The present invention generally relates to the field of wireless communications and more particularly relates to interchangeable hardware components for a wireless communication device.
Conventional wireless communication devices typically become isolated computing platforms once they are deployed (i.e., sold to a consumer). Consumers typically must bring the wireless communication device (also referred to herein as “wireless device,” “handset,” and “mobile device”) to a service station for upgrades to the operating system or any integral software application such as a phonebook.
Additionally, if the consumer wants to replace a hardware component of a wireless communication device, the wireless device must be brought into a service station. Generally, hardware replacements are prohibitively expensive if the wireless device is not broken and under warranty. Even so, when a wireless device under warranty has a hardware component replaced, the new component is merely a working version of the component being replaced. Thus, when a consumer purchases a wireless communication device, the consumer is locked into the physical configuration of the wireless device for the life of the wireless communication device.
An additional drawback of conventional wireless communication devices is that new external devices, such as digital cameras, are limited to the specific, proprietary device that is offered by the manufacturer of the handset. Thus, a consumer's choice of external devices that enhance a wireless communication device is severely limited. Therefore, what is needed is a system and method that overcomes these significant problems found in the conventional systems as described above.
Conventional wireless communication devices are isolated computing platforms. For a user of a wireless communication device to take advantage of advances in technology embodied in the physical device, a new device must be purchased. If a new model with an improved display is released by the manufacturer, the user has no way to upgrade the handset. Additionally, if a hardware component malfunctions or breaks. The entire handset requires replacement, or in some instances the handset can be sent back to the manufacturer where it is refurbished. Unfortunately, this refurbishing doesn't allow for upgraded, newer components to be used. The manufacturer must replace the component with a working version of the same component.
The present invention provides systems and methods for interchangeable modular hardware components on a wireless communication device. When a handset component is obsolete or a new and improved component is available, the new component can be swapped with the old component. When the handset is powered up after having a hardware component replaced, the handset recognizes that a new component is present. Upon recognizing the new component, the handset queries the component to obtain information about the components characteristics. Once this information has been obtained, the handset queries an update server over a wireless communication network for an optimized device driver that will allow the handset to utilize the improved functionality of the new component. Additionally, the handset may query the update server for new software applications that also exploit the improved functionality of the new component. The update server responds with an instruction set for installing the device driver and the device driver itself. Upon receipt, the handset installs the device driver and reconfigures or reboots to complete the installation and configuration.
The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings described below, in which like reference numerals refer to like parts.
Certain embodiments as disclosed herein provide for a wireless communication device and method for dynamically recognizing and interfacing with an external device. For example, one method as disclosed herein allows for a wireless communication device to recognize the presence of an external device via a wired or wireless communication link. Upon recognition, the wireless communication device queries the external device to obtain summary profile information about the device. The wireless communication device then queries a server over a wireless communication network and receives a response comprising an interface to facilitate communication between the devices.
After reading this description it will become apparent to one skilled in the art how to implement the invention in various alternative embodiments and alternative applications. However, although various embodiments of the present invention will be described herein, it is understood that these embodiments are presented by way of example only, and not limitation. As such, this detailed description of various alternative embodiments should not be construed to limit the scope or breadth of the present invention as set forth in the appended claims.
Wireless communication device 20 can be any sort of device with the ability to communicate within the wireless communication network 10 and have modular hardware components replaced. Preferably, wireless communication device 20 also has a persistent storage area. For example, wireless communication device 20 may be a cell phone, a personal digital assistant (“PDA”), a laptop computer, wristwatch, or any other device configured for wireless communication. Wireless communication devices may also be referred to herein as “handsets” or “mobile phones” or “mobile devices.”
Base station 40 is preferably configured to communicate over-the-air with a plurality of wireless communication devices and includes a transceiver (not shown) that converts the over-the-air communications to wired communications that travel over network 50. Preferably, network 50 is a private network operated by a wireless carrier. Network 50 preferably provides the infrastructure for handoffs between base stations such as base station 40 and 42. Additionally, network 50 preferably provides the communication link between various applications, services, and other computer based servers such as update server 60.
