocities at sufficient levels to reduce the likelihood of drop out. In contrast, a 4″ hose may not meet rate demands and a 6″ hose may not maintain flow velocities above the threshold for drop out. Moreover, the fitting 200 provides easy integration into existing systems without overhauling expensive equipment. For example, it may be costly to overhaul inlet piping on a fracturing pump, so much so, that it may be cost prohibitive to do so. Additionally, existing field equipment may be configured with certain specifications and include sunk costs, leading producers and operators to be reluctant to change. However, utilizing the fitting 200 enables existing equipment to remain in operation while providing improved operations.



FIG. 2B is a side view of an embodiment of a hose assembly 220 (e.g., hose) that may incorporate one or more features of FIGS. 1 and 2A. By way of example, the hose assembly 220 may form at least a portion of a flow line, such as a flow line between a source and a pump, a pump and a manifold, or the like. This example illustrates fittings 200 from FIG. 2A and further includes a body 222 (e.g., hose, hose portion), which is noted in FIG. 2A as not being shown but contemplated extending from the shank end 212, extending between a first fitting 200A and a second fitting 200B, which may be referred to as a pair of fittings on each end of the body 222. In at least one embodiment, the first fitting 200A is coupled at and/or at least partially forms a first end 224 and the second fitting 200B is coupled at and/or at least partially forms a second end 226. As described herein, diameters associated with portions of the fittings 200A, 200B may be different from diameters associated with portions of the body 222.


In at least one embodiment, the first fitting 200A at the first end 224 includes a first diameter 228 and the second fitting 200B at the second end 226 includes a second diameter 230. The first diameter 228 and the second diameter 230 may be equal in various embodiments. As noted herein, the first diameter 228 and/or the second diameter 230 may be approximately 6″. In at least one embodiment, the first diameter 228 is greater than the second diameter 230. In at least one embodiment, the first diameter 228 is less than the second diameter 230. As shown in FIG. 2B, as discussed herein, a third diameter 232 is associated with the body 222. In this embodiment, the third diameter 232 is smaller than the first diameter 228 and the second diameter 230. For example, as noted herein, the third diameter 232 may be approximately 5″ while the first diameter 228 and/or the second diameter 230 is approximately 6″. In at least one embodiment, the third diameter 232 may be equal to and/or greater than the first diameter 228. In at least one embodiment, the third diameter 232 may be equal to and/or greater than the second diameter 230.



FIG. 3 is a schematic perspective view of an embodiment of a portion of a flow line 300 including the fitting 200. In the illustrated embodiment, the flow line 300 includes connections 302 for coupling to mating 6″ connections. However, due to the inclusion of the fitting 200, a 5″ flow line may be incorporated into the design. The fitting 200, as noted above includes a transition from the 5″ line to a 6″ connection, thereby enabling use with the illustrated flow line 300. Advantageously, the flow line 300 may continue to be used in wellbore operations without modifications, which may reduce costs to operators with respect to obtaining new equipment for jobs.


As noted above, embodiments of the present disclosure provide advantages over existing systems that either utilize flow lines having diameters that are too small to provide sufficient capacity or are too large to maintain fluid velocities above threshold levels. Embodiments of the present disclosure overcome these problems by providing more volume, reducing drop in pressure, and reducing a likelihood of cavitation and other unhealthy pump conditions, such as starving. By way of example, frac slurry often consists of sand media also known as proppant, at low fluid velocities this proppant can begin to fall out of suspension. Some industry data notes that sand fall out begins at 2.21 ft/sec, which equates to 3.2 BPM in a 5″ hose. Sand fall out is substantial at 1.72 ft/sec, which equates to 2.2 BPM in a 5″ hoses. As a result, systems may be deployed to ensure that flow rates are maintained above these levels (which may be set as the thresholds) during operation.


Furthermore, embodiments of the present disclosure improve existing systems by reducing damage accumulation rates due to the improved flow characteristics associated with the 5″ hose when compared to the 4″ hose of existing systems. For example, a damage accumulate rate associated with the 5″ hose may be less than the 4″ hose and may increase at a lower rate as flow rate increases. Damage accumulation may be a factor, at least in part, on flow velocities, where a small diameter pipe will have greater velocities than a larger diameter pipe.



FIG. 4 is a graphical representation 400 illustrating pump flow rates and respective suction piping sizes. The x-axis 402 corresponds to suction pipe diameter (in inches) and the y-axis 404 corresponds to flow rate (in BPM). An operational window 406 is provided indicative of typical ranges where fracturing operations may occur. In this embodiment, the operational widow 406 extends from approximately 1 BPM to approximately 7 BPM.


Each respective suction pipe diameter includes a threshold flow rate, which may be obtained through experimental procedures and/or reference materials. For example, a 4″ suction pipe illustrated at 408 has a threshold 410 of approximately 4.3 BPM, a 5″ suction pipe illustrated at 412 has a threshold 414 of approximately 5.5 BPM, and a 6″ suction pipe illustrated at 416 has a threshold 418 of approximately 6.5 BPM. The operational window 406 includes a portion that exceeds each of the illustrated thresholds 410, 414, 418.


Operations using the 4″ suction pipe 408 include an operating range that is approximately 40% larger than the threshold 410. As a result, there is a high likelihood that operations will exceed the threshold due to demands to supply additional fluid for fracturing operations. Similarly, operations using the 5″ suction pipe 412 and the 6″ suction pipe 416 also exceed threshold 414, 418 by approximately 22% and 7%, respectively. The instant application has identified that while the 6″ suction pipe 416 enables the largest flow rate, that problems associated with fluid velocities and drop out make the 6″ suction pipe 416 undesirable. Accordingly, embodiments may incorporate the 5″ suction pipe 412, which provides significant improvements over the 4″ suction pipe 408 while also reducing the likelihood of drop out. The 5″ suction pipe 412 also has less pressure drop, when compared to the 4″ suction pipe 408, providing an additional improvement over existing configurations.


The present disclosure described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure disclosed herein and the scope of the appended claims.

Claims
  • 1. A coupling system, comprising: a first end comprising a first fitting with an inlet first fitting end and an outlet first fitting end, the outlet first fitting end having a first diameter, the outlet first fitting end being coupled to a fluid source associated with a hydraulic fracturing operation, wherein the fluid source is configured to provide a slurry to an electric-powered hydraulic fracturing pump;a second end comprising a second fitting with an inlet second fitting end and an outlet second fitting end having a second diameter, the first diameter being different from the second diameter, the outlet second fitting end being coupled to an inlet of the electric-powered hydraulic fracturing pump; anda body having a third diameter, the third diameter being less than the first diameter and less than the second diameter, wherein the body extends between the first end and the second end to couple to the inlet first fitting end and to the inlet second fitting end.
  • 2. The coupling system of claim 1, wherein the second diameter is approximately 6 inches and the third diameter is approximately 5 inches.
  • 3. The coupling system of claim 1, further comprising: a fourth end comprising a fourth fitting with an inlet fourth fitting end and an outlet fourth fitting end having a fourth diameter, the first diameter being different from the fourth diameter and the fourth diameter being equal to the second diameter.
  • 4. The coupling system of claim 3, further comprising: a flow splitter coupled to the body, the flow splitter directing a first portion of flow through the body to the second end and a second portion of flow through the body to the fourth end.
  • 5. The coupling system of claim 1, wherein the first fitting end further comprises: a reducer positioned between the inlet first fitting end and the outlet first fitting end, the reducer being welded to the respective inlet first fitting end and the outlet first fitting end at each end, the reducer having an increasing diameter along its axial length.
