1. Field of the Invention
This disclosure relates to millimeter (mm) wave communication and, more particularly, to a system and method for beam steering signals interrogating a target and receiving replies from the target using circularly polarized waves.
2. Description of the Related Art
Referring to
One embodiment of the invention is a method for communicating, the method comprising generating a first message by a processor and controlling a beam steerer to deflect transmitted waves toward a spatial angle. The method further comprises transmitting the first message through an antenna in communication with the beam steerer toward the spatial angle; and controlling the beam steerer to deflect waves received from the spatial angle. The method further comprises receiving a responsive wave at the antenna through the beam steerer at the spatial angle, the responsive wave including a second message responsive to the first message.
Another embodiment of the invention is a communication system. The system comprises a processor; an antenna in communication with the processor; and a beam steerer in communication with the antenna and the processor. The processor is effective to generate a first message; generate a first control signal to control the beam steerer to deflect transmitted waves toward a spatial angle; and cause the antenna to transmit the first message toward the spatial angle. The processor is further effective to generate a second control signal, distinct from the first control signal, to control the beam steerer to deflect waves received from the spatial angle; and receive from the antenna a second message in a responsive wave, the second message responsive to the first message and received by the beam steerer at the spatial angle.
Yet another embodiment is a communication system. The system comprises a processor; a first antenna in communication with the processor; and a beam steerer in communication with the first antenna and the processor. The processor is effective to generate a first message; generate a first control signal to control the beam steerer to deflect waves toward a spatial angle and to transmit waves polarized in a first polarization-direction toward the spatial angle by applying a first current to the beam steerer. The processor is further effective to cause the antenna to transmit the first message toward the spatial angle using waves circularly polarized in the first polarization-direction. The system further comprises a target, the target including a second antenna, the second antenna effective to receive the first message and transmit a responsive wave including a second message responsive to the first message, the responsive wave including waves circularly polarized in the first polarization-direction. The processor is further effective to generate a second control signal, distinct from the first control signal, to control the beam steerer to deflect waves received from the spatial angle and to receive waves polarized in the first polarization-direction from the spatial angle by applying a second current to the beam steerer; and receive the second message from the first antenna.
The drawings constitute a part of the specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
Various embodiments of the invention are described hereinafter with reference to the figures. Elements of like structures or function are represented with like reference numerals throughout the figures. The figures are only intended to facilitate the description of the invention or as a guide on the scope of the invention. In addition, an aspect described in conjunction with a particular embodiment of the invention is not necessarily limited to that embodiment and can be practiced in conjunction with any other embodiments of the invention.
Referring still to
However, such systems have significant deficiencies in identification friend or foe (IFF) applications where the target includes a transponder that radiates a wave with the same polarization as the interrogation. Referring to
Referring to
Referring now also to
As shown in
Beam steerer 158 is independent of the antenna 152 feeding beam steerer 158 so that antenna 152 can be a more complex antenna with sum and difference capability as is currently used in many identification friend or foe systems for effective beam sharpening. As circular polarizations are comprised of phased horizontal and vertical polarization vectors, antenna 158 could also be comprised of a complex antenna structure capable of transmitting and receiving in horizontal and vertical polarization. A coupler could be used to generate both right-handed and left-handed polarization and separate the two signals. Antenna 152 could generate sum illumination with a single main lobe and/or difference illumination with a double lobed antenna pattern with opposite phases to increase accuracy or exclude target responses or signal clutter
Beam steerer 158 may be a beam steerer like that shown in U.S. Pat. No. 6,320,551, the entirety which is hereby incorporated by reference. Referring to
Beam steerer 158 comprises a body 212 which is symmetrical about a central plane 214. At ends 216, 218 of body 212 are separate end pieces 220, 222 which carry coils 224, 226. Coils 224, 226 have parallel axes which are orientated normal to a front face 228 and a rear face 230 of body 212. A region of body 212 between the coils 224, 226, comprises an aperture 215 through which a wave 227 may pass.
End pieces 220, 222 are made of a material which is different to the material of body 212 of beam steerer 158. End pieces 220, 222 are of a material having a high magnetization such as mild steel or Swedish iron. Although end pieces 220, 222 are usually uniform, end pieces 220, 222 may be in the form of a laminated stack to reduce eddy currents. In fact, body 212 may itself be in a laminated form. Alternatively end pieces 220, 222 may be an integral part of body 212.
Body 212 comprises ferrite material having a permeability which is dependent on a magnetic field to which the body is subjected. A suitable ferrite material is TTI-3000 which is manufactured by Trans-tech Inc. Extending from ends 216, 218 towards central plane 214 are tapered slots or gaps which are filled with dielectric inserts 232, 234 having a permittivity identical to or similar to that of the ferrite material. A suitable material for the inserts is D13 manufactured by Trans-tech Inc. Although the permittivities of the ferrite material and the insert material are substantially the same, the magnetic permeability of the insert material is lower than that of the ferrite material. As a result, inserts 232, 234 present a relatively high reluctance path or barrier through the body 212 to a magnetic field applied by the coils 224, 226. At a location near coils 224, 226 the reluctance through body 212 is relatively high compared to a body of uniform composition. The reluctance diminishes along the tapered inserts towards the central plane.
