Data Over Cable Service Interface Specification (DOCSIS) 3.0 technology uses multiple bonded channels to enable services such as Internet Protocol (IP) video delivery. The video streams are typically delivered as multicast packets to a cable modem termination system (CMTS) and “switched” by the CMTS so that only the video streams that a customer is watching are actually sent down a DOCSIS downstream channel. Since the bandwidth required may exceed the capacity of the channel and drop packets, the prior art describes a variety of improvements to channel bonding to improve the quality of service.
The prior art also describes an innovation that overlaps bonding groups that span multiple channels. In this case, the CMTS scheduler implements instantaneous load balancing to schedule excess peak Variable Bit Rate (VBR) video on DOCSIS channels with extra capacity, or conversely to allow best effort High Speed Data (HSD) to utilize DOCSIS channels when the VBR video is in a “valley”. The prior art describes load balancing across a bonding group that is within the control of a single CMTS entity; however, as IP video delivery over DOCSIS expands and scales, there are scenarios where the DOCSIS channels that are available to leverage are spread across multiple devices. In a first scenario, the deployed system uses a DOCSIS IP Television (IPTV) Bypass Architecture (DIBA) to send the IP video directly to an edge Quadrature Amplitude Modulator (EQAM) where it is encapsulated as a DOCSIS packet and sent directly to the user devices, thereby bypassing the CMTS. In the first scenario, the EQAM controls the IP video channels, while the CMTS controls the HSD channels. In a second scenario, multiple devices generate DOCSIS channels and broadcast those channels to user devices. For IP video broadcast delivery, a CMTS may use static multicast to deliver the IP video over DOCSIS channels to a large group of users that span many different service groups; while a different CMTS may provide the HSD and narrowcast video channels to a single service group.
There is a demand for an IP video delivery method and system to allocate DOCSIS flexibly sized bonding groups across multiple devices. The presently disclosed invention satisfies this demand.
Aspects of the present invention provide a system and method receives Internet Protocol (IP) packets on a first device for delivery over a DOCSIS interface, each DOCSIS packet encapsulating IP data, and including a sequence number that the first device generates for a bonding group. The method delivers a first number of the DOCSIS packets to a DOCSIS device using first downstream channels on the first device that are associated with the bonding group. When a capacity of the first downstream channels is exceeded, the method determines an available capacity of second downstream channels on a second device that are associated with the bonding group, identifies a second number of the DOCSIS packets that do not exceed the available capacity on the second downstream channels, and forwards the second number of the DOCSIS packets to the second device, where the second device delivers the second number of the DOCSIS packets to the DOCSIS device using the second downstream channels.
Aspects of the present invention also describe the use of DOCSIS 3.0 bonding groups with an “instantaneous load balancing” algorithm to provide optimum utilization that is extensible to a distributed environment that spans multiple CMTS and/or DIBA devices. Specifically, the present invention implements multiple logical bonding groups that span the shared DOCSIS channels and that each CMTS and DIBA entity controls at least one of the bonding groups, thereby controlling the bonding sequence numbers for their respective bonding groups.
The IP network 120, in one embodiment, is a public communication network or wide area network (WAN). The present invention also contemplates the use of comparable network architectures. Comparable network architectures include the Public Switched Telephone Network (PSTN), a public packet-switched network carrying data and voice packets, a wireless network, and a private network. A wireless network includes a cellular network (e.g., a Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), or Orthogonal Frequency Division Multiplexing (OFDM) network), a satellite network, and a wireless Local Area Network (LAN) (e.g., a wireless fidelity (Wi-Fi) network). A private network includes a LAN, a Personal Area Network (PAN) such as a Bluetooth network, a wireless LAN, a Virtual Private Network (VPN), an intranet, or an extranet. An intranet is a private communication network that provides an organization such as a corporation, with a secure means for trusted members of the organization to access the resources on the organization's network. In contrast, an extranet is a private communication network that provides an organization, such as a corporation, with a secure means for the organization to authorize non-members of the organization to access certain resources on the organization's network. The system also contemplates network architectures and protocols such as Ethernet, Internet Protocol, and Transmission Control Protocol. In various embodiments, the IP network 120 will support a variety of network interfaces, including 802.3ab/u/etc., Multimedia over Coax Alliance (MoCA), and 801.11.