  • 6. The coupling system of claim 5, wherein at least a portion of the reducer extends into a groove formed in the inlet first fitting end, the inlet first fitting end extending farther laterally than the reducer.
  • 7. A coupling system, comprising: a hose extending between a first end and a second end, the first end being coupled to a fluid source and the second end being coupled to an electric-powered hydraulic fracturing pump;a first fitting at the first end, comprising: a first fitting union having a first coupling end and a first mating end, the first coupling end having a first coupling end diameter that is greater than a first mating end diameter;a first reducer having a first reducer diameter at a first reducer end and a second reducer diameter at a second reducer end, the first reducer end being coupled to the first mating end; anda first shank having a first shank end and a second shank end, the first shank end coupled to the second reducer end and the second shank end receiving at least a portion of the first end of the hose;a second fitting at the second end, comprising: a second fitting union having a second coupling end and a second mating end, the second coupling end having a second coupling end diameter that is greater than a second mating end diameter;a second reducer having a third reducer diameter at a third reducer end and a fourth reducer diameter at a fourth reducer end, the third reducer end being coupled to the second mating end; anda second shank having a third shank end and a fourth shank end, the third shank end coupled to the fourth reducer end and the third shank end receiving at least a portion of the second end of the hose.
  • 8. The coupling system of claim 7, wherein the first coupling end diameter is approximately 6 inches and the second reducer diameter is approximately 5 inches.
  • 9. The coupling system of claim 7, further comprising: a third end, comprising: a third fitting union having a third coupling end and a third mating end, the third coupling end having a third coupling end diameter that is greater than a third mating end diameter;a third reducer having a fifth reducer diameter at a fifth reducer end and a sixth reducer diameter at a sixth reducer end; anda third shank having a fifth shank end and a sixth shank end, the fifth shank end coupled to the fifth reducer end and the sixth shank end receiving at least a portion of the hose.
  • 10. The coupling system of claim 9, wherein the second fitting end and the third fitting end are coupled together by a flow splitter.
  • 11. The coupling system of claim 7, wherein at least a portion of the first reducer extends into a groove formed in the first mating end, the first mating end extending farther laterally than the first reducer.
  • 12. The coupling system of claim 7, wherein the coupling system forms a portion of a flow path at a hydraulic fracturing location to direct a flow to the electric-powered hydraulic fracturing pump, further comprising: at least one electric motor operatively coupled to the electric-powered hydraulic fracturing pump; anda distribution system fluidly coupled to an outlet of the electric-powered hydraulic fracturing pump to direct a slurry into a wellbore.
  • 13. A method for forming a flow connection in a hydraulic fracturing system, comprising: determining a first end connection size for an electric-powered hydraulic fracturing pump;determining a second end connection size for a fluid source associated with the electric-powered hydraulic fracturing pump;determining, based at least on the first end connection size and the second end connection size, a flow rate that exceeds a threshold, wherein the threshold corresponds to a drop out rate for particles in a slurry flowing through a hose;determining, based at least on the flow rate, a hose diameter; andforming the flow connection by coupling the hose having the hose diameter to a first fitting having the first end connection size and a second fitting having the second end connection size.
  • 14. The method of claim 13, further comprising: determining a second flow rate, based at least on the first end connection size, the second end connection size, and a second hose diameter, is below the threshold.
  • 15. The method of claim 13, wherein the hose diameter is approximately 5 inches.
  • 16. The method of claim 15, wherein the first end connection size is approximately 6 inches.
  • 17. The method of claim 13, further comprising: determining a volumetric demand associated with the hose exceeds a second threshold when the hose has the hose diameter.
  • 18. The method of claim 13, further comprising: determining a volumetric demand associated with the hose is below a second threshold when the hose has the hose diameter; anddetermining a second hose diameter; anddetermining the volumetric demand associated with the hose exceeds the second threshold when the hose has the second hose diameter.
  • 19. The method of claim 13, wherein the first end connection size is different from the second end connection size and the hose diameter.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 17/321,936 filed May 17, 2021, titled SYSTEM AND METHOD FOR INTEGRATED FLOW SUPPLY LINE, now U.S. Pat. No. 11,668,420 issued Jun. 6, 2023, which is a continuation of U.S. patent application Ser. No. 16/728,359 filed Dec. 27, 2019, titled SYSTEM AND METHOD FOR INTEGRATED FLOW SUPPLY LINE, now U.S. Pat. No. 11,009,162 issued May 18, 2021, the entire disclosures of which are incorporated herein by reference for all intents and purposes.

US Referenced Citations (596)
Number Name Date Kind
1541601 Tribe Jun 1925 A
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
1743771 Hall et al. Jan 1930 A
1967466 Damsel Jul 1934 A
2004077 McCartney et al. Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Homer Nov 1940 A
2237812 De Blieux et al. Apr 1941 A
2248051 Armstrong Jul 1941 A
2407796 Page Sep 1946 A
2416848 Stewart Mar 1947 A
2610741 Schmid Sep 1952 A
2753940 Bonner Jul 1956 A
2852600 Jenkins, Jr. Sep 1958 A
2976025 Pro Mar 1961 A
3055682 Bacher et al. Sep 1962 A
3061039 Peters Oct 1962 A
3066503 Fleming et al. Dec 1962 A
3116086 Barengoltz Dec 1963 A
3302069 Webster Jan 1967 A
3334495 Jensen et al. Aug 1967 A
3347570 Roessler Oct 1967 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan et al. Nov 1973 A
3794846 Schlicher et al. Feb 1974 A
3837179 Barth Sep 1974 A
3849662 Blaskowski et al. Nov 1974 A
3878884 Raleigh Apr 1975 A
3881551 Terry et al. May 1975 A
3967841 Kendrick et al. Jul 1976 A
4037431 Sugimoto Jul 1977 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4411313 Johnson et al. Oct 1983 A
4432064 Barker et al. Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka et al. Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez et al. Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4562360 Fujimoto Dec 1985 A
4601629 Zimmerman Jul 1986 A
4603887 Mayfield et al. Aug 1986 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder et al. Jul 1988 A
4768884 Elkin Sep 1988 A
4783038 Gilbert et al. Nov 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4898473 Stegemoeller et al. Feb 1990 A
4922463 Del Zotto et al. May 1990 A
5004400 Handke Apr 1991 A
5006044 Walker, Sr. et al. Apr 1991 A
5025861 Huber et al. Jun 1991 A
5050673 Baldridge Sep 1991 A
5114239 Allen May 1992 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley et al. Feb 1993 A
5230366 Marandi Jul 1993 A
5293947 Stratton Mar 1994 A
5334899 Skybyk Aug 1994 A
5366324 Arlt et al. Nov 1994 A
5422550 McClanahan et al. Jun 1995 A
5433243 Griswold et al. Jul 1995 A
5439066 Gipson Aug 1995 A
5486047 Zimmerman Jan 1996 A
5517822 Haws et al. May 1996 A
5548093 Sato Aug 1996 A
5549285 Collins Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5655361 Kishi Aug 1997 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5791636 Loziuk Aug 1998 A
5798596 Lordo Aug 1998 A
5813455 Pratt et al. Sep 1998 A
5865247 Peterson et al. Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers et al. Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
5950726 Roberts Sep 1999 A
6035265 Dister et al. Mar 2000 A
6097310 Harrell et al. Aug 2000 A
6116040 Stark Sep 2000 A
6121705 Hoong Sep 2000 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6202702 Ohira et al. Mar 2001 B1
