System and method for interlocking a host and a gateway

Information

  • Patent Grant
  • 9049171
  • Patent Number
    9,049,171
  • Date Filed
    Wednesday, February 23, 2011
    13 years ago
  • Date Issued
    Tuesday, June 2, 2015
    9 years ago
Abstract
A method is provided in one example embodiment and includes exchanging a session descriptor associated with a network connection and an application on a host, correlating the session descriptor with a network policy, and applying the network policy to the network connection. In alternative embodiments, the session descriptor may be exchanged through an out-of-band communication channel or an in-band communication channel.
Description
TECHNICAL FIELD

This disclosure relates in general to the field of network security, and more particularly, to a system and a method for interlocking a host and a gateway through information sharing.


BACKGROUND

The field of network security has become increasingly important in today's society. The Internet has enabled interconnection of different computer networks all over the world. However, the Internet has also presented many opportunities for malicious operators to exploit these networks. Once malicious software has infected a host computer, a malicious operator may issue commands from a remote computer to control the malicious software. The software can be instructed to perform any number of malicious actions, such as sending out spam or malicious emails from the host computer, stealing sensitive information from a business or individual associated with the host computer, propagating to other host computers, and/or assisting with distributed denial of service attacks. In addition, the malicious operator can sell or otherwise give access to other malicious operators, thereby escalating the exploitation of the host computers. Thus, the ability to effectively protect and maintain stable computers and systems continues to present significant challenges for component manufacturers, system designers, and network operators.





BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:



FIG. 1 is a simplified block diagram illustrating an example embodiment of a network environment in which information may be shared between a host and a network gateway for network protection in accordance with this specification;



FIG. 2 is a simplified block diagram illustrating additional details associated with one potential embodiment of the network environment, in accordance with this specification;



FIG. 3 is a simplified block diagram illustrating example operations associated with one embodiment of a network environment in accordance with this specification;



FIG. 4 is a simplified block diagram illustrating example operations associated with another embodiment of a network environment in accordance with this specification; and



FIG. 5 is a simplified flowchart illustrating example operations associated with another embodiment of a network environment in accordance with this specification.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview


A method is provided in one example embodiment and includes exchanging a session descriptor between a host and a network gateway, wherein the session descriptor is associated with a network connection and an application on a host, correlating the session descriptor with a network policy, and applying the network policy to the network connection. In alternative embodiments, the session descriptor may be exchanged through an out-of-band communication channel or an in-band communication channel.


In yet more particular embodiments, the network policy may be applied to restrict or rate-limit communication over the network connection based on an identification of the application in the session descriptor. In other embodiments, the session descriptor may include a universally unique identifier associated with the host.


Example Embodiments


Turning to FIG. 1, FIG. 1 is a simplified block diagram of an example embodiment of a network environment 10 in which a host and a network gateway may be interlocked through information sharing. In the embodiment illustrated in FIG. 1, network environment 10 can include Internet 15, a user host 20a and 20b, a network gateway 25, a policy server 30, a mail server 35, and a web server 40. In general, user hosts 20a-b may be any type of termination point in a network connection, including but not limited to a desktop computer, a server, a laptop, a mobile telephone, or any other type of device that can receive or establish a connection with a remote node, such as mail server 35 or web server 40. Gateway 25 may control communications between user hosts 20a-b and other network nodes attached to Internet 15, and may include a firewall to block unauthorized access while permitting authorized communications. Policy server 20 may be used to manage user hosts 20a-b and to administer and distribute network policies. Thus, in this example embodiment, user hosts 20a-b may communicate with servers attached to Internet 15, such as mail server 35 or web server 40, only by establishing a connection through the network gateway 25 if permitted by policies implemented in gateway 25.


Each of the elements of FIG. 1 may couple to one another through simple interfaces or through any other suitable connection (wired or wireless), which provides a viable pathway for network communications. Additionally, any one or more of these elements may be combined or removed from the architecture based on particular configuration needs. Network environment 10 may include a configuration capable of transmission control protocol/Internet protocol (TCP/IP) communications for the transmission or reception of packets in a network. Network environment 10 may also operate in conjunction with a user datagram protocol/IP (UDP/IP) or any other suitable protocol where appropriate and based on particular needs.


For purposes of illustrating the techniques for providing network security in example embodiments, it is important to understand the activities occurring within a given network. The following foundational information may be viewed as a basis from which the present disclosure may be properly explained. Such information is offered earnestly for purposes of explanation only and, accordingly, should not be construed in any way to limit the broad scope of the present disclosure and its potential applications.


Typical network environments used in organizations and by individuals include the ability to communicate electronically with other networks using the Internet, for example, to access web pages hosted on servers connected to the Internet, to send or receive electronic mail (i.e., email) messages, or to exchange files. Malicious users are continuously developing new tactics for using the Internet to spread malware and to gain access to confidential information. Malware generally includes any software designed to access and/or control a computer without the informed consent of the computer owner, and is most commonly used as a label for any hostile, intrusive, or annoying software such as a computer virus, bot, spyware, adware, etc. Once compromised, malware may subvert a host and use it for malicious activity, such as spamming or information theft. Malware also typically includes one or more propagation vectors that enable it to spread within an organization's network or across other networks to other organizations or individuals. Common propagation vectors include exploiting known vulnerabilities on hosts within the local network and sending malicious emails having a malicious program attached or providing malicious links within the emails.


One way in which malware may operate is to deceive a user by using a different network protocol exchange than the user expects. The malware may be packaged so as to convince the user to allow access to run it in some innocuous way, thus allowing it access to the network, which often may require passing through a firewall or other security measure. The malware may then exploit the access to engage in alternative or additional activities not contemplated by the user. For example, a game may send email messages or a word processor may open a web connection. At the same time, the malware may also use standard protocols to deceive the firewall into permitting the malware to establish remote connections.


Botnets, for example, use malware and are an increasing threat to computer security. In many cases they employ sophisticated attack schemes that include a combination of well-known and new vulnerabilities. Botnets generally use a client-server architecture where a type of malicious software (i.e., a bot) is placed on a host computer and communicates with a command and control (C&C) server, which may be controlled by a malicious user (e.g., a botnet operator). Usually, a botnet is composed of a large number of bots that are controlled by the operator using a C&C protocol through various channels, including Internet Relay Chat (IRC) and peer-to-peer (P2P) communication. The bot may receive commands from the C&C server to perform particular malicious activities and, accordingly, may execute such commands. The bot may also send any results or pilfered information back to the C&C server. A bot is often designed to initiate communication with the C&C server and to masquerade as normal web browser traffic. For example, a bot may use a port typically used to communicate with a web server. Such bots, therefore, may not be detected by existing technologies without performing more detailed packet inspection of the web traffic. Moreover, once a bot is discovered, the botnet operator may simply find another way to masquerade network traffic by the bot to continue to present as normal web traffic. More recently, botnet operators have crafted bots to use encryption protocols such as, for example, secure socket layer (SSL), thereby encrypting malicious network traffic. Such encrypted traffic may use a Hypertext Transfer Protocol Secure (HTTPS) port such that only the endpoints involved in the encrypted session can decrypt the data. Thus, existing firewalls and other network intrusion prevention technologies may be unable to perform any meaningful inspection of the web traffic and bots continue to infect host computers within networks.


Other software security technology focused on preventing unauthorized program files from executing on a host computer may have undesirable side effects for end users or employees of a business or other organizational entity. Network or Information Technology (IT) administrators may be charged with crafting extensive policies relevant to all facets of the business entity to enable employees to obtain software and other electronic data from desirable and trusted network resources. Without extensive policies in place, employees may be prevented from downloading software and other electronic data from network resources that are not specifically authorized, even if such software and other data facilitate legitimate and necessary business activities. Such systems may be so restrictive that if unauthorized software is found on a host computer, any host computer activities may be suspended pending network administrator intervention. Moreover, at the network level there may simply be too many applications to effectively track and incorporate into policies. Large whitelists or blacklists can be difficult to maintain and may degrade network performance, and some applications may not be susceptible to easy identification.


