This disclosure relates in general to the field of network security, and more particularly, to a system and a method for interlocking a host and a gateway through information sharing.
The field of network security has become increasingly important in today's society. The Internet has enabled interconnection of different computer networks all over the world. However, the Internet has also presented many opportunities for malicious operators to exploit these networks. Once malicious software has infected a host computer, a malicious operator may issue commands from a remote computer to control the malicious software. The software can be instructed to perform any number of malicious actions, such as sending out spam or malicious emails from the host computer, stealing sensitive information from a business or individual associated with the host computer, propagating to other host computers, and/or assisting with distributed denial of service attacks. In addition, the malicious operator can sell or otherwise give access to other malicious operators, thereby escalating the exploitation of the host computers. Thus, the ability to effectively protect and maintain stable computers and systems continues to present significant challenges for component manufacturers, system designers, and network operators.
To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:
A method is described in example embodiments below that include receiving a content tag associated with transferring a file over a network connection. A session descriptor may also be received. The session descriptor and the content tag may be correlated with a network policy, which may be applied to the network connection. In some embodiments, the content tag may be received with the session descriptor. The file may be tainted by another file in some embodiments, and the content tag may be associated with other file.
Turning to
Each of the elements of
For purposes of illustrating the techniques for providing network security in example embodiments, it is important to understand the activities occurring within a given network. The following foundational information may be viewed as a basis from which the present disclosure may be properly explained. Such information is offered earnestly for purposes of explanation only and, accordingly, should not be construed in any way to limit the broad scope of the present disclosure and its potential applications.
Typical network environments used in organizations and by individuals include the ability to communicate electronically with other networks using the Internet, for example, to access web pages hosted on servers connected to the Internet, to send or receive electronic mail (i.e., email) messages, or to exchange files. Malicious users are continuously developing new tactics for using the Internet to spread malware and to gain access to confidential information. Malware may subvert a host and use it for malicious activity, such as spamming or information theft. Of course, malware is not a prerequisite to information theft. Individuals can also be compromised and intentionally transmit (or attempt to transmit) information in violation of applicable laws and/or policies. Information may also be transmitted inadvertently in violation of such laws and policies.
In some instances, malware may be used to deceive a person by using a different network protocol exchange than the person expects. The malware may be packaged so as to convince the person to allow access to run it in some innocuous way, thus allowing it access to the network, which often may require passing through a firewall or other security measure. The malware may then exploit the access to engage in alternative or additional activities not contemplated by the person. For example, a game may send email messages or a word processor may open a web connection. At the same time, the malware may also use standard protocols to deceive the firewall into permitting the malware to establish remote connections.
Botnets, for example, use malware and are an increasing threat to computer security. In many cases they employ sophisticated attack schemes that include a combination of well-known and new vulnerabilities. Botnets generally use a client-server architecture where a type of malicious software (i.e., a bot) is placed on a host computer and communicates with a command and control (C&C) server, which may be controlled by a malicious user (e.g., a botnet operator). Usually, a botnet is composed of a large number of bots that are controlled by the operator using a C&C protocol through various channels, including Internet Relay Chat (IRC) and peer-to-peer (P2P) communication. The bot may receive commands from the C&C server to perform particular malicious activities and, accordingly, may execute such commands. The bot may also send any results or pilfered information back to the C&C server. A bot is often designed to initiate communication with the C&C server and to masquerade as normal web browser traffic. For example, a bot may use a port typically used to communicate with a web server. Such bots, therefore, may not be detected by existing technologies without performing more detailed packet inspection of the web traffic. Moreover, once a bot is discovered, the botnet operator may simply find another way to masquerade network traffic by the bot to continue to present as normal web traffic. More recently, botnet operators have crafted bots to use encryption protocols such as, for example, secure socket layer (SSL), thereby encrypting malicious network traffic. Such encrypted traffic may use a Hypertext Transfer Protocol Secure (HTTPS) port such that only the endpoints involved in the encrypted session can decrypt the data. Thus, existing firewalls and other network intrusion prevention technologies may be unable to perform any meaningful inspection of the web traffic and bots continue to infect host computers within networks.
Other software security technology focused on preventing unauthorized program files from executing on a host computer may have undesirable side effects for end users or employees of a business or other organizational entity. Network or Information Technology (IT) administrators may be charged with crafting extensive policies relevant to all facets of the business entity to enable employees to exchange information with desirable and trusted network resources. Without extensive policies in place, employees may be prevented from downloading or sending data from network resources that are not specifically authorized, even if such software and other data facilitate legitimate and necessary business activities. Such systems may be so restrictive that if unauthorized software is found on a host computer, any host computer activities may be suspended pending network administrator intervention. Moreover, at the network level there may simply be too many applications to effectively track and incorporate into policies. Large whitelists or blacklists can be difficult to maintain and may degrade network performance, and some applications may not be susceptible to easy identification.
In accordance with one embodiment, network environment 10 can overcome these shortcomings (and others) by tagging files based on content and sharing content tags with a network gateway. In particular embodiments, data may be scanned and a classification policy may be applied to tag data based on content. The content tags may be shared with a network gateway, and the network gateway may filter network traffic based on the content tags. Session information may also be shared with the network gateway, which may further filter network traffic based on the session information. Information may be shared, for example, through an in-band or out-of-band protocol that allows a host agent to communicate with a network gateway to collectively and mutually achieve better security.
In some embodiments, a host agent may provide content tags to a network gateway, while in other embodiments content tags may be provided by an external source such as a data-at-rest (DAR) server. For example, in some embodiments, a DAR server such as NDLP 40 may periodically scan and index files in a datacenter, apply a classification policy to identify appropriate content tags for each files, and create a map between files and content tags. In other example embodiments, a host agent or DAR server may periodically scan and index files on a host, apply a classification policy, and map files to content tags. In still other embodiments, a host agent can scan a file as it is accessed to determine appropriate content tags. A gateway may receive content tags (e.g., from a DAR server, a host agent, or a content tag server) and filter a file transfer based on the content tag. A host agent or other server may also classify content associated with an in-bound transfer and provide a content tag to the gateway to filter in-bound transfers.
In another particular example, session descriptors may be shared along with content tags. Session descriptors generally include information about a host and an application associated with a given network session. For example, a session descriptor may include a UUID associated with the host and the user credentials of a process owner. Since a user can run separate processes with different user credentials, such information may be particularly advantageous for Citrix and terminal services. A session descriptor may additionally include a filename, pathname or other unique identifier of an application file (e.g., C:\ . . . \WINWORD.EXE) that is running the process attempting to establish a network connection. For example, in some embodiments the application may be identified by a hash function of the application's executable file, so as to make it more difficult for a malicious user to spoof the application name. A gateway may correlate this information with an application identifier or protocol to ensure that the application is performing as expected.
In some instances, a process may be attempting to transfer information in or out of the network, and a session description may also include a unique identifier associated with the information (e.g., a hash of a file). A session descriptor may also contain information about the host environment, such as software installed on the host and the current configuration and state of the software, permitting the gateway to act as a network access control device. For example, a session descriptor may indicate whether the local anti-virus system is up to date and running. If host-based data loss prevention (HDLP) software is available, a session descriptor may also include file typing information for file transfer. HDLP normally determines the type of file being transmitted out of the network (e.g., PDF, Word, etc.). The gateway may have additional policies about certain file types being transmitted over particular protocols, which may not be visible directly to an HDLP program.
The host agent may understand an application on the host as an executable file that is running a process with specific authentication, for example, while the network gateway may understand the application as a protocol in a TCP connection, which may also be correlated to a particular user authentication. The host agent may share session descriptors with the network gateway, and the network gateway may share network policy with the host agent as needed to correlate application activities with expected network behavior. Network policy may include elements of security policy as well as other network specific parameters, such as quality of service (QoS) and routing. A host agent may also be associated with a universally unique identifier (UUID), which can be used to correlate connections and activities originating behind network address translators.
