This invention relates to devices and methods for the repair of defects that occur in articular cartilage on the surface of bones, particularly the knee.
Articular cartilage, found at the ends of articulating bone in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load-bearing surface. However, when injured, hyaline cartilage cells are not typically replaced by new hyaline cartilage cells. Healing is dependent upon the occurrence of bleeding from the underlying bone and formation of scar or reparative cartilage called fibrocartilage. While similar, fibrocartilage does not possess the same unique aspects of native hyaline cartilage and tends to be far less durable.
Hyaline cartilage problems, particularly in knee and hip joints, are generally caused by disease such as occurs with rheumatoid arthritis or wear and tear (osteoarthritis), or secondary to an injury, either acute (sudden), or recurrent and chronic (ongoing). Such cartilage disease or deterioration can compromise the articular surface causing pain and further deterioration of joint function. As a result, various methods have been developed to treat and repair damaged or destroyed articular cartilage.
For smaller defects, traditional options for this type of problem include non-operative therapies (e.g., oral medication or medication by injection into the joint), or performing a surgical procedure called abrasion arthroplasty or abrasion chondralplasty. The principle behind this procedure is to attempt to stimulate natural healing. At the defect site, the bone surface is abraded, removing approximately 1 mm. or less using a high-speed rotary burr or shaving device. This creates an exposed subchondral bone bed that will bleed and will initiate a fibrocartilage healing response. Although this procedure has been widely used over the past two decades and can provide good short term results, (1-3 years), the resulting fibrocartilage surface is seldom able to support long-term weight bearing, particularly in high-activity patients, and is prone to wear.
Another procedure, referred to as the “microfracture” technique, incorporates similar concepts of creating exposed subchondral bone. During the procedure, the cartilage layer of the chondral defect is removed. Several pathways or “microfractures” are created to the subchondral bleeding bone bed by impacting a metal pick or surgical awl at a minimum number of locations within the lesion. By establishing bleeding in the lesion and by creating a pathway to the subchondral bone, a fibrocartilage healing response is initiated, forming a replacement surface. Results for this technique are generally similar to abrasion chondralplasty.
Another known option to treat damaged articular cartilage is a cartilage transplant, referred to as a Mosaicplasty or osteoarticular transfer system (OATS) technique. This involves using a series of dowel cutting instruments to harvest a plug of articular cartilage and subchondral bone from a donor site, which can then be implanted into a core made into the defect site. By repeating this process, transferring a series of plugs, and by placing them in close proximity to one another, in mosaic-like fashion, a new grafted hyaline cartilage surface can be established. The result is a hyaline-like surface interposed with a fibrocartilage healing response between each graft.
This procedure is technically difficult, as all grafts must be taken with the axis of the harvesting coring drill being kept perpendicular to the articular surface at the point of harvest. Also, all graft placement sites must be drilled with the axis of a similar coring tool being kept perpendicular to the articular surface at the point of implantation. Further, all grafts must be placed so that the articular surface portion of these cartilage and bone plugs is delivered to the implantation site and seated at the same level as the surrounding articular surface. If these plugs are not properly placed in relation to the surrounding articular surface, the procedure can have a very detrimental effect on the mating articular surface. If the plugs are placed too far below the level of the surrounding articular surface, no benefit from the procedure will be gained. Further, based on the requirement of perpendicularity on all harvesting and placement sites, the procedure requires many access and approach angles that typically require an open field surgical procedure. Finally, this procedure requires a lengthy post-operative non-weight bearing course.
Transplantation of previously harvested hyaline cartilage cells from the same patient has been utilized in recent years. After the cartilage is removed or harvested, it is cultured in the lab to obtain an increase in the number of cells. These cells are later injected back into the focal defect site and retained by sewing a patch of periosteal tissue over the top of the defect to contain the cells while they heal and mature. The disadvantages of this procedure are its enormous expense, technical complexity, and the need for an open knee surgery. Further, this technique is still considered somewhat experimental and long-term results are unknown. Some early studies have concluded that this approach offers no significant improvement in outcomes over traditional abrasion and microfracture techniques.