The HFC network 150 is a broadband network that combines optical fiber and coaxial cable, technology commonly employed globally by cable television operators since the early 1990s. The fiber optic network extends from the cable operators master head end, sometimes to regional head ends, and out to a neighborhood hubsite, and finally to a fiber optic node that serves anywhere from 25 to 2000 homes. The master head end will usually have satellite dishes for reception of distant video signals as well as IP aggregation routers. Some master head ends also house telephony equipment for providing telecommunications services to the community. The regional head ends receive the video signal from the master head end and add to it the Public, Educational and/or Governmental (PEG) channels as required by local franchising authorities or insert targeted advertising that would appeal to the region. The various services are encoded, modulated and up-converted onto RF carriers, combined onto a single electrical signal and inserted into a broadband optical transmitter. This optical transmitter converts the electrical signal to a downstream optically modulated signal that is sent to the nodes. Fiber optic cables connect the head end to optical nodes in a point-to-point or star topology, or in some cases, in a protected ring topology.
In the IP video delivery system 100 shown in
The Modular CMTS (M-CMTS) specification describes the use of a DOCSIS external physical interface (DEPI) tunnel for forwarding packets from a CMTS core to an EQAM for delivery over an HFC network. In the embodiment described above, the present invention uses a DEPI tunnel as described in the M-CMTS specification to forward the excess traffic between the CMTS 130 and edge device 140 for delivery over the HFC network 150. One skilled in the art may employ similar tunnel mechanisms to forward the excess traffic between the CMTS 130 and the edge device 140.
Since the forwarding of excess traffic can potentially overburden the edge device 140 and the CMTS 130, in the embodiment described above, the IP video delivery system 100 also includes a flow control mechanism. In one embodiment, for IP video traffic the flow control mechanism may be a simple admission control that identifies the amount of excess video traffic that can be forwarded. Thus, in the above example, the CMTS 130 may be able to statically or dynamically determine how much VBR IP video traffic that the edge device 140 can forward to it. The best effort HSD traffic is more problematic because it may sit for a while in a lower priority queue; however, a proactive flow control mechanism, such as issuing credits, can be used. Thus, in the above example, the edge device 140 issues credits to the CMTS 130 to indicate how much best effort HSD traffic it can forward on its QAM channels appropriate for HSD delivery. In various other embodiments, the flow control mechanisms to solve this problem include “credit-based” mechanisms in which the receiver issues credits for forwarding traffic to a receiver, “rate-based” mechanisms in which the receiver sends information for the transmitter to adjust the rate at which it sends to the receiver, and the like.
The customer location 160 shown in
The CMTS 130, in one embodiment, is a general-purpose computing device that performs the present invention. A bus 205 is a communication medium that connects a processor 210, data storage device 215, communication interface 220, DOCSIS external physical interface (DEPI) 225, and memory 230 (such as Random Access Memory (RAM), Dynamic RAM (DRAM), non-volatile computer memory, flash memory, or the like). The communication interface 220 connects the CMTS 130 to the IP network 120, and HFC network 150. In one embodiment, the communication interface 220 utilizes downstream channels (e.g., channels 1-4) to communicate with the HFC network 150. The DEPI 225 connects the CMTS 130 to the edge device 140. In one embodiment, the implementation of the present invention, or portions thereof, on the CMTS 130 is an application-specific integrated circuit (ASIC).
The processor 210 performs the disclosed methods by executing the sequences of operational instructions that comprise each computer program resident in, or operative on, the memory 230. The reader should understand that the memory 230 may include operating system, administrative, and database programs that support the programs disclosed in this application. In one embodiment, the configuration of the memory 230 of the CMTS 130 includes a DOCSIS program 232, transmission channel queue 234, distributed flexible channel bonding program 236, and instantaneous load balancing process 238. The DOCSIS program 232 implements the DOCSIS 3.0 specification. The transmission channel queue 234 is a memory location that the CMTS 130 uses to schedule and prioritize the delivery of data on the CMTS 130 downstream channels. The distributed flexible channel bonding program 236 allocates DOCSIS flexibly sized bonding groups across multiple devices. The instantaneous load balancing process 238 balances the load across the downstream channels in a bonding group across multiple devices. The DOCSIS program 232, transmission channel queue 234, distributed flexible channel bonding program 236, and instantaneous load balancing process 238 perform the methods of the present invention disclosed in detail in
The edge device 140, in one embodiment, is a general-purpose computing device that performs the present invention. A bus 255 is a communication medium that connects a processor 260, data storage device 265, communication interface 270, DOCSIS external physical interface (DEPI) 275, and memory 280 (such as Random Access Memory (RAM), Dynamic RAM (DRAM), non-volatile computer memory, flash memory, or the like). The communication interface 270 connects the edge device 140 to the IP network 120, and HFC network 150. In one embodiment, the communication interface 270 utilizes downstream channels (e.g., channels 5-8) to communicate with the HFC network 150. The DEPI 275 connects the edge device 140 to the CMTS 130. In one embodiment, the implementation of the present invention, or portions thereof, on the edge device 140 is an application-specific integrated circuit (ASIC).