Network 50 may also serve as the conduit for connections to other networks (not pictured) such as an Integrated Services Digital Network (“ISDN”), Public Switched Telephone Network (“PSTN”), Public Land Mobile Network (“PLMN”), Packet Switched Public Data Network (“PSPDN”), and the Internet, just to name a few.
Update server 60 can be implemented as a single computer or as a plurality of servers logically arranged to provide dynamic instruction sets and device drivers to mobile devices and to execute dynamic instruction sets received from mobile devices. In the illustrated embodiment, update server 60 is coupled with a data storage area 70 that preferably houses a plurality of executable interfaces and a set of server operation codes, handset operation codes and executable instructions corresponding to the server operation codes. The features of a general purpose computer that may implement the update server 60 are later described with respect to
The function of the update server 60 is preferably to receive requests from a handset and respond to those requests by providing the handset with an executable device driver that the handset can use to communicate with a new hardware module installed in the handset.
In the illustrated embodiment, the display screen 80 is interchangeable with a new display screen 90. For example, the screen 80 may be limited to displaying monochrome while the screen 90 may be capable of displaying color. Similarly, the keypad 82 is interchangeable with a new keypad 92. For example, the new keypad 92 have the ability to illuminate the keys while the keypad 82 may not have this ability.
The user interface 120 may comprise both the executable user interface application and the user interface data that is used by the application. In an alternative embodiment, the user interface application portion may be included as part of the operating system and the user interface 120 may comprise ancillary user data or custom data or other data usable by the user interface application or the user. The persistent storage area 240 additionally comprises one or more device drivers such as device driver 130, device driver 132, all the way up to device driver n. These device drivers are preferably executable applications that facilitate communication between the handset and another device, or possibly between the core handset and an integral device such as the display, keypad, speaker, microphone, or earphones, just to name a few.
Additionally shown as part of the persistent storage 240 are a series of software applications or modules such as applications 140, 142, 144, 146, and on up to application n. As illustrated, a large number of applications may be resident as part of the persistent storage 240. The only limit on the number of applications that can be stored in persistent storage 240 is the physical limit of the storage 240.
The modular hardware detector 200 is preferably configured to determine when a new hardware module has been exchanged with a previous hardware module. In one embodiment, the modular hardware detector 200 function upon power up to detect the presence of a new hardware module. Alternatively, the modular hardware detector 200 may operate during the power on mode to detect any new hardware that was “hot” swapped, or otherwise replaced while the handset 20 was powered on. The modular hardware detector 200 can be implemented as a combination of electromechanical and software components to carry out the detection function and is preferably in communication with the runtime engine 230 to inform the runtime engine of newly detected hardware modules.
Additionally, the modular hardware detector 200 can be configured to determine the available space in persistent storage 240 where a new device driver is to be installed. For example, upon detecting a new hardware module, the modular hardware detector 200 preferably determines the amount of storage space used for the current device driver, e.g., device driver N illustrated in
If the current device driver and the new device driver are the same size or if the new device driver requires less storage space than the current device driver, then the new device driver can be installed in the same place in persistent storage where the current device driver is located. If the new device driver requires more storage space than the current driver, then the modular hardware detector 200 preferably can install the new device driver in another portion of the persistent storage area 240 that is newly allocated for device driver storage by the modular hardware detector 200. Alternatively, the modular hardware detector 200 may also query the user to identify data in persistent storage that can be deleted to make room for the new device driver.
The modular hardware detector 200 is preferably configured to instruct the operating system 100 to delete the current device driver after installation of the new device driver is successful. Preferably, the current device driver is backed up in persistent or volatile storage during the installation process for the new device driver.
