System and method for interfacing telephony voice signals with a broadband access network

Information

  • Patent Grant
  • 6879667
  • Patent Number
    6,879,667
  • Date Filed
    Tuesday, April 23, 2002
    22 years ago
  • Date Issued
    Tuesday, April 12, 2005
    19 years ago
Abstract
A voice gateway (18) in a telecommunications network (1) includes a plurality of telephony port modules (102). Each telephony port module (102) receives telephony voice signals from a public switched telephony network (13). Each telephony port module (102) includes one or more digital signal processors (110) that perform one or more processing functions on the telephony voice signals. A particular telephony port module (102) may receive a telephony voice signal and use its associated digital signal processor (110) to process the received telephony voice signal or transfer the received telephony voice signal for processing to any digital signal processor (110) on any telephony port module (102). Telephony signals may also be transferred for processing to digital signal processors (110) on another voice gateway (18) in a voice gateway system.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to telecommunications signal processing and more particularly to a system and method for interfacing telephony voice signals with a broadband access network.


BACKGROUND OF THE INVENTION

Voice over Internet Protocol (VoIP), Voice over ATM (VoATM), and Voice over DSL (VoDSL) are technologies just beginning to be deployed in telecommunications networks. These technologies, collectively known as Voice over Broadband (VoB), are bridged from a wide area network (WAN) environment to the public switched telephone network (PSTN) through the use of a voice gateway. Initial deployments of voice gateways have handled a few number of voice and data calls. However, as VoB technology becomes more widespread, current voice gateways will need to handle a greater capacity and thus will require an ability to expand in order to handle the increased capacity. Expanding the capacity of a voice gateway requires additional PSTN interfaces, WAN interfaces, voice compression, and echo cancellation to handle more calls. Voice compression and echo cancellation is implemented in a voice gateway through the use of digital signal processor technology. Digital signal processors are expensive in terms of cost, power, and board real estate. Therefore, it is desirable to grow the call capability of a voice gateway without interrupting existing services, without changing existing equipment, and by efficiently making use of digital signal processor resources.


SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated by those skilled in the art that a need has arisen to enhance call capacity of a voice gateway and make efficient use of digital signal processing resources within a telecommunications system. In accordance with an embodiment of the present invention, a system and method for interfacing telephony voice signals with a broadband access network are provided that substantially eliminate or greatly reduce disadvantages and problems associated with conventional telecommunications systems.


According to an embodiment of the present invention, there is provided a system for interfacing telephony voice signals with a broadband access network that includes a plurality of telephony port modules that receive telephony voice signals. Each telephony port module includes one or more digital signal processors. Each digital signal processor performs one or more processing functions on the received telephony voice signals. Each telephony port module may transfer a received telephony voice signal for processing to any of the digital signal processors on any telephony port module. In this manner, digital signal processors are not congested or idle within the system.


The present invention may provide various technical advantages over conventional telecommunications systems. For example, one technical advantage may be in the ability to perform processing on a telephony voice signal anywhere in the system regardless of where it was received. Another technical advantage may be in the reduction of the need for costly ATM switch ports through an effective oversubscription technique. Yet another technical advantage may be in the balancing of system resources to improve overall system operation. Other technical advantages may be readily ascertainable by those skilled in the art from the following figures, description, and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:



FIG. 1 illustrates a block diagram of a telecommunications network;



FIG. 2 illustrates a block diagram of a voice gateway in the telecommunications network;



FIG. 3 illustrates an example of an enhanced voice gateway system for the telecommunications network;



FIG. 4 shows an example of a subtending link between gateways of a multi-gateway system;



FIGS. 5A-C illustrate the evolution of a gateway system that implements resource-sharing and subtending.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates system 90 that uses several, alternative telecommunication interfaces 26, data compression algorithms, data communication protocols, and data links 28 to couple a telecommunication switch 16 to DSL, cable, and wireless platforms. System 90 includes switch 16, gateway 18, DSLAMs 20, CMTSs 52, and BSCs 72. To communicate telecommunication information over the DSL, cable, and wireless platforms, gateway 18 performs various compression and protocol conversions to couple switch 16 to DSLAMs 20, CMTSs 52, and BSCs 72. Gateway 18 supports several, alternative telecommunication, compression, and broadband technologies so that it is compatible with many different switches 16, access networks 92, DSLAMs 20, CMTSs 52, and BSCs 72.