Ideally the permeability of inserts 232, 234 is unity although the permittivity may be higher. The permeability of inserts 232, 234 should be less than the permeability of the ferrite material of body 212. The high reluctance paths provided by the insert material present a reluctance to the magnetic flux and the lines of magnetic force shift along the tapered inserts away from the coils 216, 218 to a narrower part of the insert or to a region of the aperture 215 free of inserts 232, 234.
Consequently, inserts 232, 234 force the lines of magnetic force further inward towards the central plane 214 than would be the case in an un-slotted device and a more controlled and uniform gradient in magnetic flux across aperture 215 is obtained.
The length of the slots is dependent upon the width of beam steerer 158, although as a guide each slot should extend from its respective coil about a third of the distance between the coils. For example, beam steerer 158 may have an aperture of dimensions 75 mm×75 mm. Body 212 has a thickness of about 25 mm. The slots are approximately 30 mm long and taper down from 1.0 mm to zero.
The reluctance of body 212 across its thickness where the slots are not present may be about 9×10−4 H−1. The reluctance of body 212 across its thickness where a dielectric material insert of 0.1 mm thickness (having a permeability of unity) is present may be about 13×10−4 H−1.
In use, coils 224, 226 are energized by a current source so that the magnetic field produced by coils 224, 226 is in a direction generally normal to faces 228, 230. The magnetic field produced by coil 224 is in an opposite direction the magnetic field produced by the coil 226. There is thus no magnetic field across central plane 214 if coils 224, 226 are energized equally.
As discussed above, wave 227 is a circularly polarized wave directed centrally onto face 228 of beam steer 158 in a spatial-direction normal to face 228 by means of a suitable feed such as a horn antenna. Wave 227 emerges un-deviated from the face 230 if no current or equal current is flowing in coils 216, 218.
When a current flows through coils 216, 218 wave 227 emerges from beam steerer 157 in a spatial-direction at a spatial angle θ degrees to the central plane 214. The deflection of wave 227 arises as a result of differential phase shift along line 214 drawn between coils 216, 218. This differential phase shift is caused by the gradient in magnetization across aperture 215 induced by magnetic fields generated by coils 216, 218. A first magnetic field between central plane 214 and end 216 is in a first direction and a second magnetic field between central plane 214 and end 218 is in a second direction opposite to the first direction. Since the permeability of the ferrite depends on the direction and magnitude of the magnetic field, the phase shift experienced by wave 227 will vary across a width of beam steerer 158 and the wave 227 is thus deflected. To deflect wave 227 in an opposite direction, the direction of current flow in coils 216, 218 is reversed to switch the directions of the magnetic fields and have a corresponding effect on the magnetization. This results in the wave 227 wave emerging from beam steerer 158 in a spatial-direction at a spatial angle −θ degrees to central plane 214.
Beam steerer 158 shown in
Referring to
At step S8, the processor controls the beam steerer to deflect waves received from spatial angle θ. At step S10, the processor receives the responsive wave through the beam steerer and the antenna. Thereafter, the responsive wave including an interrogation response may be processed by the processor.
While the invention has been described with reference to a number of exemplary embodiments, it will be understood by those skilled in the art that various changes can be made and equivalents can be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications can be made to adapt a particular situation or material to the teachings of the invention without departing from essential scope thereof. Therefore, it is intended that the invention not be limited to any particular exemplary embodiment disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
3427621 | Brunner | Feb 1969 | A |
3453636 | Perini et al. | Jul 1969 | A |
4336540 | Goodwin et al. | Jun 1982 | A |
4717918 | Finken | Jan 1988 | A |
5001486 | Bächtiger | Mar 1991 | A |
5369410 | Reich | Nov 1994 | A |
5909296 | Tsacoyeanes | Jun 1999 | A |
6320551 | Kumar | Nov 2001 | B1 |
6924923 | Serati et al. | Aug 2005 | B2 |
7248841 | Agee et al. | Jul 2007 | B2 |
7515099 | Kwon et al. | Apr 2009 | B2 |
7525482 | Lackey et al. | Apr 2009 | B1 |
20040198401 | Rodgers et al. | Oct 2004 | A1 |
20080012710 | Sadr | Jan 2008 | A1 |
20100045515 | Walker et al. | Feb 2010 | A1 |
20110018766 | Steer et al. | Jan 2011 | A1 |
20110115673 | Lackey | May 2011 | A1 |
20110115674 | Lackey | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110115673 A1 | May 2011 | US |