U.S. Pat. No. 5,782,835 to Hart et al. discloses an apparatus and method for repair of articular cartilage including a bone plug removal tool, and a bone plug emplacement tool. The method of repairing defective articular cartilage includes the steps of removing the defective cartilage and forming a hole of sufficient depth at the site. A bone plug comprising intact bone and cartilage adhering thereto is removed from a bone lacking defective cartilage is placed in the hole at the site of the damage.
U.S. Pat. No. 5,413,608 to Keller discloses a knee joint endoprosthesis for replacing the articular surfaces of the tibia comprising a bearing part which is anchored on the bone having an upper bearing surface and a rotatable plateau secured on the bearing surface and forming a part of the articular surface to be replaced. A journal rises from the bearing surface and cooperates with a bore in the plateau to provide lateral support.
U.S. Pat. No. 5,632,745 to Schwartz describes a method of surgically implanting into a site a bio-absorbable cartilage repair assembly. The assembly includes a bio-absorbable polygonal T-shaped delivery unit having radial ribs to be mounted in the removed area and a porous bio-absorbable insert supported by and in the delivery unit. The method comprises the steps of preparing the site to receive the assembly by removing a portion of the damaged cartilage and preparing the site to receive the assembly by drilling and countersinking the bone. The assembly is inserted and seated using an impactor in the drilled and countersunk hole in the bone until the assembly is flush with the surrounding articular surface.
U.S. Pat. No. 5,683,466 to Vitale illustrates an articular joint surface replacement system having two opposing components. Each component has a tapered head piece for covering the end of a bone and for acting as an articular surface, an integrally formed screw stem of sufficient length to extend into the bone and inwardly angled bone grips on the underside of the head piece to allow fixation to the bone by compression fit. The partially spherical convex shaped exterior of the first component complements the partially spherical concave shaped exterior of the second component.
U.S. Pat. No. 5,702,401 to Shaffer discloses an intra-articular measuring device including a hollow handle defining a first passageway and a hollow tube having a second passageway extending from the handle, the hollow tube carrying a projection at its distal end for seating on a fixed site and a probe disposed at the distal end of the hollow tube which may be directed to a second site, to enable measurement of the distance between the first and second sites.
U.S. Pat. No. 5,771,310 to Vannah describes a method of mapping the three-dimensional topography of the surface of an object by generating digital data points at a plurality of sample points on said surface, each digital data point including a property value and a position value corresponding to a particular point representing the properties of the surface of the object. A 3-D transducer probe (e.g., a digitizer) is moved on or over the surface along a random path, and the sample points are digitized to generate a real-time topography or map on a computer screen of selected properties of the object, including without limitation, surface elevation, indentation stiffness, elevation of sub-surface layers and temperature.
Prosthetics for total knee replacement (TKR), whereby the entire knee joint or a single compartment of the knee joint is replaced can be a common eventuality for the patient with a large focal defect. Although these patients are also managed with anti-inflammatory medications, eventual erosion of the remaining articular cartilage results in effusion, pain, and loss of mobility and/or activity for the patient. Problems encountered after implanting such prostheses are usually caused by the eventual loosening of the prosthetic due to osteolysis, wear, or deterioration of the cements used to attach the device to the host bones. Further, some prostheses used are actually much larger than the degenerated tissue that needs to be replaced, so that extensive portions of healthy bone are typically removed to accommodate the prostheses. Patients who undergo TKR often face a long and difficult rehabilitation period, and the life span of the TKR is accepted to be approximately 20 years. Accordingly, efforts are made to forgo the TKR procedure for as long as possible.
Accordingly, there is a need for an improved joint surface replacement system that would be effective in restoring a smooth and continuous articular surface and that would also be as durable as the former hyaline cartilage surface, within the context of a minimally invasive procedure that allows for a nearly immediate return to activity, restoration of lifestyle, and pain relief.