Gateway 18 communicates telecommunication information with switch 16 using several, alternative telecommunication interfaces 26. Unbundled analog lines 26a communicate telecommunication information using analog signals. Each analog line 26a communicates a separate call. In contrast, GR-303 interface 26b, TR-8 interface 26c, and SS7 interface 26d are concentrated digital interfaces that can communicate more than one call over a single line. Although FIG. 1 illustrates analog lines 26a, GR-303 interface 26b, TR-8 interface 26c, and SS7 interface 26d, gateway 18 may communicate telecommunication information with switch 16 using any suitable telecommunication interface 26. For example, in an alternative embodiment, gateway 18 may communicate telecommunication information with switch 16 using TR-CAS interface 26e, ISDN lines 26f, or other link types such as V5.


Gateway 18 compresses and de-compresses telecommunication information using several, alternative compression algorithms. To facilitate efficient communication of data packets over DSL, cable, and wireless platforms, gateway 18 may compress and decompress telecommunication information using G.711, G.723, G.728, G.729, or any other suitable compression algorithm. Gateway 18 receives telecommunication information from switch 16, compresses the telecommunication information using several, alternative compression algorithms, and communicates the compressed telecommunication information to DSLAMs 20, CMTSs 52, and BSCs 72. Gateway 18 also receives compressed telecommunication information from DSLAMs 20, CMTSs 52, and BSCs 72, de-compresses the telecommunication information using several, alternative compression algorithms, and communicates the de-compressed telecommunication information to switch 16.


Gateway 18 communicates telecommunication information with DSLAMs 20, CMTSs 52, and BSCs 72 using several, alternative data communication protocols. Gateway 18 receives telecommunication information from switch 16, generates data packets encapsulating the telecommunication information according to several, alternative data communication protocols, and communicates the data packets to DSLAMs 20, CMTSs 52, and BSCs 72. Gateway 18 also receives data packets from DSLAMs 20, CMTSs 52, and BSCs 72. Gateway 18 extracts telecommunication information from the data packets according to several, alternative data communication protocols, and communicates the telecommunication information to switch 16.


By supporting several, alternative data communication protocols, gateway 18 may communicate telecommunication information with DSLAM 20, CMTSs 52, and BSCs 72 using an IP network 92a, an ATM network 92b, or a Frame Relay network 92c (collectively, access networks 92). Access networks 92 may include any suitable combination of data switches, routers, or other data communication equipment that communicates data packets using a data communication protocol. Although FIG. 1 illustrates IP, ATM, and frame relay networks 92, gateway 18 may use any suitable data communication protocol and corresponding network 92 to communicate data packets with DSLAMs 20, CMTSs 52, and BSCs 72.


In a particular embodiment, gateway 18 sets priority bits in a subscriber's data packets according to the subscriber's assigned quality of service. If a subscriber is assigned a high quality of service, gateway 18 sets the priority bits in the subscriber's data packets so that the packets receive a high priority in communication through one of networks 92a, 92b, and 92c. If a subscriber is assigned a low quality of service, gateway 18 sets the priority bits in the subscriber's data packets so that the packet receives a low priority in communication through one of networks 92a, 92b, and 92c.


Gateway 18 communicates data packets using several, alternative data links 28. Although FIG. 1 illustrates DS-1 lines 28a, DS-3 lines 28b, and OC-3 lines 28c, gateway 18 may communicate data packets using any other suitable data link 28. For example, in an alternative embodiment, gateway 18 communicates data packets using 10 Mbps, 100 Mbps, 1000 Mbps, or any other suitable version of Ethernet over coaxial, twisted-pair, fiber, or other suitable type of cable. As described above, data links 28 may couple gateway 18 directly to DSLAMs 20, CMTSs 52, and BSCs 72, or data links 28 may couple gateway 18 to data switches, routers, or any other suitable data communication equipment that communicates data packets with DSLAMs 20, CMTSs 52, and BSCs 72.