The processor 260 performs the disclosed methods by executing the sequences of operational instructions that comprise each computer program resident in, or operative on, the memory 280. The reader should understand that the memory 280 may include operating system, administrative, and database programs that support the programs disclosed in this application. In one embodiment, the configuration of the memory 280 of the edge device 140 includes a DOCSIS program 282, transmission channel queue 284, distributed flexible channel bonding program 286, and instantaneous load balancing process 288. The DOCSIS program 282 implements the DOCSIS 3.0 specification. The transmission channel queue 284 is a memory location that the edge device 140 uses to schedule and prioritize the delivery of data on the edge device 140 downstream channels. The distributed flexible channel bonding program 286 allocate DOCSIS flexibly sized bonding groups across multiple devices. The instantaneous load balancing process 288 balances the load across the downstream channels in a bonding group across multiple devices. The DOCSIS program 282, transmission channel queue 284, distributed flexible channel bonding program 286, and instantaneous load balancing process 288 perform the methods of the present invention disclosed in detail in
The process 300 shown in
The process 400 shown in
The prior art flexible channel bonding scheme with instantaneous load balancing enables an IP video delivery system to fully utilize VBR video streams for IP video delivery over cable over a single CMTS. The present invention describes the use of multiple logical bonding groups, each controlled by a separate device, to enable the flexible channel bonding scheme to be implement in a distributed manner across multiple CMTS and/or DIBA-capable EQAM devices. Thus, the present invention permits separate transmitting entities of DOCSIS bonding groups (e.g., the CMTS 130 and edge device 140) to share bandwidth on the same downstream channels. In other embodiments, the present invention may support other types of data and services other than VBR video streams and HSD, and may support a multitude of devices, not just the two devices disclosed in the embodiments. Furthermore, the logical bonding groups need not cover identical channels, but may also be non-overlapping bonding groups as described in the prior art
Although the disclosed embodiments describe a fully functioning method and system for IP video delivery, the reader should understand that other equivalent embodiments exist. Since numerous modifications and variations will occur to those reviewing this disclosure, the method and system for IP video delivery is not limited to the exact construction and operation illustrated and disclosed. Accordingly, this disclosure intends all suitable modifications and equivalents to fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3838221 | Schmidt et al. | Sep 1974 | A |
4245342 | Entenman | Jan 1981 | A |
4385392 | Angell et al. | May 1983 | A |
4811360 | Potter | Mar 1989 | A |
4999787 | McNally et al. | Mar 1991 | A |
5228060 | Uchiyama | Jul 1993 | A |
5251324 | McMullan | Oct 1993 | A |
5271060 | Moran et al. | Dec 1993 | A |
5278977 | Spencer et al. | Jan 1994 | A |
5347539 | Sridhar et al. | Sep 1994 | A |
5390339 | Bruckert et al. | Feb 1995 | A |
5463661 | Moran et al. | Oct 1995 | A |
5532865 | Utsumi et al. | Jul 1996 | A |
5557603 | Barlett et al. | Sep 1996 | A |
5606725 | Hart | Feb 1997 | A |