The handset opcode library 220 preferably includes the universe of operation codes that represent each function or executable code segment that the handset can be instructed to execute by the update server 60. Advantageously, handset opcode library 220 includes the operation codes that serve as place holders for the actual executable machine code functions or code segments. As such, the handset opcode library 220 preferably contains a list of all available operation codes that correspond to each and every function that can be executed by the handset 20.
Similarly, the server opcode library 210 preferably includes the universe of operation codes that represent each server side function or executable code segment. Advantageously, server opcode library 210 may only include the operation codes for the actual executable machine code functions or code segments, which do not reside on the wireless communication device 20. As such, the server opcode library 220 contains a list of all the operation codes for each available server function that can be executed by the update server 60 on behalf of the handset 20. In the preferred embodiment, the number of available server functions can well exceed the number of available handset functions because the update server 60 does not suffer from the minimal resources typically found on mobile devices such as, for example, cell phones and PDAs.
Runtime engine 230 is preferably configured to process dynamic instructions sets. One example of a dynamic instruction set is a set of instructions to install a device driver for a new hardware component. The processing of dynamic instruction sets includes translation of opcodes into executable instruction sets and execution of those instruction sets. For example, a set of handset opcodes may be received from the update server 60 along with a data payload. The opcodes are then translated into executable instructions for the handset. The processing of dynamic instruction sets also includes compilation of opcodes and corresponding data payloads for delivery to the update server 60. Preferably, runtime engine 230 can be launched by wireless communication device 20 on an as needed basis so that it runs only when necessary and consumes a minimal amount of system resources (e.g. memory, CPU cycles, etc.) on the handset 20.
Next, in step 302 the handset detects a new hardware component. The new component does not need to be a new functional component, but can be a replacement of a previous hardware module, e.g., a new display screen. Upon detecting a new hardware component, the handset next determines in step 304 the type of component it is, for example, screen, keypad, radio chipset, or the like. The handset then queries the new component in step 306 to obtain information about the new component. This new component information is received by the handset in step 308 and preferably stored in persistent or volatile memory. In one embodiment, the new hardware module information includes an identifier that uniquely identifies the new hardware module.
For example, the wireless device detects a new hardware module has been installed. The new hardware module is queried and summary profile information is obtained. A server opcode set is compiled instructing the server to provide the handset with an executable device driver for the new hardware module so that the handset may communicate with the new hardware module. In such as case, the result is a server opcode set generated by the runtime engine, as shown in step 322.
Once the server opcode set has been generated, the runtime engine includes the information for the new hardware module in the data payload that corresponds to the server opcode set. For example, the runtime engine may fetch the hardware module information from persistent or volatile memory, or execute an instruction that returns the data needed. Once the data has been obtained, the runtime engine next inserts the new hardware module information into the server opcode set, as illustrated in step 324. One simple way to achieve this is to append the data payload to the server opcode set in a single data packet.
Once the data payload has been combined with the server opcode set, then the runtime engine sends the server opcode set with the corresponding data payload to the server, as shown in step 326. After the server opcode set and data payload has been sent, the runtime engine may be terminated to free up resources on the wireless device, as illustrated in step 328.
In step 332, the wireless device launches its runtime engine to process the handset opcode set. As illustrated in step 334, the runtime engine parses the handset opcode set and then extracts the data payload in step 336. The data payload is preferably stored in an available portion of volatile memory for later use. Next, the runtime engine obtains the executable instructions that correspond to the opcodes in the handset opcode set as shown in step 338. These instructions can be obtained from the remote runtime instructions set stored in persistent storage on the data storage area of the handset.
Once the executable instructions corresponding to the opcodes in the handset opcode set have been obtained, the runtime engine executes the instructions, as illustrated in step 340. When the instructions are being executed, any necessary data to be operated on can be obtained from volatile memory where the data payload is stored. Alternatively, or additionally, any necessary data to be operated on may be obtained as the result of an executed instruction. Preferably, the execution of the instruction set causes the device driver for the new hardware module to be installed on the handset.