Gateway 18 uses subscriber profiles to properly employ the alternative telecommunication, compression, and broadband technologies. A subscriber profile may associate an individual subscriber or a group of subscribers with a combination of telecommunication interfaces 26, data compression algorithms, data communication protocols, and data links 28. For example, in a particular embodiment, a profile may associate the subscribers serviced by each of an IAD, a MTA, or a WNIU as a group with a telecommunication interface 26, a data compression algorithm, a data communication protocol, and a data link 28. The subscriber profiles may also indicate each subscriber's assigned quality of service and whether gateway 18 should perform echo cancellation on each subscriber's telecommunication information.


When gateway 18 receives telecommunication information from switch 16, gateway 18 identifies a subscriber associated with the telecommunication information and communicates the telecommunication information to DSLAM 20, CMTS 52, or BSC 72 according to the subscriber's stored profile. If the profile indicates that gateway 18 should perform echo cancellation on the telecommunication information, gateway 18 performs echo cancellation on the telecommunication information. Gateway 18 also compresses the telecommunication information using a compression algorithm indicated in the subscriber profile, generates data packets encapsulating the telecommunication information according to a data communication protocol indicated in the subscriber profile, and communicates the data packets to data link 28 indicated in the subscriber profile. In a particular embodiment, gateway 18 sets priority bits in the subscriber's data packets according to the quality of service indicated in the subscriber's stored profile.


In a particular embodiment, each subscriber is associated with one of interfaces 26, and gateway 18 identifies a subscriber associated with telecommunication information according to interface 26 from which gateway 18 receives the telecommunication information. For example, each subscriber may be associated with one of unbundled analog lines 26a. When gateway 18 receives telecommunication information from one of analog lines 26a, gateway 18 identifies a subscriber associated with analog line 26a and communicates the telecommunication information according to the subscriber's profile. Similarly, each subscriber may be assigned a time slot in GR-303 interface 26b, TR-8 interface 26c, SS7 interface 26d., or T1-CAS interface 26e. When gateway 18 receives telecommunication information from the assigned time slot in GR-303 interface 26b, TR-8 interface 26c, SS7 interface 26d, or T1-CAS interface 26e, gateway 18 identifies a subscriber associated with the time slot and communicates the telecommunication information according to the subscriber's profile. Gateway 18 receives a subscriber identifier with telecommunication information from switch 16, identifies a subscriber associated with the telecommunication information using the subscriber identifier, and then communicates the telecommunication information according to the subscriber's stored profile. The subscriber identifier may be a name, address, telephone number, or any other suitable subscriber information associated with subscribers serviced by gateway 18.


When gateway 18 receives a data packet from DSLAM 20, CMTS 52, or BSC 72, gateway 18 extracts telecommunication information from the data packet, identifies a subscriber associated with the telecommunication information, and communicates the telecommunication information to switch 16 according to the subscriber's profile. Gateway 18 de-compresses the <telecommunication information using a compression algorithm indicated in the subscriber profile, selectively performs echo cancellation on the telecommunication information as indicated in the subscriber profile, and communicates the telecommunication information to switch 16 using interface 26 indicated in the subscriber profile. In a particular embodiment, gateway 18 associates subscriber profiles with data network addresses, and gateway 18 identifies a subscriber associated with telecommunication information according to a source or destination address of the data packet. In an alternative embodiment, the data packet includes a name, address, telephone number, or other subscriber identifier that gateway 18 uses to identify a subscriber associated with the telecommunication information.