A host agent may also notify the gateway of additional network connections to the host. If a host has both wireless and wired connections active simultaneously, for example, there may be a risk of data received on one connection being transmitted on the other, so it may be desirable to restrict access to sensitive data. A host agent may also notify the gateway if the connection is associated with a virtual machine. A host agent may also notify the gateway if the host has mountable read/write media, such as a USB stick attached.
Dynamic information sharing may be provided in network environment 10. Communications between a user host and a network gateway may be encoded in routine network traffic (e.g., IP or TCP options fields, packet padding locations, or trailers on DNS packets), or transmitted in a separate network packet from the host to the network gateway as each connection starts. In some embodiments, a network gateway may send a UDP packet containing a randomly chosen sequence number or nonce to a user host on the user host's first egress. On each TCP open of a permitted connection, the user host agent may format a hash of the current nonce and sequence ID, place it in the packet along with other session descriptors. A hash of packet contents may also be included in certain embodiments. The network gateway may receive the UDP packet and save the session descriptors to use in applying network policy to the TCP stream. The network gateway may send a new nonce periodically to discourage replay attacks.
In some embodiments of network environment 10, user host 20 may include multiple attachment points, causing it to have multiple IP addresses. In other embodiments, user host 20 may use the IP version 6 (IPv6), perhaps including Privacy Extensions (RFC4941), causing it to have one or more registered and known IPv6 addresses and one or more hidden or private IPv6 addresses. In these embodiments, gateway 25 may readily use dynamic information sharing to discover the user to host mapping for all the addresses on user host 20.
This dynamic information sharing in network environment 10 may provide several benefits over conventional architectures. For example, by coordinating firewall policy with a host agent, a gateway can apply policy based on user identifier, content classification, application identifier, or any combination thereof. Moreover, only applications that need to be granularly controlled need to be controlled by the gateway. Thus, the gateway may control arbitrary or evasive applications, provide higher effective throughput, and control mobile-user traffic. In addition, traffic that does not need to be completely allowed or denied can be rate-limited. Arbitrary or evasive applications can also be rate-limited with process information available on a gateway, and differentiated services can be provided for managed and unmanaged hosts.
Turning to
In general, scanning module 100 can scan data found at rest in network environment 10, particularly in datacenter 35, apply a content tagging policy to identify content for tagging, and index the content and associated tags in a repository, such as content tag map 105. A content tag may be any indicator reflective of content in a file, such as source code, trade secrets or other intellectual property, financial reports, or strategic business plans, for example. A “file” in this context refers broadly to any block of electronically stored data, including without limitation text documents, spreadsheets, images, databases, email messages, source code, and executable files. A content tag may additionally or alternatively be indicative of content sensitivity, such as public domain, confidential, proprietary, top secret, or export controlled, for example. Content tag server 110 is representative of any server that can process queries for content tags based on a hash or other unique identifier, retrieve the content tags from a content tag map, such as content tag map 105, and return the results. In some embodiments, as in
In one example implementation, user host 20, network gateway 25, policy server 30, and/or NDLP 40 are network elements, which are meant to encompass network appliances, servers, routers, switches, gateways, bridges, loadbalancers, firewalls, processors, modules, or any other suitable device, component, element, or object operable to exchange information in a network environment. Network elements may include any suitable hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof. This may be inclusive of appropriate algorithms and communication protocols that allow for the effective exchange of data or information. However, user host 20 may be distinguished from other network elements as it tends to serve as a terminal point for a network connection, in contrast to a gateway or router.
In regards to the internal structure associated with elements of network environment 10, each of user host 20, network gateway 25, policy server 30, datacenter 35, and/or NDLP 40 can include memory elements (e.g., as shown in
In certain example implementations, the functions outlined herein may be implemented by logic encoded in one or more tangible media (e.g., embedded logic provided in an ASIC, digital signal processor (DSP) instructions, software (potentially inclusive of object code and source code) to be executed by a processor, or other similar machine, etc.), which may be inclusive of non-transitory media. In some of these instances, memory elements can store data used for the operations described herein. This includes the memory elements being able to store software, logic, code, or processor instructions that are executed to carry out the activities described herein.
In one example implementation, user host 20, network gateway 25, policy server 30, datacenter 35, and/or NDLP 40 may include firmware and/or software modules to achieve, or to foster, operations as outlined herein. In other embodiments, such operations may be carried out by hardware, implemented externally to these elements, or included in some other network device to achieve the intended functionality. Alternatively, these elements may include software (or reciprocating software) that can coordinate in order to achieve the operations, as outlined herein. In still other embodiments, one or all of these devices may include any suitable algorithms, hardware, firmware, software, components, modules, interfaces, or objects that facilitate the operations thereof.
Additionally, each of user host 20, network gateway 25, policy server 30, datacenter 35, and/or NDLP 40 may include one or more processors (or virtual processors) that can execute software or an algorithm to perform activities as discussed herein. A processor, virtual processor, logic unit, or other processing unit can execute any type of instructions associated with the data to achieve the operations detailed herein. In one example, a processor could transform an element or an article (e.g., data) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by a processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array (FPGA), an EPROM, an EEPROM) or an ASIC that includes digital logic, software, code, electronic instructions, or any suitable combination thereof. Any of the potential processing elements, modules, and machines described herein should be construed as being encompassed within the broad term “processor.”
At 310, an application such as mail client 60 may initiate a connection to a remote server such as mail server 45. Thus, for example, mail client 60 may attach document 95 to an e-mail message at 312 and initiate a connection to mail server 45 using simple mail transfer protocol (SMTP). Network stack 65 may then route the traffic through firewall module 85. At 314, firewall module 85 can then send a HELLO packet to firewall agent 75 on user host 20 as a request for a session descriptor. A HELLO packet may include, for example, a KEY value, a SEQNUM, and a HASH value. The SEQNUM may be used both as a nonce and a sequence number. The HASH value is generally a suitable crypto hash, such as SHA-1, on data in the message. Firewall agent 75 may then decrypt the request from firewall module 85, obtain information from network stack 65, and send a sequenced, hashed, encrypted packet containing a session descriptor to firewall module 80 at 316. For example, if a user has been authenticated with an identification of “auser” and is using Microsoft Outlook as a mail client, then the session descriptor may contain: auser, Outlook, session info. This may be encrypted and transmitted along with a sequence number and has, as Enc[KEY](SEQNUM++, session descriptor, HASH).
In the example embodiment of
Note further that host 402a may be used concurrently by multiple users in certain embodiments, as in a timesharing system, Microsoft Windows “Switch Users” capability, Citrix, or Microsoft Terminal Services. Firewall module 85 may use information in the session descriptor to pair each network connection with the user that established it, permitting policy to be implemented differently by user rather than singly for all users of host 402a.
Firewall module 85 may exchange a session descriptor substantially as described above with reference to
Firewall module 85 may apply network policies at 516, based on the session description, content tag associated with document 95, reputation of the WebDAV server, and/or the country associated with the IP address of the target, for example, to determine if the transfer should be allowed at 518.
Note that with the examples provided above, as well as numerous other potential examples, interaction may be described in terms of two, three, or four network elements. However, this has been done for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of operations by only referencing a limited number of network elements. It should be appreciated that network environment 10 is readily scalable and can accommodate a large number of components, as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad teachings of network environment 10 as potentially applied to a myriad of other architectures. Additionally, although described with reference to particular scenarios, where a particular module, such as an analyzer module, is provided within a network element, these modules can be provided externally, or consolidated and/or combined in any suitable fashion. In certain instances, such modules may be provided in a single proprietary unit.
It is also important to note that the steps in the appended diagrams illustrate only some of the possible scenarios and patterns that may be executed by, or within, network environment 10. Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of teachings provided herein. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by network environment 10 in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings provided herein.
Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words “means for” or “step for” are specifically used in the particular claims; and (b) does not intend, by any statement in the specification, to limit this disclosure in any way that is not otherwise reflected in the appended claims.
