System and method for intercommunication between computers in an array

Information

  • Patent Grant
  • 7937557
  • Patent Number
    7,937,557
  • Date Filed
    Tuesday, March 16, 2004
    21 years ago
  • Date Issued
    Tuesday, May 3, 2011
    14 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Chan; Eddie
    • Partridge; William B
    Agents
    • Henneman & Associates, PLC
    • Henneman, Jr.; Larry E.
Abstract
A computer array (10) has a plurality of computers (12) for accomplishing a larger task that is divided into smaller tasks, each of the smaller tasks being assigned to one or more of the computers (12). Each of the computers (12) may be configured for specific functions and individual input/output circuits (26) associated with exterior computers (12) are specifically adapted for particular input/output functions. An example of 25 computers (12) arranged in the computer array (10) has a centralized computational core (34) with the computers (12) nearer the edge of the die (14) being configured for input and/or output.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to the field of computers and computer processors, and more particularly to a method and means for connecting computers together such that the overall speed and efficiency of the combined computers is optimized. The predominant current usage of the present inventive computer array is in the combination of multiple computers on a single microchip, wherein cooperation of the computers to achieve a unified object is desirable.


2. Description of the Background Art


In the art of computing, processing speed is a much desired quality, and the quest to create faster computers and processors is ongoing. Since, for any given state of the art, the maximum available processor speed is finite, there have been efforts to use multiple processors or multiple computers to speed up operations. It is known in the art to combine a plurality of computer processors or computers to divide a task or computation, such that the task is achieved in a minimum amount of time. An example is a multi-threading application wherein different program threads are operated upon by different processors.


As discussed above, it is a given that it is desirable to speed up the operation of a computer process. However no prior art method or apparatus has achieved an optimal speed for the performance of many computer operations.


SUMMARY

Accordingly, it is an object of the present invention to provide an apparatus and method for increasing computer processing speed.


It is still another object of the present invention to provide an apparatus and method for providing substantial computing power inexpensively.


It is yet another object of the present invention to provide an apparatus and method for increasing the operational speed of a multi-computer array.


It is still another object of the present invention to provide an apparatus and method for accomplishing computational intensive tasks.


Briefly, a known embodiment of the present invention is an array of computers, each computer having its own memory and being capable of independent computational functions. A task, such as the implementation of a digital radio, a digital stereo preamplifier, a Global Positioning System (“GPS”) receiver unit, a radio transceiver, a speech recognition device, or any of many other such functions, is divided into a plurality of sub-operations, and each operation is assigned to one of the computers at initiation of the operation of the array.


In the embodiment of the invention described, the computer array is implemented on a single die, with at least some computers near the edge of the die being configured to accomplish input and output tasks. Connections between the computers are arranged to keep the implementation of the device relatively simple, while minimizing the number of “hops” required to communicate across the array. In a described embodiment, the computers are arranged in a 5 by 5 matrix wherein each of the computers connects directly to three of its neighbor computers by a parallel connection, although other types and quantities of connections are within the scope of the invention.


The inventor has found that, although assigning a separate task initially to each of the computers may result in some idle time for some or all of the computers, the lack of complexity and inherent efficiency of the arrangement will more than make up for any inefficiency caused by such idle time, and the overall speed and ease of the accomplishment of the task is greatly enhanced.


These and other objects and advantages of the present invention will become clear to those skilled in the art in view of the description of modes of carrying out the invention, and the industrial applicability thereof, as described herein and as illustrated in the several figures of the drawing. The objects and advantages listed are not an exhaustive list of all possible advantages of the invention. Moreover, it will be possible to practice the invention even where one or more of the intended objects and/or advantages might be absent or not required in the application.


Further, those skilled in the art will recognize that various embodiments of the present invention may achieve one or more, but not necessarily all, of the described objects and/or advantages. Accordingly, the objects and/or advantages described herein are not essential elements of the present invention, and should not be construed as limitations.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of a computer array, according to the present invention;



FIG. 2 is a block diagrammatic view of an example of one of the computers of FIG. 1;



FIG. 3 is a diagrammatic view of a computer array configured for a specific application, according to the present invention; and



FIG. 4 is a flow diagram depicting an example of the present inventive method.





DETAILED DESCRIPTION OF THE INVENTION

This invention is described in the following description with reference to the Figures, in which like numbers represent the same or similar elements. While this invention is described in terms of modes for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. The method form of the invention may be practiced by combining one or more machine readable storage devices containing the code, according to the present invention, with appropriate standard computer hardware to execute the code contained therein.


The embodiments and variations of the invention described herein, and/or shown in the drawings, are presented by way of example only and are not limiting as to the scope of the invention. Unless otherwise specifically stated, individual aspects and components of the invention may be omitted or modified, or may have substituted therefore known equivalents, or as yet unknown substitutes such as may be developed in the future or such as may be found to be acceptable substitutes in the future. The invention may also be modified for a variety of applications while remaining within the spirit and scope of the claimed invention, since the range of potential applications is great, and since it is intended that the present invention be adaptable to many such variations.