6208098 Kume et al. Mar 2001 B1
6254462 Kelton et al. Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann et al. Aug 2001 B1
6315523 Mills Nov 2001 B1
6406011 Kosar et al. Jun 2002 B1
6442942 Kopko Sep 2002 B1
6477852 Dodo et al. Nov 2002 B2
6484490 Olsen et al. Nov 2002 B1
6491098 Dallas Dec 2002 B1
6510695 Fisher Jan 2003 B1
6529135 Bowers et al. Mar 2003 B1
6560131 vonBrethorst May 2003 B1
6585455 Petersen et al. Jul 2003 B1
6626646 Rajewski Sep 2003 B2
6633727 Henrie et al. Oct 2003 B2
6719900 Hawkins Apr 2004 B2
6765304 Baten et al. Jul 2004 B2
6776227 Beida et al. Aug 2004 B2
6788022 Sopko et al. Sep 2004 B2
6802690 Han et al. Oct 2004 B2
6808303 Fisher Oct 2004 B2
6837910 Yoshikawa et al. Jan 2005 B1
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon et al. Aug 2005 B1
6985750 Vicknair et al. Jan 2006 B1
7082993 Ayoub et al. Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler et al. Feb 2007 B2
7279655 Blutke et al. Oct 2007 B2
7308933 Mayfield et al. Dec 2007 B1
7309835 Morrison et al. Dec 2007 B2
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas et al. Feb 2008 B2
7341287 Gibb et al. Mar 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham et al. Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet et al. Jul 2009 B2
7581379 Yoshida et al. Sep 2009 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7770396 Roby et al. Aug 2010 B2
7795830 Johnson Sep 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7900893 Teurlay et al. Mar 2011 B2
7926562 Poitzsch et al. Apr 2011 B2
7894757 Matsuno Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
7984757 Keast et al. Jul 2011 B1
8037936 Neuroth et al. Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
8091928 Carrier et al. Jan 2012 B2
8096354 Poitzsch et al. Jan 2012 B2
8096891 Lochtefeld et al. Jan 2012 B2
8139383 Efraimsson et al. Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8221513 Ariyapadi et al. Jul 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar et al. Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8474521 Kajaria et al. Jul 2013 B2
RE44444 Dole et al. Aug 2013 E
8506267 Gambier et al. Aug 2013 B2
8534235 Chandler Sep 2013 B2
8556302 Dole Oct 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee et al. Dec 2013 B2
8616005 Cousino, Sr. Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8760657 Pope et al. Jun 2014 B2
8763387 Schmidt Jul 2014 B2
8774972 Rusnak et al. Jul 2014 B2
8789601 Broussard et al. Jul 2014 B2
8795525 McGinnis et al. Aug 2014 B2
8800652 Bartko et al. Aug 2014 B2
8807960 Stephenson et al. Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. et al. Oct 2014 B2
8893787 Tips et al. Nov 2014 B2
8899940 Laugemors et al. Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer et al. Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan et al. Jun 2015 B2
9051923 Kuo Jun 2015 B2
9061223 Winborn Jun 2015 B2
9062545 Roberts et al. Jun 2015 B2
9067182 Nichols et al. Jun 2015 B2
9103193 Coli et al. Aug 2015 B2
9119326 McDonnell et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140105 Pattillo Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel et al. Oct 2015 B2
9260253 Naizer et al. Feb 2016 B2
9322239 Angeles Boza et al. Apr 2016 B2
9324049 Thomeer et al. Apr 2016 B2
9340353 Oren et al. May 2016 B2
9353593 Lu et al. May 2016 B1
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9475840 Lledó et al. Oct 2016 B2
9482086 Richardson et al. Nov 2016 B2
9499335 McIver et al. Nov 2016 B2
9506333 Castillo et al. Nov 2016 B2
9513055 Seal Dec 2016 B1
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9706185 Ellis Jul 2017 B2
9728354 Skolozdra et al. Aug 2017 B2
9738461 DeGaray et al. Aug 2017 B2
9739546 Bertilsson et al. Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9790858 Kanebako Oct 2017 B2
9840901 Oehring et al. Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
9893500 Oehring et al. Feb 2018 B2
9903190 Conrad et al. Feb 2018 B2
9909398 Pham Mar 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symchuk Apr 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9963961 Hardin May 2018 B2
9970278 Broussard et al. May 2018 B2
9976351 Randall May 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10020711 Oehring et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10107086 Oehring Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10184465 Enis et al. Jan 2019 B2
10196878 Hunter Feb 2019 B2
10221639 Romer et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10260327 Kajaria et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas et al. May 2019 B2
10302079 Kendrick May 2019 B2
10309205 Randall Jun 2019 B2
10337308 Broussard et al. Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408030 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415332 Morris et al. Sep 2019 B2
10436026 Ounadjela et al. Oct 2019 B2
10480300 Guidry Nov 2019 B2
10526882 Oehring et al. Jan 2020 B2
10627003 Dale et al. Apr 2020 B2
10648270 Brunty et al. May 2020 B2
10648311 Oehring et al. May 2020 B2
10669471 Schmidt et al. Jun 2020 B2
10669804 Kotrla et al. Jun 2020 B2
10686301 Oehring et al. Jun 2020 B2
10690131 Rashid et al. Jun 2020 B2
10695950 Igo et al. Jun 2020 B2
10711576 Bishop Jul 2020 B2
10731561 Oehring et al. Aug 2020 B2
10740730 Altamirano et al. Aug 2020 B2
10767561 Brady Sep 2020 B2
10781752 Kikkawa et al. Sep 2020 B2
10794165 Fischer et al. Oct 2020 B2
10934824 Oehring et al. Mar 2021 B2
10988998 Fischer et al. Apr 2021 B2
20010000996 Grimland et al. May 2001 A1
20020169523 Ross et al. Nov 2002 A1
20030000759 Schmitz et al. Jan 2003 A1
20030079875 Weng Jan 2003 A1
20030056514 Lohn Mar 2003 A1
20030057704 Baten et al. Mar 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr et al. Mar 2004 A1
20040045703 Hooper et al. Mar 2004 A1
20040102109 Cratty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20040212679 Jun Oct 2004 A1
20050061548 Hooper et al. Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050201197 Duell et al. Sep 2005 A1
20050274508 Folk et al. Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060065319 Csitari Mar 2006 A1
20060109141 Huang et al. May 2006 A1
20070125544 Robinson et al. Jun 2007 A1
20070131410 Hill et al. Jun 2007 A1
20070187163 Cone et al. Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount et al. Feb 2008 A1
20080095644 Mantei et al. Apr 2008 A1
20080112802 Orlando et al. May 2008 A1
20080137266 Jensen et al. Jun 2008 A1
20080142304 Schutz et al. Jun 2008 A1
20080164023 Dykstra et al. Jul 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080257449 Weinstein et al. Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080277120 Hickie Nov 2008 A1
20090045782 Datta et al. Feb 2009 A1
20090065299 Vito et al. Mar 2009 A1
20090068031 Gambier et al. Mar 2009 A1
20090072645 Quere Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090114392 Tolman et al. May 2009 A1
20090122578 Beltran May 2009 A1
20090145611 Pallini, Jr. et al. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis et al. Jul 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090200290 Cardinal et al. Aug 2009 A1
20090260826 Sherwood et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20090315297 Nadeau et al. Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038907 Hunt et al. Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef et al. Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100193057 Garner et al. Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100281876 Khan et al. Nov 2010 A1
20100293973 Erickson Nov 2010 A1
20100303655 Scekic Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110042387 Henry et al. Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110061855 Case et al. Mar 2011 A1
20110063942 Hagan et al. Mar 2011 A1
20110081268 Ochoa et al. Apr 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110097988 Lord Apr 2011 A1
20110110793 Leugemores et al. May 2011 A1
20110166046 Weaver et al. Jul 2011 A1
20110175397 Amrine, Jr. et al. Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241590 Horikoshi et al. Oct 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson et al. Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120063936 Baxter et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120111560 Hill et al. May 2012 A1