This Application is a continuation (and claims the benefit of priority under 35 U.S.C. §120) of U.S. application Ser. No. 13/437,900, filed Apr. 2, 2012, entitled “SYSTEM AND METHOD FOR INTERLOCKING A HOST AND A GATEWAY,” Inventors Geoffrey Howard Cooper, et al. The disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.
Number | Name | Date | Kind |
---|---|---|---|
4688169 | Joshi | Aug 1987 | A |
4982430 | Frezza et al. | Jan 1991 | A |
5155847 | Kirouac et al. | Oct 1992 | A |
5222134 | Waite et al. | Jun 1993 | A |
5390314 | Swanson | Feb 1995 | A |
5521849 | Adelson et al. | May 1996 | A |
5560008 | Johnson et al. | Sep 1996 | A |
5699513 | Feigen et al. | Dec 1997 | A |
5778226 | Adams et al. | Jul 1998 | A |
5778349 | Okonogi | Jul 1998 | A |
5787427 | Benantar et al. | Jul 1998 | A |
5842017 | Hookway et al. | Nov 1998 | A |
5873086 | Fujii et al. | Feb 1999 | A |
5884298 | Smith, II et al. | Mar 1999 | A |
5907709 | Cantey et al. | May 1999 | A |
5907860 | Garibay et al. | May 1999 | A |
5926832 | Wing et al. | Jul 1999 | A |
5944839 | Isenberg | Aug 1999 | A |
5974149 | Leppek | Oct 1999 | A |
5987557 | Ebrahim | Nov 1999 | A |
5987610 | Franczek et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991881 | Conklin et al. | Nov 1999 | A |
6064815 | Hohensee et al. | May 2000 | A |
6073142 | Geiger et al. | Jun 2000 | A |
6141698 | Krishnan et al. | Oct 2000 | A |
6182142 | Win et al. | Jan 2001 | B1 |
6192401 | Modiri et al. | Feb 2001 | B1 |
6192475 | Wallace | Feb 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6275938 | Bond et al. | Aug 2001 | B1 |
6321267 | Donaldson | Nov 2001 | B1 |
6338149 | Ciccone, Jr. et al. | Jan 2002 | B1 |
6356957 | Sanchez, II et al. | Mar 2002 | B2 |
6393465 | Leeds | May 2002 | B2 |
6442686 | McArdle et al. | Aug 2002 | B1 |
6449040 | Fujita | Sep 2002 | B1 |
6453468 | D'Souza | Sep 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6496477 | Perkins et al. | Dec 2002 | B1 |
6587877 | Douglis et al. | Jul 2003 | B1 |
6611925 | Spear | Aug 2003 | B1 |
6658645 | Akuta et al. | Dec 2003 | B1 |
6662219 | Nishanov et al. | Dec 2003 | B1 |
6748534 | Gryaznov et al. | Jun 2004 | B1 |
6769008 | Kumar et al. | Jul 2004 | B1 |
6769115 | Oldman | Jul 2004 | B1 |
6795966 | Lim et al. | Sep 2004 | B1 |
6832227 | Seki et al. | Dec 2004 | B2 |
6834301 | Hanchett | Dec 2004 | B1 |
6847993 | Novaes et al. | Jan 2005 | B1 |
6907600 | Neiger et al. | Jun 2005 | B2 |
6918110 | Hundt et al. | Jul 2005 | B2 |
6930985 | Rathi et al. | Aug 2005 | B1 |
6934755 | Saulpaugh et al. | Aug 2005 | B1 |
6941470 | Jooste | Sep 2005 | B1 |
6988101 | Ham et al. | Jan 2006 | B2 |
6988124 | Douceur et al. | Jan 2006 | B2 |
7007302 | Jagger et al. | Feb 2006 | B1 |
7010796 | Strom et al. | Mar 2006 | B1 |
7024548 | O'Toole, Jr. | Apr 2006 | B1 |
7039949 | Cartmell et al. | May 2006 | B2 |
7054930 | Cheriton | May 2006 | B1 |
7065767 | Kambhammettu et al. | Jun 2006 | B2 |
7069330 | McArdle et al. | Jun 2006 | B1 |
7082456 | Mani-Meitav et al. | Jul 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096500 | Roberts et al. | Aug 2006 | B2 |
7124409 | Davis et al. | Oct 2006 | B2 |
7139916 | Billingsley et al. | Nov 2006 | B2 |
7152148 | Williams et al. | Dec 2006 | B2 |
7159036 | Hinchliffe et al. | Jan 2007 | B2 |
7177267 | Oliver et al. | Feb 2007 | B2 |
7203864 | Goin et al. | Apr 2007 | B2 |
7251655 | Kaler et al. | Jul 2007 | B2 |
7290266 | Gladstone et al. | Oct 2007 | B2 |
7302558 | Campbell et al. | Nov 2007 | B2 |
7330849 | Gerasoulis et al. | Feb 2008 | B2 |
7340684 | Ramamoorthy et al. | Mar 2008 | B2 |
7346781 | Cowle et al. | Mar 2008 | B2 |
7349931 | Horne | Mar 2008 | B2 |
7350204 | Lambert et al. | Mar 2008 | B2 |
7353501 | Tang et al. | Apr 2008 | B2 |
7360097 | Rothstein | Apr 2008 | B2 |
7363022 | Whelan et al. | Apr 2008 | B2 |
7370360 | van der Made | May 2008 | B2 |
7385938 | Beckett et al. | Jun 2008 | B1 |
7406517 | Hunt et al. | Jul 2008 | B2 |
7441265 | Staamann et al. | Oct 2008 | B2 |
7463590 | Mualem et al. | Dec 2008 | B2 |
7464408 | Shah et al. | Dec 2008 | B1 |
7506155 | Stewart et al. | Mar 2009 | B1 |
7506170 | Finnegan | Mar 2009 | B2 |
7506364 | Vayman | Mar 2009 | B2 |
7546333 | Alon et al. | Jun 2009 | B2 |
7546594 | McGuire et al. | Jun 2009 | B2 |
7552479 | Conover et al. | Jun 2009 | B1 |
7577995 | Chebolu et al. | Aug 2009 | B2 |
7603552 | Sebes et al. | Oct 2009 | B1 |
7607170 | Chesla | Oct 2009 | B2 |
7657599 | Smith | Feb 2010 | B2 |
7669195 | Qumei | Feb 2010 | B1 |
7685635 | Vega et al. | Mar 2010 | B2 |
7694150 | Kirby | Apr 2010 | B1 |
7698744 | Fanton et al. | Apr 2010 | B2 |
7703090 | Napier et al. | Apr 2010 | B2 |
7739497 | Fink et al. | Jun 2010 | B1 |
7757269 | Roy-Chowdhury et al. | Jul 2010 | B1 |
7765538 | Zweifel et al. | Jul 2010 | B2 |
7783735 | Sebes et al. | Aug 2010 | B1 |
7809704 | Surendran et al. | Oct 2010 | B2 |
7814554 | Ragner | Oct 2010 | B1 |
7818377 | Whitney et al. | Oct 2010 | B2 |
7823148 | Deshpande et al. | Oct 2010 | B2 |
7836504 | Ray et al. | Nov 2010 | B2 |
7840968 | Sharma et al. | Nov 2010 | B1 |
7849507 | Bloch et al. | Dec 2010 | B1 |
7853643 | Martinez et al. | Dec 2010 | B1 |
7856661 | Sebes et al. | Dec 2010 | B1 |
7865931 | Stone et al. | Jan 2011 | B1 |
7870387 | Bhargava et al. | Jan 2011 | B1 |
7873955 | Sebes et al. | Jan 2011 | B1 |
7895573 | Bhargava et al. | Feb 2011 | B1 |
7908653 | Brickell et al. | Mar 2011 | B2 |
7925722 | Reed et al. | Apr 2011 | B1 |
7937455 | Saha et al. | May 2011 | B2 |
7950056 | Satish et al. | May 2011 | B1 |
7966659 | Wilkinson et al. | Jun 2011 | B1 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
8015388 | Rihan et al. | Sep 2011 | B1 |
8015563 | Araujo et al. | Sep 2011 | B2 |
8028340 | Sebes et al. | Sep 2011 | B2 |
8055904 | Cato et al. | Nov 2011 | B1 |
8166474 | Delco | Apr 2012 | B1 |
8195931 | Sharma et al. | Jun 2012 | B1 |
8205188 | Ramamoorthy et al. | Jun 2012 | B2 |
8209680 | Le et al. | Jun 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8234713 | Roy-Chowdhury et al. | Jul 2012 | B2 |
8307437 | Sebes et al. | Nov 2012 | B2 |
8321932 | Bhargava et al. | Nov 2012 | B2 |
8332929 | Bhargava et al. | Dec 2012 | B1 |
8352930 | Sebes et al. | Jan 2013 | B1 |
8381284 | Dang et al. | Feb 2013 | B2 |
8387046 | Montague et al. | Feb 2013 | B1 |
8515075 | Saraf et al. | Aug 2013 | B1 |
8539063 | Sharma et al. | Sep 2013 | B1 |
8544003 | Sawhney et al. | Sep 2013 | B1 |
8549003 | Bhargava et al. | Oct 2013 | B1 |
8549546 | Sharma et al. | Oct 2013 | B2 |
8555404 | Sebes et al. | Oct 2013 | B1 |
8561051 | Sebes et al. | Oct 2013 | B2 |
8561082 | Sharma et al. | Oct 2013 | B2 |
