The present disclosure relates generally to the field of interfacing cellular matter with a machine and, more specifically, to a system and method for cellular matter-machine interfacing involving the detection of signals in cellular matter.
Cellular matter-machine interfacing offers possible solutions to a wide variety of problems. For example, thousands of people suffer from a variety of disorders that disconnect the brain from its inputs or outputs, including amyotropic lateral sclerosis, paralysis due to spinal-cord injury, cerebral palsy, polio, or sensory loss such as blindness or deafness. By allowing for machine control through the use of brain signals, cellular matter-machine interfacing systems offer these people the hope of walking again and/or actively engaging with the world. In addition to gaining or restoring lost functionality, cellular matter-machine interfacing systems may be used to enhance human functionality and performance in a wide variety of applications, such as enabling pilots to perform complex aerial maneuvers with greater efficiency.
Several issues arise when implementing cellular matter-machine interfacing systems, including in interfacing applications involving the human brain. Systems interfacing with brain tissue are highly invasive, usually requiring electrodes to be implanted into the brain. These relatively large electrodes are typically connected to external devices by transcranial wires that pass through the protective coverings of the brain and skull. The size of the electrodes and the attendant transcranial wiring both increase the risk of brain-tissue damage, thereby increasing the risk of brain infection, permanent brain damage, and other life-threatening medical problems.
Furthermore, powering the electrodes may require battery implantation in the brain tissue and/or additional wiring, increasing the risk of brain-tissue damage to an even greater degree. Other issues include surgical complexity, the unwanted movement of interfacing-system devices within the brain, and the sensitivity of the interfacing system to head or body movement. Although cast in terms of brain-control applications, one or more of these problems are present in most cellular matter-machine interfacing systems, regardless of where the cellular matter is located.
Accordingly, what is needed in the art is a cellular matter-machine interface system, device and/or method that addresses the above-discussed issues.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
Referring to
The transponder 120 transmits a signal 125 to a receiver 130 in response to the detection of the signal 115. The receiver 130 transmits a signal 135 to a transmitter 140 in response to receiving the signal 125. The transmitter 140 then sends a signal 145 to a machine 150. Thus, the transmitter 140 may send the signal 145 to the machine 150 in response to the detection of the signal 115 by the transponder 120. The detection of the signal 115 by the transponder 120 may include detecting the existence of the signal 115 or, in one embodiment, detecting that a voltage or other electrical characteristic of the signal 115 reaches or exceeds a threshold value. For example, the transponder 120 may detect when the signal 115 reaches or exceeds about 0.1 mV.
Referring to
A plurality of transponders 120 implanted in the cellular matter 110 are configured to detect signals in the cellular matter 110 (“cellular matter signals 202”). As each of the transponders 120 detects a cellular matter signal 202, the transponders 120 generate and transmit another signal (“transponder signals 204”) to the receiver 130. Each of the transponder signals 204 may be a function of a cellular matter signal 202, may include a cellular matter signal 202, or may be or replicate the cellular matter signal 202. In one embodiment, one or more of the transponder signals 204 may comprise a cellular matter signal concatenated or multiplexed with additional information, such as identification of the particular transponder 120 that detected the cellular matter signal 202 or generated the transponder signal 204.
As in the system 100 discussed above, the receiver 130 is configured to transmit signals (“receiver signals 206”) to the transmitter 140 upon receipt of the transponder signals 204. In the illustrated embodiment, the receiver 130 and the transmitter 140 are housed in a helmet device 210 worn on the head of a human. However, in other embodiments, the receiver 130 and the transmitter 140 may be co-located in other components, such as in a wand or other hand-held device, as in embodiments discussed below. The system 200 may also include a signal processor 220 co-located with and electrically interposing the receiver 130 and the transmitter 140. The signal processor 220 processes the receiver signal 206 before transmitting a processed signal 212 to the transmitter 140, such as by amplification, noise reduction, etc.