In accordance with one embodiment, network environment 10 can overcome these shortcomings (and others) by sharing information between a host and a network gateway. Information may be shared, for example, through an in-band or out-of-band protocol that allows a host agent to communicate with a network gateway to collectively and mutually achieve better security. The host agent may understand an application on the host as an executable file that is running a process with specific authentication, for example, while the network gateway may understand the application as a protocol in a TCP connection, which may also be correlated to a particular user authentication. The host agent may share session descriptors with the network gateway, and the network gateway may share network policy with the host agent as needed to correlate application activities with expected network behavior. Network policy may include elements of security policy as well as other network specific parameters, such as quality of service (QoS) and routing. A host agent may also be associated with a universally unique identifier (UUID), which can be used to correlate connections and activities originating behind network address translators.


Session descriptors generally include information about a host and an application associated with a given network session. For example, a session descriptor may include a UUID associated with the host and the user credentials of a process owner. Since a user can run separate processes with different user credentials, such information may be particularly advantageous for Citrix and terminal services. A session descriptor may additionally include a filename, pathname or other unique identifier of an application file (e.g., C:\ . . . \WINWORD.EXE) that is running the process attempting to establish a network connection. For example, in some embodiments the application may be identified by a hash function of the application's executable file, so as to make it more difficult for a malicious user to spoof the application name. A gateway may correlate this information with an application identifier or protocol to ensure that the application is performing as expected. A session descriptor may also contain information about the host environment, such as software installed on the host and the current configuration and state of the software, permitting the gateway to act as a network access control device. For example, a session descriptor may indicate whether the local anti-virus system is up to date and running. If Host-based Data Loss Prevention (HDLP) software is available, a session descriptor may also include file typing information for file transfer. HDLP normally determines the type of file being transmitted out of the network (e.g., PDF, Word, etc.). The gateway may have additional policies about certain file types being transmitted over particular protocols, which may not be visible directly to an HDLP program.


A host agent may also notify the gateway of additional network connections to the host. If a host has both wireless and wired connections active simultaneously, for example, there may be a risk of data received on one connection being transmitted on the other, so it may be desirable to restrict access to sensitive data. A host agent may also notify the gateway if the connection is associated with a virtual machine. A host agent may also notify the gateway if the host has mountable read/write media, such as a USB stick attached.


Dynamic information sharing may be provided in network environment 10. Communications between a user host and a network gateway may be encoded in routine network traffic (e.g., IP or TCP options fields, packet padding locations, or trailers on DNS packets), or transmitted in a separate network packet from the host to the network gateway as each connection starts. In some embodiments, a network gateway may send a UDP packet containing a randomly chosen sequence number or nonce to a user host on the user host's first egress. On each TCP open of a permitted connection, the user host agent may format a hash of the current nonce and sequence ID, place it in the packet along with other session descriptors. A hash of packet contents may also be included in certain embodiments. The network gateway may receive the UDP packet and save the session descriptors to use in applying network policy to the TCP stream. The network gateway may send a new nonce periodically to discourage replay attacks.


In some embodiments of network environment 10, host 20a may include multiple attachment points, causing it to have multiple IP addresses. In other embodiments, host 20a may use the IP version 6 (IPv6), perhaps including Privacy Extensions (RFC4941), causing it to have one or more registered and known IPv6 addresses and one or more hidden or private IPv6 addresses. In these embodiments, gateway 25 may readily use dynamic information sharing to discover the user to host mapping for all the addresses on host 20a.


This dynamic information sharing in network environment 10 may provide several benefits over conventional architectures. For example, by coordinating firewall policy with a host agent, a gateway can allow or deny traffic differently, depending on which of multiple users on a host agent is attempting to establish a connection. Moreover, only applications that need to be granularly controlled need to be controlled by the firewall. Thus, the gateway may control arbitrary or evasive applications, provide higher effective throughput, and control mobile-user traffic. In addition, traffic that does not need to be completely allowed or denied can be rate-limited. Arbitrary or evasive applications can also be rate-limited with process information available on a gateway, and differentiated services can be provided for managed and unmanaged hosts.


Turning to FIG. 2, FIG. 2 is a simplified block diagram illustrating additional details associated with one potential embodiment of network environment 10. FIG. 2 includes Internet 15, user host 20a, network gateway 25, policy server 30, and mail server 35. Each of user host 20a, network gateway 25, and policy server 30 may include a respective processor 50a-c, a respective memory element 55a-c, and various software elements. More particularly, user host 20a may include a mail client 60, a network stack 65, a policy agent 70, and a firewall agent 75. Gateway 25 may include a firewall module 80, and policy server 30 may include a firewall connector module 85.


In one example implementation, user host 20a, network gateway 25, and/or policy server 30 are network elements, which are meant to encompass network appliances, servers, routers, switches, gateways, bridges, loadbalancers, firewalls, processors, modules, or any other suitable device, component, element, or object operable to exchange information in a network environment. Network elements may include any suitable hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof. This may be inclusive of appropriate algorithms and communication protocols that allow for the effective exchange of data or information. However, user host 20a may be distinguished from other network elements as it tends to serve as a terminal point for a network connection, in contrast to a gateway or router. User host 20 may also be representative of a wireless network endpoint, such as an i-Phone, i-Pad, Android phone, or other similar telecommunications devices.


In regards to the internal structure associated with network environment 10, each of user host 20a, network gateway 25, and/or policy server 30 can include memory elements (as shown in FIG. 2) for storing information to be used in the operations outlined herein. Additionally, each of these devices may include a processor that can execute software or an algorithm to perform activities as discussed herein. These devices may further keep information in any suitable memory element [random access memory (RAM), ROM, EPROM, EEPROM, ASIC, etc.], software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein should be construed as being encompassed within the broad term ‘memory element.’ The information being tracked or sent by user host 20a, network gateway 25, and/or policy server 30 could be provided in any database, register, control list, or storage structure, all of which can be referenced at any suitable timeframe. Any such storage options may be included within the broad term ‘memory element’ as used herein. Similarly, any of the potential processing elements, modules, and machines described herein should be construed as being encompassed within the broad term ‘processor.’ Each of the network elements can also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment.


In one example implementation, user host 20a, network gateway 25, and/or policy server 30 include software (e.g., firewall agent 75, etc.) to achieve, or to foster, operations as outlined herein. In other embodiments, such operations may be carried out by hardware, implemented externally to these elements, or included in some other network device to achieve the intended functionality. Alternatively, these elements may include software (or reciprocating software) that can coordinate in order to achieve the operations, as outlined herein. In still other embodiments, one or all of these devices may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.


Note that in certain example implementations, the functions outlined herein may be implemented by logic encoded in one or more tangible media (e.g., embedded logic provided in an application specific integrated circuit (ASIC), digital signal processor (DSP) instructions, software (potentially inclusive of object code and source code) to be executed by a processor, or other similar machine, etc.), which may be inclusive of non-transitory media. In some of these instances, memory elements (as shown in FIG. 2) can store data used for the operations described herein. This includes the memory elements being able to store software, logic, code, or processor instructions that are executed to carry out the activities described herein. A processor can execute any type of instructions associated with the data to achieve the operations detailed herein. In one example, the processors (as shown in FIG. 2) could transform an element or an article (e.g., data) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by a processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array (FPGA), an erasable programmable read only memory (EPROM), an electrically erasable programmable ROM (EEPROM)) or an ASIC that includes digital logic, software, code, electronic instructions, or any suitable combination thereof.