For example, the data payload comprises the device driver needed by the handset to communicate with the new hardware module. Additionally, one or more of the opcodes in the handset opcode set preferably correspond to one or more executable instructions for storing the data payload in persistent memory on the handset. In this example, once the data payload comprising the device driver is stored in persistent memory, the handset may thereafter communicate with the new hardware module using the device driver, which preferably is configured to take full advantage of the functionality of the new hardware module.
Alternatively, the data payload may replace a portion of persistent memory that contains an outdated device driver for the hardware component that was replaced. Thus, the handset opcode set and data payload operate on the wireless device to install a new device driver for the new hardware module. Additional opcodes and instructions may also be employed to configure the new device driver or other aspects of the handset once the new device driver has been installed.
Once the instruction set has been executed in its entirety by the runtime engine, the runtime engine can be terminated, as shown in step 342. Advantageously, the runtime engine may be launched and terminated so that it only runs when necessary. This saves system resources on the wireless device, for example it may save volatile memory space, CPU cycles, and battery life. Once the device driver for the new hardware module has been installed and configured for use, as illustrated in step 346, the handset may begin using the new hardware module in the course of normal operation.
Alternatively, the response may be an indication of an unsuccessful attempt to communicate with the new hardware module, as determined in step 354. If the setup request received a response indicating that the setup was unsuccessful, the handset returns to step 350 and sends another setup request. In one embodiment, the handset may cycle through a predetermined number (e.g., N) of setup requests until a request that is formatted correctly is provided to the new hardware component. For example, the various setup requests may conform to different versions of the interface or different communication modes for the device driver.
There may also be synchronization issues for the device driver and the new hardware module to work through in an iterative process. Accordingly, the particular setup request that receives a successful response may advantageously provide the device driver with important information about the version of the firmware that is installed on the new hardware module, the capabilities of the new hardware module, and other information about the new hardware module. Once a successful response is received from the new hardware module, as determined in step 354, the handset may proceed to use the new hardware module in the course of normal operation as shown in step 356. If no successful response is received in the N setup requests, the old device driver can be restored. Advantageously, backward compatible devices will operate with the old device driver, although new or improved functionality may not be available through the old device driver.
In the illustrated embodiment, wireless communication device 450 comprises an antenna 452, a multiplexor 454, a low noise amplifier (“LNA”) 456, a power amplifier (“PA”) 458, a modulation circuit 460, a baseband processor 462, a speaker 464, a microphone 466, a central processing unit (“CPU”) 468, a data storage area 470, and a hardware interface 472. In the wireless communication device 450, radio frequency (“RF”) signals are transmitted and received by antenna 452. Multiplexor 454 acts as a switch, coupling antenna 452 between the transmit and receive signal paths. In the receive path, received RF signals are coupled from a multiplexor 454 to LNA 456. LNA 456 amplifies the received RF signal and couples the amplified signal to a demodulation portion of the modulation circuit 460.
Typically modulation circuit 460 will combine a demodulator and modulator in one integrated circuit (“IC”). The demodulator and modulator can also be separate components. The demodulator strips away the RF carrier signal leaving a base-band receive signal, which is sent from the demodulator output to the base-band processor 462.
If the base-band receive audio signal contains audio information, then base-band processor 462 decodes the signal and converts it to an analog signal. Then the signal is amplified and sent to the speaker 464. The base-band processor 462 also receives analog audio signals from the microphone 466. These analog audio signals are converted to digital signals and encoded by the base-band processor 462. The base-band processor 462 also codes the digital signals for transmission and generates a base-band transmit audio signal that is routed to the modulator portion of modulation circuit 460. The modulator mixes the base-band transmit audio signal with an RF carrier signal generating an RF transmit signal that is routed to the power amplifier 458. The power amplifier 458 amplifies the RF transmit signal and routes it to the multiplexor 454 where the signal is switched to the antenna port for transmission by antenna 452.