The transmitter 140 sends signals (“transmitter signals 214”), which may be, include, or be a function of the receiver signals 206 or the processed signals 212, to a motor controller 230 configured to control a motor 240. The motor 240 may be configured to impart motion to and/or direct motion of a wheelchair, an automobile, an aircraft, a watercraft, or other mechanized apparatus. Further examples include the transmitter 140 sending signals that are used to control robotic actuators, navigational systems, graphical display units, music synthesizers and speech synthesizers. The transmitter 140 may also generate and/or transmit signals employed to instruct a computer to execute a variety of commands. Although not limited by the scope of the present disclosure, such a computer may be a personal computer, a personal digital assistant, a home automation system controller, a telephone and/or other electronic devices.
In one embodiment, the system 200 may include a feedback loop 250. For example, in an embodiment in which the motor 240 controls the motion of a wheelchair, the feedback loop 250 may include sensors that detect the human sensing of movement of the wheelchair caused by the motor 240. Thus, the feedback loop 250 may include additional transponders implanted in the cellular matter 110 and similar to the transponders 120 to detect additional signals in the cellular matter 110 generated in response to the motion of the wheelchair. Furthermore, the sensing by the human or other organism may take place in a variety of modes or combination of modes, including sight, sound, touch or a combination thereof. Factors in addition to or as an alternative to the result of the operation of the machine 150 may be employed to generate signals in the cellular matter 110 as input for the feedback loop 250, such as other operations by other machines, organism-to-organism interactions and environmental factors.
As discussed above, it is understood that the cellular matter 110 may be in a human part other than the brain, and that it may also be in non-human organisms, such as lab-animals, animal assistants (e.g., seeing-eye dogs), wildlife (e.g., for tracking and/or disease/health control), artificial organs and other organisms. Furthermore, it is understood that a hand-held device such as a wand may be used to house the receiver 130, the transmitter 140, and/or the signal processor 220. The support structure of a diagnostic machine, such as an X-ray machine or a computed tomography (CT) scan machine, may also house the receiver 130, the transmitter 140, and/or the signal processor 220, as in embodiments discussed below. A polygraph or other device employed in lie detection is another environment in which aspects of the present disclosure may be implemented.
Referring to
The helmet device 300 may also include an embodiment of the transmitter 140 shown in
Referring to
Each of the transponders 120 may be magnetically coupled with at least one of the receivers 305. Accordingly, each of the transponders 120 may send an signal to at least one of the receivers 305, possibly employing radio-frequency propagation via the magnetic coupling. Each of the transponders 120 may also be magnetically coupled with the power coil 310 (shown in
It is understood that a transponder 120 may send a signal to at least one of the receivers 305 using other means, such as electric-field coupling. Further, it is understood that the power coil 310 may power the transponders 120 using other means, such as electric-field coupling. Such a configuration may allow the power coil 310 to be removed from the helmet device 300 and be located elsewhere. Moreover, the reader coils 305 may be employed to receive signals from the transponders 120 and to power the transponders 120, a configuration that may make the power coil 310 unnecessary.
Referring to
The transmitter 520 is in wired or wireless electrical communication with the receivers 510. The hand-held device 500 may also include a processor 530 configured to analyze the signals received by the transmitter 520 (i.e., the processor 530 may be the machine 150 in the interface system 100 shown in
Referring to
The transmitter 620 is in wired or wireless electrical communication with the receivers 610. The stationary device 600 may also include a processor 630 configured to analyze the signals received by the transmitter 620 (i.e., the processor 630 may be the machine 150 in the interface system 100 shown in
Referring to
The transponder 700 includes a coil 710 oriented vertically and located towards the top of the transponder 700 (as viewed in
The transponder coil 710 is coupled in parallel to a rectifier 720 and a capacitor 730. The transponder 700 also includes a sensor 740, a comparator 750, and a pair of switches 760. A resistor 780 is in electrical communication with the pair of switches 760. The sensor 740 may be located opposite or distal from the coil 710. The transponder 700 is enclosed in a housing 770 which, in one embodiment, is substantially coated with a bioprotectant that is compatible with the cellular tissue in which implanting is contemplated (e.g., human brain tissue). In one embodiment, the length L of the housing 770 may be about 1000 microns and the width (or diameter) W may be about 600 microns. In another embodiment, the length L of the housing 770 may be about 200 microns and the width (or diameter) W may be about 50 microns. The housing 770 may have a maximum lateral dimension (i.e., L or W) of about 200 microns. In another embodiment, the maximum lateral dimension may be about 1000 microns.