FIG. 3 is a simplified block diagram illustrating example operations associated with one embodiment of network environment 10 having out-of-band communications. As a preliminary matter or periodically, at 0.1 firewall module 80 may request a key from firewall connector module 85 in policy server 30. At 0.2, firewall connector module 85 generates a key and sends it to firewall module 80 and to all hosts, including policy agent 70 on host 20a. At 1.1, an application such as mail client 60 may initiate a connection to a remote server such as mail server 35. Thus, for example, mail client 60 may initiate a connection to mail server 35 using simple mail transfer protocol (SMTP). Network stack 65 may then route the traffic through firewall module 80. At 1.2, firewall module 80 can then send a HELLO packet to firewall agent 75 on host 20a as a request for a session descriptor. A HELLO packet may include, for example, a KEY value, a SEQNUM, and a HASH value. The SEQNUM may be used both as a nonce and a sequence number. The HASH value is generally a suitable crypto hash, such as SHA-1, on data in the message. Firewall agent 75 may then decrypt the request from firewall module 80, obtain information from network stack 65, and send a sequenced, hashed, encrypted packet containing a session descriptor to firewall module 80 at 1.3. For example, if a user has been authenticated with an identification of “auser” and is using Microsoft Outlook as a mail client, then the session descriptor may contain: auser, Outlook, session info. This may be encrypted and transmitted along with a sequence number and has, as Enc[KEY](SEQNUM++, session descriptor, HASH). Firewall module 80 may apply network policies at 1.4 to determine if the connection to mail server 35 should be allowed. Additional session descriptor packets may be sent at 1.5 without the need for firewall module 80 to send a HELLO packet, as in 1.2.



FIG. 4 is a simplified block diagram illustrating example operations associated with another embodiment of network environment 10. In FIG. 4, network environment 10 includes user hosts 20a-b, a network address translator 100, an intrusion prevention system (IPS) 105, and Internet 15. Host 20a is associated with a first UUID (UUID1) and host 20b is associated with a second UUID (UUID2). A session descriptor may be transmitted out-of-band or in-band through network address translator 100, or alternatively, a session identifier may be transmitted in-band, while a session descriptor is transmitted out-of-band. In such an embodiment, the session descriptor can also include the session identifier for correlating the in-band and out-of-band communication. Although network address translator 100 may alter the IP addresses of hosts 20a-b, IPS 105 may use the UUIDs of hosts 20a-b to correlate traffic so that network policy can be applied to a host based on all network addresses associated with the host.


Note further that host 20a may by used concurrently by multiple users in certain embodiments, as in a timesharing system, Microsoft Windows “Switch Users” capability, Citrix, or Microsoft Terminal Services. Firewall module 80 may use information in the session descriptor to pair each network connection with the user that established it, permitting policy to be implemented differently by user rather than singly for all users of host 20a.



FIG. 5 is a simplified flowchart 500 illustrating example operations that may be associated with an embodiment of network environment 10 having in-band communication. At 505, a user may run an application such as a Skype client, for example. Session descriptors may then be embedded in redundant areas of relevant network protocols, such as TCP, UDP, or Internet Control Message Protocol (ICMP). For example, a firewall agent can embed session descriptors in TCP options during the TCP handshake, enabling action even on the first packet of a session. In another embodiment, session descriptors may be embedded in IP options, which applies to TCP, UDP, and ICMP traffic. In yet another embodiment, additional “probe” packets may be generated within the network session that are redundant for the communication but may be used by a network gateway to extract useful information. For example, a host agent can send TCP Acknowledgements (ACKs) that are duplicates of previous ACKs already sent, which are harmless. Information may be embedded in fields of these ACKs that are meaningless for ACK packets, such as Checksum, Urgent Pointer, or Reserved fields. ICMP notifications that appear legitimate may also be used, but may be ignored by the other end. TCP packets with invalid sequence numbers may also be used so that the packets are ignored by the destination.


To illustrate further, consider the example in which the user runs a Skype client on user host 20a. A firewall agent on user host 20a may obtain a process ID of “skype.exe,” a vendor ID of “Skype, Inc.,” a username of “jdoe” and a uuid of “f81d4fae-7dec-11do-a765-00a0c91e6bf6,” and embed this information as a session descriptor in IP options fields at 510. The packet may be signed and encrypted at 515, and stegonographically hidden at 520 before being sent to network gateway 25. At 525, network gateway 25 may detect and extract the embedded session descriptor. At 530, the authenticity of the session descriptor may be validated. Network policies may be applied to the connection at 535 based on the session descriptor, and allowed, denied, rate-limited, etc.


Thus, in an embodiment such as the embodiment of FIG. 5, a user host and a network gateway may communicate with each other without generating any additional network sessions, which can provide significant benefits. For example, if encryption and steganography are applied, normal users and perhaps even administrators may not know exactly how the user host and the network gateway are cooperating, which may eliminate or minimize attempts to subvert the communications. Additionally, the network gateway may be able to take immediate action on the traffic without the need to wait for an out-of-band communication, since each network session may carry all of the host-level session description.


In operation, the principles described above have many practical applications. For example, a firewall in certain embodiments of network environment 10 may be programmed to allow certain protocols to be used only by specific applications. Thus, for example, a database protocol may be restricted to use only a specific database client program, and other database client programs can be blocked at the firewall. Additionally or alternatively, an identified application using an unexpected protocol can be prevented from connecting to malicious sites. Thus, for example, a Trojan horse program that masquerades as a game may be prevented from sending private data to an Internet site. An application may also be denied network access without proper antivirus measures on a host. Intrusion prevention system signatures may also be enhanced to detect false positives based on the application that generated the outbound connection. These embodiments may also be equally applicable if a firewall provides virtual private network (VPN) access to a host, in which case the firewall is the network access control (NAC) for the host. The firewall can communicate with a policy server to determine the status of antivirus measures, and request the policy server to scan the host. The firewall may then quarantine the host if the host security is insufficient.


In another example operation, network environment 10 may also allow a firewall to use a separate channel to notify a host if a connection has been denied, along with an explanation that can be used to alert a user and/or administrator of the action. Thus, a user may be able to report the alert to a help desk or administrator, rather than trying to work around the firewall without being aware of the potential implications, and greatly simplify network management.


In yet another example operation, if a firewall is unable to interpret a particular protocol, such as a custom protocol, a host agent can identify the application generating the traffic and send the identity to the firewall, thereby enabling the firewall to properly apply policy at the application level. Protocols can also be correlated with applications based on certain network behavior that is expected or acceptable from the applications. Using a whitelist that includes both applications and permitted protocols, the firewall may block malware that exploits an otherwise benign application. For example, Adobe Reader is not typically expected to generate traffic using SMTP. If malware were able to compromise Adobe Reader and attempt to use it for sending messages with SMTP, the firewall could read the whitelist, determine that Adobe Reader is not permitted to use SMTP, and block the malware connection. Moreover, the firewall can inform a policy server that the Adobe Reader program may be compromised by malware. The policy server can inform the user and instruct the policy agent on the user host to disable Adobe Reader. In yet another example, a database administrator may want to provide custom applications for accessing a database. Although the custom applications may use the same protocol as generic applications, a whitelist that associates the custom applications with the protocol can effectively limit access to those applications since the host may share information about the applications with the network gateway.


Note that with the examples provided above, as well as numerous other potential examples, interaction may be described in terms of two, three, or four network elements. However, this has been done for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of operations by only referencing a limited number of network elements. It should be appreciated that network environment 10 is readily scalable and can accommodate a large number of components, as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad teachings of network environment 10 as potentially applied to a myriad of other architectures. Additionally, although described with reference to particular scenarios, where a particular module, such as an analyzer module, is provided within a network element, these modules can be provided externally, or consolidated and/or combined in any suitable fashion. In certain instances, such modules may be provided in a single proprietary unit.


It is also important to note that the steps in the appended diagrams illustrate only some of the possible scenarios and patterns that may be executed by, or within, network environment 10. Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of teachings provided herein. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by network environment 10 in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings provided herein.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words “means for” or “step for” are specifically used in the particular claims; and (b) does not intend, by any statement in the specification, to limit this disclosure in any way that is not otherwise reflected in the appended claims.