A known mode for carrying out the invention is an array of individual computers. The inventive computer array is depicted in a diagrammatic view in FIG. 1 and is designated therein by the general reference character 10. The computer array 10 has a plurality (twenty five in the example shown) of computers 12. In the example shown, all of the computers 12 are located on a single die 14. According to the present invention, each of the computers 12 is a generally independently functioning computer, as will be discussed in more detail hereinafter. The computers 12 are interconnected by a plurality (the quantities of which will be discussed in more detail hereinafter) of interconnecting data lines 16. In this example, the data lines 16 are asynchronous high speed parallel data lines, although it is within the scope of the invention that other interconnecting means (such as serial data lines) might be employed for the purpose. In the present embodiment of the array 10, not only is data communication between the computers 12 asynchronous, the individual computers 12 also operate in an asynchronous mode. While this is not a necessary aspect of the invention, it is thought by the inventor to provide important advantages. For example, since a clock signal does not have to be distributed throughout the computer array 12, a great deal of power is saved, and one skilled in the art will know that this is an important advantage. Furthermore, not having to distribute a clock signal eliminates many timing problems that could limit the size of the array 12 or cause other known difficulties.


It should be noted that the view of FIG. 1 is not intended to be a layout diagram of the computers 12. Rather, this view illustrates an example of possible interconnections of the computers 12. In the view of FIG. 1 it can be seen that adjacent examples of the computers 12 are connected to three of the neighbor computers 12 by three of the data lines 16. It is thought by the inventor that this quantity of data lines 16 is a reasonable quantity, since it minimizes the necessary quantity of metal layers on the die 14, while providing sufficient data paths that a minimum number of “hops” is required to communicate from one of the computers 12 on the perimeter of the array 10 to even the most interior computer 12, where the term “hops” is used to mean the connections or transfers between the computers 12 through which a signal must travel to move from one of the computers 12 to another computer 12.


Also pictured in the view of FIG. 1 are a flash memory 18 and a RAM 20. In the embodiment shown, the flash memory 18 and the RAM 20 are “off chip”, meaning that they are not on the die 14, although it is within the scope of the invention that one or both of these might conceivably be located on the die 14. The flash memory 18 is used to load initial programs into the computers 12 at power up, and the RAM 20 is used in the conventional manner. A memory controller computer 12a controls access to memory in the flash memory 18 and the RAM 20. In the embodiment of the invention described, the flash memory 18 uses a serial data line 22 to transfer data to and through the memory controller computer 12a, while the RAM 20 utilizes a parallel data bus 24, because it is desirable to have as fast as possible a connection to the RAM 20.


The example of the memory controller computer 12a serves to illustrate an important aspect of the present invention. While, according to the present invention, the several computers 12 are either exactly or essentially alike, they each can be configured to perform very distinct and different functions. It should be noted that, according to the present invention, the computers 12 are essentially identical computers in that the structure, circuitry, layout, and operational characteristics are essentially the same. Some examples of minor differences that may be optionally provided will be discussed herein. However, it remains true that the arrays 10, 10a of the present invention are arrays of computers 12 that are all essentially the same. In other words, the present arrays 10, 10a are homogeneous arrays rather than heterogeneous arrays of computers which are designed from the outset to perform different functions. Although the computers 12 of the present homogeneous arrays 10, 10a are all essentially the same, they can be adapted for special purposes by the addition of a small amount of additional circuitry, as will be discussed in more detail hereinafter. Among the many advantages of the homogeneous arrays of the present invention is versatility. According to the present invention, the arrays 10, 10a can be used for a great many different purposes. Further, even if some modification is required or desirable for some special purpose, such modification can be easily accomplished during the manufacture of the devices.


The memory controller computer 12a is just one such example of one of the computers 12 performing a dedicated function. As can be seen in the example of FIG. 1, it is expected that it might be beneficial for the memory controller computer 12a to have a greater quantity of the data lines 16 to connect it to the remainder of the computers 12 than just the quantity of three, previously discussed.


As discussed briefly above, many of the computers 12 in the computer array 10 will have different functions. Accordingly, it is thought that it will be most beneficial for the computers 12 nearest the edge of the die 14 to have input/output functions, since it will be easier to connect to the required pins from those external computers 12 if they are placed on the edge of the die 14. The interior computers 12 (those which are not on the outside of the computer array 10) will, therefore, be used more to accomplish computational and control functions, or other functions which typically require less input/output capability. In the view of FIG. 1, a plurality of input/output circuits 26 are associated with the corresponding computers 12, and provide the input/output functions, which will be discussed in more detail in an example hereinafter. Since the various input/output circuits 26 might each differ, according to their intended respective functions, they are designated by the differentiating designations 26a through 26p inclusive.



FIG. 2 is a block diagrammatic view of an example of one of the computers 12 of FIG. 1. As can be seen in the view of FIG. 2, the computer 12 has a processor 28, a ROM 30 and a RAM 32. As discussed previously herein, the computer 12 is, therefore, capable of performing its assigned function generally independently from all of the other computers 12 in the computer array 10 (FIG. 1).