5631846 | Szurkowski | May 1997 | A |
5692010 | Nielsen | Nov 1997 | A |
5694437 | Yang et al. | Dec 1997 | A |
5732104 | Brown et al. | Mar 1998 | A |
5790523 | Ritchie et al. | Aug 1998 | A |
5862451 | Grau et al. | Jan 1999 | A |
5867539 | Koslov | Feb 1999 | A |
5870429 | Moran et al. | Feb 1999 | A |
5886749 | Williams et al. | Mar 1999 | A |
5939887 | Schmidt et al. | Aug 1999 | A |
5943604 | Chen et al. | Aug 1999 | A |
6032019 | Chen et al. | Feb 2000 | A |
6061393 | Tsui et al. | May 2000 | A |
6108351 | Hardy et al. | Aug 2000 | A |
6154503 | Strolle | Nov 2000 | A |
6229792 | Anderson et al. | May 2001 | B1 |
6230326 | Unger et al. | May 2001 | B1 |
6233274 | Tsui et al. | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6272150 | Hrastar et al. | Aug 2001 | B1 |
6278730 | Tsui et al. | Aug 2001 | B1 |
6308286 | Richmond et al. | Oct 2001 | B1 |
6310909 | Jones | Oct 2001 | B1 |
6321384 | Eldering | Nov 2001 | B1 |
6330221 | Gomez | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6377552 | Moran et al. | Apr 2002 | B1 |
6385773 | Schwartzman et al. | May 2002 | B1 |
6389068 | Smith et al. | May 2002 | B1 |
6434583 | Dapper et al. | Aug 2002 | B1 |
6445734 | Chen et al. | Sep 2002 | B1 |
6456597 | Bare | Sep 2002 | B1 |
6459703 | Grimwood et al. | Oct 2002 | B1 |
6477197 | Unger | Nov 2002 | B1 |
6480469 | Moore et al. | Nov 2002 | B1 |
6483033 | Simoes et al. | Nov 2002 | B1 |
6498663 | Farhan et al. | Dec 2002 | B1 |
6512616 | Nishihara | Jan 2003 | B1 |
6526260 | Hick et al. | Feb 2003 | B1 |
6546557 | Ovadia | Apr 2003 | B1 |
6556239 | Al Araji et al. | Apr 2003 | B1 |
6556562 | Bhagavath et al. | Apr 2003 | B1 |
6556660 | Li et al. | Apr 2003 | B1 |
6559756 | Al Araji et al. | May 2003 | B2 |
6563868 | Zhang et al. | May 2003 | B1 |
6570394 | Williams | May 2003 | B1 |
6570913 | Chen | May 2003 | B1 |
6574797 | Naegeli et al. | Jun 2003 | B1 |
6588016 | Chen et al. | Jul 2003 | B1 |
6606351 | Dapper et al. | Aug 2003 | B1 |
6611795 | Cooper | Aug 2003 | B2 |
6646677 | Noro et al. | Nov 2003 | B2 |
6662135 | Burns et al. | Dec 2003 | B1 |
6662368 | Cloonan et al. | Dec 2003 | B1 |
6671334 | Kuntz et al. | Dec 2003 | B1 |
6687632 | Rittman | Feb 2004 | B1 |
6690655 | Miner et al. | Feb 2004 | B1 |
6700875 | Schroeder et al. | Mar 2004 | B1 |
6700927 | Esliger et al. | Mar 2004 | B1 |
6711134 | Wichelman et al. | Mar 2004 | B1 |
6741947 | Wichelman et al. | May 2004 | B1 |
6748551 | Furudate et al. | Jun 2004 | B2 |
6757253 | Cooper et al. | Jun 2004 | B1 |
6772388 | Cooper et al. | Aug 2004 | B2 |
6772437 | Cooper et al. | Aug 2004 | B1 |
6775840 | Naegel et al. | Aug 2004 | B1 |
6816463 | Cooper et al. | Nov 2004 | B2 |
6839829 | Daruwalla et al. | Jan 2005 | B1 |
6853932 | Wichelman et al. | Feb 2005 | B1 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6895043 | Naegeli et al. | May 2005 | B1 |
6895594 | Simoes et al. | May 2005 | B1 |
6906526 | Hart et al. | Jun 2005 | B2 |
6928475 | Schenkel et al. | Aug 2005 | B2 |
6944881 | Vogel | Sep 2005 | B1 |
6961314 | Quigley et al. | Nov 2005 | B1 |
6961370 | Chappell | Nov 2005 | B2 |
6967994 | Boer et al. | Nov 2005 | B2 |
6973141 | Isaksen et al. | Dec 2005 | B1 |
6985437 | Vogel | Jan 2006 | B1 |
6999408 | Gomez | Feb 2006 | B1 |
7002899 | Azenkot et al. | Feb 2006 | B2 |
7010002 | Chow et al. | Mar 2006 | B2 |
7017176 | Lee et al. | Mar 2006 | B1 |
7032159 | Lusky et al. | Apr 2006 | B2 |
7039939 | Millet et al. | May 2006 | B1 |
7050419 | Azenkot et al. | May 2006 | B2 |