Claims
  • 1. A method, comprising: receiving a session descriptor by a processor at a network gateway, the session descriptor received from a host with a process attempting to establish a network connection via the network gateway, wherein the process is running on the host with a particular set of one or more user credentials, wherein the session descriptor includes a universally unique identifier (UUID) associated with the host and the particular set of one or more user credentials, wherein the host is configured to permit user authentication by any one of a plurality of sets of one or more user credentials, and wherein each set of the plurality of sets of one or more user credentials is associated with a different UUID;pairing the network connection with the particular set of one or more user credentials, wherein the pairing is based on the session descriptor;correlating the session descriptor with a network policy; andapplying the network policy to the network connection, wherein the network policy is implemented based, at least in part, on the particular set of one or more user credentials paired with the network connection.
  • 2. The method of claim 1, wherein the session descriptor is exchanged through an out-of-band communication channel.
  • 3. The method of claim 1, wherein the session descriptor is exchanged through an in-band communication channel.
  • 4. The method of claim 1, wherein the session descriptor is stegonographically embedded in an in-band communication channel.
  • 5. The method of claim 1, wherein the network policy is applied to restrict communication over the network connection based, at least in part, on an identification of the application in the session descriptor.
  • 6. The method of claim 1, wherein the network policy is applied to rate-limit communication over the network connection based, at least in part, on an identification of the application in the session descriptor.
  • 7. The method of claim 1, wherein the network policy is applied to restrict protocols that may be used by the application.
  • 8. The method of claim 1, wherein the network policy is associated with a whitelist that restricts protocols that may be used by the application.
  • 9. The method of claim 1, further comprising alerting a user of the network policy if communication through the network connection is restricted.
  • 10. The method of claim 1, wherein the host communicates through a network address translator.
  • 11. The method of claim 1, wherein the session descriptor comprises information about a filename associated with the application.
  • 12. At least one non-transitory computer readable medium having logic encoded therein, wherein the logic, when executed by one or more processors, is operable to perform operations comprising: receiving a session descriptor at a network gateway, the session descriptor received from a host with a process attempting to establish a network connection via the network gateway, wherein the process is running on the host with a particular set of one or more user credentials, wherein the session descriptor includes a universally unique identifier (UUID) associated with the host and the particular set of one or more user credentials, wherein the host is configured to permit user authentication by any one of a plurality of sets of one or more user credentials, and wherein each set of the plurality of sets of one or more user credentials is associated with a different UUID;pairing the network connection with the particular set of one or more user credentials, wherein the pairing is based on the session descriptor;correlating the session descriptor with a network policy; andapplying the network policy to the network connection, wherein the network policy is implemented based, at least in part, on the particular set of one or more user credentials paired with the network connection.
  • 13. The medium of claim 12, wherein the session descriptor is exchanged through an out-of-band communication channel.
  • 14. The medium of claim 12, wherein the session descriptor is exchanged through an in-band communication channel.
  • 15. The medium of claim 12, wherein the session descriptor is stegonographically embedded in an in-band communication channel.
  • 16. The medium of claim 12, wherein the network policy is applied to restrict communication over the network connection based, at least in part, on an identification of the application in the session descriptor.
  • 17. The medium of claim 12, wherein the network policy is applied to rate-limit communication over the network connection based, at least in part, on an identification of the application in the session descriptor.
  • 18. The medium of claim 12, wherein the network policy is applied to restrict protocols that may be used by the application.
  • 19. The medium of claim 12, wherein the network policy is associated with a whitelist that restricts protocols that may be used by the application.
  • 20. The medium of claim 12, further comprising alerting a user of the network policy if communication through the network connection is restricted.
  • 21. The medium of claim 12, wherein the host communicates through a network address translator.
  • 22. The medium of claim 12, wherein the session descriptor comprises information about a filename associated with the application.
  • 23. An apparatus, comprising: a firewall module; andone or more processors operable to execute instructions associated with the firewall module, wherein the one or more processors are hardware processors, the one or more processors being operable to: receive a session descriptor from a host with a process attempting to establish a network connection via the apparatus, wherein the process is running on the host with a particular set of one or more user credentials, wherein the session descriptor includes a universally unique identifier (UUID) associated with the host and the particular set of one or more user credentials, wherein the host is configured to permit user authentication by any one of a plurality of sets of one or more user credentials, and wherein each set of the plurality of sets of one or more user credentials is associated with a different UUID;pair the network connection with the particular set of one or more user credentials, wherein the pairing is based on the session descriptor; correlate the session descriptor with a network policy; andapply the network policy to the network connection, wherein the network policy is implemented based, at least in part, on the particular set of one or more user credentials paired with the network connection.
  • 24. The apparatus of claim 23, wherein the session descriptor is exchanged through an out-of-band communication channel.
  • 25. The apparatus of claim 23, wherein the session descriptor is exchanged through an in-band communication channel.
  • 26. The apparatus of claim 23, wherein the session descriptor is stegonographically embedded in an in-band communication channel.
  • 27. The apparatus of claim 23, wherein the network policy is applied to restrict communication over the network connection based, at least in part, on an identification of the application in the session descriptor.
  • 28. The apparatus of claim 23, wherein the network policy is applied to rate-limit communication over the network connection based, at least in part, on an identification of the application in the session descriptor.