FIG. 3 is a diagrammatic representation of an example of a computer array 10a showing one possible allocation of the computers 12 therein. The example of the computer array 10a of FIG. 3 differs from the first example of the computer array 10 of FIG. 1 in the allocation of the computers 12, as will be discussed in more detail hereinafter. It should be noted that, as with the view of FIG. 1, the view of FIG. 3 is not intended as a layout diagram and, therefore, is not intended to indicate a necessary physical placement of any of the computers 12. Nevertheless, the example of FIG. 3 is indicative of the fact that it is thought that the 5 by 5 computer array 10a is a useful physical arrangement of the computers 12. According to this arrangement there are sufficiently few computers that not too many are buried deep within the computer array 10a, such that more than a few “hops” would be required to relay data from one of the exterior computers 12, through others of the computers 12, to an interior computer 12. Further, the quantity of twenty five computers is well suited to maximize the usage of available space on the die 14. It is anticipated that, even in many applications where all twenty five of the computers 12 are not required, it may well be cost efficient to use an array such as the example here described. It should be noted that the 5 by 5 arrangement of the computer array 10a and the quantity of twenty five of the computers 12, while thought to be a useful arrangement and quantity (as discussed above), is by no means thought to be the only useful arrangement and quantity. Presently, a 6 by 4 matrix having 24 of the computers 12 in the matrix, as discussed previously in relation to FIG. 1, is thought to have some particular advantages. For example, in an array wherein there are even numbers of the computers 12, the array can be made up of a plurality of 2 by 2 blocks of the computers. In such case, each of the computers 12 can be made to be a mirror image of the computers across from it in the block. This might make easier the task of computer design and interconnection layout. Indeed, factors to be discussed in more detail hereinafter dictate that essentially any quantity, from as few as four, up to and including literally thousands of the computers, could be arrayed together according to the present invention. Also, although the example of FIG. 1 shows three of the data lines 16 connecting each of the computers 12 to its neighbors, the inventor believes that another useful arrangement would be to have data lines 16 connecting each of the computers 12 to all of its nearest neighbor computers 12. In such a connection arrangement, the number of data lines 16 connected to each of the computer 12 would vary according to the placement of each computer 12 in the array 10, 10a.


The example computer array 10a of FIG. 3 has the computers 12 assigned to tasks such as might be useful to create a global positioning system (“GPS”) receiver. This example of FIG. 3 is presented only as an example of how various tasks might be assigned to the various computers 12. Interconnections are not shown, as they will not be substantially different from the example of FIG. 1, except as might be necessary or desirable to accomplish the specific tasks described.


In the example of FIG. 3 it can be seen that the computer array 10a has a computational core 34 which includes computers 12q through 12v, inclusive. The peripheral computers, 12a through 12p, are configured generally for input and output, as will be described in more detail hereinafter. Note that in the diagrammatic example of FIG. 3 the input/output circuits 26 which were shown separately in FIG. 1 are not shown separately. This is an example of the fact that the input/output circuits 26 may be considered to be variations in the individual computers 12a through 12w. Whether the input/output circuits 26 are shown separately or are included as a part of the variations between the generally similar computers 12a through 12w is merely a difference in the manner of diagrammatic presentation.


In the example of FIG. 3, computer 12i is configured to be a RAM input/output device, while computer 12j is configured to be a flash memory input/output device. By a comparison to the example of FIG. 1, it can be seen that this example shows a variation in that the computer array 10 of FIG. 1 has a single computer 12 for handling the input and output from both the flash memory 18 and the RAM 20 (FIG. 1), while the present example of the computer array 10a divides these tasks between computers 12. Such a variation is typical of many such variations that might be applied to the computer array 10, 10a.


Returning to a discussion of the peripheral computers 12a through 12p, the computers 12a through 12d are configured for input and output to external devices. In the example shown, computers 12a through 12d implement a LAN interface, a USB interface, a Firewire interface, and a wireless interface, respectively. One skilled in the art will be familiar with the pin out and hardware protocols necessary to implement each of these functions in the computers 12a through 12d. Alternatively, one of the computers 12a through 12d could be used to implement a video output. In some applications fewer than the four input/output computers 12a through 12d might be required. For example, in some applications, only a USB interface might be sufficient input/output to external devices.


In the GPS receiver example of FIG. 3, the computer 12e provides a hardware control (which is a digital input and output) for setting parameters of the remainder of the receiver (not shown) external to the computer array 10a. The computer 12f provides hardware monitoring (which is an analog input and output) for monitoring parameters of operational aspects of the receiver. The hardware monitoring and control allows the computer array 10a to determine how well the rest of the GPS receiver is operating, as well as providing a means to set or modify various operating configurations of the rest of the receiver external to the computer array 10a.


Computers 12o and 12p are configured and programmed to sample and process received RF signals (analog to digital conversion) and the computer 12n is configured and programmed to provide reference frequencies for frequency down conversion prior to sampling (digital to analog conversion). Computer 12w and 12x are configured and programmed to decode the forward error corrected (“FEC”) bit stream from the GPS signal. The FEC used in GPS signals will be familiar to on skilled in the art of GPS receivers.


Computer 12y and 12h are optionally used for decrypting aspects of the GPS bit stream after reception demodulation. Note that the use of computers 12y and 12h as described is optional because encryption and decryption will not normally be required in a GPS receiver. Although some parts of a GPS signal are encrypted, a commercial receiver will generally not have access to those. However, encryption will be required in a military version of a GPS receiver. Computer 121 is configured and programmed to communicate with additional computer array(s) 10, as may be necessary or desirable.