The baseband processor 462 is also communicatively coupled with the central processing unit 468. The central processing unit 468 has access to a data storage area 470. The central processing unit 468 is preferably configured to execute instructions (i.e., computer programs or software) that can be stored in the data storage area 470. Computer programs can also be received from the baseband processor 462 and stored in the data storage area 470 or executed upon receipt. Such computer programs, when executed, enable the wireless communication device 450 to perform the various functions of the present invention as previously described.
In this description, the term “computer readable medium” is used to refer to any media used to provide executable instructions (e.g., software and computer programs) to the wireless communication device 450 for execution by the central processing unit 468. Examples of these media include the data storage area 470, microphone 466 (via the baseband processor 462), antenna 452 (also via the baseband processor 462), and hardware interface 472. These computer readable mediums are means for providing executable code, programming instructions, and software to the wireless communication device 450. The executable code, programming instructions, and software, when executed by the central processing unit 468, preferably cause the central processing unit 468 to perform the inventive features and functions previously described herein.
The central processing unit is also preferably configured to receive notifications from the hardware interface 472 when new devices are detected by the hardware interface. Hardware interface 472 can be a combination electromechanical detector with controlling software that communicates with the CPU 468 and interacts with new devices.
The computer system 550 preferably includes one or more processors, such as processor 552. Additional processors may be provided, such as an auxiliary processor to manage input/output, an auxiliary processor to perform floating point mathematical operations, a special-purpose microprocessor having an architecture suitable for fast execution of signal processing algorithms (e.g., digital signal processor), a slave processor subordinate to the main processing system (e.g., back-end processor), an additional microprocessor or controller for dual or multiple processor systems, or a coprocessor. Such auxiliary processors may be discrete processors or may be integrated with the processor 552.
The processor 552 is preferably connected to a communication bus 554. The communication bus 554 may include a data channel for facilitating information transfer between storage and other peripheral components of the computer system 550. The communication bus 554 further may provide a set of signals used for communication with the processor 552, including a data bus, address bus, and control bus (not shown). The communication bus 554 may comprise any standard or non-standard bus architecture such as, for example, bus architectures compliant with industry standard architecture (“ISA”), extended industry standard architecture (“EISA”), Micro Channel Architecture (“MCA”), peripheral component interconnect (“PCI”) local bus, or standards promulgated by the Institute of Electrical and Electronics Engineers (“IEEE”) including IEEE 488 general-purpose interface bus (“GPIB”), IEEE 696/S-100, and the like.
Computer system 550 preferably includes a main memory 556 and may also include a secondary memory 558. The main memory 556 provides storage of instructions and data for programs executing on the processor 552. The main memory 556 is typically semiconductor-based memory such as dynamic random access memory (“DRAM”) and/or static random access memory (“SRAM”). Other semiconductor-based memory types include, for example, synchronous dynamic random access memory (“SDRAM”), Rambus dynamic random access memory (“RDRAM”), ferroelectric random access memory (“FRAM”), and the like, including read only memory (“ROM”).
The secondary memory 558 may optionally include a hard disk drive 560 and/or a removable storage drive 562, for example a floppy disk drive, a magnetic tape drive, a compact disc (“CD”) drive, a digital versatile disc (“DVD”) drive, etc. The removable storage drive 562 reads from and/or writes to a removable storage medium 564 in a well-known manner. Removable storage medium 564 may be, for example, a floppy disk, magnetic tape, CD, DVD, etc.
The removable storage medium 564 is preferably a computer readable medium having stored thereon computer executable code (i.e., software) and/or data. The computer software or data stored on the removable storage medium 564 is read into the computer system 550 as electrical communication signals 578.
In alternative embodiments, secondary memory 558 may include other similar means for allowing computer programs or other data or instructions to be loaded into the computer system 550. Such means may include, for example, an external storage medium 572 and an interface 570. Examples of external storage medium 572 may include an external hard disk drive or an external optical drive, or and external magneto-optical drive.