  • 29. The apparatus of claim 23, wherein the network policy is applied to restrict protocols that may be used by the application.
  • 30. The apparatus of claim 23, wherein the network policy is associated with a whitelist that restricts protocols that may be used by the application.
  • 31. The apparatus of claim 23, the one or more processors being further operable to alert a user of the network policy if communication through the network connection is restricted.
  • 32. The apparatus of claim 23, wherein the host communicates through a network address translator.
  • 33. The apparatus of claim 23, wherein the session descriptor comprises information about a filename associated with the application.
  • 34. The apparatus of claim 23, wherein more than one network address is associated with the host, the session descriptor comprises information about a user associated with one of the network addresses, and network policy is applied based on the user.
  • 35. The apparatus of claim 23, wherein the session descriptor includes a hash of an executable file associated with the application.
  • 36. The apparatus of claim 23, wherein the session descriptor comprises information about the configuration and state of software installed on the host.
  • 37. The apparatus of claim 23, wherein the session descriptor identifies network addresses associated with the host and network policy is applied based, at least in part, on the network addresses.
US Referenced Citations (321)
Number Name Date Kind
4688169 Joshi Aug 1987 A
4982430 Frezza et al. Jan 1991 A
5155847 Kirouac et al. Oct 1992 A
5222134 Waite et al. Jun 1993 A
5390314 Swanson Feb 1995 A
5521849 Adelson et al. May 1996 A
5560008 Johnson et al. Sep 1996 A
5699513 Feigen et al. Dec 1997 A
5778226 Adams et al. Jul 1998 A
5778349 Okonogi Jul 1998 A
5787427 Benantar et al. Jul 1998 A
5842017 Hookway et al. Nov 1998 A
5907709 Cantey et al. May 1999 A
5907860 Garibay et al. May 1999 A
5926832 Wing et al. Jul 1999 A
5944839 Isenberg Aug 1999 A
5974149 Leppek Oct 1999 A
5987610 Franczek et al. Nov 1999 A
5987611 Freund Nov 1999 A
5991881 Conklin et al. Nov 1999 A
6064815 Hohensee et al. May 2000 A
6073142 Geiger et al. Jun 2000 A
6141698 Krishnan et al. Oct 2000 A
6192401 Modiri et al. Feb 2001 B1
6192475 Wallace Feb 2001 B1
6256773 Bowman-Amuah Jul 2001 B1
6275938 Bond et al. Aug 2001 B1
6321267 Donaldson Nov 2001 B1
6338149 Ciccone, Jr. et al. Jan 2002 B1
6356957 Sanchez, II et al. Mar 2002 B2
6393465 Leeds May 2002 B2
6442686 McArdle et al. Aug 2002 B1
6449040 Fujita Sep 2002 B1
6453468 D'Souza Sep 2002 B1
6460050 Pace et al. Oct 2002 B1
6496477 Perkins et al. Dec 2002 B1
6587877 Douglis et al. Jul 2003 B1
6611925 Spear Aug 2003 B1
6658645 Akuta et al. Dec 2003 B1
6662219 Nishanov et al. Dec 2003 B1
6748534 Gryaznov et al. Jun 2004 B1
6769008 Kumar et al. Jul 2004 B1
6769115 Oldman Jul 2004 B1
6795966 Lim et al. Sep 2004 B1
6832227 Seki et al. Dec 2004 B2
6834301 Hanchett Dec 2004 B1
6847993 Novaes et al. Jan 2005 B1
6907600 Neiger et al. Jun 2005 B2
6918110 Hundt et al. Jul 2005 B2
6930985 Rathi et al. Aug 2005 B1
6934755 Saulpaugh et al. Aug 2005 B1
6988101 Ham et al. Jan 2006 B2
6988124 Douceur et al. Jan 2006 B2
7007302 Jagger et al. Feb 2006 B1
7010796 Strom et al. Mar 2006 B1
7024548 O'Toole, Jr. Apr 2006 B1
7039949 Cartmell et al. May 2006 B2
7054930 Cheriton May 2006 B1
7065767 Kambhammettu et al. Jun 2006 B2
7069330 McArdle et al. Jun 2006 B1
7082456 Mani-Meitav et al. Jul 2006 B2
7093239 van der Made Aug 2006 B1
7096500 Roberts et al. Aug 2006 B2
7124409 Davis et al. Oct 2006 B2
7139916 Billingsley et al. Nov 2006 B2
7152148 Williams et al. Dec 2006 B2
7159036 Hinchliffe et al. Jan 2007 B2
7177267 Oliver et al. Feb 2007 B2
7203864 Goin et al. Apr 2007 B2
7251655 Kaler et al. Jul 2007 B2
7290266 Gladstone et al. Oct 2007 B2
7302558 Campbell et al. Nov 2007 B2
7330849 Gerasoulis et al. Feb 2008 B2
7340684 Ramamoorthy et al. Mar 2008 B2
7346781 Cowie et al. Mar 2008 B2
7349931 Horne Mar 2008 B2
7350204 Lambert et al. Mar 2008 B2
7353501 Tang et al. Apr 2008 B2
7363022 Whelan et al. Apr 2008 B2
7370360 van der Made May 2008 B2
7385938 Beckett et al. Jun 2008 B1
7406517 Hunt et al. Jul 2008 B2
7441265 Staamann et al. Oct 2008 B2
7464408 Shah et al. Dec 2008 B1
7506155 Stewart et al. Mar 2009 B1
7506170 Finnegan Mar 2009 B2
7506364 Vayman Mar 2009 B2
7546333 Alon et al. Jun 2009 B2
7546594 McGuire et al. Jun 2009 B2
7552479 Conover et al. Jun 2009 B1
7577995 Chebolu et al. Aug 2009 B2
7603552 Sebes et al. Oct 2009 B1
7607170 Chesla Oct 2009 B2
7657599 Smith Feb 2010 B2
7669195 Qumei Feb 2010 B1
7685635 Vega et al. Mar 2010 B2
7698744 Fanton et al. Apr 2010 B2
7703090 Napier et al. Apr 2010 B2
7739497 Fink et al. Jun 2010 B1
7757269 Roy-Chowdhury et al. Jul 2010 B1
7765538 Zweifel et al. Jul 2010 B2
7783735 Sebes et al. Aug 2010 B1
7809704 Surendran et al. Oct 2010 B2
7818377 Whitney et al. Oct 2010 B2
7823148 Deshpande et al. Oct 2010 B2
7836504 Ray et al. Nov 2010 B2
7840968 Sharma et al. Nov 2010 B1
7849507 Bloch et al. Dec 2010 B1
7853643 Martinez et al. Dec 2010 B1
7856661 Sebes et al. Dec 2010 B1
7865931 Stone et al. Jan 2011 B1
7870387 Bhargava et al. Jan 2011 B1
7873955 Sebes et al. Jan 2011 B1
7895573 Bhargava et al. Feb 2011 B1
7908653 Brickell et al. Mar 2011 B2
7937455 Saha et al. May 2011 B2
7950056 Satish et al. May 2011 B1
7966659 Wilkinson et al. Jun 2011 B1
7996836 McCorkendale et al. Aug 2011 B1
8015388 Rihan et al. Sep 2011 B1
8015563 Araujo et al. Sep 2011 B2
8028340 Sebes et al. Sep 2011 B2
8195931 Sharma et al. Jun 2012 B1
8205188 Ramamoorthy et al. Jun 2012 B2
8234709 Viljoen et al. Jul 2012 B2
8234713 Roy-Chowdhury et al. Jul 2012 B2
8307437 Sebes et al. Nov 2012 B2
8321932 Bhargava et al. Nov 2012 B2
8332929 Bhargava et al. Dec 2012 B1
8352930 Sebes et al. Jan 2013 B1
8381284 Dang et al. Feb 2013 B2
8515075 Saraf et al. Aug 2013 B1
8539063 Sharma et al. Sep 2013 B1
8544003 Sawhney et al. Sep 2013 B1
8549003 Bhargava et al. Oct 2013 B1
8549546 Sharma et al. Oct 2013 B2
8555404 Sebes et al. Oct 2013 B1
8561051 Sebes et al. Oct 2013 B2
8561082 Sharma et al. Oct 2013 B2
8584199 Chen et al. Nov 2013 B1
8701182 Bhargava et al. Apr 2014 B2
8707422 Bhargava et al. Apr 2014 B2
8707446 Roy-Chowdhury et al. Apr 2014 B2
8713668 Cooper et al. Apr 2014 B2
8739272 Cooper et al. May 2014 B1
8762928 Sharma et al. Jun 2014 B2
8763118 Sebes et al. Jun 2014 B2
20020056076 van der Made May 2002 A1
20020069367 Tindal et al. Jun 2002 A1
20020083175 Afek et al. Jun 2002 A1
20020099671 Mastin et al. Jul 2002 A1
20020114319 Liu et al. Aug 2002 A1
20030014667 Kolichtchak Jan 2003 A1
20030023736 Abkemeier Jan 2003 A1
20030033510 Dice Feb 2003 A1
20030065945 Lingafelt et al. Apr 2003 A1
20030073894 Chiang et al. Apr 2003 A1
20030074552 Olkin et al. Apr 2003 A1
20030115222 Oashi et al. Jun 2003 A1
20030120601 Ouye et al. Jun 2003 A1
20030120811 Hanson et al. Jun 2003 A1
20030120935 Teal et al. Jun 2003 A1
20030145232 Poletto et al. Jul 2003 A1
20030163718 Johnson et al. Aug 2003 A1
20030167292 Ross Sep 2003 A1
20030167399 Audebert et al. Sep 2003 A1
20030200332 Gupta et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030220944 Schottland et al. Nov 2003 A1
20030221190 Deshpande et al. Nov 2003 A1
20040003258 Billingsley et al. Jan 2004 A1
20040015554 Wilson Jan 2004 A1
20040051736 Daniell Mar 2004 A1
20040054928 Hall Mar 2004 A1
20040088398 Barlow May 2004 A1
20040139206 Claudatos et al. Jul 2004 A1
20040143749 Tajalli et al. Jul 2004 A1
20040167906 Smith et al. Aug 2004 A1
20040172551 Fielding et al. Sep 2004 A1