An implant consistent with the invention for installation into a portion of an articular surface includes: a bone-facing distal surface; a proximal surface; and a protrusion formed by an extension of the bone-facing distal surface and the proximal surface.
Another implant consistent with the invention for installation into a portion of an articular surface includes: a bone-facing distal surface configured to mate with an implant site created by excising a portion of the articular surface; a proximal surface having a contour based on an original surface contour of the excised portion of the articular surface; and a cavity configured to allow an un-excised portion of the articular surface proximate to the implant to remodel over a perimeter edge of the proximal surface.
Another implant consistent with the invention for installation into a portion of an articular surface having an anterior portion, a posterior portion, a medial portion and a lateral portion includes: a bone-facing distal surface configured to mate with an implant site created by excising a portion of the articular surface; and a proximal surface having a contour based on an original surface contour of the excised portion of the articular surface, and at least two side surfaces each having a concentric arcuate shape with a common center, wherein the implant has an elongate arcuate geometric shape.
A method for replacing a portion of an articular surface of bone consistent with the invention includes: establishing a working axis substantially normal to an articular surface of bone; excising a portion of the articular surface adjacent to the axis, thereby creating an implant site, the implant site having a first and second opposing arcuate shaped sides; and installing an implant to the implant site.
Another method of replacing a portion of an articular surface of bone consistent with the invention includes: locating an existing defect in the articular surface; establishing a working axis substantially normal to the articular surface and substantially centered with the existing defect; excising a portion of the articular surface adjacent to the axis, thereby creating an implant site; and installing an implant in the implant site, wherein at least a portion of the existing defect is exposed around a perimeter of the implant.
Another implant for installation into a portion of an articular surface consistent with the invention includes: a bone-facing distal surface configured to mate with an implant site created by excising a portion of the articular surface; a proximal surface having a contour based on an original surface contour of the excised portion of the articular surface; at least one arcuate shaped side surface configured to abut an edge of the excised portion of the articular surface, the arcuate shaped side surface having a radial extension configured to cover an un-excised portion of the articular surface proximate to the implant.
Another method for replacing a portion of an articular surface of bone consistent with the invention includes: establishing a working axis substantially normal to an articular surface of bone, the articular surface having a medial side and lateral side defining a width of the articular surface; excising a portion of the articular surface adjacent to the axis, thereby creating an implant site, wherein the excising is performed using a cutting tool that rotates about the axis, the cutting tool having a circular blade portion, the circular blade portion having a diameter greater than the width of the articular surface; and installing an implant to the implant site.
Another implant consistent with the invention for installation into a portion of an articular surface includes: a bone-facing distal surface configured to mate with an implant site created by excising a portion of the articular surface; and a proximal surface having a contour based on an original surface contour of the excised portion of the articular surface, wherein the proximal surface has at least one indentation formed in the proximal surface configured to promote remodeling of articular cartilage over a portion of the proximal surface of the implant once seated.