Other examples of secondary memory 558 may include semiconductor-based memory such as programmable read-only memory (“PROM”), erasable programmable read-only memory (“EPROM”), electrically erasable read-only memory (“EEPROM”), or flash memory (block oriented memory similar to EEPROM). Also included are any other removable storage units 572 and interfaces 570, which allow software and data to be transferred from the removable storage unit 572 to the computer system 550.
Computer system 550 may also include a communication interface 574. The communication interface 574 allows software and data to be transferred between computer system 550 and external devices (e.g. printers), networks, or information sources. For example, computer software or executable code may be transferred to computer system 550 from a network server via communication interface 574. Examples of communication interface 574 include a modem, a network interface card (“NIC”), a communications port, a PCMCIA slot and card, an infrared interface, and an IEEE 1394 fire-wire, just to name a few.
Communication interface 574 preferably implements industry promulgated protocol standards, such as Ethernet IEEE 802 standards, Fiber Channel, digital subscriber line (“DSL”), asynchronous digital subscriber line (“ADSL”), frame relay, asynchronous transfer mode (“ATM”), integrated digital services network (“ISDN”), personal communications services (“PCS”), transmission control protocol/Internet protocol (“TCP/IP”), serial line Internet protocol/point to point protocol (“SLIP/PPP”), and so on, but may also implement customized or non-standard interface protocols as well.
Software and data transferred via communication interface 574 are generally in the form of electrical communication signals 578. These signals 578 are preferably provided to communication interface 574 via a communication channel 576. Communication channel 576 carries signals 578 and can be implemented using a variety of communication means including wire or cable, fiber optics, conventional phone line, cellular phone link, radio frequency (RF) link, or infrared link, just to name a few.
Computer executable code (i.e., computer programs or software) is stored in the main memory 556 and/or the secondary memory 558. Computer programs can also be received via communication interface 574 and stored in the main memory 556 and/or the secondary memory 558. Such computer programs, when executed, enable the computer system 550 to perform the various functions of the present invention as previously described.
In this description, the term “computer readable medium” is used to refer to any media used to provide computer executable code (e.g., software and computer programs) to the computer system 550. Examples of these media include main memory 556, secondary memory 558 (including hard disk drive 560, removable storage medium 564, and external storage medium 572), and any peripheral device communicatively coupled with communication interface 574 (including a network information server or other network device). These computer readable mediums are means for providing executable code, programming instructions, and software to the computer system 550.
In an embodiment that is implemented using software, the software may be stored on a computer readable medium and loaded into computer system 550 by way of removable storage drive 562, interface 570, or communication interface 574. In such an embodiment, the software is loaded into the computer system 550 in the form of electrical communication signals 578. The software, when executed by the processor 552, preferably causes the processor 552 to perform the inventive features and functions previously described herein.
Various embodiments may also be implemented primarily in hardware using, for example, components such as application specific integrated circuits (“ASICs”), or field programmable gate arrays (“FPGAs”). Implementation of a hardware state machine capable of performing the functions described herein will also be apparent to those skilled in the relevant art. Various embodiments may also be implemented using a combination of both hardware and software.
While the particular systems and methods for modular hardware components for wireless communication devices herein shown and described in detail is fully capable of attaining the above described objects of this invention, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.