20040230963 Rothman et al. Nov 2004 A1
20040243678 Smith et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268149 Aaron Dec 2004 A1
20050005006 Chauffour et al. Jan 2005 A1
20050018651 Yan et al. Jan 2005 A1
20050086047 Uchimoto et al. Apr 2005 A1
20050091321 Daniell et al. Apr 2005 A1
20050108516 Balzer et al. May 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114672 Duncan et al. May 2005 A1
20050132346 Tsantilis Jun 2005 A1
20050198519 Tamura et al. Sep 2005 A1
20050228990 Kato et al. Oct 2005 A1
20050235360 Pearson Oct 2005 A1
20050257207 Blumfield et al. Nov 2005 A1
20050257265 Cook et al. Nov 2005 A1
20050260996 Groenendaal Nov 2005 A1
20050262558 Usov Nov 2005 A1
20050273858 Zadok et al. Dec 2005 A1
20050283823 Okajo et al. Dec 2005 A1
20050289538 Black-Ziegelbein et al. Dec 2005 A1
20060004875 Baron et al. Jan 2006 A1
20060015501 Sanamrad et al. Jan 2006 A1
20060037016 Saha et al. Feb 2006 A1
20060072451 Ross Apr 2006 A1
20060075478 Hyndman et al. Apr 2006 A1
20060080656 Cain et al. Apr 2006 A1
20060085785 Garrett Apr 2006 A1
20060101277 Meenan et al. May 2006 A1
20060133223 Nakamura et al. Jun 2006 A1
20060136910 Brickell et al. Jun 2006 A1
20060136911 Robinson et al. Jun 2006 A1
20060143713 Challener et al. Jun 2006 A1
20060195906 Jin et al. Aug 2006 A1
20060200863 Ray et al. Sep 2006 A1
20060230314 Sanjar et al. Oct 2006 A1
20060236398 Trakic et al. Oct 2006 A1
20060259734 Sheu et al. Nov 2006 A1
20060277603 Kelso et al. Dec 2006 A1
20070011746 Malpani et al. Jan 2007 A1
20070028303 Brennan Feb 2007 A1
20070033645 Jones Feb 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050579 Hall et al. Mar 2007 A1
20070050764 Traut Mar 2007 A1
20070074199 Schoenberg Mar 2007 A1
20070083522 Nord et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070136579 Levy et al. Jun 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070157303 Pankratov Jul 2007 A1
20070169079 Keller et al. Jul 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070220061 Tirosh et al. Sep 2007 A1
20070220507 Back et al. Sep 2007 A1
20070253430 Minami et al. Nov 2007 A1
20070256138 Gadea et al. Nov 2007 A1
20070271561 Winner et al. Nov 2007 A1
20070297396 Eldar et al. Dec 2007 A1
20070300215 Bardsley Dec 2007 A1
20080005737 Saha et al. Jan 2008 A1
20080005798 Ross Jan 2008 A1
20080010304 Vempala et al. Jan 2008 A1
20080022384 Yee et al. Jan 2008 A1
20080034416 Kumar et al. Feb 2008 A1
20080034418 Venkatraman et al. Feb 2008 A1
20080052468 Speirs et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080120499 Zimmer et al. May 2008 A1
20080141371 Bradicich et al. Jun 2008 A1
20080163207 Reumann et al. Jul 2008 A1
20080163210 Bowman et al. Jul 2008 A1
20080165952 Smith et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080235534 Schunter et al. Sep 2008 A1
20080282080 Hyndman et al. Nov 2008 A1
20080294703 Craft et al. Nov 2008 A1
20080301770 Kinder Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20090007100 Field et al. Jan 2009 A1
20090038017 Durham et al. Feb 2009 A1
20090043993 Ford et al. Feb 2009 A1
20090055693 Budko et al. Feb 2009 A1
20090063665 Bagepalli et al. Mar 2009 A1
20090113110 Chen et al. Apr 2009 A1
20090144300 Chatley et al. Jun 2009 A1
20090150639 Ohata Jun 2009 A1
20090178110 Higuchi Jul 2009 A1
20090220080 Herne et al. Sep 2009 A1
20090249053 Zimmer et al. Oct 2009 A1
20090249438 Litvin et al. Oct 2009 A1
20090328144 Sherlock et al. Dec 2009 A1
20090328185 van den Berg et al. Dec 2009 A1
20100049973 Chen Feb 2010 A1
20100071035 Budko et al. Mar 2010 A1
20100114825 Siddegowda May 2010 A1
20100138430 Gotou Jun 2010 A1
20100188976 Rahman et al. Jul 2010 A1
20100250895 Adams et al. Sep 2010 A1
20100281133 Brendel Nov 2010 A1
20100293225 Sebes et al. Nov 2010 A1
20100332910 Ali et al. Dec 2010 A1
20110029772 Fanton et al. Feb 2011 A1
20110035423 Kobayashi et al. Feb 2011 A1
20110047542 Dang et al. Feb 2011 A1
20110047543 Mohinder Feb 2011 A1
20110077948 Sharma et al. Mar 2011 A1
20110078550 Nabutovsky Mar 2011 A1
20110093842 Sebes Apr 2011 A1
20110093950 Bhargava et al. Apr 2011 A1
20110113467 Agarwal et al. May 2011 A1
20110119760 Sebes et al. May 2011 A1
20110138461 Bhargava et al. Jun 2011 A1
20110302647 Bhattacharya et al. Dec 2011 A1
20120030731 Bhargava et al. Feb 2012 A1
20120030750 Bhargava et al. Feb 2012 A1
20120110666 Ogilvie May 2012 A1
20120216271 Cooper et al. Aug 2012 A1
20120278853 Chowdhury et al. Nov 2012 A1
20120290827 Bhargava et al. Nov 2012 A1
20120290828 Bhargava et al. Nov 2012 A1
20120297176 Bhargava et al. Nov 2012 A1
20130024934 Sebes et al. Jan 2013 A1
20130091318 Bhattacharjee et al. Apr 2013 A1
20130097355 Dang et al. Apr 2013 A1
20130097356 Dang et al. Apr 2013 A1
20130097658 Cooper et al. Apr 2013 A1
20130097692 Cooper et al. Apr 2013 A1
20130117823 Dang et al. May 2013 A1
20130246044 Sharma et al. Sep 2013 A1
20130246393 Saraf et al. Sep 2013 A1
20130246423 Bhargava et al. Sep 2013 A1
20130246685 Bhargava et al. Sep 2013 A1
20130247016 Sharma et al. Sep 2013 A1
20130247027 Shah et al. Sep 2013 A1
20130247032 Bhargava et al. Sep 2013 A1
20130247181 Saraf et al. Sep 2013 A1
20130247192 Krasser et al. Sep 2013 A1
20130247226 Sebes et al. Sep 2013 A1
20140101783 Bhargava et al. Apr 2014 A1
20140189859 Ramanan et al. Jul 2014 A1
Foreign Referenced Citations (24)
Number Date Country
1383295 Dec 2002 CN
103283202 Sep 2013 CN
1 482 394 Dec 2004 EP
2 037 657 Mar 2009 EP
2599026 Jun 2013 EP
2599276 Jun 2013 EP
2004524598 Aug 2004 JP
2006-302292 Nov 2006 JP
2007-500396 Jan 2007 JP
2008-506303 Feb 2008 JP
2009-510858 Mar 2009 JP
WO 9844404 Oct 1998 WO
WO 0184285 Nov 2001 WO
WO 2006012197 Feb 2006 WO
WO 2006124832 Nov 2006 WO
WO 2007016478 Feb 2007 WO
WO 2008054997 May 2008 WO
WO 2011059877 May 2011 WO
WO 2012015485 Feb 2012 WO
WO 2012015489 Feb 2012 WO
WO 2012116098 Aug 2012 WO
WO 2013058940 Apr 2013 WO
WO 2013058944 Apr 2013 WO
WO 2014105308 Jul 2014 WO
Non-Patent Literature Citations (111)
Entry
Optical stateful security filtering approach based on code words, Sliti, M. ; Boudriga, N. 2013 IEEE Symposium on Computers and Communications (ISCC).
Rothenberg, Christian Esteve, and Andreas Roos. “A review of policy-based resource and admission control functions in evolving access and next generation networks.” Journal of Network and Systems Management 16.1 (2008): 14-45.
Mathew J. Schwartz, “Palo Alto Introduces Security for Cloud, Mobile Users,” retrieved Feb. 9, 2011 from http://www.informationweek.com/news/security/perimeter/showArticle.jhtml?articleID-22, 4 pages.
International Search Report and Written Opinion, International Application No. PCT/US2012/026169, mailed Jun. 18, 2012, 11 pages.
U.S. Appl. No. 13/437,900, filed Apr. 2, 2012, entitled “System and Method for Interlocking a Host and a Gateway,” Inventors: Geoffrey Howard Cooper, et al.
Datagram Transport Layer Security Request for Comments 4347, E. Rescorla, et al., Stanford University, Apr. 2006, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc4347.pdf, 26 pages.
Internet Control Message Protocol Request for Comments 792, J. Postel, ISI, Sep. 1981, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/html/rfc792, 22 pages.
Requirements for IV Version 4 Routers Request for Comments 1812, F. Baker, Cisco Systems, Jun. 1995, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc1812.pdf, 176 pages.
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198, Issued Mar. 6, 2002, Federal Information Processing Standards Publication, retrieved and printed on Oct. 17, 2011 from http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf, 20 pages.