The transponder 700 may have three modes: a power mode, a transmission mode, and an idle mode. In regard to the power mode, the transponder 700 may be powered by radio frequency propagation via the magnetic coupling of the transponder coil 710 to an external coil such as the power coil 310 or the receiver reader coil 305 of
In regard to the transmission mode of the transponder 700, the sensor 740 may detect a signal in cellular matter. The signal may be a biological signal. The comparator 750 may compare this signal to a threshold signal level. If the signal detected in cellular matter is greater than the threshold signal, the transponder may enter transmission mode. A trigger signal 790 may be sent to the switches 760, which in turn are switched “on,” causing the capacitor 730 to discharge and current to flow through the transponder coil 710 and the resistor 780. The current through the transponder coil 710 may cause a signal to be transmitted to an external receiver such as the receiver 305 via magnetic coupling. In one embodiment, the discharge of the capacitor may be rapid, with a discharge time of about 50 nanoseconds (a “burst transmission” mode). It is understood that other transmission modes with differing discharge times may be employed.
In regard to the idle mode of the transponder 700, the transponder 700 may sit idle when the capacitor 730 is fully charged and the switches 760 are switched “off.” During the idle mode, the sensor 740 may be continually detecting signals in cellular matter and the comparator 750 may be continually comparing these signals to the threshold signal level. As long as the comparator 750 determines that each cellular-matter signal detected by the sensor 740 is not greater than the threshold signal level, no trigger signal 790 is sent to the switches 760 and the switches 760 remain “off.”
It is understood that two capacitors may be employed in the transponder 700, one capacitor employed in powering the transponder 700 and one capacitor employed in transmitting a signal from the transponder 700. It is also understood that signals other than the trigger signal 790 may be sent from the comparator 750 to the switches 760.
Referring to
A metal-oxide semiconductor field-effect transistor (MOSFET) or other type of transistor 820 may be in electrical communication with the capacitor 730, the transponder coil 710, and a resistor 850. Additionally, a resistor 830 and a resistor 840 may also be in electrical communication with the transistor 820 to assist with biasing the transistor 820. Due to these electrical communications, the transistor 820 may be substituted for the sensor 740, the comparator 750, and the switches 760 shown in
The magnetic coupling of the transponder coil 710 and a power coil 850 (which may be substantially similar to the power coil 310 shown in
It is understood that the symbols in
In one embodiment, the transistor 820 may have a negative threshold potential and be insulated by a thin film of silica. The transistor 820 may be a p-channel junction field-effect transistor (p-channel JFET) having a source, a gate, and a drain, and may be biased at 1 volt drain-source (VDS). The negative fields generated in cellular matter may be on the order of 0.1 to 1 millivolts (mV). Such negative fields may gate a drain-source current (IDS) for up to 100 nanoamps (nA). It is understood that an external surface of the gate of the transistor 820 or an external surface of the transponder 700 may be post-processed with a material that promotes cellular growth, ensuring ohmic contact between cellular matter and the external surface.
The transponder 700 may be powered by radio-frequency propagation via the magnetic coupling of the power coil 850 and the transponder coil 710, as discussed above. This magnetic coupling may induce a voltage across the transponder coil 710. This powering process may include current flowing from the transponder coil 710 to the capacitor 730 through the diode 810, charging the capacitor 730. The charging time of the capacitor 730 may be about 10 milliseconds.