In the example of the computer array 10a of FIG. 3, computers 12 not specifically discussed above will either be spares (not used), or else could optionally be used to provide additional input and/or output functions and/or redundancy for the other computers 12.



FIG. 4 is a flow diagram depicting an example of an inventive computer array method 36, which will be understood in light of the preceding discussion of the computer array 10, 10a. In a “provide interconnected computers” 38 operation, the computers 12 described previously herein are provided in the computer array 10 with the interconnecting data lines 16. In a “configure computers for tasks” 40 operation, the provided computers 12 are provided with the distinctive data lines 16 and any other features which might be required to adapt the computer array 10 to a particular application. Of course, the preceding operations 38 and 40 will be accomplished prior to and during the manufacture of the computer array 10. In an “assign tasks to computers” 42 operation, it is decided what portions of a particular task are best accomplished by which of the computers 12, and a program is written to assign and accomplish such tasks. When the computer array 10 is to be used, in an “initialize computers” 44 operation, the individual tasks are loaded into the computer RAM 32 of the computer 12 and operation is begun.


One skilled in the art will recognize that the listed operations of the computer array method 36 are not an exhaustive list of operations which will be used in conjunction with the manufacture and operation of the computer array 10, 10a. As just one example, one skilled in the art will recognize that, upon initialization of the computer array 10, 10a, a test routine will be run.


Various modifications may be made to the invention without altering its value or scope. For example, other quantities or arrangements of the computers 12 than those specifically discussed herein would be entirely within the spirit and scope of the invention. While specific examples of the arrangement and use of the computers 12 have been discussed herein, it is expected that there will be a great many applications for the inventive computer array 10 which have not yet been envisioned. Indeed, it is one of the advantages of the present invention that the inventive method and apparatus may be adapted to a great variety of uses.


All of the above are only some of the examples of available embodiments of the present invention. Those skilled in the art will readily observe that numerous other modifications and alterations may be made without departing from the spirit and scope of the invention. Accordingly, the disclosure herein is not intended as limiting and the appended claims are to be interpreted as encompassing the entire scope of the invention.


INDUSTRIAL APPLICABILITY

The inventive computer array 10, 10a and associated method are intended to be widely used in a great variety of computer applications. It is expected that it they will be particularly useful in computer intensive applications wherein a great number of different but related functions need to be accomplished. It is expected that some of the best applications for the inventive computer array 10, 10a, and associated method, will be where the needed tasks can be divided such that each of the computers 12 has computational requirements which are nearly equal to that of the others. However, even where some of the computers 12 might sometimes, or even always, be working at far less than their maximum capabilities, the inventor has found that the overall efficiency and speed of the computer array 10, 10a will generally exceed that of prior art computer arrays wherein tasks might be assigned dynamically.


It should be noted that there might be many applications wherein it would be advantageous to have more than one of the computer arrays 10, 10a. One of many such possible examples would be where a digital radio might require a GPS input. In such an example the radio might be implemented by one computer array 10, which receives input from a separate computer array 10 configured to accomplish the function of a GPS.


It should further be noted that, although the computers 12 may be optimized to do an individual task, as discussed in the examples above, if that task is not needed in a particular application, the computers 12 can easily be programmed to perform some other task, as might be limited only by the imagination of the programmer.


It is anticipated that the present inventive computer array 10, 10a will best be implemented using the Forth computer language, which is inherently segmented to readily divide tasks as required to implement the invention. Color Forth is a recent variation of the Forth language which would be equally applicable.


Since the computer array 10, 10a and computer array method 36 of the present invention may be readily produced and integrated with existing tasks, input/output devices, and the like, and since the advantages as described herein are provided, it is expected that they will be readily accepted in the industry. For these and other reasons, it is expected that the utility and industrial applicability of the invention will be both significant in scope and long-lasting in duration.