Because gateway 18 supports several, alternative telecommunication, compression, and broadband technologies, it provides an integrated solution that is compatible with many different DSL, cable, wireless or other broadband platforms. As a result telecommunication providers can deploy system 90 with greater flexibility and in a more cost effective manner.



FIG. 2 is a block diagram of gateway 18. Gateway 18 includes one or more access network modules 100, one or more telephony port modules 102, and one or more system controller modules 104. Gateway 18 may also include a general processor module 106 and a voice processing module 108. System controller module 104 performs overall control functions for gateway 18 and manages the flow of information between and among the other modules within gateway 18. Telephony port module 102 provides interfaces to PSTN 11 such as GR-303, ISDN-PR1, V5.2, and TR-8 and may support T1, E1, and STS-1, among other, implementations. Access network module 100 provides redundant interfaces to a backbone broadband network, including ATM and IP networks, and may support DS-3, OC-3, 10/100BT ethernet, among other, implementations. Voice processing module 108 provides a centralized signal processing function primarily for voice data compression/decompression, and echo cancellation. General processor module 106 provides a centralized processing resource for functions such as RTP header compression or other processing for VoIP/ATM interworking.


Telephony port module 102 and voice processing module 108 include digital signal processor resources, such as digital signal processors 110, to perform compression/decompression, echo cancellation, and other voice processing functions. In order to provide effective and efficient operation of gateway 18, each digital signal processor 110 may be shared among telephony port module 102 and voice processing module 108 regardless of the location of a particular digital signal processor 110. In this manner, digital signal processing resources may be shared by these interfaces to public switched telephone network 11. By sharing digital signal processing resources between PSTN 11 interfaces, specific resources may be assigned to specific interfaces on a dynamic basis. Dynamic assignment results in fewer digital signal processors 110 with better utilization. Sharing of resources also allows for digital signal processors 110 to be added to the system. The addition of digital signal processors 110 allows a customer to address future voice processing needs without scrapping existing system investments and without interrupting existing service.



FIG. 3 shows an extension of the sharing of digital signal processing resources, in this case an ATM switch port, in a system 200 having multiple gateways 18. System 200 allows more users to share a single ATM switch port. Since ATM switches have a high per-port cost, the subtending technique provided by system 200 reduces network expenses by eliminating a need for more ports to the ATM switch. This subtending technique allows the sharing of digital signal processing resources to span across multiple gateways 18. PSTN 11 interfaces, digital signal processing resources, and ATM switch port interfaces can be shared and added across multiple shelves of gateway system 200. Gateways 18 may be connected in any manner, including daisy chains, rings, and tree configurations.



FIG. 4 shows an example of a subtending link between gateways 18. A subtending link is provided from one gateway 18 to another. The subtending link may be a wide area network only link or a hybrid WAN/TDM link. For subtending configurations where delay is unimportant (due to TDM to WAN conversion), a WAN only link may be used. For configurations where delay is desired to be minimized, a combination WAN/TDM link may be used. An example of a combination WAN/TDM link is a DS-3 in PLCP mode. In this example, the DS-3 signal is frequency locked to the PSTN 11 interface. The first half of the payload is dedicated to WAN traffic and the second half of the payload is dedicated to TDM traffic. With twelve ATM cells being carried in the DS-3 PLCP mode, the first six ATM cells carry AAL-1/2/5 encoded WAN traffic. The second six ATM cells carry TDM bytes placed directly in AAL-0 payloads. TDM bytes placed in AAL-0 payloads do not experience the delay found in AAL-1/2/5 payloads. In AAL-1/2/5, payloads are filled by channel with bytes in a channel being delayed while waiting for bytes in the same channel. The AAL-0 payloads are filled with TDM bytes as they arrive on a TDM bus without the need to wait.