7054554 | McNamara et al. | May 2006 | B1 |
7058007 | Daruwalla et al. | Jun 2006 | B1 |
7072365 | Ansley | Jul 2006 | B1 |
7079457 | Wakabayashi et al. | Jul 2006 | B2 |
7099412 | Coffey | Aug 2006 | B2 |
7099580 | Bulbul | Aug 2006 | B1 |
7139283 | Quigley et al. | Nov 2006 | B2 |
7142609 | Terreault et al. | Nov 2006 | B2 |
7152025 | Lusky et al. | Dec 2006 | B2 |
7158542 | Zeng et al. | Jan 2007 | B1 |
7164694 | Nodoushani et al. | Jan 2007 | B1 |
7177324 | Choudhury et al. | Feb 2007 | B1 |
7197067 | Lusky et al. | Mar 2007 | B2 |
7222255 | Claessens et al. | May 2007 | B1 |
7227863 | Leung et al. | Jun 2007 | B1 |
7242862 | Saunders et al. | Jul 2007 | B2 |
7246368 | Millet et al. | Jul 2007 | B1 |
7263123 | Yousef | Aug 2007 | B2 |
7274735 | Lusky et al. | Sep 2007 | B2 |
7295518 | Monk et al. | Nov 2007 | B1 |
7315573 | Lusky et al. | Jan 2008 | B2 |
7315967 | Azenko et al. | Jan 2008 | B2 |
7400677 | Jones | Jul 2008 | B2 |
7421276 | Steer et al. | Sep 2008 | B2 |
7451472 | Williams | Nov 2008 | B2 |
7492703 | Lusky et al. | Feb 2009 | B2 |
7554902 | Kim et al. | Jun 2009 | B2 |
7573884 | Klimker et al. | Aug 2009 | B2 |
7573935 | Min et al. | Aug 2009 | B2 |
7584298 | Klinker et al. | Sep 2009 | B2 |
7616654 | Moran et al. | Nov 2009 | B2 |
7650112 | Utsumi et al. | Jan 2010 | B2 |
7672310 | Cooper et al. | Mar 2010 | B2 |
7684315 | Beser | Mar 2010 | B1 |
7684341 | Howald | Mar 2010 | B2 |
7693090 | Kimpe | Apr 2010 | B1 |
7716712 | Booth et al. | May 2010 | B2 |
7739359 | Millet et al. | Jun 2010 | B1 |
7742697 | Cooper et al. | Jun 2010 | B2 |
7742771 | Thibeault | Jun 2010 | B2 |
7760624 | Goodson et al. | Jul 2010 | B1 |
7778314 | Wajcer et al. | Aug 2010 | B2 |
7787557 | Kim et al. | Aug 2010 | B2 |
7792183 | Massey et al. | Sep 2010 | B2 |
7856049 | Currivan et al. | Dec 2010 | B2 |
7876697 | Thompson et al. | Jan 2011 | B2 |
7953144 | Allen et al. | May 2011 | B2 |
7970010 | Denney et al. | Jun 2011 | B2 |
8000254 | Thompson et al. | Aug 2011 | B2 |
8037541 | Montague et al. | Oct 2011 | B2 |
8040915 | Cummings | Oct 2011 | B2 |
8059546 | Pai et al. | Nov 2011 | B2 |
8081674 | Thompson et al. | Dec 2011 | B2 |
8116360 | Thibeault | Feb 2012 | B2 |
8265559 | Cooper et al. | Sep 2012 | B2 |
8284828 | Cooper et al. | Oct 2012 | B2 |
8345557 | Thibeault et al. | Jan 2013 | B2 |
20010055319 | Quigley et al. | Dec 2001 | A1 |
20020038461 | White et al. | Mar 2002 | A1 |
20020044531 | Cooper et al. | Apr 2002 | A1 |
20020091970 | Furudate et al. | Jul 2002 | A1 |
20020116493 | Schenkel et al. | Aug 2002 | A1 |
20020154620 | Azenkot et al. | Oct 2002 | A1 |
20020168131 | Walter et al. | Nov 2002 | A1 |
20020181395 | Foster et al. | Dec 2002 | A1 |
20030028898 | Howald | Feb 2003 | A1 |
20030043732 | Walton et al. | Mar 2003 | A1 |
20030067883 | Azenkot et al. | Apr 2003 | A1 |
20030101463 | Greene et al. | May 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030120819 | Abramson et al. | Jun 2003 | A1 |
20030138250 | Glynn | Jul 2003 | A1 |
20030149991 | Reidhead et al. | Aug 2003 | A1 |
20030158940 | Leigh | Aug 2003 | A1 |
20030179768 | Lusky et al. | Sep 2003 | A1 |
20030179770 | Reznic et al. | Sep 2003 | A1 |
20030179821 | Lusky et al. | Sep 2003 | A1 |
20030181185 | Lusky et al. | Sep 2003 | A1 |
20030182664 | Lusky et al. | Sep 2003 | A1 |
20030185176 | Lusky et al. | Oct 2003 | A1 |
20030188254 | Lusky et al. | Oct 2003 | A1 |
20030200317 | Zeitak et al. | Oct 2003 | A1 |
20030212999 | Cai | Nov 2003 | A1 |