8584199 | Chen et al. | Nov 2013 | B1 |
8701182 | Bhargava et al. | Apr 2014 | B2 |
8707422 | Bhargava et al. | Apr 2014 | B2 |
8707446 | Roy-Chowdhury et al. | Apr 2014 | B2 |
8713668 | Cooper et al. | Apr 2014 | B2 |
8762928 | Sharma et al. | Jun 2014 | B2 |
8763118 | Sebes et al. | Jun 2014 | B2 |
8793489 | Polunin et al. | Jul 2014 | B2 |
8800024 | Cooper et al. | Aug 2014 | B2 |
8843903 | Blaser et al. | Sep 2014 | B1 |
8869265 | Dang et al. | Oct 2014 | B2 |
8904520 | Nachenberg et al. | Dec 2014 | B1 |
8925101 | Bhargava et al. | Dec 2014 | B2 |
8938800 | Bhargava et al. | Jan 2015 | B2 |
8973146 | Ramanan et al. | Mar 2015 | B2 |
9112830 | Cooper et al. | Aug 2015 | B2 |
9134998 | Roy-Chowdhury et al. | Sep 2015 | B2 |
20020056076 | van der Made | May 2002 | A1 |
20020069367 | Tindal et al. | Jun 2002 | A1 |
20020083175 | Afek et al. | Jun 2002 | A1 |
20020099671 | Mastin Crosbie et al. | Jul 2002 | A1 |
20020114319 | Liu et al. | Aug 2002 | A1 |
20020118644 | Moir | Aug 2002 | A1 |
20030014667 | Kolichtchak | Jan 2003 | A1 |
20030023736 | Abkemeier | Jan 2003 | A1 |
20030033510 | Dice | Feb 2003 | A1 |
20030061506 | Cooper | Mar 2003 | A1 |
20030065945 | Lingafelt et al. | Apr 2003 | A1 |
20030073894 | Chiang et al. | Apr 2003 | A1 |
20030074552 | Olkin et al. | Apr 2003 | A1 |
20030088680 | Nachenberg et al. | May 2003 | A1 |
20030115222 | Oashi et al. | Jun 2003 | A1 |
20030120601 | Ouye et al. | Jun 2003 | A1 |
20030120811 | Hanson et al. | Jun 2003 | A1 |
20030120935 | Teal et al. | Jun 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030163718 | Johnson et al. | Aug 2003 | A1 |
20030167292 | Ross | Sep 2003 | A1 |
20030167399 | Audebert et al. | Sep 2003 | A1 |
20030200332 | Gupta et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030220944 | Schottland et al. | Nov 2003 | A1 |
20030221190 | Deshpande et al. | Nov 2003 | A1 |
20040003258 | Billingsley et al. | Jan 2004 | A1 |
20040015554 | Wilson | Jan 2004 | A1 |
20040051736 | Daniell | Mar 2004 | A1 |
20040054928 | Hall | Mar 2004 | A1 |
20040057454 | Hennegan et al. | Mar 2004 | A1 |
20040088398 | Barlow | May 2004 | A1 |
20040139206 | Claudatos et al. | Jul 2004 | A1 |
20040143749 | Tajalli et al. | Jul 2004 | A1 |
20040153650 | Hillmer | Aug 2004 | A1 |
20040167906 | Smith et al. | Aug 2004 | A1 |
20040172551 | Fielding et al. | Sep 2004 | A1 |
20040230963 | Rothman et al. | Nov 2004 | A1 |
20040243678 | Smith et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050005006 | Chauffour et al. | Jan 2005 | A1 |
20050018651 | Yan et al. | Jan 2005 | A1 |
20050022014 | Shipman | Jan 2005 | A1 |
20050071633 | Rothstein | Mar 2005 | A1 |
20050086047 | Uchimoto et al. | Apr 2005 | A1 |
20050091321 | Daniell et al. | Apr 2005 | A1 |
20050091487 | Cross et al. | Apr 2005 | A1 |
20050108516 | Balzer et al. | May 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114672 | Duncan et al. | May 2005 | A1 |
20050132346 | Tsantilis | Jun 2005 | A1 |
20050198519 | Tamura et al. | Sep 2005 | A1 |
20050228990 | Kato et al. | Oct 2005 | A1 |
20050235360 | Pearson | Oct 2005 | A1 |
20050256907 | Novik et al. | Nov 2005 | A1 |
20050257207 | Blumfield et al. | Nov 2005 | A1 |
20050257265 | Cook et al. | Nov 2005 | A1 |
20050260996 | Groenendaal | Nov 2005 | A1 |
20050262558 | Usov | Nov 2005 | A1 |
20050273858 | Zadok et al. | Dec 2005 | A1 |
20050283823 | Okajo et al. | Dec 2005 | A1 |
20050289538 | Black-Ziegelbein et al. | Dec 2005 | A1 |
20060004875 | Baron et al. | Jan 2006 | A1 |
20060015501 | Sanamrad et al. | Jan 2006 | A1 |
20060037016 | Saha et al. | Feb 2006 | A1 |
20060072451 | Ross | Apr 2006 | A1 |
20060075299 | Chandramouleeswaran et al. | Apr 2006 | A1 |
20060075478 | Hyndman | Apr 2006 | A1 |
20060080656 | Cain et al. | Apr 2006 | A1 |
20060085785 | Garrett | Apr 2006 | A1 |
20060101277 | Meenan et al. | May 2006 | A1 |
20060133223 | Nakamura et al. | Jun 2006 | A1 |
20060136910 | Brickell et al. | Jun 2006 | A1 |
20060136911 | Robinson et al. | Jun 2006 | A1 |
20060143713 | Challener et al. | Jun 2006 | A1 |
20060195906 | Jin et al. | Aug 2006 | A1 |
20060200863 | Ray et al. | Sep 2006 | A1 |
20060230314 | Sanjar et al. | Oct 2006 | A1 |
20060236398 | Trakic et al. | Oct 2006 | A1 |
20060259734 | Sheu et al. | Nov 2006 | A1 |
20060277603 | Kelso et al. | Dec 2006 | A1 |
20070011746 | Malpani et al. | Jan 2007 | A1 |
20070028303 | Brennan | Feb 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070039049 | Kupferman et al. | Feb 2007 | A1 |
20070050579 | Hall et al. | Mar 2007 | A1 |
20070050764 | Traut | Mar 2007 | A1 |
20070074199 | Schoenberg | Mar 2007 | A1 |
20070083522 | Nord et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070136579 | Levy et al. | Jun 2007 | A1 |
20070143851 | Nicodemus et al. | Jun 2007 | A1 |
20070157303 | Pankratov | Jul 2007 | A1 |
20070169079 | Keller et al. | Jul 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070220061 | Tirosh et al. | Sep 2007 | A1 |
20070220507 | Back et al. | Sep 2007 | A1 |
20070253430 | Minami et al. | Nov 2007 | A1 |
20070256138 | Gadea et al. | Nov 2007 | A1 |
20070271561 | Winner et al. | Nov 2007 | A1 |
20070297333 | Zuk | Dec 2007 | A1 |
20070297396 | Eldar et al. | Dec 2007 | A1 |
20070300215 | Bardsley | Dec 2007 | A1 |
20080005737 | Saha et al. | Jan 2008 | A1 |
20080005798 | Ross | Jan 2008 | A1 |
20080010304 | Vempala et al. | Jan 2008 | A1 |
20080022384 | Yee et al. | Jan 2008 | A1 |
20080034416 | Kumar et al. | Feb 2008 | A1 |
20080034418 | Venkatraman et al. | Feb 2008 | A1 |
20080052468 | Speirs et al. | Feb 2008 | A1 |
20080059123 | Estberg et al. | Mar 2008 | A1 |
20080082662 | Dandliker et al. | Apr 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080086513 | O'Brien | Apr 2008 | A1 |
20080115012 | Jann et al. | May 2008 | A1 |
20080120499 | Zimmer et al. | May 2008 | A1 |
20080141371 | Bradicich et al. | Jun 2008 | A1 |
20080163207 | Reumann et al. | Jul 2008 | A1 |
20080163210 | Bowman et al. | Jul 2008 | A1 |
20080165952 | Smith et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080235534 | Schunter et al. | Sep 2008 | A1 |
20080282080 | Hyndman et al. | Nov 2008 | A1 |
20080294703 | Craft et al. | Nov 2008 | A1 |
20080295173 | Tsvetanov | Nov 2008 | A1 |
20080301770 | Kinder | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090038017 | Durham et al. | Feb 2009 | A1 |
20090043993 | Ford et al. | Feb 2009 | A1 |
20090055693 | Budko et al. | Feb 2009 | A1 |
20090063665 | Bagepalli et al. | Mar 2009 | A1 |
20090113110 | Chen et al. | Apr 2009 | A1 |
20090144300 | Chatley et al. | Jun 2009 | A1 |
20090150639 | Ohata | Jun 2009 | A1 |