FIGS. 5A-C show the evolution of a system that implements resource sharing and subtending. FIG. 5A shows a multi-gateway system 300 that provides intershelf resource sharing through a subtending link. Intrashelf resource sharing may also be performed by a single gateway 18. FIG. 5B shows how multi-gateway system 300 may be used to reduce the number of ATM switch ports as discussed above and provide better ATM switch port utilization. FIG. 5C shows an ability to reduce the number of interfaces to PSTN 11 in order to provide PSTN interface sharing and WAN interface sharing and provide added digital signal processing resources as discussed above. New WAN interfaces may be added as desired to increase WAN capacity, add new WAN interface types (Ethernet, SONET, DS-3), add higher layer protocol functionality (IP forwarding, TCP forwarding), and provide additional ATM switch ports in order to handle increased capacity of Multi-gateway system 300 and without affecting existing investment or interrupting current service. PSTN interfaces may be subsequently added to increase capacity, add new interface types (T1, E1, STS-1) and add higher layer protocol functionality (V5.2, GR-303, ISDN) without affecting existing system investment or interrupting current service. Thus, multi-gateway system 300 is flexible to handle any desired configuration to support subscribers and provide an over subscription scenario that is manageable.


Thus, there has been provided, in accordance with the present invention, a system and method for interfacing telephony voice signals with a broadband access network that satisfies the advantages set forth above. Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations may be readily ascertainable to those skilled in the art and may be made herein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims
  • 1. A system for interfacing telephony voice signals with a broadband access network, comprising: a plurality of telephony port modules each operable to receive telephony voice signals, each of the plurality of telephony port modules including one or more digital signal processors, each digital signal processor operable to perform one or more processing functions on the telephony voice signals, wherein each of the plurality of telephony port modules may transfer a received telephony voice signal to any digital signal processor on any of the plurality of telephony port modules.
  • 2. The system of claim 1, wherein a particular digital signal processor performs the processing functions on the telephony voice signals, the particular digital signal processor returning processed telephony voice signals to an originating telephony port module upon completion of processing function performance.
  • 3. The system of claim 1, wherein specific digital signal processors are assigned to perform a specific processing function.
  • 4. The system of claim 3, wherein the specific digital signal processors may be dynamically assigned to perform a different specific processing function than originally assigned.
  • 5. The system of claim 1, wherein the processing functions performed by any digital signal processor include at least one of voice compression, voice decompression, and echo cancellation.
  • 6. A gateway system for interfacing telephony signals with a broadband access network, comprising: an access network module operable to interface with the broadband access network; at least one telephony port module operable to interface with a public switched telephone network, the telephony port module including a plurality of digital signal processors operable to perform processing functions on telephony signals received from either the broadband access network or the public switched telephone network; a system controller module operable to manage a flow of telephony signals between the access network module and the telephony port module, the telephony port module operable to assign telephony signals to any digital signal processor of the telephony port module.
  • 7. The gateway system of claim 6, wherein the telephony port module receiving telephony signals for processing may transfer the telephony signals to one or more digital signal processors on a different telephony port module.
  • 8. The gateway system of claim 6, wherein the telephony port module dynamically assigns telephony signals to digital signal processors to improve digital signal processor utilization.
  • 9. The gateway system of claim 6, wherein the telephony port module performs processing of telephony signals according to subscriber profiles.
  • 10. The gateway system of claim 6, wherein the telephony signals from a different gateway system may be processed on digital signal processors in the telephony port module.
  • 11. A gateway system for interfacing telephony signals with a broadband access network, comprising: a first gateway operable to interface between a broadband access network and a public switched telephone network, the first gateway including a first interface communicating with the broadband access network, the first gateway including a second interface operable to communicate with the public switched telephone network, the first gateway including a plurality of digital signal processors operable to process telephony signals passing through the first gateway; a second gateway operable to interface with the first gateway, the first gateway operable to share the first and second interfaces and the plurality of digital signal processors with the second gateway.
  • 12. The gateway system of claim 11, wherein the second gateway includes a plurality of digital signal processors, the second gateway operable to share the plurality of digital signal processors in the second gateway with the first gateway.
  • 13. The gateway system of claim 11, wherein the second gateway includes a third interface operable to communicate with the public switched telephone network, the second gateway operable to share the third interface with the first gateway.
  • 14. The gateway system of claim 11, wherein the second gateway includes a fourth interface operable to communicate with the broadband access network, the second gateway operable to share the fourth interface with the first gateway.
  • 15. The gateway system of claim 11, wherein the first gateway includes a third interface operable to communicate with the public switched telephone network, the third interface providing additional subscriber capacity, the first gateway operable to share the third interface with the second gateway.
  • 16. A method for interfacing telephony signals with a broadband access network, comprising: receiving a telephony signal at a first gateway of a gateway system in a telecommunications network; providing the telephony signal for processing to one of a plurality of digital signal processors in the gateway system, the plurality of digital signal processors being shared across the gateway system, the one of the plurality of digital signal processors being in a second gateway of the gateway system.
  • 17. The method of claim 16, further comprising: sharing interfaces to the broadband access network and to a public switched telephone network between the first gateway and the second gateway of the gateway system.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 60/289,303 filed May 7, 2001.