20120112757 Vrankovic et al. May 2012 A1
20120127635 Grindeland May 2012 A1
20120150455 Franklin et al. Jun 2012 A1
20120152716 Kikukawa et al. Jun 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120217067 Mebane, III et al. Aug 2012 A1
20120222865 Larson et al. Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner, Jr. et al. Oct 2012 A1
20120255734 Coli et al. Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130051971 Wyse et al. Feb 2013 A1
20130078114 Van Rijswick et al. Mar 2013 A1
20130138254 Seals et al. May 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130180722 Caro et al. Jul 2013 A1
20130189629 Chandler Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine et al. Sep 2013 A1
20130255271 Yu et al. Oct 2013 A1
20130284278 Winborn Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130299167 Fordyce et al. Nov 2013 A1
20130306322 Sanborn et al. Nov 2013 A1
20130317750 Hunter Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140048255 Baca et al. Feb 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains et al. Mar 2014 A1
20140077607 Clarke et al. Mar 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140096974 Coli et al. Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140174691 Kamps et al. Jun 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140219824 Burnette Aug 2014 A1
20140238683 Korach et al. Aug 2014 A1
20140246211 Guidry et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140273128 Coleman et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290768 Rendle et al. Oct 2014 A1
20140379300 Devine et al. Dec 2014 A1
20150027712 Vicknair et al. Jan 2015 A1
20150038021 Gilliam Feb 2015 A1
20150053426 Smith et al. Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters et al. Mar 2015 A1
20150083426 Lesko et al. Mar 2015 A1
20150097504 Lamascus et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150136043 Shaaban et al. May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150147194 Foote May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150211524 Broussard et al. Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150225113 Lungu et al. Aug 2015 A1
20150233530 Sandidge Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150300336 Hernandez et al. Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras et al. Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160006311 Li Jan 2016 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris et al. Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang et al. Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit et al. Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160230660 Zeitoun et al. Aug 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160265457 Stephenson et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273456 Zhang et al. Sep 2016 A1
20160281484 Lestz et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160312108 Diggns Oct 2016 A1
20160319649 Oehring Nov 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326853 Fredd et al. Nov 2016 A1
20160326854 Broussard et al. Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160349728 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong et al. Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun et al. Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace et al. Feb 2017 A1
20170037717 Oehring et al. Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170043280 Vankouwenberg Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170082033 Wu et al. Mar 2017 A1
20170096885 Oehring et al. Apr 2017 A1
20170096889 Blanckaert et al. Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170130743 Anderson May 2017 A1
20170138171 Richards et al. May 2017 A1
20170146189 Herman et al. May 2017 A1
20170159570 Bickert Jun 2017 A1
20170159654 Kendrick Jun 2017 A1
20170175516 Eslinger Jun 2017 A1
20170204852 Barnett, Jr. Jul 2017 A1
20170212535 Shelman et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170218843 Oehring et al. Aug 2017 A1
20170222409 Oehring et al. Aug 2017 A1
20170226838 Ciezobka et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170234250 Janik et al. Aug 2017 A1
20170241221 Seshadri et al. Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad et al. Oct 2017 A1
20170302218 Janik Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring et al. Nov 2017 A1
20170314979 Ye et al. Nov 2017 A1
20170328179 Dykstra et al. Nov 2017 A1
20170369258 DeGaray et al. Dec 2017 A1
20170370639 Bardon et al. Dec 2017 A1
20180028992 Stegemoeller et al. Feb 2018 A1
20180038216 Zhang et al. Feb 2018 A1
20180045331 Lopez et al. Feb 2018 A1
20180090914 Johnson et al. Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180181830 Luharuka et al. Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180216455 Andreychuk et al. Aug 2018 A1
20180238147 Shahri et al. Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180259080 Dale et al. Sep 2018 A1
20180266217 Funkhauser et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180274446 Oehring et al. Sep 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180291713 Jeanson Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180312738 Rutsch et al. Nov 2018 A1
20180313677 Warren et al. Nov 2018 A1
20180320483 Zhang et al. Nov 2018 A1
20180343125 Clish et al. Nov 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363640 Kajita et al. Dec 2018 A1
20180366950 Pedersen et al. Dec 2018 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011066 Ungchusri et al. Jan 2019 A1
20190040727 Oehring et al. Feb 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190128080 Ross et al. May 2019 A1
20190128104 Graham et al. May 2019 A1
20190145251 Johnson May 2019 A1
20190154020 Glass May 2019 A1
20190162061 Stephenson May 2019 A1
20190169971 Oehring et al. Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190203567 Ross et al. Jul 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190211661 Reckels et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249527 Kraynek Aug 2019 A1
20190257462 Rogers Aug 2019 A1
20190292866 Ross et al. Sep 2019 A1
20190292891 Kajaria et al. Sep 2019 A1
20190226317 Payne et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200040878 Morris Feb 2020 A1
20200047141 Oehring et al. Feb 2020 A1
20200088152 Allion et al. Mar 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200325760 Markham Oct 2020 A1
20200350790 Luft et al. Nov 2020 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210131248 Hinderliter et al. May 2021 A1
Foreign Referenced Citations (40)
Number Date Country
734988 Sep 1997 AU
2406801 Nov 2001 CA
2482943 Oct 2003 CA
2707269 Dec 2010 CA
2797081 Nov 2011 CA
3050131 Nov 2011 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
2849825 Apr 2013 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2919649 Aug 2016 CA
2919666 Aug 2016 CA
2978706 Sep 2016 CA
2944980 Apr 2017 CA
2945579 Apr 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
3067854 Jan 2019 CA
101977016 Feb 2011 CN
104117308 Oct 2014 CN
104196613 Dec 2014 CN
205986303 Feb 2017 CN
108049999 May 2018 CN
112196508 Jan 2021 CN
2004264589 Sep 2004 JP
0047893 Aug 2000 WO
2007055587 May 2007 WO
2009046280 Apr 2009 WO
2012051705 Apr 2012 WO
201411676 Jul 2014 WO
2014105642 Jul 2014 WO
2014177346 Nov 2014 WO
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
2018044307 Mar 2018 WO
2018213925 Nov 2018 WO
2019210417 Nov 2019 WO
Non-Patent Literature Citations (279)
Entry
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, p. 1-10, 1967.
Canadian Office Action issued in Canadian Application No. 2,928,707, dated Sep. 8, 2020.
Canadian Office Action issued in Canadian Application No. 2,944,980, dated Aug. 31, 2020.
Canadian Office Action issued in Canadian Application No. 2,982,974, dated Sep. 22, 2020.
Final Office Action issued in corresponding U.S. Appl. No. 15/356,436, dated Mar. 31, 2020.
Final Office Action issued in corresponding U.S. Appl. No. 16/404,283, dated Jan. 11, 2021.
Final Office Action issued in corresponding U.S. Appl. No. 16/597,014, dated Feb. 4, 2021.
Goodwin, “High-voltage auxiliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989).
“Heat Exchanger” (https://en.wikipedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) 12-18-19 Apr. 2019 (Apr. 18, 2019), entire document, especially para (0001].