U.S. Appl. No. 13/275,196, filed Oct. 17, 2011, entitled “System and Method for Host-Initiated Firewall Discovery in a Network Environment,” Inventors: Geoffrey Cooper, et al.
U.S. Appl. No. 13/275,249, filed Oct. 17, 2011, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” Inventors: Geoffrey Cooper, et al.
USPTO May 13, 2013 Response to Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249.
USPTO Jun. 3, 2013 Response to Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900.
USPTO Jun. 3, 2013 Response to Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,196.
International Search Report and Written Opinion, International Application No. PCT/US2012/057153, mailed Dec. 26, 2012, 8 pages.
International Search Report and Written Opinion, International Application No. PCT/US2012/057312, mailed Jan. 31, 2013, 10 pages.
USPTO Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249.
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900.
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,196.
“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2, http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+architecture—Q1+2008.pdf, printed Aug. 18, 2009 (9 pages).
Eli M. Dow, et al., “The Xen Hypervisor,” INFORMIT, dated Apr. 10, 2008, http://www.informit.com/articles/printerfriendly.aspx?p=1187966, printed Aug. 11, 2009 (13 pages).
Desktop Management and Control, Website: http://www.vmware.com/solutions/desktop/, printed Oct. 12, 2009, 1 page.
Secure Mobile Computing, Website: http://www.vmware.com/solutions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages.
Barrantes et al., “Randomized Instruction Set Emulation to Dispurt Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-289.
Gaurav et al., “Countering Code-Injection Attacks with Instruction-Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280.
Check Point Software Technologies Ltd.: “ZoneAlarm Security Software User Guide Version 9”, Aug. 24, 2009, XP002634548, 259 pages, retrieved from Internet: URL:http://download.zonealarm.com/bin/media/pdf/zaclient91—user—manual.pdf.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority (1 page), International Search Report (4 pages), and Written Opinion (3 pages), mailed Mar. 2, 2011, International Application No. PCT/US2010/055520.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (6 pages), and Written Opinion of the International Searching Authority (10 pages) for International Application No. PCT/US2011/020677 mailed Jul. 22, 2011.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (3 pages), and Written Opinion of the International Search Authority (6 pages) for International Application No. PCT/US2011/024869 mailed Jul. 14, 2011.
Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for Trusted Computing,” XP-002340992, SOSP'03, Oct. 19-22, 2003, 14 pages.
IA-32 Intel® Architecture Software Developer's Manual, vol. 3B; Jun. 2006; pp. 13, 15, 22 and 145-146.
Notification of International Preliminary Report on Patentability and Written Opinion mailed May 24, 2012 for International Application No. PCT/US2010/055520, 5 pages.
Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems, IBM research Report, Feb. 2, 2005, 13 pages.
Kurt Gutzmann, “Access Control and Session Management in the HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Computing.
“Apache Hadoop Project,” http://hadoop.apache.org/, retrieved and printed Jan. 26, 2011, 3 pages.
“Cbl, composite blocking list,” http://cbl.abuseat.org, retrieved and printed Jan. 26, 2011, 8 pages.
A Tutorial on Clustering Algorithms, retrieved Sep. 10, 2010 from http://home.dei.polimi.it/matteucc/clustering/tutorial.html, 6 pages.
A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Pason, N. Weaver, and S. Savage, “Botnet Judo: Fighting Spam with Itself,” in Proceedings of the 17th Annual Network and Distributed System Security Symposium (NDSS'10), Feb. 2010, 19 pages.
A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet membership using DNSBL counter-intelligence,” in Proceedings of the 2nd USENIX Steps to Reducing Unwanted Traffic on the Internet, 2006, 6 pages.
A. Ramachandran, N. Feamster, and S. Vempala, “Filtering Spam with Behavioral Blacklisting,” in Proceedings of ACM Conference on Computer Communications Security, 2007, 10 pages.
B. Stone-Gross, M. Cova, L. Cavallor, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet: Analysis of a Botnet Takeover,” in Proceedings of the 16th ACM Conference on Computer and Communicatinos Security, 2009, 13 pages.
C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, and S. Savage, “Spamalytics: An Empirical Analysis of Spam Marketing Conversion,” in Proceedings of the 15th ACM conference on Computer and Communications Security, 2008, 12 pages.
C.J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” in Journal of Data Mining and Knowledge Discovery, 1998, 43 pages.
E-Mail Spamming Botnets: Signatures and Characteristics, Posted Sep. 22, 2008, http://www.protofilter.com/blog/email-spam-botnets-signatures.html, retrieved and printed Feb. 2, 2011, 4 pages.
G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command and Control Channels in Network Traffic,” in Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08), Feb. 2008, 24 pages.
G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation,” in Proceedings of the 16th USNIX Security Symposium, 2007, 34 pages.
G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Analysis of Network Traffic for Protocol and Structure-Independent Botnet Detection,” in Proceedings of the 17th USENIX Security Symposium, 2008, 15 pages.
I. Jolliffe, “Principal Component Analysis,” in Springer Series in Statistics, Statistical Theory and Methods, 2nd ed.), 2002, 518 pages.
J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Proceedings of Sixth Symposium on Operating System Design and Implementation, OSDI, 2004, 13 pages.
J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation,” in Proceedings of the USENIX HotBots, 2007, 12 pages.
J.B. Grizzard, V. Sharma, C. Nunnery, B.B. Kang, and D. Dagon, “Peer-to-Peer Botnets: Overview and Case Study,” in Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets, Apr. 2007, 14 pages.
J.P. John, A. Moshchuk, S.D. Gribble, and A. Krishnamurthy, “Studying Spamming Botnets Using Botlab,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 16 pages.
K. Li, Z. Zhong, and L. Ramaswamy, “Privacy-Aware Collaborative Spam Filtering,” in Journal of IEEE Transactions on Parallel and Distributed Systems, vol. 29, No. 5, May 2009, pp. 725-739.
L. Zhuang, J. Dunagan, D.R. Simon, H.J. Wang, and J.D. Tygar, “Characterizing botnets from email spam records,” in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats), 2008, 18 pages.
M. Frigo and S.G. Johnson, “The Design and Implementation of FFTW3,” in Proceedings of the IEEE 93(2), Invited paper, Special Issue on Program Generation, Optimization, and Platform Adaptation, 2005, 16 pages.
R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious Flux Service Networks through Passive Analysis of Recursive DNS Traces,” in Proceedings of the 25th Annual Computer Security Applications Conference (ACSAC 2009), Dec. 2009, 10 pages.
X. Jiang, D. Xu, and Y.-M. Wang, “Collapsar: A VM-Based Honeyfarm and Reverse Honeyfarm Architecture for Network Attack Capture and Detention,” in Journal of Parallel and Distributed Computing, Special Issue on Security in Grid and Distributed Systems, 2006, 16 pages.