a is an exploded side view of an exemplary fixation screw and hex-shaped proximal extension in one embodiment of the present invention;
b is an exploded perspective view of an exemplary fixation screw and hex-shaped proximal extension in one embodiment of the present invention;
a is a side view of an exemplary assembled fixation screw and hex shaped extension in one embodiment of the present invention;
b is an exploded perspective view of another exemplary fixation screw and implant in one embodiment of the present invention;
a is a perspective view of the upper surface of an exemplary implant in one embodiment of the present invention;
b is a side view of an exemplary implant in one embodiment of the present invention;
c is a perspective view of the lower surface of an exemplary implant in one embodiment of the present invention;
a is a side view of an exemplary assembled fixation device and implant in one embodiment of the present invention;
b is a perspective view of an assembled fixation device and implant in one embodiment of the present invention;
c is a perspective view of the upper surface of an exemplary implant, in one embodiment of the present invention;
d is a perspective view of the lower surface of an exemplary implant, in one embodiment of the present invention;
a is a sectional view of a knee having damaged articular cartilage, showing an exemplary guide pin drilled into the central portion of the defect and an arthroscope being disposed adjacent thereto, in a surgical procedure consistent with one embodiment of the present invention;
b is a side view of the distal tip of an exemplary drill device for boring a pilot hole to receive an exemplary fixation screw, in one embodiment of the present invention;
a is a sectional view of a knee having damaged articular cartilage, showing an exemplary fixation screw being driven into the defect by an exemplary socket type driver arranged on the guide pin, in a surgical procedure consistent with one embodiment of the present invention;
b is a side view of the exemplary fixation screw, socket type driver and guide pin of
a is a perspective view of a knee having damaged articular cartilage, showing an exemplary fixation screw and hex-shaped proximal extension implanted in the defect after removal of an exemplary socket type driver and guide pin, in a surgical procedure consistent with one embodiment of the present invention;
b is a sagittal view of the exemplary fixation screw and hex-shaped proximal extension of
c is a perspective view of an exemplary fixation screw, proximal extension and cover, in one embodiment of the present invention;
a is a sectional view of an exemplary fixation screw and hex-shaped proximal extension implanted in the defect with the exemplary guide pin replaced and an exemplary measuring tool arranged thereon, in a surgical procedure consistent with one embodiment of the present invention;
b is a side partial cross-sectional view of the exemplary fixation screw and hex-shaped proximal extension of
c is a perspective view of an exemplary fixation screw and proximal extension, with the cover removed, in one embodiment of the present invention;
a is a sectional view of an exemplary fixation screw and hex-shaped proximal extension implanted in the defect, after removal of the hex-shaped proximal extension, with an exemplary pin and suture strands placed therethrough, in a surgical procedure consistent with one embodiment of the present invention;
b is a side partial cross-sectional view of the exemplary fixation screw and hex-shaped proximal extension of
a is a sectional view of an exemplary fixation screw implanted in the defect, with an exemplary pin and suture strands placed therethrough, showing the implanted fixation screw with the implant being tensioned on the suture strands, in a surgical procedure consistent with one embodiment of the present invention;
b is a partial cross-sectional view of the exemplary fixation screw of
a is a schematic representation of the two datum curves used to define a patient-specific three-dimensional surface for construction of the articular or lower surface of an implant in one embodiment of the present invention;
b is a top view of an exemplary hex-shaped proximal extension in one embodiment of the present invention;
c is a perspective view of the bone-contacting or upper surface of an exemplary implant, in one embodiment of the present invention;
a is a perspective view of an exemplary compass instrument, in one embodiment of the present invention;
b is a perspective view of the distal offset arm of an exemplary compass instrument and cutting blade to be mounted thereon, in one embodiment of the present invention;
c is a perspective view of an exemplary driver, showing an exemplary implant on an exemplary tether element, in one embodiment of the present invention;
d is a perspective view of an exemplary driver, showing an exemplary implant tensioned on an exemplary tether element, in one embodiment of the present invention;
a is a perspective view of another exemplary cutting blade, in one embodiment of the present invention;
b is a perspective view of an exemplary measuring probe, in one embodiment of the present invention;
c is a perspective view of an exemplary multi-faced blade mounted in the distal offset arm of an exemplary compass instrument, in one embodiment of the present invention;
a is a perspective view of an exemplary site preparation and cutting device, in one embodiment of the present invention;
b is a cross sectional view of the exemplary site preparation and cutting device of
c is a perspective view of another exemplary site preparation and cutting device, in one embodiment of the present invention;
d is a side view of another exemplary site preparation and cutting device, in one embodiment of the present invention;
e is a perspective view of another exemplary site preparation and cutting device, in one embodiment of the present invention;
a is a sectional view of the upper surface of an exemplary implant, in one embodiment of the present invention;