20040015765 | Cooper et al. | Jan 2004 | A1 |
20040042385 | Kim et al. | Mar 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040052356 | McKinzie et al. | Mar 2004 | A1 |
20040062548 | Obeda et al. | Apr 2004 | A1 |
20040073937 | Williams | Apr 2004 | A1 |
20040096216 | Ito | May 2004 | A1 |
20040109661 | Bierman et al. | Jun 2004 | A1 |
20040139473 | Greene | Jul 2004 | A1 |
20040163129 | Chapman et al. | Aug 2004 | A1 |
20040181811 | Rakib | Sep 2004 | A1 |
20040208513 | Peddanarappagari et al. | Oct 2004 | A1 |
20040233234 | Chaudhry et al. | Nov 2004 | A1 |
20040233926 | Cummings | Nov 2004 | A1 |
20040248520 | Miyoshi | Dec 2004 | A1 |
20040261119 | Williams et al. | Dec 2004 | A1 |
20050010958 | Rakib et al. | Jan 2005 | A1 |
20050025145 | Rakib et al. | Feb 2005 | A1 |
20050034159 | Ophir et al. | Feb 2005 | A1 |
20050039103 | Azenko et al. | Feb 2005 | A1 |
20050058082 | Moran et al. | Mar 2005 | A1 |
20050064890 | Johan et al. | Mar 2005 | A1 |
20050097617 | Currivan et al. | May 2005 | A1 |
20050108763 | Baran et al. | May 2005 | A1 |
20050122996 | Azenkot et al. | Jun 2005 | A1 |
20050163088 | Yamano et al. | Jul 2005 | A1 |
20050175080 | Bouillett | Aug 2005 | A1 |
20050183130 | Sadja et al. | Aug 2005 | A1 |
20050198688 | Fong | Sep 2005 | A1 |
20050226161 | Jaworski | Oct 2005 | A1 |
20050281200 | Terreault | Dec 2005 | A1 |
20060013147 | Terpstra et al. | Jan 2006 | A1 |
20060121946 | Walton et al. | Jun 2006 | A1 |
20060250967 | Miller et al. | Nov 2006 | A1 |
20060262722 | Chapman et al. | Nov 2006 | A1 |
20070002752 | Thibeault et al. | Jan 2007 | A1 |
20070058542 | Thibeault | Mar 2007 | A1 |
20070076592 | Thibeault et al. | Apr 2007 | A1 |
20070076789 | Thibeault | Apr 2007 | A1 |
20070076790 | Thibeault et al. | Apr 2007 | A1 |
20070086328 | Kao et al. | Apr 2007 | A1 |
20070094691 | Gazdzinski | Apr 2007 | A1 |
20070097907 | Cummings | May 2007 | A1 |
20070133672 | Lee et al. | Jun 2007 | A1 |
20070143654 | Joyce et al. | Jun 2007 | A1 |
20070147489 | Sun et al. | Jun 2007 | A1 |
20070177526 | Siripunkaw et al. | Aug 2007 | A1 |
20070184835 | Bitran et al. | Aug 2007 | A1 |
20070189770 | Sucharczuk et al. | Aug 2007 | A1 |
20070206600 | Klimker et al. | Sep 2007 | A1 |
20070206625 | Maeda | Sep 2007 | A1 |
20070211618 | Cooper et al. | Sep 2007 | A1 |
20070223512 | Cooper et al. | Sep 2007 | A1 |
20070223920 | Moore et al. | Sep 2007 | A1 |
20070245177 | Cooper et al. | Oct 2007 | A1 |
20080056713 | Cooper et al. | Mar 2008 | A1 |
20080062888 | Lusky et al. | Mar 2008 | A1 |
20080075157 | Allen et al. | Mar 2008 | A1 |
20080101210 | Thompson et al. | May 2008 | A1 |
20080125984 | Skendzic et al. | May 2008 | A1 |
20080140823 | Thompson et al. | Jun 2008 | A1 |
20080193137 | Thompson et al. | Aug 2008 | A1 |
20080200129 | Cooper et al. | Aug 2008 | A1 |
20080242339 | Anderson | Oct 2008 | A1 |
20080250508 | Montague et al. | Oct 2008 | A1 |
20080274700 | Li | Nov 2008 | A1 |
20080291840 | Cooper et al. | Nov 2008 | A1 |
20090031384 | Brooks et al. | Jan 2009 | A1 |
20090103557 | Hong et al. | Apr 2009 | A1 |
20090103669 | Kolze et al. | Apr 2009 | A1 |
20090109877 | Murray et al. | Apr 2009 | A1 |
20090249421 | Liu et al. | Oct 2009 | A1 |
20090252234 | Samdani et al. | Oct 2009 | A1 |
20100083356 | Steckley et al. | Apr 2010 | A1 |
20100095360 | Pavlovski et al. | Apr 2010 | A1 |
20100154017 | An et al. | Jun 2010 | A1 |
20100157824 | Thompson et al. | Jun 2010 | A1 |
20100158093 | Thompson et al. | Jun 2010 | A1 |