The cellular matter may generate negative fields detectable by the transistor 820 at its gate when the transistor 820 is employed as the sensor 740. If the absolute value of the negative field potential at the gate of the transistor 820 is greater than the absolute value of the negative threshold potential of the transistor 820, the capacitor 730 may be discharged and a drain-source current (IDS) may flow from the drain of the transistor 820 for a relatively small period of time. In this manner the transistor 820 is first acting as the sensor 740, then as the comparator 750, and then as the set of switches 760, the switches being “on.” The drain-source current may flow through the transponder coil 710, causing a signal to be transmitted to at least one receiver reader coil 860 by radio-frequency propagation via the magnetic coupling of the transponder coil 710 and the receiver reader coil 860.
When the capacitor 730 is fully charged and there is no drain-source current flowing from the transistor 820, the transponder 700 may sit idle. The signal transmitted from the transponder coil 710 to the receiver reader coil 860 may be filtered, amplified and/or demodulated to reconstruct desired information, such as when the negative field was generated temporally, the implanted location of the transponder 700 that sent the signal, etc.
In one embodiment, the power coil 850 may be omitted or dormant and the receiver reader coil 860 may be used to remotely power the transponder 700 and to receive signals from the transponder 700. The reader coil 860 may have a three-centimeter radius and utilize three turns of number 40 gage copper wire, resulting in an inductance of about 1.2 microhenries, a resistance of about 2 ohms, and a self-resonant frequency that is greater than 250 MHz for operation at 100 MHz. At a radio-frequency power dissipation level of 120 milliwatts, the current flowing through the receiver reader coil 860 may be 250 milliamps.
The transponder coil 710 may have a 300-micron radius and utilize 20 turns of 40-micron gold wire, resulting in an inductance of about 116 nanohenries, a direct-current resistance of about 0.76 ohms, and a self-resonant frequency of about 8 GHz. Due to the physical properties of the gold wire, the radio-frequency resistance of the transponder coil 710 may be about 0.87 ohms. The capacitance of the transponder 700 may be about 22 picofarads and the load resistance of the transponder 700 may be about 50 kilo-ohms. The transponder 700 may have an overall volume that is less than or about 1 cubic millimeter and a maximum lateral dimension of less than about 1000 microns.
Thus, the present disclosure introduces a system for interfacing cellular matter with a machine comprising, in one embodiment, a transponder implantable in cellular matter and configured to detect a first signal. The system also includes a receiver external to the cellular matter and configured to receive a second signal in response to the transponder detection of the first signal. A transmitter is also included in the system to transmit a third signal to a machine in response to the receiver receipt of the second signal. Another embodiment of a system for interfacing cellular matter with a machine introduced herein comprises means implantable in cellular matter for detecting a first signal in the cellular matter, means for receiving a second signal transmitted in response to the detection of the first signal, and means for transmitting a third signal to a machine in response to the receipt of the second signal.
A transponder is also provided in the present disclosure, the transponder being implantable in cellular matter and comprising a remote-activated power source and a sensor powered by the power source and configured to detect a first signal propagating in cellular matter. The transponder also includes a transmitter configured to transmit a second signal in response to the sensor's detection of the first signal.
A method for controlling a machine in response to signals propagating in cellular matter is also introduced in the present disclosure, the method comprising detecting a first signal in cellular matter and transmitting a second signal in response to the detection of the first signal. The method also includes transmitting a third signal to a machine in response to the receipt of the second signal.
An interface between cellular matter and a machine is also introduced in the present disclosure, the interface comprising a housing and a receiver coupled to the housing, the receiver being configured to receive a first signal from a transponder implanted in cellular matter, wherein the receiver is external to the cellular matter. The interface also includes a transmitter coupled to the housing and configured to transmit a second signal to a machine in response to the receiver receipt of the first signal.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.