b is a side view of a portion of the exemplary implant of
c is a perspective view of the upper surface of the exemplary implant of
d is an exploded perspective view of another exemplary implant with taper lock ring, washer and suture, in one embodiment of the present invention;
e is a top perspective view of the exemplary implant of
f is a bottom perspective view of the exemplary implant of
g is a perspective view of the exemplary implant of
h is another perspective view of the exemplary implant of
i is another perspective view of the exemplary implant of
a is a perspective view of an exemplary inner recording element of an exemplary measuring device, in one embodiment of the present invention;
b is a perspective view of an exemplary outer marking element of an exemplary measuring device, in one embodiment of the present invention;
c is a cross-sectional perspective view of an exemplary measuring device showing an exemplary inner recording element and an exemplary outer marking element, in one embodiment of the present invention;
d is an exploded perspective view of another exemplary measuring device, in one embodiment of the present invention;
e is a perspective view of the exemplary measuring device of
f and 20g are side views of the exemplary measuring device of
h is a perspective view of the distal end of the exemplary measuring device of
i is a perspective view of the distal end of the exemplary measuring device of
a is a perspective view of an exemplary drill guide device in an exemplary generic bone implant embodiment of the present invention;
b is a perspective view of another exemplary drill guide device in an exemplary generic bone implant embodiment of the present invention;
a is a top sectional view of the anterior-posterior plane of an articulating surface in an exemplary generic bone implant embodiment of the present invention;
b is a side sectional view of the medial-lateral plane of an articulating surface in an exemplary generic bone implant embodiment of the present invention;
a illustrates a top perspective cutaway view of an exemplary printed linear index strip passing through an exemplary linear head for reading, in an exemplary handpiece in an exemplary digital measuring system in one embodiment of the present invention;
b illustrates a top perspective cutaway view of an exemplary printed rotary index strip passing through an exemplary rotary head for reading, in an exemplary handpiece in an exemplary digital measuring system in one embodiment of the present invention;
c illustrates an exemplary linear index strip in an exemplary handpiece in an exemplary digital measuring system in one embodiment of the present invention;
d illustrates an exemplary rotary index strip in an exemplary handpiece in an exemplary digital measuring system in one embodiment of the present invention;
a illustrates a side perspective view of an exemplary handpiece with the probe assembly removed, in an exemplary digital measuring system in one embodiment of the present invention;
b illustrates a side perspective view of an exemplary handpiece, including the probe assembly, in an exemplary digital measuring system in one embodiment of the present invention;
As an overview,
As illustrated in
One or more milled slots 13 run the length of the uniform diameter portion of the screw 10. Slots 13 ensure that as healing or tissue in-growth begins, migrational or rotational movement of the screw is inhibited. The screw 10 is configured to be driven by a female or socket type driver 2 as shown in
Alternatively, as shown in
Also, while many of the components described herein are cannulated, having guide apertures, through holes, and/or central lumina along their length, for disposing such components about a guide rod for proper location of the components with respect to the articular surface, it should be recognized that a suture 313 or other flexible element, or other guide feature may be used in place of a guide rod, or a guide rod or wire may be eliminated altogether from one or more steps consistent with the invention described herein. As shown in
As shown in
In order to secure the implant 40 to the fixation screw 10, precision taper 44 is machined into or onto a protrusion 45 on the top surface 42 of the implant. The precision taper 44 is configured to engage the cylindrical proximal extension 14 of the screw 10, once the hex-shaped cover 30 has been removed therefrom. Taper 44 may be mated with extension 14 so that a friction fit is provided between these surfaces. The assembled fixation device is shown in
As shown in
By way of example,
A drill mechanism 306, as illustrated in
For surface preparation and accurate measurement of the implant site and the subsequent sizing of the implant, instrument 120 is provided. The compass instrument 120 may be configured to serve as a mounting tool for a number of functional blades or tips and when located about the axis 20A, via guide rod 20, may be used for measuring and cutting operations. In the embodiment shown in
Referring to
As illustrated in
In an alternative embodiment, as shown in
Turning now to
a, 20b and 20c show an alternative measuring and mapping device 210 for obtaining the articular surface dimension, comprising housing 217 and a recording element 218. As shown in
Turning to
For example, as shown in
Locating surfaces or features created on the radius cover 30, or along some length of the fixation screw 10, hex-shaped drive surface of the screw 14 or on the cylindrical proximal extension (or recess) of the screw 14, correlate to some surface or feature on the measuring tool 70 and allow the measurement of the rotational position of the four measured points 81a, 81b, 82 and 82b, about the reference axis 20A with respect to said locating surfaces. This data becomes important in configuring the implant 40 with respect to the fixation screw 10 so that the proper orientation of said measured points to fabricated geometry is maintained. Of course, such measuring tool can be configured to measure any number of points at any interval desired.