Y. Tang, S. Krasser, P. Judge, and Y.-Q. Zhang, “Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data,” in Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), Nov. 2006, 6 pages.
Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum, “BotGraph: Large Scale Spamming Botnet Detection,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 26 pages.
Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigraphy, Geoff Hulten, and Ivan Osipkov, “Spamming Botnets: Signatures and Characteristics,” SIGCOMM '08, Aug. 17, 22, 2008, http://ccr.sigcomm.org/online/files/p171-xie.pdf, pp. 171-182.
Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Analysis of Large-Scale Botnet probing Events,” in Proceedings of ACM Symposium on Information, Computer and Communications Security (ASIACCS)), 2009, 12 pages.
Myung-Sup Kim et al., “A load cluster management system using SNMP and web”, [Online], May 2002, pp. 367-378, [Retrieved from Internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/nem.453/pdf>.
G. Pruett et al., “BladeCenter systems management software”, [Online], Nov. 2005, pp. 963-975, [Retrieved from Internet on Oct. 24, 2012], <http://citeseerx.Ist.psu.edu/viewdoc/download?doi=10.1.1.91.5091&rep=rep1&type=pdf>.
Philip M. Papadopoulos et al., “NPACI Rocks: tools and techniques for easily deploying manageable Linux clusters” [Online], Aug. 2002, pp. 707-725, [Retrieved from internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/cpe.722/pdf>.
Thomas Staub et al., “Secure Remote Management and Software Distribution for Wireless Mesh Networks”, [Online], Sep. 2007, pp. 1-8, [Retrieved from Internet on Oct. 24, 2012], <http://cds.unibe.ch/research/pub—files/B07.pdf>.
“What's New: McAfee VirusScan Enterprise, 8.8,” copyright 2010, retrieved on Nov. 23, 2012 at https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT—DOCUMENTATION/22000/PD22973/en—US/VSE%208.8%20-%20What's%20New.pdf, 4 pages.
“McAfee Management for Optimized Virtual Environments,” copyright 2012, retrieved on Nov. 26, 2012 at AntiVirushttp://www.mcafee.com/us/resources/data-sheets/ds-move-anti-virus.pdf, 2 pages.
Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, Apr. 1992, retrieved on Dec. 14, 2012 from http://www.ietf.org/rfc/rfc1321.txt, 21 pages.
Hinden, R. and B. Haberman, “Unique Local IPv6 Unicast Addresses”, RFC 4193, Oct. 2005, retrieved on Nov. 20, 2012 from http://tools.ietf.org/pdf/rfc4193.pdf, 17 pages.
“Secure Hash Standard (SHS)”, Federal Information Processing Standards Publication, FIPS PUB 180-4, Mar. 2012, retrieved on Dec. 14, 2012 from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 35 pages.
U.S. Appl. No. 13/728,705, filed Dec. 27, 2012, entitled “Herd Based Scan Avoidance System in a Network Environment,” Inventors Venkata Ramanan, et al.
An Analysis of Address Space Layout Randomization on Windows Vista™, Symantec Advanced Threat Research, copyright 2007 Symantec Corporation, available at http://www.symantec.com/avcenter/reference/Address—Space—Layout—Randomization.pdf, 19 pages.
Bhatkar, et al., “Efficient Techniques for Comprehensive Protection from Memory Error Exploits,” USENIX Association, 14th USENIX Security Symposium, Aug. 1-5, 2005, Baltimore, MD, 16 pages.
Dewan, et al., “A Hypervisor-Based System for Protecting Software Runtime Memory and Persistent Storage,” Spring Simulation Multiconference 2008, Apr. 14-17, 2008, Ottawa, Canada, (available at website: www.vodun.org/papers/2008—secure—locker—submit—v1-1.pdf, printed Oct. 11, 2011), 8 pages.
Shacham, et al., “On the Effectiveness of Address-Space Randomization,” CCS'04, Oct. 25-29, 2004, Washington, D.C., Copyright 2004, 10 pages.
International Search Report and Written Opinion mailed Dec. 14, 2012 for International Application No. PCT/US2012/055674, 9 pages.
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/U52011/020677, 9 pages.
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/024869, 6 pages.
Office Action received for U.S. Appl. No. 12/844,892, mailed on Jan. 17, 2013, 29 pages.
Office Action received for U.S. Appl. No. 12/844,892, mailed on Sep. 6, 2012, 33 pages.
Zhen Chen et al., “Application Level Network Access Control System Based on TNC Architecture for Enterprise Network,” In: Wireless communications Networking and Information Security (WCNIS), 2010 IEEE International Conference, Jun. 25-27, 2010 (5 pages).
USPTO Sep. 13, 2013 Final Office Action from U.S. Appl. No. 13/275,249, 21 pages.
Narten et al., RFC 4861, “Neighbor Discovery for IP version 6 (IPv6)”, Sep. 2007, retrieved from http://tools.ietf.org/html/rfc4861, 194 pages.
International Preliminary Report on Patentability, International Application No. PCT/US2012/026169, mailed Aug. 27, 2013, 8 pages.
USPTO Oct. 2, 2013 Final Office Action from U.S. Appl. No. 13/275,196, 21 pages.
USPTO Oct. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,892, 36 pages.
USPTO Oct. 25, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,964, 39 pages.
U.S. Appl. No. 14/045,208, filed Oct. 3, 2013, entitled “Execution Environment File Inventory,” Inventors: Rishi Bhargava, et al., 33 pages.
PCT Application Serial No. PCT/US13/66690, filed Oct. 24, 2013, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,”, 67 pages.
Patent Examination Report No. 1, Australian Application No. 2011283160, mailed Oct. 30, 2013, 3 pages.
USPTO Sep. 27, 2013, Notice of Allowance from U.S. Appl. No. 13/437,900, 12 pages.
PCT Application Serial No. PCT/US13/71327, filed Nov. 21, 2013, entitled “Herd Based Scan Avoidance System in a Network Environment,”, 46 pages.
U.S. Appl. No. 14/127,395, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,” filed Dec. 18, 2013, Inventors: Chandan CP et al., 76 pages.
USPTO Dec. 26, 2013 Notice of Allowance from U.S. Appl. No. 13/275,249, 32 pages.
USPTO Dec. 16, 2013 Notice of Allowance from U.S. Appl. No. 13/275,196, 11 pages.
USPTO Jan. 13, 2014 Notice of Allowance from U.S. Appl. No. 13/437,900, 30 pages.
Patent Examination Report No. 1, Australian Application No. 2011283164, mailed Jan. 14, 2014, 6 pages.
USPTO Dec. 30, 2013 Final Office Action from U.S. Appl. No. 13/629,765, 9 pages.
USPTO Feb. 24, 2014 Notice of Allowance from U.S. Appl. No. 13/629,765, 8 pages.
USPTO Mar. 24, 2014 Notice of Allowance from U.S. Appl. No. 13/275,196, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/US2013/071327, mailed Mar. 7, 2014, 12 pages.
USPTO Apr. 15, 2014 Notice of Allowance from U.S. Appl. No. 12/844,892, 9 pages.
U.S. Appl. No. 14/257,770, entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle,” filed Apr. 21, 2014, Inventors: Rahul Roy-Chowdhury et al., 56 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2012/057312, mailed Apr. 22, 2014, 5 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2012/057153, mailed Apr. 22, 2014, 4 pages.
U.S. Appl. No. 14/263,164, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” filed Apr. 28, 2014, Inventors: Geoffrey Cooper et al., 38 pages.
U.S. Appl. No. 14/277,954, entitled “System and Method for Interlocking a Host and a Gateway,” filed May 15, 2014, Inventors: Geoffrey Cooper et al., 42 pages.
USPTO Jun. 6, 2014 Final Office Action from U.S. Appl. No. 12/844,964, 30 pages.
USPTO Jun. 4, 2014 Nonfinal Office Action from U.S. Appl. No. 13/728,705, 16 pages.
Jun. 2, 2014 Office Action in Korean Patent Appln. No. 2013-7022241, [English translation], 6 pages.
Aug. 12, 2014 Office Action in Japanese Patent Application No. 2013-555531, English translation, 3 pages.
Related Publications (1)
Number Date Country
20120216271 A1 Aug 2012 US