20100185391 | Lee et al. | Jul 2010 | A1 |
20100223650 | Millet et al. | Sep 2010 | A1 |
20100251320 | Shafer et al. | Sep 2010 | A1 |
20110026577 | Primo et al. | Feb 2011 | A1 |
20110030019 | Ulm et al. | Feb 2011 | A1 |
20110069745 | Thompson et al. | Mar 2011 | A1 |
20110072127 | Gerber et al. | Mar 2011 | A1 |
20110110415 | Cooper et al. | May 2011 | A1 |
20110153683 | Hoskinson | Jun 2011 | A1 |
20110194418 | Wolcott et al. | Aug 2011 | A1 |
20110194597 | Wolcott et al. | Aug 2011 | A1 |
20110197071 | Wolcott et al. | Aug 2011 | A1 |
20110243214 | Wolcott et al. | Oct 2011 | A1 |
20120054312 | Salinger | Mar 2012 | A1 |
20120084416 | Thibeault et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
69631420 | Dec 2004 | DE |
0905998 | Mar 1999 | EP |
1235402 | Aug 2002 | EP |
1341335 | Sep 2003 | EP |
1956782 | Aug 2008 | EP |
55132161 | Oct 1980 | JP |
04208707 | Jul 1992 | JP |
6120896 | Apr 1994 | JP |
6177840 | Jun 1994 | JP |
09008738 | Jan 1997 | JP |
9162816 | Jun 1997 | JP |
10247893 | Sep 1998 | JP |
11230857 | Aug 1999 | JP |
2001044956 | Feb 2001 | JP |
2003530761 | Oct 2003 | JP |
2004172783 | Jun 2004 | JP |
2004343678 | Dec 2004 | JP |
0192901 | Jun 2001 | WO |
0233974 | Apr 2002 | WO |
2004062124 | Jul 2004 | WO |
2007046876 | Apr 2007 | WO |
2009146426 | Dec 2009 | WO |
Entry |
---|
Patrick & Joyce, Delivering Economical IP Video over DOCSIS by Bypassing the M-CMTS with DIBA, SCTE 2007 Emerging Technologies, Topic Subject: Service Velocity & Next Generation Architectures: How Do We Get There?, 2007. |
Sangeeta Ramakrishnam, “Scaling the DOCSIS Network for IPTV”, Cisco Systems, Inc., SCTE Conference on Emerging Technologies and the NCTA Cable Show, 2009 (19 pages). |
Xiaomei Liu and Alon Bernstein, “Variable Bit Rate Video Services in DOCSIS 3.0 Networks”, NCTA Technical Papers, 2008 (12 pages). |
Y.R. Shelke, “Knowledge Based Topology Discovery and Geo-localization”, Thesis, Master of Science, Ohio State University, 2010. |
R. Thompson, et al., “Practical Considerations for Migrating the Network Toward All-Digital”, Society of Cable Telecommunications Engineers (SCTE) Cable-Tec Expo, Oct. 2009. |
R. Thompson, et al., “Optimizing Upstream Throughput Using Equalization Coefficient Analysis”, National Cable & Telecommunications Association (NCTA) Technical Papers, Apr. 2009. |
R. L. Howald et al., “Characterizing and Aligning the HFC Return Path for Successful DOCSIS 3.0 Rollouts”, SCTE Cable Tec Expo, Oct. 2009. |
Campos, L.A., et al., “Pre-equalization based Pro-active Network Maintenance Methodology”, Cable Television Laboratories, Inc., (presentation), 2008. |
Cable Television Laboratories, Inc., “Pre-Equalization based pro-active network maintenance process model”, Invention Disclosure 60177, Jun. 2008. |
Cable Television Laboratories, Inc., “A Simple Algorithm for Fault Localization Using Naming Convention and Micro-reflection Signature,” Invention Disclosure 60193, Jun. 2008. |
Cable Television Laboratories, Inc., “Pre-Equalization Based Pro-active Network Maintenance Process Model for CMs Transmitting on Multiple Upstream Channels,” Invention Disclosure 60203, May 2009. |
PCT Search Report & Written Opinion, Re: Application #PCT/US2011/062048; Mar. 7, 2012. |
PCT Search Report & Written Opinion, Re: Application #PCT/US2010/43364; Sep. 16, 2010. |
Cable Television Laboratories, Inc., “Data-Over-Cable Service Interface Specifications DOCSIS 3.0: MAC and Upper Layer Protocols Interface,” CM-SP-MULPIv3.0-I16-110623, section 8, pp. 242-266, Jun. 2011. |