CORRESPONDENCE CHART




  • 10 computer array


  • 12 computer


  • 12
    a memory controller computer


  • 14 die


  • 16 data line


  • 18 flash memory


  • 20 RAM


  • 22 serial data line


  • 24 parallel data bus


  • 26
    a through 26p input/output circuits


  • 28 processor


  • 30 ROM


  • 32 computer RAM


  • 34 computational core


  • 36 computer array method


  • 38 provide interconnected computers


  • 40 configure computers for tasks


  • 42 assign tasks to computers


  • 44 initialize computers


Claims
  • 1. A computer array, comprising: a plurality of computers integrated on a unitary substrate, each of the plurality of computers including read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions; anda plurality of data paths connecting the computers, the data paths being dedicated for communication between associated pairs of the computers; and wherein,at least some of the computers are assigned a task different from that assigned to the other computers;intercommunication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andintercommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 2. The computer array of claim 1, wherein: each of the computers is assigned a task different from that of the other computers.
  • 3. The computer array of claim 1, wherein: at least some of the computers are configured for specific input functions, whereby the computers configured for specific input functions can receive data from an external device and communicate the received data to other computers of the array.
  • 4. The computer array of claim 1, wherein: at least some of the computers are configured for specific output functions, whereby the computers configured for specific output functions can receive data from other computers in the array and communicate the received data to an external device.
  • 5. The computer array of claim 1, wherein: communication between the computers is asynchronous.
  • 6. The computer array of claim 1, wherein: communication between the computers is via a plurality of parallel data lines.
  • 7. The computer array of claim 1, wherein: each of the computers is wired to communicate with at least three of the plurality of computers.
  • 8. The computer array of claim 1, wherein: the quantity of the computers is 25.
  • 9. The computer array of claim 1, wherein: the computers are physically arrayed in a 5 by 5 array.
  • 10. The computer array of claim 1, wherein: at least some of the computers are physically arrayed in a 4 by 6 array.
  • 11. The computer array of claim 1, wherein: the quantity of the computers along each side of the array is an even number.
  • 12. The computer array of claim 1, wherein: at least one, but not all, of the computers is in direct communication with an external memory source.
  • 13. The computer array of claim 1, wherein: at least one of the computers communicates data from an external memory source to at least one other of the plurality of computers.
  • 14. A method for performing a computerized job, comprising: providing a plurality of computers integrated in a unitary substrate and interconnected via discrete sets of data lines, each set of data lines being dedicated to a particular pair of the computers;assigning a different task to at least some of the computers; andexecuting the tasks on the assigned computers; and whereineach of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;intercommunication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the sets of data lines is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andintercommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 15. The method of claim 14, wherein: at least one of the computers is assigned to communicate with an external flash memory.
  • 16. The method of claim 14, wherein: at least one of the computers is assigned to communicate with an external random access memory.
  • 17. The method of claim 14, wherein: at least one of the computers accomplishes an input/output function by transferring information between another of the computers and an external device.
  • 18. The method of claim 14, wherein: one of the computers routes assignments to the remainder of the computers.
  • 19. A computer array, comprising: a plurality of computers on an integrated circuit chip, each of the plurality of computers including read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions; anda plurality of data connections between the computers, each of the data connections being directly accessible to no more than two of the computers; and whereinat least some of the computers are programmed to perform different functions;communication via each of the plurality of data connections is carried out by the execution of the instructions by the processors of the no more than two computers associated with each data connection;communication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data connections is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andcommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out through the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 20. The computer array of claim 19, wherein: the different functions work together to accomplish a task.
  • 21. The computer array of claim 19, wherein: each of the functions is programmed into the respective computers when the computer array is initialized.
  • 22. The computer array of claim 19, wherein: communication between the computers is asynchronous.
  • 23. A method for accomplishing a task using a plurality of computers, comprising: providing the plurality of computers on an integrated substrate and interconnected by data lines, each of the data lines being accessible to no more than two of the computers;dividing a task into operational components and assigning each of the operational components to one of the computers;programming at least some of the computers to accomplish each of the operational components; andexecuting the operational components on the assigned computers; and whereineach of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;communication via each of the data lines is carried out by the execution of the instructions by the processors of the no more than two computers having access to the data line;communication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data lines is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andcommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 24. The method for accomplishing a task of claim 23, wherein: the operational components are operations used in accomplishing functions of a global positioning system receiver.