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/023809, dated Jun. 2, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/023821, dated Aug. 28, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/036932, dated Sep. 3, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/053980, dated Dec. 14, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/058899, dated Feb. 3, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/058906, dated Feb. 2, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/059834, dated Feb. 4, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/066543, dated May 11, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/067146, dated Mar. 29, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/067523, dated Mar. 22, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/067526, dated May 6, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/067528, dated Mar. 19, 2021.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/067608, dated Mar. 30, 2021.
Karin, “Duel Fuel Diesel Engines,” (2015). Taylor & Francis, pp. 62-63, retrieved from https://app.knovel.com/hotlink/oc/id:kpDFDE0001/dual-fuel-diesel-engines/duel-duel-diesel-engines (Year 2015).
Morris et al., U.S. Appl. No. 62/526,869; Hydration-Blender Transport and Electric Power Distribution for Fracturing Operation; Jun. 28, 2018; USPTO; see entire document.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,525, dated Jul. 21, 2021.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532, dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443, dated May 8, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/356,436, dated Oct. 26, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/167,083, dated Aug. 31, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/356,263, dated Sep. 2, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/377,861, dated Jun. 22, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/404,283, dated Jun. 29, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/443,273, dated Oct. 5, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/458,696, dated May 22, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/522,043, dated Jan. 4, 2021.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/564,185, dated Jan. 29, 2021.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491, dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/871,928, dated Aug. 25, 2021.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/943,727, dated Aug. 3, 2021.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/183,387, dated Mar. 6, 2019.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/829,419, dated Jul. 26, 2021.
Canadian Office Action issued in Canadian Application No. 2,928,711, dated Apr. 18, 2018.
“Water and Glycol Heating Systems” (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems.
Woodbury et al., “Electric Design Considerations for Drilling Rigs,” IEEE Transactions on Industry Applications, vol. 1A-12, No. 4, Jul./Aug. 1976, pp. 421-431.
Canadian Office Action issued in Canadian Application No. 2,833,711, dated Mar. 2, 2018.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/044274, Nov. 24, 2020.
Canadian Office Action issued in Canadian Application No. 2,886,697, dated Jun. 22, 2018.
Canadian Office Action issued in Canadian Application No. 2,933,444, dated Aug. 18, 2020.
Canadian Office Action issued in Canadian Application No. 2,936,997, dated Jan. 30, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349, dated Mar. 14, 2017.
Mistry et al., “Induction Motor Vibrations in View of the API 541-4th edition,” IEEE, Paper No. PCIC-, 2008, 10 pages.
Paschall et al., “Navigating the Test Requirements of API 541 4th Edition,” IEEE, Paper No. PCIC-2007-11, 2007, 12 pages.
“G7 Adjustable Speed Drive Operation Manual,” Toshiba, Document No. 51546-009, Mar. 2005, 221 pages.
“Weir SPM: General Catalog,” Weir SPM, 2009, 40 pages.
Krueger, “Advances in Well Completion and Stimulation During JPT's First Quarter Century,” Journal of Petroleum Technology, Dec. 1973, pp. 16.
Lietard et al., “Hydraulic Fracturing of Horizontal Wells: An Update of Design and Execution Guidelines,” Society of Petroleum Engineers, SPE 37122, 1996, 15 pages.
Waters et al., “Simultaneous Hydraulic Fracturing of Adjacent Horizontal Wells in the Woodford Shale,” Society of Petroleum Engineers, SPE 119635, 2009, 22 pages.
Bahadori et al., “Dictionary of Oil, Gas, and Petrochemical Processing,” CRC Press, ISBN: 978-1-4665-8825-7, 2014, 8 pages.
“A Dictionary for the Oil and Gas Company—Second Edition,” The University of Texas at Austin—Petroleum Extension Service, ISBN: 978-0-88698-240-9, 2011, 7 pages.
“Lessons Learned from Natural Gas STAR Partners: Reduced Emissions Completions for Hydraulically Fractured Natural Gas Wells,” U.S. Environmental Protection Agency, 2011, 12 pages.
Kidnay et al., “Fundamentals of Natural Gas Processing—Second Edition,” CRS Press, ISBN: 978-1-4200-8519-8, 2011, 19 pages (Part 1).
Kidnay et al., “Fundamentals of Natural Gas Processing—Second Edition,” CRS Press, ISBN: 978-1-4200-8519-8, 2011, 17 pages (Part 2).
Kidnay et al., “Fundamentals of Natural Gas Processing—Second Edition,” CRS Press, ISBN: 978-1-4200-8519-8, 2011, 12 pages (Part 3).
Listing at Amazon.com for Kidnay et al., “Fundamentals of Natural Gas Processing—Second Edition,” CRS Press, ISBN: 978-1-4200-8519-8, Jul. 7, 2013, 4 pages.
Listing at Amazon.com for Kidnay et al., “Fundamentals of Natural Gas Processing—Second Edition,” CRS Press, ISBN: 978-1-4200-8519-8, Feb. 22, 2015, 4 pages.
“Green Completions,” IPIECA, Jan. 20, 2015, 7 pages.
“Sand Trap FAQ,” Mountain Equipment of New Mexico, Inc., Jan. 8, 2014, 2 pages.
“Test Separators FAQ,” Mountain Equipment of New Mexico, Inc., Jan. 8, 2014, 2 pages.
“Emergency Power Systems for Critical Facilities: A Best Practices Approach to Improving Reliability,” FEMA, FEMA P-1019. Sep. 2014, 170 pages.
Persily et al., “Indoor Environmental Issues in Disaster Resilience,” NIST Technical Note 1882, Jul. 2015, 40 pages.
“Precision Heat and Control Systems for Onshore Drilling and Production,” Chromalox Precision Heat and Control, 2011, 6 pages.
“ZEUS Electric Pumping Unit,” Halliburton, printed 2021, 4 pages.
Nayyar, “Piping Handbook—Seventh Edition,” Piping Handbook, 1999, 77 pages.
“Wire Rope Isolator Technologies,” ITT Enidine, Inc., Mar. 29, 2014, Enidine, 78 pages.
Gardner Denver, Well Servicing Pump, Model GD-2500Q, GD-2500Q-HD, Quintuplex Pumps, Super GWS Fluid End (Uni-Flange) Parts List, 310FWF997 Revision A, Sep. 2011, 45 pages.
Wachel et al., “Analysis of Vibration and Failure Problems in Reciprocating Triplex Pumps for Oil Pipelines,” The American Society of Mechanical Engineers, 1985, 8 pages.
“Flowline Products and Services—World Proven Chiksan and Weco Equipment,” FMC Technologies, Mar. 28, 2015, 31 pages (Part 1).
“Flowline Products and Services—World Proven Chiksan and Weco Equipment,” FMC Technologies, Mar. 28, 2015, 49 pages (Part 2).
“A complete line of swivel joints for drilling, production, and well servicing,” Chiksan Original Swivel Joints, Nov. 1996, 16 pages.
“Worlds Best Swivel Joints,” FlowValve, Jan. 17, 2015, available at https://web.archive.org/web/20150117041757/ http://www.flowvalve.com/swivels, 10 pages.
“Victualic Couplings—Vibration Attenuation Characteristics,” Victaulic Company, Oct. 2014, 5 pages.
Hudson et al., “Modeling Victaulic Couplings in Piping Stress Analysis Programs,” Victaulic Company, WP-18 6685 Rev. B, Mar. 19, 2013, 19 pages.
“AGS Flexible Coupling Style W77,” Victaulic, Apr. 23, 2015, available at: https://web.archive.org/web/20150423052817/http:/www.victaulic.com/en/products-services/products/style-w77-ags-flexible-coupling/, 1 page.