Cable Television Laboratories, Inc., “Data-Over-Cable Service Interface Specifications DOCSIS® 3.0—MAC and Upper Layer Protocols Interface Specification,” CM-SP-MULPIv3.0-I17-111117, Nov. 2011. |
Cable Television Laboratories, Inc., “DOCSIS® Best Practices and Guidelines: Proactive Network Maintenance Using Preequalization,” CM-GL-PNMP-V01-100415, Apr. 2010. |
Cable Television Laboratories, Inc., “DOCSIS® Best Practices and Guidelines: Proactive Network Maintenance Using Pre-equalization,” CM-GL-PNMP-V02-110623, Jun. 2011. |
Cable Television Laboratories, Inc., Data-Over-Cable Service Interface Specifications—DOCSIS 2.0: Radio Frequency Interface Specification, CM-SP-RFIv2.0-I06-040804, Aug. 2004. |
R.L. Howald, et al., “Customized Broadband—Analysis Techniques For Blended Multiplexes,” NCTA Technical Papers, 2002. |
R. Howald, “Access Networks Solutions: Introduction to S-CDMA,” Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, 2009. |
R. Howald, “Upstream Snapshots & Indicators (2009),” Regional Samples, Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010. |
R. Howald, et al., “DOCSIS 3.0 Upstream: Readiness & Qualification,” SCTE Cable-Tec Expo, Oct. 2009. |
R. Howald, et al., “The Grown-Up Potential of a Teenage PHY”, NCTA Convention and Exposition, May 2012. |
R. Howald, “DOCSIS 3.0 Upstream: Technology, RF Variables & Case Studies,” Access Networks Solutions, 2009, presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, 23 pages, Jan. 2010. |
R. Hranac, “Linear Distortions, Part 1,” Communication Technology, Jul. 2005. |
Motorola, Inc., “White Paper: Expanding Bandwidth Using Advanced Spectrum Management,” Sep. 25, 2003. |
H. Newton, Newton's Telecom Dictionary, Flatiron Publishing, 9th ed., pp. 216 and 1023 (definitions of “carrier to noise ratio” and “signal to noise ratio”), Sep. 1995. |
A. Pooper, et al., “An Advanced Receiver with Interference Cancellation for Broadband Cable Networks,” International Zurich Seminar on Broadband Communications Access 2002, pp. 23-1 to 23-6, IEEE, 2002. |
A. Popper, et al., “Ingress Noise Cancellation for the Upstream Channel in Broadband Cable Access Systems,” International Conference on Communications 2002, vol. 3, pp. 1808-1812, IEEE, 2002. |
S.U.H. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, vol. 73, No. 9, pp. 1349-1387, Sep. 1985. |
R. Thompson, et al., “256-QAM for Upstream HFC,” NCTA 2010 Spring Technical Forum Proceedings, pp. 142-152, May 2010. |
R. Thompson, et al., “256-QAM for Upstream HFC Part Two”, SCTE Cable-Tec Expo 2011, Technical Paper, Nov. 2011. |
R. Thompson, et al., “Multiple Access Made Easy,” SCTE Cable-Tec Expo 2011, Technical Paper, Nov. 2011. |
R. Thompson, et al., “64-QAM, 6.4MHz Upstream Deployment Challenges,” SCTE Canadian Summit, Toronto, Canada, Technical Paper, Mar. 2011. |
B. Volpe, et al., “Cable-Tec Expo 2011: Advanced Troubleshooting in a DOCSIS© 3.0 Plant,” Nov. 2011. |
L. Wolcott, “Modem Signal Usage and Fault Isolation,” U.S. Appl. No. 61/301,835, filed Feb. 5, 2010. |
F. Zhao, et al., “Techniques for minimizing error propagation in decision feedback detectors for recording channels,” IEEE Transactions on Magnetics, vol. 37, No. 1, pp. 592-602, Jan. 2001. |
Y. Morishita, et al., “An LMS adaptive equalizer using threshold in impulse noise environments”, IEEE, ICT 2003 10th International Conference on Telecommunications, vol. 1, pp. 578-582, Feb. 2003. |
Number | Date | Country | |
---|---|---|---|
20120147751 A1 | Jun 2012 | US |