  • 25. The method for accomplishing a task of claim 23, wherein: before the task is begun, programming the computers to accomplish each of the operational components.
  • 26. The method for accomplishing a task of claim 23, wherein: the computers are arranged in a computer array.
  • 27. The computer array of claim 1, wherein: the computers operate internally in an asynchronous manner.
  • 28. The computer array of claim 1, wherein: at least one of the read-only memory and the random access memory in each of the computers is dedicated memory.
  • 29. The computer array of claim 1, wherein: each of the computers is an independently functioning computer.
  • 30. The computer array of claim 1, wherein: the computers operate internally in an asynchronous manner; andthe computers communicate with each other asynchronously.
  • 31. The computer array of claim 30, wherein: at least one of the read-only memory and the random-access memory in each of the computers is dedicated memory.
  • 32. The computer array of claim 1, wherein: the computers are the same with respect to at least one of structure, circuitry, layout, and operational characteristics.
  • 33. The computer array of claim 32, wherein: a first one of the computers is directly adjacent a second one of the computers; andthe first one of the computers is a mirror image of the second one of the computers.
  • 34. A computer array, comprising: a plurality of computers integrated on a substrate, each of the plurality of computers including read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions; anda plurality of dedicated data paths connecting pairs of the computers; and whereinat least some of the computers are assigned a task different from that assigned to the other computers;at least some of the computers include dedicated memory for the exclusive use of an associated one of the computers;intercommunication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out by the execution of the instructions by the processors of the one of said plurality of computers and the nearest neighbor computer; andintercommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 35. A computer array, comprising: a plurality of computers on a unitary substrate, the computers operating asynchronously; anda plurality of data paths between the computers, each of the data paths facilitating communication between no more than two of the computers; and whereinat least some of the computers are assigned a task different from that assigned to the other computers;each of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;communication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out through by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andcommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 36. The computer array of claim 35, wherein: the computers communicate with each other asynchronously.
  • 37. The computer array of claim 1, wherein: the plurality of computers includes at least twenty-four computers.
  • 38. The computer array of claim 1, wherein: data communicated within the array from a first one of the computers to a second one of the computers must necessarily pass through at least one of the other computers.
  • 39. The computer array of claim 38, wherein: data communicated within the array from the first one of the computers to the second one of the computers must necessarily pass through at least two of the other computers.
  • 40. The computer array of claim 1, wherein: at least some of the computers are programmed to function as an input and/or output interface between an external device and other computers of the array.
  • 41. The computer array of claim 1, wherein: the computer array is a homogeneous array.
  • 42. A computer array, comprising: a plurality of computers each hard wired to communicate with at least three of the plurality of computers; anda plurality of data paths connecting the computers, each of the data paths being dedicated to an adjacent pair of the computers; and wherein,at least some of the computers are assigned a task different from that assigned to the other computers;each of the plurality of computers is integrated on a unitary substrate;each of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;communication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor; andcommunication between the one of said plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 43. The computer array of claim 42, wherein: every one of the computers of the array is hard wired to communicate with at least three of the plurality of computers.
  • 44. The computer array of claim 42, wherein: every one of the computers is hard wired to at least three data paths; andeach of the three data paths is coupled to a neighboring one of the computers or provides a connection to an external device.
  • 45. A computer array, comprising: a plurality of computers each hard wired to communicate with at least three of the plurality of computers; anda plurality of data paths connecting the computers, each of the data paths being connected to no more than two of the computers; and wherein,at least some of the computers are assigned a task different from that assigned to the other computers; and whereineach of the plurality of computers is integrated on a unitary substrate;each of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;communication between one of said plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andcommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 46. The computer array of claim 45, wherein: every one of the computers of the array is hard wired to communicate with at least three of the plurality of computers.