“Advanced Groove System (AGS) Large Diameter Solutions.” Victaulic, Apr. 19, 2015, available at: https://web.archive.org/web/20150419063052/http:/www.victaulic.com/en/businesses-solutions/solutions/advanced-groove-system/, 2 pages.
“Accommodating Seismic Movement,” Victaulic, Apr. 12, 2015, available at https://web.archive.org/web/20150412042941/http:/www.victaulic.com/en/businesses-solutions/solutions/accommodating-seismic-movement/, 2 pages.
Saville, “The Victaulic Pipe Joint,” Journal (American Water Works Association), Nov. 1922, vol. 9, No. 6, 8 pages.
Balaji et al., “Wire rope isolators for vibration isolation of equipment and structures,” IP Conference Series: Materials Science and Engineering, 2015, 12 pages.
“FlowGuard Products,” CoorsTek, Sep. 15, 2014 available at: https://web.archive.org/web/20140915230538/ http://coorstek.com/resource-library/library/8510-1747-FlowGuard-Pulsation-Dampers.pdf, 8 pages.
“FlowGuard Pulsation Dampeners,” CoorsTek, Feb. 23, 2015, available at: https://web.archive.org/web/20150223101630/http://www.coorstek.com/markets/energy_equipment/oil-gas/flowguard.php, 2 pages.
Morton, “Unlocking the Earth: A Short History of Hydraulic Fracturing,” GEO ExPro, vol. 10, No. 6, Dec. 2013, 5 pages.
“Welcome to STAUFF,” STAUFF, Aug. 5, 2013, 1 page.
“STAUFF Clamps,” STAUFF, Aug. 7, 2013, 3 pages.
“STAUFF Clamps, Heavy Series (DIN 3015-2),” STAUFF, Aug. 30, 2013, 1 page.
“Heavy Series (DIN 3015-2)”, STAUFF, Product Literature, Nov. 3, 2013, 1 page.
“Heavy Series DIN 3015, Part 2,” STAUFF, Nov. 5, 2013, 24 pages.
Harris et al., “Harris' Shock and Vibration Handbook—Fifth Edition,” McGraw-Hill Handbooks, 2002 [excerpted], 22 pages.
“Mark's Standard Handbook for Mechanical Engineers, 11th Edition,” McGraw-Hill, ISBN 0-07-142867-4, 2007 [excerpted], 1 page.
Mallik et al., “On the Modelling of Non-Linear Elastomeric Vibration Isolators,” Journal of Sound and Vibration, 1999, 219(2), 15 pages.
Malcius, “Mathematical model evaluation and parameter identification of pipe holder element,” Journal of Vibroengineering, Jun. 2013, vol. 15, Issue 2, ISSN 1392-8716, 9 pages.
Wachel et al., “Piping Vibration Analysis,” Engineering Dynamics, Incorporated, Proceedings of the Nineteenth Turbomachinery Symposium, 1990, 16 pages.
Arvani et al., “Design and Development of an Engineering Drilling Simulator and Application for Offshore Drilling for MODUs and Deepwater Environments,” Society of Petroleum Engineers, SPE-170301-MS, 2014, 17 pages.
Davis, “Natural Gas Finding Niche in E-Fracking, But Diesel Still Rules,” Natural Gas Intelligence, NGI, 2019, 9 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2020/023912, dated Jun. 23, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532, dated May 17, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535, dated May 20, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535, dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363, dated Sep. 5, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414, dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491, dated May 15, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491, dated Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/183,387, dated Apr. 2, 2018.
Canadian Office Action issued in Canadian Application No. 2,964,597, dated Jun. 20, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040, dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,081, dated Oct. 4, 2018.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,716, dated May 29, 2018.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788, dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842, dated Jan. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681, dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349, dated Apr. 10, 2018.
Canadian Office Action issued in Canadian Application No. 2,936,997, dated Oct. 1, 2019.
Canadian Office Action issued in Canadian Application No. 2,943,275, dated Mar. 1, 2019.
Canadian Office Action issued in Canadian Application No. 2,944,968, dated Aug. 17, 2020.
Canadian Office Action issued in Canadian Application No. 2,945,281, dated Sep. 28, 2018.
Kroposki et al., “Making Microgrids Work,” 6 IEEE Power and Energy Mag. 40, 41, 2008.
Ton et al., “The U.S. Department of Energy's Microgrid Initiative,” 25 The Electricity J. 84, 2012, pp. 84-94.
Non-Final Office Action issued in U.S. Appl. No. 16/871,328 mailed Dec. 9, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,935 mailed Oct. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/564,186, mailed Oct. 15, 2021.
Final Office Action issued in U.S. Appl. No. 16/356,263 mailed Oct. 7, 2021.
Non-Final Office Action issued in U.S. Appl. No. 17/060,647 mailed Sep. 20, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/901,774 mailed Sep. 14, 2021.
Canadian Office Action issued in Canadian Application No. 3,094,768 mailed Oct. 28, 2021.
Shafto, “Growth in electric-fracking fleets stunted by tight producer budgets,” S&P Global Market Intelligence, Aug. 6, 2019, 4 pages.
“Swivel Joint,” Jereh, Yantal Jereh Petroleum Equipment & Technologies Co. Ltd., printed Dec. 1, 2022, 14 pages.
Camara, “Electrical Engineering Reference Manual for the Electrical and Computer PE Exam—Sixth Edition,” Professional Publications, Inc., ISBN: 1-888577-56-8, 2002, 50 pages.
“Comprehensive Power, Power It Up,” Technical Presentation, Feb. 27, 2013 (available at: https://www.slideshare.net/jeffsable/comprehensive-power-introduction-oct2013?from_action=save), 28 pages.
“Comprehensive Power, Power It Up,” Technical Presentation, Oct. 3, 2013 (available at: https://www.slideshare.net/jeffsable/comprehensive-power-introduction-oct2013?from_action=save), 26 pages.
“American National Standard—Motors and Generators,” ANSI/NEMA MG 1, 2011, 636 pages.
“IEEE Standard for Petroleum and Chemical Industry—Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors—Up to and Including 370 KW (500 hp),” IEEE, 2009, 32 pages.
Cary et al., “Electric Rotating Machine Standards Part II: Magnetic Wedge Design & Monitoring Methods,” IEEE, Paper No. PCIC-2011-41, 2011, 8 pages.
Bogh et al., “A User's Guide to Factory Testing of Large Motors: What Should Your Witness Expect?,” IEEE, Paper No. PCIC-, 2009, 8 pages.
Lockley et al., “What Do the API Motor/Generator Features Cost and What Do They Buy You?,” IEEE, Paper No. PCIC-2010-22, 2010, 10 pages.
Malinowski et al., “Petrochemical standards a comparison between IEEE 841-2001, API 541 and API 547,” IEEE, Paper No. PCIC-2004-22, 2004, 8 pages.
“Reinventing the Frac Fleet,” Clean Fleet, WhisperFrac Reducing Noise and Vibrations, 2018, 2 pages.
“MEC's Mobile Electric Centers for Voltages up to 36kV,” ABB, printed 2021, 2 pages.
“Prefabricated Electric Centers (PEC)—Mobile Electric Centers (MEC),” ABB, 2017, 14 pages.
“Mobile Substations on wheels,” ABB, 2022, 4 pages.
“Benefits of Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service,” U.S. Department of Energy, Aug. 2006, 48 pages.
“The Evolution of the Modern Substation,” Primera, 2022, 4 pages.
Hanna et al., “Medium-Voltage Adjustable-Speed Drives—Users' and Manufacturers' Experiences,” IEEE Transactions on Industry Applications, vol. 33, No. 6, Nov./Dec. 1997, 9 pages.