20090178110 | Higuchi | Jul 2009 | A1 |
20090220080 | Herne et al. | Sep 2009 | A1 |
20090249053 | Zimmer et al. | Oct 2009 | A1 |
20090249438 | Litvin et al. | Oct 2009 | A1 |
20090320010 | Chow et al. | Dec 2009 | A1 |
20090320133 | Viljoen et al. | Dec 2009 | A1 |
20090320140 | Sebes et al. | Dec 2009 | A1 |
20090328144 | Sherlock et al. | Dec 2009 | A1 |
20090328185 | van den Berg et al. | Dec 2009 | A1 |
20100049973 | Chen | Feb 2010 | A1 |
20100071035 | Budko et al. | Mar 2010 | A1 |
20100100970 | Roy-Chowdhury et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100138430 | Gotou | Jun 2010 | A1 |
20100188976 | Rahman et al. | Jul 2010 | A1 |
20100250895 | Adams et al. | Sep 2010 | A1 |
20100281133 | Brendel | Nov 2010 | A1 |
20100293225 | Sebes et al. | Nov 2010 | A1 |
20100299277 | Emelo et al. | Nov 2010 | A1 |
20100332910 | Ali et al. | Dec 2010 | A1 |
20110029772 | Fanton et al. | Feb 2011 | A1 |
20110035423 | Kobayashi et al. | Feb 2011 | A1 |
20110047542 | Dang et al. | Feb 2011 | A1 |
20110047543 | Mohinder | Feb 2011 | A1 |
20110061092 | Bailloeul | Mar 2011 | A1 |
20110077948 | Sharma et al. | Mar 2011 | A1 |
20110078550 | Nabutovsky | Mar 2011 | A1 |
20110093842 | Sebes | Apr 2011 | A1 |
20110093950 | Bhargava et al. | Apr 2011 | A1 |
20110113467 | Agarwal et al. | May 2011 | A1 |
20110119760 | Sebes et al. | May 2011 | A1 |
20110138461 | Bhargava et al. | Jun 2011 | A1 |
20110246753 | Thomas | Oct 2011 | A1 |
20110302647 | Bhattacharya et al. | Dec 2011 | A1 |
20120030731 | Bhargava et al. | Feb 2012 | A1 |
20120030750 | Bhargava et al. | Feb 2012 | A1 |
20120110666 | Ogilvie | May 2012 | A1 |
20120159631 | Niemela et al. | Jun 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120233611 | Voccio | Sep 2012 | A1 |
20120278853 | Roy-Chowdhury et al. | Nov 2012 | A1 |
20120290827 | Bhargava et al. | Nov 2012 | A1 |
20120290828 | Bhargava et al. | Nov 2012 | A1 |
20120297176 | Bhargava et al. | Nov 2012 | A1 |
20130024934 | Sebes et al. | Jan 2013 | A1 |
20130091318 | Bhattacharjee et al. | Apr 2013 | A1 |
20130097355 | Dang et al. | Apr 2013 | A1 |
20130097356 | Dang et al. | Apr 2013 | A1 |
20130097658 | Cooper et al. | Apr 2013 | A1 |
20130097692 | Cooper et al. | Apr 2013 | A1 |
20130117823 | Dang et al. | May 2013 | A1 |
20130179971 | Harrison | Jul 2013 | A1 |
20130227683 | Bettini et al. | Aug 2013 | A1 |
20130246044 | Sharma et al. | Sep 2013 | A1 |
20130246393 | Saraf et al. | Sep 2013 | A1 |
20130246423 | Bhargava et al. | Sep 2013 | A1 |
20130246685 | Bhargava et al. | Sep 2013 | A1 |
20130247016 | Sharma et al. | Sep 2013 | A1 |
20130247027 | Shah et al. | Sep 2013 | A1 |
20130247032 | Bhargava et al. | Sep 2013 | A1 |
20130247181 | Saraf et al. | Sep 2013 | A1 |
20130247192 | Krasser et al. | Sep 2013 | A1 |
20130247201 | Alperovitch et al. | Sep 2013 | A1 |
20130247226 | Sebes et al. | Sep 2013 | A1 |
20130268994 | Cooper et al. | Oct 2013 | A1 |
20140090061 | Avasarala et al. | Mar 2014 | A1 |
20140101783 | Bhargava et al. | Apr 2014 | A1 |
20140189859 | Ramanan et al. | Jul 2014 | A1 |
20140237584 | Cooper et al. | Aug 2014 | A1 |
20140283065 | Teddy et al. | Sep 2014 | A1 |
20140283066 | Teddy et al. | Sep 2014 | A1 |
20140317592 | Roy-Chowdhury et al. | Oct 2014 | A1 |
20140351895 | Bhargava et al. | Nov 2014 | A1 |
20150121449 | Cp | Apr 2015 | A1 |
20150180884 | Bhargava et al. | Jun 2015 | A1 |
20150180997 | Ramanan et al. | Jun 2015 | A1 |
20150200968 | Bhargava et al. | Jul 2015 | A1 |
20150365380 | Cooper et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1383295 | Dec 2002 | CN |
101147379 | Mar 2008 | CN |
101218568 | Jul 2008 | CN |
101569129 | Oct 2009 | CN |
101636998 | Jan 2010 | CN |
103283202 | Sep 2013 | CN |
1 482 394 | Dec 2004 | EP |
2 037 657 | Mar 2009 | EP |
2599026 | Jun 2013 | EP |
2599276 | Jun 2013 | EP |
2004524598 | Aug 2004 | JP |
2005-275839 | Jun 2005 | JP |
2005-202523 | Jul 2005 | JP |
2006-59217 | Mar 2006 | JP |
2006-302292 | Nov 2006 | JP |
2007-500396 | Jan 2007 | JP |
2008-506303 | Feb 2008 | JP |
2008-217306 | Sep 2008 | JP |
2009-510858 | Mar 2009 | JP |
2010-16834 | Jan 2010 | JP |
WO 9844404 | Oct 1998 | WO |
WO 0184285 | Nov 2001 | WO |
WO 2006012197 | Feb 2006 | WO |
WO 2006124832 | Nov 2006 | WO |
WO 2007016478 | Feb 2007 | WO |
WO 2008054997 | May 2008 | WO |
WO 2011003958 | Jan 2011 | WO |
WO 2011059877 | May 2011 | WO |
WO 2012015485 | Feb 2012 | WO |
WO 2012015489 | Feb 2012 | WO |
WO 2012116098 | Aug 2012 | WO |
WO 2013058940 | Apr 2013 | WO |
WO 2013058944 | Apr 2013 | WO |
WO 2014105308 | Jul 2014 | WO |
WO 2015060857 | Apr 2015 | WO |
Entry |
---|
“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2, http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+architecture—Q1+2008.pdf, printed Aug. 18, 2009 (9 pages). |
Eli M. Dow, et al., “The Xen Hypervisor,” INFORMIT, dated Apr. 10, 2008, http://www.informit.com/articles/printerfriendly.aspx?p=1187966, printed Aug. 11, 2009 (13 pages). |
Desktop Management and Control, Website: http://www.vmware.com/solutions/desktop/, printed Oct. 12, 2009, 1 page. |
Secure Mobile Computing, Website: http://www.vmware.com/solutions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages. |
Barrantes et al., “Randomized Instruction Set Emulation to Dispurt Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-289. |
Gaurav et al., “Countering Code-Injection Attacks with Instruction-Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280. |
Check Point Software Technologies Ltd.: “ZoneAlarm Security Software User Guide Version 9”, Aug. 24, 2009, XP002634548, 259 pages, retrieved from Internet: URL:http://download.zonealarm.com/bin/media/pdf/zaclient91—user—manual.pdf. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority (1 page), International Search Report (4 pages), and Written Opinion (3 pages), mailed Mar. 2, 2011, International Application No. PCT/US2010/055520. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (6 pages), and Written Opinion of the International Searching Authority (10 pages) for International Application No. PCT/US2011/020677 mailed Jul. 22, 2011. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (3 pages), and Written Opinion of the International Search Authority (6 pages) for International Application No. PCT/US2011/024869 mailed Jul. 14, 2011. |
Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for Trusted Computing,” XP-002340992, SOSP'03, Oct. 19-22, 2003, 14 pages. |
IA-32 Intel® Architecture Software Developer's Manual, vol. 3B; Jun. 2006; pp. 13, 15, 22 and 145-146. |
Notification of International Preliminary Report on Patentability and Written Opinion mailed May 24, 2012 for International Application No. PCT/US2010/055520, 5 pages. |
Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems, IBM research Report, Feb. 2, 2005, 13 pages. |
Kurt Gutzmann, “Access Control and Session Management in the HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Computing. |
“Apache Hadoop Project,” http://hadoop.apache.org/, retrieved and printed Jan. 26, 2011, 3 pages. |
“Cbl, composite blocking list,” http://cbl.abuseat.org, retrieved and printed Jan. 26, 2011, 8 pages. |
A Tutorial on Clustering Algorithms, retrieved Sep. 10, 2010 from http://home.dei.polimi.it/matteucc/clustering/tutorial.html, 6 pages. |
A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Pason, N. Weaver, and S. Savage, “Botnet Judo: Fighting Spam with Itself,” in Proceedings of the 17th Annual Network and Distributed System Security Symposium (NDSS'10), Feb. 2010, 19 pages. |
A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet membership using DNSBL counter-intelligence,” in Proceedings of the 2nd USENIX Steps to Reducing Unwanted Traffic on the Internet, 2006, 6 pages. |
A. Ramachandran, N. Feamster, and S. Vempala, “Filtering Spam with Behavioral Blacklisting,” in Proceedings of ACM Conference on Computer Communications Security, 2007, 10 pages. |
B. Stone-Gross, M. Cova, L. Cavallor, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet: Analysis of a Botnet Takeover,” in Proceedings of the 16th ACM Conference on Computer and Communicatinos Security, 2009, 13 pages. |
C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, and S. Savage, “Spamalytics: An Empirical Analysis of Spam Marketing Conversion,” in Proceedings of the 15th ACM conference on Computer and Communications Security, 2008, 12 pages. |
C.J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” in Journal of Data Mining and Knowledge Discovery, 1998, 43 pages. |
E-Mail Spamming Botnets: Signatures and Characteristics, Posted Sep. 22, 2008, http://www.protofilter.com/blog/email-spam-botnets-signatures.html, retrieved and printed Feb. 2, 2011, 4 pages. |
G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command and Control Channels in Network Traffic,” in Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08), Feb. 2008, 24 pages. |
G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation,” in Proceedings of the 16th USNIX Security Symposium, 2007, 34 pages. |
G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Analysis of Network Traffic for Protocol and Structure-Independent Botnet Detection,” in Proceedings of the 17th USENIX Security Symposium, 2008, 15 pages. |
I. Jolliffe, “Principal Component Analysis,” in Springer Series in Statistics, Statistical Theory and Methods, 2nd ed.), 2002, 518 pages. |
J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Proceedings of Sixth Symposium on Operating System Design and Implementation, OSDI, 2004, 13 pages. |
J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation,” in Proceedings of the USENIX HotBots, 2007, 12 pages. |
J.B. Grizzard, V. Sharma, C. Nunnery, B.B. Kang, and D. Dagon, “Peer-to-Peer Botnets: Overview and Case Study,” in Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets, Apr. 2007, 14 pages. |
J.P. John, A. Moshchuk, S.D. Gribble, and A. Krishnamurthy, “Studying Spamming Botnets Using Botlab,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 16 pages. |
K. Li, Z. Zhong, and L. Ramaswamy, “Privacy-Aware Collaborative Spam Filtering,” in Journal of IEEE Transactions on Parallel and Distributed Systems, vol. 29, No. 5, May 2009, pp. 725-739. |
L. Zhuang, J. Dunagan, D.R. Simon, H.J. Wang, and J.D. Tygar, “Characterizing botnets from email spam records,” in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats), 2008, 18 pages. |
M. Frigo and S.G. Johnson, “The Design and Implementation of FFTW3,” in Proceedings of the IEEE 93(2), Invited paper, Special Issue on Program Generation, Optimization, and Platform Adaptation, 2005, 16 pages. |
R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious Flux Service Networks through Passive Analysis of Recursive DNS Traces,” in Proceedings of the 25th Annual Computer Security Applications Conference (ACSAC 2009), Dec. 2009, 10 pages. |
X. Jiang, D. Xu, and Y.-M. Wang, “Collapsar: A VM-Based Honeyfarm and Reverse Honeyfarm Architecture for Network Attack Capture and Detention,” in Journal of Parallel and Distributed Computing, Special Issue on Security in Grid and Distributed Systems, 2006, 16 pages. |
Y. Tang, S. Krasser, P. Judge, and Y.-Q. Zhang, “Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data,” in Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), Nov. 2006, 6 pages. |
Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum, “BotGraph: Large Scale Spamming Botnet Detection,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 26 pages. |
Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigraphy, Geoff Hulten, and Ivan Osipkov, “Spamming Botnets: Signatures and Characteristics,” SIGCOMM '08, Aug. 17, 22, 2008, http://ccr.sigcomm.org/online/files/p171-xie.pdf, pp. 171-182. |
Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Analysis of Large-Scale Botnet probing Events,” in Proceedings of ACM Symposium on Information, Computer and Communications Security (ASIACCS)), 2009, 12 pages. |
Myung-Sup Kim et al., “A load cluster management system using SNMP and web”, [Online], May 2002, pp. 367-378, [Retrieved from Internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/nem.453/pdf>. |
G. Pruett et al., “BladeCenter systems management software”, [Online], Nov. 2005, pp. 963-975, [Retrieved from Internet on Oct. 24, 2012], <http://citeseerx.lst.psu.edu/viewdoc/download?doi=10.1.1.91.5091&rep=rep1&type=pdf>. |
Philip M. Papadopoulos et al., “NPACI Rocks: tools and techniques for easily deploying manageable Linux clusters” [Online], Aug. 2002, pp. 707-725, [Retrieved from internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/cpe.722/pdf>. |
Thomas Staub et al., “Secure Remote Management and Software Distribution for Wireless Mesh Networks”, [Online], Sep. 2007, pp. 1-8, [Retrieved from Internet on Oct. 24, 2012], <http://cds.unibe.ch/research/pub—files/B07.pdf>. |
“What's New: McAfee VirusScan Enterprise, 8.8,” copyright 2010, retrieved on Nov. 23, 2012 at https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT—DOCUMENTATION/22000/PD22973/en—US/VSE%208.8%20-%20What's%20New.pdf, 4 pages. |
“McAfee Management for Optimized Virtual Environments,” copyright 2012, retrieved on Nov. 26, 2012 at AntiVirushttp://www.mcafee.com/us/resources/data-sheets/ds-move-anti-virus.pdf, 2 pages. |
Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, Apr. 1992, retrieved on Dec. 14, 2012 from http://www.ietf.org/rfc/rfc1321.txt, 21 pages. |
Hinden, R. and B. Haberman, “Unique Local IPv6 Unicast Addresses”, RFC 4193, Oct. 2005, retrieved on Nov. 20, 2012 from http://tools.ietf.org/pdf/rfc4193.pdf, 17 pages. |
“Secure Hash Standard (SHS)”, Federal Information Processing Standards Publication, FIPS PUB 180-4, Mar. 2012, retrieved on Dec. 14, 2012 from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 35 pages. |
U.S. Appl. No. 13/728,705, filed Dec. 27, 2012, entitled “Herd Based Scan Avoidance System in a Network Environment,” Inventors Venkata Ramanan, et al. |
An Analysis of Address Space Layout Randomization on Windows Vista™, Symantec Advanced Threat Research, copyright 2007 Symantec Corporation, available at http://www.symantec.com/avcenter/reference/Address—Space—Layout—Randomization.pdf, 19 pages. |
Bhatkar, et al., “Efficient Techniques for Comprehensive Protection from Memory Error Exploits,” USENIX Association, 14th USENIX Security Symposium, Aug. 1-5, 2005, Baltimore, MD, 16 pages. |
Dewan, et al., “A Hypervisor-Based System for Protecting Software Runtime Memory and Persistent Storage,” Spring Simulation Multiconference 2008, Apr. 14-17, 2008, Ottawa, Canada, (available at website: www.vodun.org/papers/2008—secure—locker—submit—v1-1.pdf, printed Oct. 11, 2011), 8 pages. |
Shacham, et al., “On the Effectiveness of Address-Space Randomization,” CCS'04, Oct. 25-29, 2004, Washington, D.C., Copyright 2004, 10 pages. |
International Search Report and Written Opinion mailed Dec. 14, 2012 for International Application No. PCT/US2012/055674, 9 pages. |
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/020677 (9 pages). |
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/024869 (6 pages). |
Office Action received for U.S. Appl. No. 12/844,892, mailed on Jan. 17, 2013, 29 pages. |
Office Action received for U.S. Appl. No. 12/844,892, mailed on Sep. 6, 2012, 33 pages. |
Datagram Transport Layer Security Request for Comments 4347, E. Rescorla, et al., Stanford University, Apr. 2006, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc4347.pdf, 26 pages. |
Internet Control Message Protocol Request for Comments 792, J. Postel, ISI, Sep. 1981, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/html/rfc792, 22 pages. |
Mathew J. Schwartz, “Palo Alto Introduces Security for Cloud, Mobile Users,” retrieved Feb. 9, 2011 from http://www.informationweek.com/news/security/perimeter/showArticle.jhtml?articleID-22, 4 pages. |
Requirements for IV Version 4 Routers Request for Comments 1812, F. Baker, Cisco Systems, Jun. 1995, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc1812.pdf, 176 pages. |
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198, Issued Mar. 6, 2002, Federal Information Processing Standards Publication, retrieved and printed on Oct. 17, 2011 from http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf, 20 pages. |
Zhen Chen et al., “Application Level Network Access Control System Based on TNC Architecture for Enterprise Network,” in: Wireless communications Networking and Information Security (WCNIS), 2010 IEEE International Conference, Jun. 25-27, 2010 (5 pages). |
USPTO Dec. 24, 2012 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
USPTO Mar. 25, 2013 Response to Dec. 24, 2012 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
USPTO Jul. 16, 2013 Final Office Action from U.S. Appl. No. 13/032,851. |
International Search Report and Written Opinion, International Application No. PCT/US2012/026169, mailed Jun. 18, 2012, 11 pages. |
USPTO Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249. |
USPTO May 13, 2013 Response to Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249. |
International Search Report and Written Opinion, International Application No. PCT/US2012/057312, mailed Jan. 31, 2013, 10 pages. |
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,196. |
International Search Report and Written Opinion, International Application No. PCT/US2012/057153, mailed Dec. 26, 2012, 8 pages. |
U.S. Appl. No. 13/437,900, filed Apr. 2, 2012, entitled “System and Method for Interlocking a Host and a Gateway,” Inventors: Geoffrey Howard Cooper, et al. |
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900. |
USPTO Jun. 3, 2013 Response to Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900. |
USPTO Sep. 13, 2013 Final Office Action from U.S. Appl. No. 13/275,249, 21 pages. |
Narten et al., RFC 4861, “Neighbor Discovery for IP version 6 (IPv6)”, Sep. 2007, retrieved from http://tools.ietf.org/html/rfc4861, 194 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2012/026169, mailed Aug. 27, 2013, 8 pages. |
USPTO Oct. 2, 2013 Final Office Action from U.S. Appl. No. 13/275,196. |
USPTO Oct. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,892. |
USPTO Oct. 25, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,964. |
U.S. Appl. No. 14/045,208, filed Oct. 3, 2013, entitled “Execution Environment File Inventory,” Inventors: Rishi Bhargava, et al. |
PCT Application Serial No. PCT/US13/66690, filed Oct. 24, 2013, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,” 67 pages. |
Patent Examination Report No. 1, Australian Application No. 2011283160, mailed Oct. 30, 2013. |
USPTO Sep. 27, 2013, Notice of Allowance from U.S. Appl. No. 13/437,900. |
PCT Application Serial No. PCT/US13/71327, filed Nov. 21, 2013, entitled “Herd Based Scan Avoidance System in a Network Environment,” 46 pages. |
USPTO Dec. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
U.S. Appl. No. 14/127,395, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,” filed Dec. 18, 2013, Inventors: Chandan CP et al., 76 pages. |
USPTO Dec. 26, 2013 Notice of Allowance from U.S. Appl. No. 13/275,249, 32 pages. |
USPTO Dec. 16, 2013 Notice of Allowance from U.S. Appl. No. 13/275,196, 11 pages. |
USPTO Jan. 13, 2014 Notice of Allowance from U.S. Appl. No. 13/437,900, 30 pages. |
Patent Examination Report No. 1, Australian Application No. 2011283164, mailed Jan. 14, 2014, 6 pages. |
USPTO Dec. 30, 2013 Final Office Action from U.S. Appl. No. 13/629,765, 9 pages. |
USPTO Feb. 24, 2014 Notice of Allowance from U.S. Appl. No. 13/629,765, 8 pages. |
USPTO Mar. 24, 2014 Notice of Allowance from U.S. Appl. No. 13/275,196, 9 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2013/071327, mailed Mar. 7, 2014, 12 pages. |
USPTO Apr. 15, 2014 Notice of Allowance from U.S. Appl. No. 12/844,892, 9 pages. |
U.S. Appl. No. 14/257,770, entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle,” filed Apr. 21, 2014, Inventors: Rahul Roy-Chowdhury et al., 56 pages. |