  • 47. The computer array of claim 45, wherein: every one of the computers is hard wired to at least three data paths; andeach of the three data paths is coupled to a neighboring one of the computers or provides a connection to an external device.
  • 48. A computer array, comprising: at least twenty-four computers integrated in a unitary substrate; anda plurality of data paths connecting the computers, the data paths being dedicated for communication between associated pairs of the computers; and wherein,each of the computers includes dedicated read-only memory for storing instructions, dedicated random access memory for storing data and instructions, and a processor for executing the instructions;each of the computers is coupled to communicate with at least two of the other computers;each of the computers operates internally in an asynchronous manner;each of the computers communicates with the other computers asynchronously;communication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andcommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 49. A computer array, comprising: a plurality of computers integrated in a unitary substrate, each of the plurality of computers including read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions; anda plurality of data paths connecting the computers, the data paths being physical, point-to-point links between associated pairs of the computers; and wherein,at least some of the computers are assigned a task different from that assigned to the other computers;communication between one of the plurality of computers and a nearest neighbor computer connected to the one of the plurality of computers via one of the data paths is carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer; andcommunication between the one of the plurality of computers and a non-nearest neighbor computer must be carried out by the execution of the instructions by the processors of the one of the plurality of computers and the nearest neighbor computer.
  • 50. A computer array, comprising: a plurality of independently functioning computers arranged in a matrix on a unitary substrate, each of said plurality of computers having at least two nearest neighbor computers; anda plurality of sets of interconnecting dedicated data lines, each individual set of said plurality of sets of data lines being disposed between an individual computer and one of its nearest neighbor computers of said plurality of computers or between said individual computer and an external device, each of said plurality of sets of data lines being connected to no more than two of said plurality of computers;thereby enabling execution of a plurality of tasks by said plurality of computers, the execution of some of said tasks being different from the execution of others of said tasks; and whereineach of said plurality of computers communicates with at least three others of said plurality of computers within said matrix;each of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;communication between one of said plurality of computers and one of its nearest neighbor computers is carried out by the execution of said instructions by said processors of said one of said plurality of computers and said one of its nearest neighbor computers; andcommunication between said one of said plurality of computers and a non-nearest neighbor computer must be carried out by the execution of said instructions by said processors of said one of said plurality of computers and said one of its nearest neighbor computers.
  • 51. A computer array, comprising: a plurality of independently functioning computers arranged in a matrix on a unitary substrate, each of said plurality of computers having at least two nearest neighbor computers; anda plurality of sets of interconnecting dedicated data lines, each individual set of said plurality of sets of data lines being disposed between an individual computer and one of its nearest neighbor computers of said plurality of computers;thereby enabling execution of a plurality of tasks by said plurality of computers, the execution of some of said tasks being different from the execution of others of said tasks; and whereineach of said plurality of computers is dedicated to communicate with at least three of said plurality of computers within said matrix;each of the plurality of computers includes read-only memory for storing instructions, random access memory for storing data and instructions, and a processor for executing the instructions;communication between said individual computer and said one of its nearest neighbor computers is carried out by the execution of said instructions by said processors of said individual computer and said one of said nearest neighbor computers connected to said set of interconnecting dedicated data lines; andcommunication between said individual computer and a non-nearest neighbor computer must be carried out by the execution of said instructions by said processors of said individual computer and said one of its nearest neighbor computers.
  • 52. The computer array of claim 1, wherein: a plurality of separate tasks are assigned to the plurality of computers, each of the separate tasks to be performed by a different one of the plurality of computers; andeach separate task accomplishes a function of a subcomponent of a consumer device.
US Referenced Citations (186)
Number Name Date Kind
3757306 Boone Sep 1973 A
3868677 Kidd Feb 1975 A
4107773 Gilbreath et al. Aug 1978 A
4215401 Holsztynski et al. Jul 1980 A
4215422 McCray et al. Jul 1980 A
4298932 Sams Nov 1981 A
4462074 Linde Jul 1984 A
4589067 Porter et al. May 1986 A
4591980 Huberman et al. May 1986 A
4593351 Hong et al. Jun 1986 A
4665494 Tanaka et al. May 1987 A
4672331 Cushing Jun 1987 A
4739474 Holsztynski Apr 1988 A
4742511 Johnson May 1988 A
4789927 Hannah Dec 1988 A
4821231 Cruess et al. Apr 1989 A
4868745 Patton et al. Sep 1989 A
4942517 Cok Jul 1990 A
4943909 Huang Jul 1990 A
4961167 Kumanoya et al. Oct 1990 A
4984151 Dujari Jan 1991 A
5021947 Campbell et al. Jun 1991 A