“IEEE 100: The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition,” IEEE Press, 2000, ISBN: 0-7381-2601-2, 7 pages.
“Adjustable Speed Electrical Power Drive Systems—Part 4: General Requirements—Rating Specifications for A.C. Power Drive Systems Above 1000 V A.C. and Not Exceeding 35 KV,” National Electrical Manufacturers Association (NEMA) Standards Publication ICS 61800-4, 2004, 139 pages.
Roe, “Practices and Procedures of Industrial Electrical Design,” McGraw-Hill, 1972, ISBN: 0-07-053390-3, 17 pages.
Oehring et al., U.S. Appl. No. 62/242,173, 2015, 17 pages.
Samsung All-In-One Security System, Quick Start Guide Kit Model SDHC5100, printed 2022, 11 pages.
Amazon.com listing for Samsung SDH-C5100 16 Channel 720p HD DVR Video Security System, 2015, 2 pages.
Amazon.com listing for Amcrest ProHD Wireless IP Security Camera, 2015, 8 pages.
Amazon.com listing for Security & Surveillance Cameras, 2015, 6 pages.
Stewart, “Extracting the Digit! Time for an ROV Electronics Shake-Up?,” Kongsberg Simrad Ltd, UTI, 1997, 10 pages.
Martin et al., “Lessons Learned from 27 Years' Experience of Stimulation Vessel Design and Operation—a Case Study,” SPE 166243, 2013, 12 pages.
Maddox, “Visualizing Production in Flowing Oil Wells,” Halliburton Energy Services, SPWLA 37th Annual Logging Symposium, Jun. 16-19, 1996, 6 pages.
Cooper et al., “The First Purpose-Built Stimulation Vessel for North Sea Application,” Dowell Schlumberger, Society of Petroleum Engineers of AIME, SPE 12993, 1984, 7 pages.
Talley, “Development of a Closed Circuit TV Borehole Probe,” Design Engineering Laboratories, Inc., Contract H0308041, Sep. 1984, 22 pages.
Smith et al., “Fracture Width-Design vs. Measurement,” Amoco Production Co., Society of Petroleum Engineers of AIME, SPE 10965, 1982, 9 pages.
Hurst et al., “Development and Application of ‘Frac’ Treatments in the Permian Basin,” SPE 405-G, vol. 204, 1955, 8 pages.
Briggs, “Development of a Downhole Television Camera,” Oceanographic Engineering Corporation, 1964, 1 page.
IPIECA About Us page, 2015, 1 page.
Appl et al., “A Viewing Lens for High Pressure Applications,” Society of Petroleum Engineers of AIME, SPE-299, 1962, 7 pages.
Taylor, “Efficiency: Watchword of the Oil Industry,” Financial Analysts Journal, 2018, 4 pages.
Pritchard, “U.S. Color Television Fundamentals: A Review,” SMPTE Journal, Nov. 1977, vol. 86, 10 pages.
Moxastore website, listing for NPORTIA5250, 2015, 2 pages.
Moxastore website, About Us, 2015, 1 page.
Moxastore website, Homepage, 2015, 2 pages.
Moxastore website, listing for Moxa 802.11 Ethernet to Serial, 2016, 1 page.
Amazon.com listing for Global Cache iTach, IP to Serial with PoE (IP2SL-P) by Global Cach, 2014, 3 pages.
Amazon.com listing for SainSmart TCP/IP Ethernet to Serial RS232 RS485 Intelligent Communication Converter by SainSmart, 2014, 4 pages.
Amazon.com listing for TCP/IP Ethernet to Serial RS232 RS485 RS422 Converter by Atc, 2014, 2 pages.
Amazon.com listing for StarTech.com 1 Port RS232 Serial to IP Ethernet Converter (NETRS2321P) by StarTech, 2014, 4 pages.
Amazon.com listing for StarTech NETRS2321E 1 Port RS-232/422/485 Serial over IP Ethernet Device Server by StarTech, 2014, 4 pages.
OSHA-NIOSH Hazard Alert: Worker Exposure to Silica during Hydraulic Fracturing, U.S. Department of Labor, 2012, 15 pages.
Avallone et al., “Marks Standard Handbook for Mechanical Engineers 11th Edition,” McGraw-Hill, 2007, 5 pages.
Fink, “Standard Handbook for Electrical Engineers,” Thirteenth Edition, McGraw-Hill, ISBN: 0-07-020984-7, 7 pages (excerpts) (Part 1).
Fink, “Standard Handbook for Electrical Engineers,” Thirteenth Edition, McGraw-Hill, ISBN: 0-07-020984-7, 7 pages (excerpts) (Part 2).
Fink, “Standard Handbook for Electrical Engineers,” Thirteenth Edition, McGraw-Hill, ISBN: 0-07-020984-7, 6 pages (excerpts) (Part 3).
Roe, “Practices and Procedures of Industrial Electrical Design,” McGraw-Hill, 1972, ISBN: 0-07-053390-3, 14 pages (Part 1).
Roe, “Practices and Procedures of Industrial Electrical Design,” McGraw-Hill, 1972, ISBN: 0-07-053390-3, 11 pages (Part 2).
Camara, “Electrical Engineering Reference Manual for the Electrical and Computer PE Exam—Sixth Edition,” Professional Publications, Inc., ISBN: 1-888577-56-8, 2002, 17 pages (Part 1).
Camara, “Electrical Engineering Reference Manual for the Electrical and Computer PE Exam—Sixth Edition,” Professional Publications, Inc., ISBN: 1-888577-56-8, 2002, 25 pages (Part 2).
Camara, “Electrical Engineering Reference Manual for the Electrical and Computer PE Exam—Sixth Edition,” Professional Publications, Inc., ISBN: 1-888577-56-8, 2002, 20 pages (Part 3).
Camara, “Electrical Engineering Reference Manual for the Electrical and Computer PE Exam—Sixth Edition,” Professional Publications, Inc., ISBN: 1-888577-56-8, 2002, 19 pages (Part 4).
Camara, “Electrical Engineering Reference Manual for the Electrical and Computer PE Exam—Sixth Edition,” Professional Publications, Inc., ISBN: 1-888577-56-8, 2002, 21 pages (Part 5).
PPI Course Catalog, 2004, available at: https://web.archive.org/web/20040220012405/http://ppi2pass.com/catalog/servlet/MyPpi_fl_corner-catalog.pdf, 16 pages.
“Teaching an Electrical and Computer Engineering PE Exam Review Course,” PPI, 2003, available at: https://web.archive.org/web/20031223100101/http://ppi2pass.com/catalog/servlet/MyPpi_pg_corner-teachee.html, 2 pages.
“Instructors Corner,” PPI, 2003, available at: https://web.archive.org/web/20031219232547/http://ppi2pass.com/catalog/servlet/MyPpi_pg_corner-corner.html, 2 pages.
EE-Reference Online Index, 2004, available at: https://web.archive.org/web/20040731020344/http://ppi2pass.com/catalog/servlet/MyPpi_fl_indices-EERMindex.pdf, 41 pages.
EE-Reference Online Introduction, 2004, available at: https://web.archive.org/web/20041013101643/http://ppi2pass.com/catalog/servlet/MyPpi_fl_indices-EERMIntro.pdf, 12 pages.
“Electrical PE Exam Review Products,” PPI Online Catalog, 2004, available at: https://web.archive.org/web/20040214233851/http://ppi2pass.com/catalog/servlet/MyPpi_ct_ELECTRICAL, 7 pages.
“The PPI Online Catalog,” 2004, available at: https://web.archive.org/web/20040215142016/http://ppi2pass.com/catalog/servlet/MyPpi_ct_MAIN, 2 pages.