This application is a continuation in part application of U.S. patent application Ser. No. 10/665,962, filed on Sep. 18, 2003, which is a continuation in part of U.S. patent application Ser. No. 09/917,026, filed on Jul. 26, 2001, of U.S. patent application Ser. No. 09/916,900, filed on Jul. 26, 2001, and of U.S. patent application Ser. No. 09/916,460, filed on Jul. 26, 2001, which are hereby incorporated by reference. This application is also related to U.S. application Ser. No. unknown entitled “Modular Software Components for Wireless Communication Devices” and to U.S. application Ser. No. unknown entitled “Dynamic Interface Software for Wireless Communication Devices”, which are filed concurrently herewith. Additionally, this application is related to U.S. application Ser. No. 09/927,131, filed on Aug. 10, 2001; to U.S. application Ser. No. 09/969,305, filed on Oct. 2, 2001; to U.S. application Ser. No. 09/970,188, filed on Oct. 3, 2001; to U.S. application Ser. No. 09/972,519, filed on Oct. 5, 2001; to U.S. application Ser. No. 10/206,780, filed on Jul. 25, 2002; to U.S. application Ser. No. 10/206,781, filed on Jul. 25, 2002; and to U.S. application Ser. No. 10/206,516, filed on Jul. 25, 2002, which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5046082 | Zicker et al. | Sep 1991 | A |
5337255 | Seidel et al. | Aug 1994 | A |
5400389 | Niiyama et al. | Mar 1995 | A |
5481706 | Peek | Jan 1996 | A |
5507009 | Grube et al. | Apr 1996 | A |
5600823 | Sherer et al. | Feb 1997 | A |
5673317 | Cooper | Sep 1997 | A |
5699275 | Beasley et al. | Dec 1997 | A |
5715462 | Iwamoto et al. | Feb 1998 | A |
5734904 | Kanamori et al. | Mar 1998 | A |
5771386 | Baumbauer | Jun 1998 | A |
5784537 | Suzuki et al. | Jul 1998 | A |
5790704 | Rao et al. | Aug 1998 | A |
5790856 | Lillich | Aug 1998 | A |
5832086 | Rosauer | Nov 1998 | A |
5835778 | Yoshihara | Nov 1998 | A |
5875242 | Glaser et al. | Feb 1999 | A |
5920826 | Metso et al. | Jul 1999 | A |
5930704 | Kay | Jul 1999 | A |
5938766 | Anderson et al. | Aug 1999 | A |
5960356 | Alperovich et al. | Sep 1999 | A |
5974312 | Hayes et al. | Oct 1999 | A |
6018543 | Blois et al. | Jan 2000 | A |
6023620 | Hansson | Feb 2000 | A |
6026400 | Suzuki | Feb 2000 | A |
6047071 | Shah | Apr 2000 | A |
6138009 | Birgerson | Oct 2000 | A |
6138153 | Collins, III et al. | Oct 2000 | A |
6145098 | Nouri et al. | Nov 2000 | A |
6195546 | Leung et al. | Feb 2001 | B1 |
6247065 | Greenspan et al. | Jun 2001 | B1 |
6272333 | Smith | Aug 2001 | B1 |
6275694 | Yoshida et al. | Aug 2001 | B1 |
6308061 | Criss et al. | Oct 2001 | B1 |
6351636 | Shaffer et al. | Feb 2002 | B2 |
6415266 | Do | Jul 2002 | B1 |
6442660 | Heneriau et al. | Aug 2002 | B1 |
6449476 | Hutchison, IV et al. | Sep 2002 | B1 |
6457174 | Kuroda et al. | Sep 2002 | B1 |
6460070 | Turek et al. | Oct 2002 | B1 |
6470447 | Lambert et al. | Oct 2002 | B1 |
6493549 | Axelson et al. | Dec 2002 | B1 |
6493871 | McGuire et al. | Dec 2002 | B1 |
6498789 | Honda | Dec 2002 | B1 |
6546492 | Walker et al. | Apr 2003 | B1 |