5029124 Leahy et al. Jul 1991 A
5053952 Koopman et al. Oct 1991 A
5159338 Takahashi Oct 1992 A
5218682 Frantz Jun 1993 A
5317735 Schomberg May 1994 A
5319757 Moore et al. Jun 1994 A
5359568 Livay et al. Oct 1994 A
5375238 Ooi Dec 1994 A
5377333 Nakagoshi et al. Dec 1994 A
5386585 Traylor Jan 1995 A
5390304 Leach et al. Feb 1995 A
5396609 Schmidt et al. Mar 1995 A
5410723 Schmidt et al. Apr 1995 A
5434989 Yamaguchi Jul 1995 A
5440749 Moore et al. Aug 1995 A
5475856 Kogge Dec 1995 A
5485624 Steinmetz et al. Jan 1996 A
5535393 Reeve et al. Jul 1996 A
5535417 Baji et al. Jul 1996 A
5550489 Raab Aug 1996 A
5551045 Kawamoto et al. Aug 1996 A
5581767 Katsuki et al. Dec 1996 A
5630154 Bolstad et al. May 1997 A
5649198 Shibata et al. Jul 1997 A
5657485 Streitenberger et al. Aug 1997 A
5673423 Hillis Sep 1997 A
5692197 Narad et al. Nov 1997 A
5706491 McMahan Jan 1998 A
5717943 Barker et al. Feb 1998 A
5727194 Shridhar et al. Mar 1998 A
5737628 Birrittella et al. Apr 1998 A
5740463 Oshima et al. Apr 1998 A
5752259 Tran May 1998 A
5765015 Wilkinson et al. Jun 1998 A
5784602 Glass et al. Jul 1998 A
5826101 Beck et al. Oct 1998 A
5832291 Rosen et al. Nov 1998 A
5867330 Tanaka Feb 1999 A
5893148 Genduso et al. Apr 1999 A
5911082 Monroe et al. Jun 1999 A
5937202 Crosetto Aug 1999 A
5944814 McCulloch et al. Aug 1999 A
6003128 Tran Dec 1999 A
6023753 Pechanek et al. Feb 2000 A
6038655 Little et al. Mar 2000 A
6057791 Knapp May 2000 A
6081215 Kost et al. Jun 2000 A
6085304 Morris et al. Jul 2000 A
6092183 Takewa et al. Jul 2000 A
6094030 Gunthorpe et al. Jul 2000 A
6101598 Dokic et al. Aug 2000 A
6112296 Witt et al. Aug 2000 A
6145072 Shams et al. Nov 2000 A
6148392 Liu Nov 2000 A
6154809 Ikenaga et al. Nov 2000 A
6173389 Pechanek et al. Jan 2001 B1
6178525 Warren Jan 2001 B1
6192388 Cajolet Feb 2001 B1
6219685 Story Apr 2001 B1
6223282 Kang Apr 2001 B1
6232905 Smith et al. May 2001 B1
6233670 Ikenaga et al. May 2001 B1
6236645 Agazzi May 2001 B1
6279101 Witt et al. Aug 2001 B1
6307425 Chevallier et al. Oct 2001 B1
6308229 Masteller Oct 2001 B1
6353880 Cheng Mar 2002 B1
6367005 Zahir et al. Apr 2002 B1
6381705 Roche Apr 2002 B1
6388600 Johnson et al. May 2002 B1
6404274 Hosono et al. Jun 2002 B1
6404663 Shinozaki Jun 2002 B2
6427204 Arimilli et al. Jul 2002 B1
6449709 Gates Sep 2002 B1
6460128 Baxter et al. Oct 2002 B1
6502141 Rawson, III Dec 2002 B1
6507649 Tovander Jan 2003 B1
6507947 Schreiber et al. Jan 2003 B1
6560716 Gasparik et al. May 2003 B1
6598148 Moore et al. Jul 2003 B1
6636122 Tsyrganovich Oct 2003 B2
6647027 Gasparik et al. Nov 2003 B1
6657462 Dobberpuhl Dec 2003 B2
6665793 Zahir et al. Dec 2003 B1
6671112 Murakami et al. Dec 2003 B2
6725361 Rozas et al. Apr 2004 B1
6732253 Redford May 2004 B1
6782468 Nakazato Aug 2004 B1
6825843 Allen et al. Nov 2004 B2
6826674 Sato Nov 2004 B1
6845412 Boike et al. Jan 2005 B1
6898721 Schmidt May 2005 B2
6930628 Reinhold et al. Aug 2005 B2
6937538 Terzioglu et al. Aug 2005 B2
6959372 Hobson et al. Oct 2005 B1
6966002 Torrubia-Saez Nov 2005 B1
6970895 Vaidyanathan et al. Nov 2005 B2
7028163 Kim et al. Apr 2006 B2
7079046 Tanaka Jul 2006 B2
7084793 Elbornsson Aug 2006 B2
7131113 Chang et al. Oct 2006 B2
7136989 Ishii Nov 2006 B2
7155602 Poznanovic Dec 2006 B2
7157934 Teifel et al. Jan 2007 B2
7162573 Mehta Jan 2007 B2
7197624 Pechanek et al. Mar 2007 B2
7249357 Landman et al. Jul 2007 B2
7269805 Ansari et al. Sep 2007 B1
7380100 Shimura et al. May 2008 B2
7386689 Kirsch Jun 2008 B2
7471643 Stansfield Dec 2008 B2
7512728 Tseng Mar 2009 B2
7528756 Moore et al. May 2009 B2
20020004912 Fung Jan 2002 A1
20020010844 Noel et al. Jan 2002 A1
20020019951 Kubo et al. Feb 2002 A1
20020186159 Reinhold et al. Dec 2002 A1
20030005168 Leerssen et al. Jan 2003 A1
20030009502 Katayanggi Jan 2003 A1
20030028750 Hogenauer Feb 2003 A1
20030035549 Bizjak et al. Feb 2003 A1
20030065905 Ishii Apr 2003 A1
20030113031 Wal Jun 2003 A1
20030135710 Farwell et al. Jul 2003 A1
20030179123 DeVilbiss Sep 2003 A1
20030217242 Wybenga et al. Nov 2003 A1
20040003219 Uehara Jan 2004 A1
20040030859 Doerr et al. Feb 2004 A1
20040059895 May et al. Mar 2004 A1
20040095264 Thomas May 2004 A1
20040098707 Tang et al. May 2004 A1
20040107332 Fujii et al. Jun 2004 A1
20040143638 Beckmann et al. Jul 2004 A1
20040215929 Floyd et al. Oct 2004 A1
20040250046 Gonzalez et al. Dec 2004 A1
20050027548 Jacobs et al. Feb 2005 A1
20050034029 Ramberg et al. Feb 2005 A1
20050114565 Gonzalez et al. May 2005 A1
20050149693 Barry Jul 2005 A1
20050182581 Hashemian Aug 2005 A1
20050196060 Wang et al. Sep 2005 A1
20050206648 Perry et al. Sep 2005 A1
20050223204 Kato Oct 2005 A1
20050237083 Bakker et al. Oct 2005 A1
20050257037 Elwood et al. Nov 2005 A1
20060059377 Sherburne, Jr. Mar 2006 A1
20060082445 O'Toole et al. Apr 2006 A1
20060101238 Bose et al. May 2006 A1
20060149925 Nguyen et al. Jul 2006 A1
20060218375 Swarztrauber Sep 2006 A1
20060248317 Vorbach et al. Nov 2006 A1
20060248360 Fung Nov 2006 A1
20060279970 Kernahan Dec 2006 A1
20070036150 Pounds et al. Feb 2007 A1
20070070079 Chung et al. Mar 2007 A1
20070113058 Tran et al. May 2007 A1
20070192504 Moore Aug 2007 A1
20070192566 Moore et al. Aug 2007 A1
20070192570 Moore Aug 2007 A1
20070192575 Moore et al. Aug 2007 A1
20070192646 Moore Aug 2007 A1
20070226457 Moore et al. Sep 2007 A1
20080270648 Rible Oct 2008 A1
20080270751 Montvelishsky et al. Oct 2008 A1
Foreign Referenced Citations (30)
Number Date Country
1051995 Jun 1991 CN
3937807 May 1990 DE
0156654 Oct 1985 EP
0227319 Jul 1987 EP
0724221 Jul 1996 EP
0992896 Apr 2000 EP
1182544 Feb 2002 EP
1821211 Aug 2007 EP
2154343 Sep 1985 GB
2299422 Oct 1996 GB
60-183645 Sep 1985 JP
64-012339 Jan 1989 JP
3-500585 Feb 1991 JP
03-176757 Jul 1991 JP
5-081216 Apr 1993 JP
6-243113 Sep 1994 JP
2509678 Apr 1996 JP
8-161282 Jun 1996 JP
2543306 Oct 1996 JP
8-288768 Nov 1996 JP
2000-181878 Jun 2000 JP
2003-044292 Feb 2003 JP
10-1999-0036970 May 1999 KR
WO9715001 Apr 1997 WO
WO0042506 Jul 2000 WO
WO0212999 Feb 2002 WO
WO0250700 Jun 2002 WO
WO02088936 Nov 2002 WO
WO03019356 Mar 2003 WO
WO2005091847 Oct 2005 WO
Related Publications (1)
Number Date Country
20050228904 A1 Oct 2005 US