International Preliminary Report on Patentability in International Application No. PCT/US2012/057312, mailed Apr. 22, 2014, 5 pages. |
International Preliminary Report on Patentability in International Application No. PCT/US2012/057153, mailed Apr. 22, 2014, 4 pages. |
U.S. Appl. No. 14/263,164, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” filed Apr. 28, 2014, Inventors: Geoffrey Cooper et al., 38 pages. |
USPTO Jun. 6, 2014 Final Office Action from U.S. Appl. No. 12/844,964, 30 pages. |
USPTO Jun. 4, 2014 Notice of Allowance from U.S. Appl. No. 13/032,851, 16 pages. |
“Optical stateful security filtering approach based on code words,” Sliti, M.; Boudriga, N., 2013 IEEE Symposium on Computers and Communications (ISCC), 10 pages. |
Rothenberg, et al., “A Review of Policy-Based Resource and Admission Control Functions in Evolving Access and Next Generation Networks,” Journal of Network and Systems Management, 16.1 (2008: 14-45, 32 pages. |
USPTO Jun. 4, 2014 Nonfinal Office Action from U.S. Appl. No. 13/728,705, 16 pages. |
Jun. 2, 2014 Office Action in Korean Patent Appln. No. 2013-7022241, [English translation], 6 pages. |
USPTO Aug. 11, 2014 Notice of Allowance from U.S. Appl. No. 12/844,892, 8 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2013/066690, mailed Jul. 10, 2014, 12 pages. |
Aug. 12, 2014 Office Action in Japanese Patent Application No. 2013-555531, English translation, 3 pages. |
USPTO Sep. 10, 2014 Final Office Action from U.S. Appl. No. 13/229,502, 18 pages. |
USPTO Sep. 11, 2014 Notice of Allowance from U.S. Appl. No. 12/844,964, 10 pages. |
USPTO Oct. 27, 2014 Notice of Allowance from U.S. Appl. No. 13/728,705, 25 pages. |
Muttik, Igor, and Chris Barton, “Cloud security technologies,” Information security technical report 14.1 (2009), 1-6, 6 pages. |
Nov. 13, 2014 Office Action in Japanese Patent Application No. 2013-521770, English translation, 2 pages. |
Patent Examination Report No. 1, Australian Application No. 2012220642, mailed Nov. 5, 2014, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2013-7022241, mailed on Dec. 12, 2014, 3 pages. |
Extended European Search Report in Application No. 12842144.3-1853/2769509 PCT/US2012/057312, mailed Feb. 6, 2015, 6 pages. |
Notice of Reasons for Refusal in Japanese Patent Application No. JP 2013-521767, mailed on Feb. 17, 2015, 5 pages of English language translation, 4 pages of Japanese language Office Action. |
Baba, Tatsuya, et al., “A Proposal of an Integrated Worm Countermeasure System Based on Dynamic VLAN Control,” Journal of Information Processing Society of Japan, Japan, Information Processing Society of Japan, Aug. 15, 2006, vol. 47, No. 8, pp. 2449-2511, 14 pages, English language Abstract only. |
Fujita, Keisuke, et al., “Proposal of DF system with boot control function against unauthorized programs,” Transactions of Computer Security Symposium 2007, Japan, Information Processing Society of Japan, Oct. 31, 2007, vol. 2007, No. 10, pp. 501-506, 7 pages, English language Abstract only. |
Ashiwa, Takashi, “IT Keyword too late to ask: Bot,” Nikkei Computer, Japan, Nikkei Business Publications, Oct. 30, 2006, No. 664, pp. 244-249, 14 pages, 7 pages of English translation. |
Feb. 27, 2015 Office Action in Japanese Patent Application No. 2013-521770, English translation, 3 pages. |
Mar. 2, 2015 Office Action in Korean Patent Appln. No. 2014-7021824, English translation, 4 pages. |
Oct. 27, 2014 Office Action in EP Application No. 11 703 741.6-1870, 6 pages. |
Feb. 28, 2015 Office Action in CN Application No. 2011800469004, English translation, 29 pages. |
Mar. 23, 2015 Office Action in CN Application No. 201180046850X, English translation, 38 pages. |
USPTO May 28, 2015 Nonfinal Rejection from U.S. Appl. No. 14/583,509, 17 pages. |
Apr. 20, 2015 Office Action in Japanese Patent Appln. No. 2013-555531, [English translation], 2 pages. |
Apr. 29, 2015 Supplementary European Search Report in EP Application No. EP 12 84 1554, 7 pages. |
Cheneau, Tony, et al., “Significantly improved performances of the cryptographically generated addresses thanks to ECC and GPGPU,” Computers & Security, vol. 29, No. 4, Jun. 2010, pp. 419-431, 13 pages. |
USPTO Jul. 6, 2015 Nonfinal Rejection from U.S. Appl. No. 14/127,395, 32 pages. |
USPTO Jul. 16, 2015 Corrected Notice of Allowability in U.S. Appl. No. 13/032,851, 3 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2013/071327, mailed Jul. 9, 2015, 11 pages. |
USPTO Aug. 12, 2015 Nonfinal Rejection from U.S. Appl. No. 14/263,164, 33 pages. |
USPTO Sep. 29, 2015 Notice of Allowance from U.S. Appl. No. 14/583,509, 31 pages. |
USPTO Oct. 19, 2015 Notice of Allowance from U.S. Appl. No. 14/263,164, 13 pages. |
Decision to Grant a Patent in Japanese Patent Application No. JP 2013-521767, mailed on Oct. 22, 2015, 3 pages of English language translation. |
Sep. 8, 2015 Office Action in Japanese Patent Application No. 2013-555531, English translation, 2 pages. |
Office Action in CN 201180046900.4, mailed on Nov. 3, 2015, English translation, 29 pages. |
USPTO Nov. 23, 2015 Nonfinal Rejection from U.S. Appl. No. 14/599,811, 27 pages. |
Nov. 20, 2015 Office Action in CN Application No. 201180046850X, English translation, 36 pages. |
Nov. 20, 2015 Office Action in CN Application No. 201280050877.0, English translation, 5 pages. |
Nov. 13, 2015 Office Action in CN Application No. 201280010062.X, English translation, 5 pages. |
USPTO Dec. 2, 2015 Notice of Allowance from U.S. Appl. No. 14/127,395, 7 pages. |
USPTO Feb. 2, 2016 Notice of Allowance from U.S. Appl. No. 14/263,164, 10 pages. |
USPTO Feb. 17, 2016 Nonfinal Rejection from U.S. Appl. No. 14/635,096, 17 pages. |
USPTO Mar. 11, 2016 Notice of Allowance from U.S. Appl. No. 14/583,509, 32 pages. |
Mar. 9, 2016 Office Action in CN Application No. 201180046900.4, English translation, 11 pages. |
Apr. 8, 2016 Office Action in EP Application No. 11 710 915.7, 5 pages. |
Feb. 25, 2016 Office Action in CN Application No. 201280053580.X, English translation, 16 pages. |
May 3, 2016 Office Action in CN Application No. 201180046850X, with English translation, 10 pages. |
U.S. Appl. No. 15/168,004, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” filed May 28, 2016, Inventors: Geoffrey Cooper et al., 39 pages. |
USPTO Jun. 6, 2016 Notice of Allowance from U.S. Appl. No. 14/127,395, 40 pages. |
USPTO Jun. 6, 2016 Final Rejection from U.S. Appl. No. 14/599,811, 66 pages. |
Number | Date | Country | |
---|---|---|---|
20140250492 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13437900 | Apr 2012 | US |
Child | 14277954 | US |