US Referenced Citations (129)
Number Name Date Kind
4381427 Cheal et al. Apr 1983 A
4493092 Adams Jan 1985 A
4504942 Aro et al. Mar 1985 A
4507793 Adams Mar 1985 A
4512025 Frankel et al. Apr 1985 A
4578537 Faggin et al. Mar 1986 A
4608686 Barsellotti Aug 1986 A
4627046 Bellamy Dec 1986 A
4740963 Eckley Apr 1988 A
4748656 Gibbs et al. May 1988 A
4757497 Bierele et al. Jul 1988 A
4843606 Bux et al. Jun 1989 A
4853949 Schorr et al. Aug 1989 A
4881226 Lechner et al. Nov 1989 A
4903292 Dillon Feb 1990 A
5033062 Morrow et al. Jul 1991 A
5034948 Mizutani et al. Jul 1991 A
5127003 Doll, Jr. et al. Jun 1992 A
5134611 Steinka et al. Jul 1992 A
5142350 Doll, Jr. et al. Aug 1992 A
5142571 Suzuki et al. Aug 1992 A
5151923 Fujuwara Sep 1992 A
5216704 Williams et al. Jun 1993 A
5220560 Ogasawara Jun 1993 A
5247347 Litteral et al. Sep 1993 A
5267300 Kao et al. Nov 1993 A
5305312 Fornek et al. Apr 1994 A
5317627 Richardson, Jr. et al. May 1994 A
5341374 Lewen et al. Aug 1994 A
5349640 Dunn et al. Sep 1994 A
5367522 Otani Nov 1994 A
5410343 Coddington et al. Apr 1995 A
5426692 Fujise Jun 1995 A
5448635 Biehl et al. Sep 1995 A
5459788 Kim Oct 1995 A
5473675 Chapman et al. Dec 1995 A
5479447 Chow et al. Dec 1995 A
5493609 Winseck, Jr. et al. Feb 1996 A
5499241 Thompson et al. Mar 1996 A
5604737 Iwami et al. Feb 1997 A
5606553 Christie et al. Feb 1997 A
5610910 Focsaneanu et al. Mar 1997 A
5610922 Balatoni Mar 1997 A
5613069 Walker Mar 1997 A
5617423 Li et al. Apr 1997 A
5623491 Skoog Apr 1997 A
5625404 Grady et al. Apr 1997 A
5625685 Allegranza et al. Apr 1997 A
5638363 Gittins et al. Jun 1997 A
5661785 Carpenter et al. Aug 1997 A
5668857 McHale Sep 1997 A
5671251 Blackwell et al. Sep 1997 A
5673290 Cioffi Sep 1997 A
5675575 Wall, Jr. et al. Oct 1997 A
5692035 O'Mahony et al. Nov 1997 A
5719870 Baker et al. Feb 1998 A
5737333 Civaniar et al. Apr 1998 A
5771236 Sansom et al. Jun 1998 A
5781547 Wilson Jul 1998 A
5781617 McHale et al. Jul 1998 A
5787088 Dagdeviren et al. Jul 1998 A
5793843 Morris Aug 1998 A
5828666 Focsaneanu et al. Oct 1998 A
5838682 Dekelbaum et al. Nov 1998 A
5841840 Smith et al. Nov 1998 A
5848150 Bingel Dec 1998 A
5862134 Deng Jan 1999 A
5864747 Clark et al. Jan 1999 A
5872993 Brown Feb 1999 A
5878120 O'Mahony Mar 1999 A