6549770 | Marran | Apr 2003 | B1 |
6578056 | Lamburt | Jun 2003 | B1 |
6578142 | Anderson et al. | Jun 2003 | B1 |
6622017 | Hoffman | Sep 2003 | B1 |
6633759 | Kobayashi | Oct 2003 | B1 |
6643506 | Criss et al. | Nov 2003 | B1 |
6714992 | Kanojia et al. | Mar 2004 | B1 |
6731946 | Stanwood et al. | May 2004 | B1 |
6754894 | Costello et al. | Jun 2004 | B1 |
6754895 | Bartel et al. | Jun 2004 | B1 |
6763252 | Itazawa | Jul 2004 | B2 |
6785541 | Martin | Aug 2004 | B2 |
6950847 | Harrisville-Wolff et al. | Sep 2005 | B2 |
6959192 | Cannon et al. | Oct 2005 | B1 |
6990660 | Moshir et al. | Jan 2006 | B2 |
7065347 | Vikse et al. | Jun 2006 | B1 |
20010000538 | Kowaguchi | Apr 2001 | A1 |
20010005861 | Mousseau et al. | Jun 2001 | A1 |
20010019953 | Furukawa et al. | Sep 2001 | A1 |
20010027500 | Matsunaga | Oct 2001 | A1 |
20010051519 | Shirai | Dec 2001 | A1 |
20010054161 | Woodruff | Dec 2001 | A1 |
20020019973 | Hayashida | Feb 2002 | A1 |
20020026634 | Shaw | Feb 2002 | A1 |
20020065041 | Lunsford et al. | May 2002 | A1 |
20020072359 | Moles et al. | Jun 2002 | A1 |
20020077077 | Rezvani et al. | Jun 2002 | A1 |
20020083142 | Lagosanto et al. | Jun 2002 | A1 |
20020083143 | Cheng | Jun 2002 | A1 |
20020131397 | Patel et al. | Sep 2002 | A1 |
20020142762 | Chmaytalli et al. | Oct 2002 | A1 |
20020152268 | Kureshy et al. | Oct 2002 | A1 |
20020160763 | Mittal et al. | Oct 2002 | A1 |
20020161796 | Sylthe | Oct 2002 | A1 |
20020170039 | Kovacevic | Nov 2002 | A1 |
20030014561 | Cooper | Jan 2003 | A1 |
20030060189 | Minear et al. | Mar 2003 | A1 |
20030195013 | Zicker et al. | Oct 2003 | A1 |
20040158829 | Berestein et al. | Aug 2004 | A1 |
20040177072 | Salminen et al. | Sep 2004 | A1 |
20040203768 | Yiltalo et al. | Oct 2004 | A1 |
20040214551 | Kim | Oct 2004 | A1 |
20040229644 | Hele et al. | Nov 2004 | A1 |
20040240657 | Carmillo et al. | Dec 2004 | A1 |
20040249657 | Kol et al. | Dec 2004 | A1 |
20040249768 | Kontio et al. | Dec 2004 | A1 |
20040266422 | Hotze et al. | Dec 2004 | A1 |
20050064847 | Kirbas et al. | Mar 2005 | A1 |
20050079863 | Macaluso | Apr 2005 | A1 |
20050209930 | Coppinger et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
19502728 | Aug 1996 | DE |
19543843 | May 1997 | DE |
19850133 | May 1999 | DE |
0459344 | Dec 1991 | EP |
0889405 | Jan 1999 | EP |
0918420 | May 1999 | EP |
1014263 | Jun 2000 | EP |
2800963 | May 2001 | FR |
2227584 | Aug 1990 | GB |
2349485 | Nov 2000 | GB |
WO 9300633 | Jan 1993 | WO |
WO 9809208 | Mar 1998 | WO |
WO 9922325 | May 1999 | WO |
WO 0067112 | Sep 2000 | WO |
WO 0073912 | Dec 2000 | WO |
WO 0074412 | Dec 2000 | WO |
WO 0135686 | May 2001 | WO |
WO 02058364 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040214559 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10665962 | Sep 2003 | US |
Child | 10848939 | US | |
Parent | 09917026 | Jul 2001 | US |
Child | 10665962 | US | |
Parent | 09916900 | Jul 2001 | US |
Child | 09917026 | US | |
Parent | 09916460 | Jul 2001 | US |
Child | 09916900 | US |