While the measurements are illustrated in
Other embodiments of measuring and recording tools are possible. One such embodiment of a measuring and recording tool 210′ is shown in
As shown in
As shown in
Referring now to
Datum curves 86 and 87, representing the medial-lateral (“ML”) and anterior-posterior (“AP”) curves, are constructed by connecting the end points of the line elements 81a and 81b, and 82a and 82b and the point of origin 80, which is common to both curves. These two datum curves 86 and 87 can be used to construct the articular or bottom surface 41 of the prosthetic implant 40. By sweeping datum curve 87 along a path defined by datum curve 86, a three dimensional surface is now defined.
By constructing this series of geometric relationships in a known parametric engineering model, patient-specific geometry can be input as values and the model algorithm can be run to reproduce the anatomic contours mapped in the patients within only a few moments. As a process, this generic model is the starting point for all patient treatments. Sterile pins, screws, and measuring devices that are all non-patient-specific may be stocked in the hospital and ready to use whenever an appropriate defect is diagnosed. Patient-specific data may be transmitted from the surgeon to the fabricating facility via an interface to the Internet or other network. Data input into the interface may be read directly into the generic parametric model to produce a viewable and even mappable patient-specific parametric model within moments. Confirmation by the surgeon could initiate a work order for the production of the patient specific device. Existing technology allows the parametric model to generate toolpaths and programming, e.g., to a CAD/CAM system comprising appropriate hardware and/or software coupled to appropriate data-driven tools, to fabricate the implant.
Defining two additional datum curves 88 and 89, at offset distances from datum curves 86 and 87, is performed to define the top or non-bearing surface 42 of the implant 40. This top surface 42 should be closely matched to the bearing surface geometry to be implanted without having to remove an excessive quantity of bone from the chondral surface.
Referring to
For example, as shown in
As shown in
However, if a greater depth of implant is needed as a result of the defect appearance the offset curves 88 and 89 (as shown in
With reference now to
In the foregoing exemplary algorithm, a first data point D6 is initially assigned as the maximum value (maxval). If . . . then type statements are used to compare other data points (D11 and D14) to maxval. If other data points are greater than maxval, the algorithm reassigns maxval to the new larger data point. LLMT represents the height of the lower limit plane along the z-axis, and ULMT represents the height of the upper limit plane along the z-axis. D684 is a dimension that controls the ULMT plane, which is established in the model as the upper surface of the implant. ULMT is positioned as maxval plus an additional arbitrary and/or fixed material offset (0.045 in this case).
c and 5d illustrate an alternative embodiment of the implant 40′, having a ML curve between data points 340 and 341 and an AP curve between data points 342 and 343, with male-shaped mating component 304 and key-shaped portion 344 for engagement with a reciprocal key-shaped surface in the proximal extension of a fixation screw, protrusions 345 (creating contact surfaces on the top 346 of the implant 40′), radial cuts 347 located at the outer diameter 348 of the implant 40′, and radius 349 (which may be formed, e.g. using an abrasive wheel) around the intersection of the outer diameter at point 341 and the surface comprising the patient geometry.
Referring to
In an alternative embodiment, as shown in
As shown in
Additional data can be taken at the time of the initial procedure, e.g., for fabricating a non-circular implant. Additional data curves can also be defined by measuring the offsets from the reference axis 20A and determining diameters at these offsets. The final implant geometry, although measured using circular techniques, need not be circular.