5881142 Frankel et al. Mar 1999 A
5883941 Akers Mar 1999 A
5889773 Stevenson, III Mar 1999 A
5889774 Mirashrafi et al. Mar 1999 A
5889856 O'Toole et al. Mar 1999 A
5896377 Boot et al. Apr 1999 A
5898761 McHale et al. Apr 1999 A
5901205 Smith et al. May 1999 A
5905781 McHale et al. May 1999 A
5907548 Bernstein May 1999 A
5917814 Balatoni Jun 1999 A
5936952 Lecomte Aug 1999 A
5940479 Guy et al. Aug 1999 A
5943404 Sansom et al. Aug 1999 A
5949763 Lund Sep 1999 A
5974043 Solomon Oct 1999 A
5978390 Balatoni Nov 1999 A
5982767 McIntosh Nov 1999 A
5991292 Focsaneanu et al. Nov 1999 A
5999565 Locklear, Jr. et al. Dec 1999 A
5999598 Henrick et al. Dec 1999 A
6075784 Frankel et al. Jun 2000 A
6075796 Katseff et al. Jun 2000 A
6078580 Mandalia et al. Jun 2000 A
6081517 Liu et al. Jun 2000 A
6101182 Sistanizadeh et al. Aug 2000 A
6112084 Sicher et al. Aug 2000 A
6118780 Dunn et al. Sep 2000 A
6125113 Farris et al. Sep 2000 A
6125117 Martin et al. Sep 2000 A
6128307 Brown Oct 2000 A
6130879 Liu Oct 2000 A
6130883 Spear et al. Oct 2000 A
6134235 Goldman et al. Oct 2000 A
6141339 Kaplan et al. Oct 2000 A
6144667 Doshi et al. Nov 2000 A
6144670 Sponaugle et al. Nov 2000 A
6154445 Farris et al. Nov 2000 A
6157637 Galand et al. Dec 2000 A
6167042 Garland et al. Dec 2000 A
6175562 Cave Jan 2001 B1
6175854 Bretscher Jan 2001 B1
6181694 Pickett Jan 2001 B1
6181715 Phillips et al. Jan 2001 B1
6201806 Moffett Mar 2001 B1
6208639 Murai Mar 2001 B1
6222829 Karlsson et al. Apr 2001 B1
6229810 Gerszberg et al. May 2001 B1
6236653 Dalton et al. May 2001 B1
6240084 Oran et al. May 2001 B1
6240085 Iwami et al. May 2001 B1
6240086 Morgan et al. May 2001 B1
6243377 Phillips et al. Jun 2001 B1
6243398 Kahane et al. Jun 2001 B1
6259708 Cheng et al. Jul 2001 B1
6262979 Anderson et al. Jul 2001 B1
6411899 Dussell et al. Jun 2002 B2
6633635 Kung et al. Oct 2003 B2
20010024439 Morgan et al. Sep 2001 A1
Foreign Referenced Citations (12)
Number Date Country
0 841 831 May 1998 EP
2313979 Dec 1997 GB
WO 9723078 Jun 1997 WO
WO 9737458 Oct 1997 WO
WO 9842104 Sep 1998 WO
WO 9949608 Sep 1999 WO
WO 0056050 Sep 2000 WO
WO 0069131 Nov 2000 WO
WO 0105130 Jan 2001 WO
WO 0106720 Jan 2001 WO
WO 0113593 Feb 2001 WO
WO 0113618 Feb 2001 WO
Provisional Applications (1)
Number Date Country
60289303 May 2001 US