Homepage of Professional Publications, Inc., 2004, available at: https://web.archive.org/web/20040209054901/http:/ppi2pass.com/catalog/servlet/MyPpi, 1 page.
“What PPI Customers Say,” 2003), available at: https://web.archive.org/web/20031226130924/http://ppi2pass.com/catalog/servlet/MyPpi_pg_comments-EEcomments.html, 2 pages.
“About PPI,” 2003, available at: https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_aboutppi.html, 1 page.
Amazon.com listing of EE-Reference, 2007, available at: https://web.archive.org/web/20070103124447/https://www.amazon.com/Electrical-Engineering-Reference-Manual-Computer/dp/1888577568/, 7 pages.
Hampton, “Low-cost fracking offers boon to oil producers, headaches for suppliers,” Reuters, Sep. 12, 2019, https://www.reuters.com/article/us-usa-oil-electric-fracturing-focus/low-cost-fracking-offers-boon-to-oil-producers-headaches-for-supplies, 11 page.
“All Electric Fracturing—Reducing Emissions and Cost,” 2021, H013770, 6 pages.
Abbott et al., “Crippling the Innovation Economy: Regulatory Overreach at the Patent Office,” Regulatory Transparency Project of the Federalist Society, Aug. 14, 2017, 35 pages.
“Hydraulic Fracturing Techbook,” Hartenergy, 2015, 9 pages.
“Petroleum Alumnus and Team Development Mobile Fracturing Unit that Alleviates Environmental Impact,” LSU College of Engineering, 2021, 2 pages.
“Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites,” FluidPower Journal, 2019, 5 pages.
Deuster, “Game-changing hydraulic fracturing technology, reduces emissions by 99%,” Intrado GlobeNewswire, Oct. 1, 2014, 4 pages.
“Halliburton Delivers Successful Grid-Powered Frac Operation”, Halliburton News Release, Jan. 14, 2021, 4 pages.
Wang et al., “Development in the Limited—Entry Completion Fracturing Technique,” SPE 17834, 1988, 13 pages.
Holden III et al., “Successful Stimulation of Fordoche Field With a Retarded HF Acid,” Society of Petroleum Engineers of AIME, Aug. 1981, 6 pages.
Milligan, “Sour Gas Well Completion Practices in the Foothills,” Society of Petroleum Engineers of AIME, Sep. 1982, 12 pages.
Beck et al., “Reservoir Evaluation of Fractured Cretaceous Carbonates in South Texas,” SPWLA Eighteenth Annual Logging Symposium, Jun. 5-8, 1977, 25 pages.
Webster, “Current Completion Practices in Tight Reservoirs,” Society of Petroleum Engineers, SPE 6379, 1977, 8 pages.
Bielstein, “Wire-Line Methods and Equipment,” Humble Oil and Refining Company, Apr. 2, 1967, 16 pages.
“Form-wound Squirrel-Cage Induction Motors—500 Horsepower and Larger,” ANSI/API Standard, 541-2003, Fourth Edition, Jun. 2004, 88 pages.
Gardner Denver, “Well Servicing Pump, Model GD-2500Q, Quintuplex, Operating and Service Manual,” 300FWF996 Revision C, Aug. 2005, 46 pages.
“Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for,” ASTM Int;I, A 29/A29M-05, 2005, 16 pages.
“Variable Speed Pumping: A Guide to Successful Applications,” Elsevier 2004, ISBN 1-85617-449-2, 2004, 186 pages.
Bonnett et al., “Squirrel Cage Rotor Options for A.C. Induction Motors,” IEEE, 2000, 14 pages.
Bonnett, “Root Cause Failure Analysis for AC Induction Motors in the Petroleum and Chemical Industry,” IEEE, Paper No. PCIC-2010-43, 2010, 13 pages.
“Mark's Standard Handbook for Mechanical Engineers, 11th Edition,” McGraw-Hill, ISBN 0-07-142867-4, 2006, 11 pages.
“Standard Handbook for Electrical Engineers,” Thirteenth Edition, McGraw-Hill, ISBN 0-07-020984-7, 1993, 9 pages (Part 1).
“Standard Handbook for Electrical Engineers,” Thirteenth Edition, McGraw-Hill, ISBN 0-07-020984-7, 1993, 7 pages (Part 2).
“Standard Handbook for Electrical Engineers,” Thirteenth Edition, McGraw-Hill, ISBN 0-07-020984-7, 1993, 6 pages (Part 3).
“112 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators,” IEEE Power Engineering Society, IEEE Std 112, 2004, 42 pages (Part 1).
“112 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators,” IEEE Power Engineering Society, IEEE Std 112, 2004, 45 pages (Part 2).
Hodowanec et al., “Introduction to API Standard 541, 4th Edition—Form-Wound Squirrel Cage Induction Motors—Larger than 500 Horsepower,” IEEE, Paper No. PCIC-2003-33, 2003, 9 pages.
Rahill et al., “Sorting Out the Overlap,” IEEE Industry Applications Magazine, vol. 15, No. 1, Jan.-Feb. 2009, 12 pages.
“Manufacturers of Cushioned Clamping, Quick Coupling & Support Systems,” ZSI Beta Clamps, ZSI, Inc., Apr. 29, 2015, 2 pages.
Meikrantz et al., “Advances in Liquid/Liquid Centrifuge Design Provide New Options for Petroleum Production,” Society of Petroleum Engineers, SPE 56709, 1999, 4 pages.
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-bumer) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para (Burners for refinery Heaters].
Notice of Allowance issued in corresponding U.S. Appl. No. 16/570,331, dated Jan. 9, 2020.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532, dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/356,436, dated Aug. 19, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970, dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656, dated Jun. 23, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040, dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/635,028, dated Apr. 23, 2019.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/063970, dated Mar. 5, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694, dated Jun. 26, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487, dated Jul. 25, 2018.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487, dated Nov. 13, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/994,772, dated Sep. 3, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/152,695, dated Mar. 3, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/152,732, dated Oct. 2, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/160,708, dated Dec. 12, 2018.
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/170,695, dated Feb. 12, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/170,695, dated Jun. 7, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/210,749, dated Feb. 25, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/268,030, dated Jun. 7, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/268,030, dated May 10, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/268,030, dated Sep. 11, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/385,070, dated Aug. 4, 2020.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/385,070, dated Oct. 11, 2019.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2019/037493, dated Sep. 11, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/443,273, dated Sep. 20, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/564,186, dated Dec. 6, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/597,008, dated Dec. 23, 2019.
Final Office Action issued in corresponding U.S. Appl. No. 16/210,749, dated Jun. 11, 2019.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349, dated Jul. 6, 2017.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/063977, dated Feb. 15, 2019.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491, dated Jan. 20, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532, dated Dec. 7, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532, dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/597,014, dated Jan. 10, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2019/055325, dated Jan. 2, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2019/055323, dated Feb. 11, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2019/051018, dated Nov. 26, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443, dated Feb. 7, 2017.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2019/027584, dated Jul. 9, 2019.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2019/016635, dated Apr. 10, 2019.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/040683, dated Sep. 19, 2018.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/054542, dated Jan. 2, 2019.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/054548, dated Jan. 2, 2019.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/055913, dated Dec. 31, 2018.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/057539, dated Jan. 4, 2019.
Related Publications (1)
Number Date Country
20240019057 A1 Jan 2024 US
Continuations (2)
Number Date Country
Parent 17321936 May 2021 US
Child 18206313 US
Parent 16728359 Dec 2019 US
Child 17321936 US