Referring to
Turning to
If necessary, the arthroscopic wound 200 is expanded slightly in either a vertical or horizontal direction, so that the implant 40 may be passed through. A polymeric sleeve (not shown) positioned over the implant may prove helpful in passing the implant through the incision. As shown in
As shown in
Referring to
Finally, as shown in
Alternatively, guide aperture 46 in the implant 40 may be altogether eliminated by using an alternative implant delivery system, as shown in
As shown in
As
Further composite implant embodiments are illustrated in
Other materials from which an implant consistent with the invention may be constructed, in whole or in part, include ceramic, e.g. aluminum oxide or zirconium oxide; metal and metal alloys, e.g. Co—Cr—W—Ni, Co—Cr—M, CoCr alloys, CoCr Molybdenum alloys, Cr—Ni—Mn alloys, powder metal alloys, 316L stainless steel, Ti 6Al-4V ELI; polymers, e.g., polyurethane, polyethylene (wear resistant and cross-linked), thermoplastic elastomers; biomaterials, e.g. polycaprolactone; and diffusion hardened materials, e.g. Ti-13-13, Zirconium and Niobium. Coatings used may include, e.g., porous coating systems on bone-contacting surfaces, hydrophilic coatings on load-bearing surfaces, hydroxyapatite coatings on bone-contacting surfaces, and tri-calcium phosphate on bone-contacting surfaces. Additionally, components of the invention may be molded or cast, hand-fabricated, or machined.
Alternatively, measurement methods may be utilized whereby radius measurements are taken with respect to an axis AA corresponding to an axis about the point of origin in the implant to be used (as shown in
It is noted that, although the invention is herein described as utilizing a single reference axis, multiple reference axes may be used for measuring, mapping, or cutting a single defect or an articular surface having multiple defects, as well as for fabricating a single implant, or multiple implants for a single articular surface, consistent with the invention. In other embodiments, methods for mapping the defect and/or articular surface other than those described hereinabove are possible, e.g., MRI or CT scanning, fluoroscopy, ultrasound, bone density, other stereotactic systems, nuclear medicine, or other sound or light wave-based imaging methods.
It is further noted that, although the invention is described herein as utilizing the specific geometry of a patient's articular surface to fabricate an implant for that patient, it is contemplated that data from a plurality of patients may be analyzed statistically and utilized in fabricating and/or manufacturing (e.g. in large quantities) one or more universal, generic, or standard supply item type implants for medical practitioners to use in a procedure consistent with the invention. For such implants, as well as for patient-specific implants as described herein, pre- or post-implantation trimming may be required to correct for minor variations that may occur as between the implant and the subchondral bone (or other articular surface).
It should be understood that, although the various tools described hereinabove, e.g., for measuring, cutting, and seating, are described as separate devices, a single handle, shaft and/or instrument may be configured to serve as a universal mounting tool for a series of devices for performing various functions consistent with the invention.
Generic Bone Resurface Implant, Cutting Tool, and Procedure
a-48 depict another exemplary embodiment of the present invention. In this embodiment a generic bone implant (or set of standardized implants) is created (or selected) based on developing an axis normal to the surface and collecting only one data point. In the above-described embodiments, a non-normal axis was utilized, and four data points were required to develop ML and AP curves. Further, a generic cutting tool is used to cut the bone at this site to a point where a generic implant can be used. Several improved tools relating to the procedure for using such an implant (as well as for using implants as described hereinabove) are further described in this section and illustrated in the corresponding figures.
a depicts an exemplary drill guide device 700 according to this exemplary embodiment. The guide 700 includes a contact surface 702 of known diameter d on the distal end 708 of the guide, where diameter d is generally the width of the widest portion of the site of the lesion. The distal end 708 of the guide is generally a hollowed-out toroidal structure attached to a handle 706. A central lumen 704 runs the length of the guide from the attachment point of the distal end 708 to the handle 706, and through the handle 706. The guide device may be constructed in a number of other ways, including, e.g., a distal end 708 comprising a transparent material, e.g., polycarbonate or another clear plastic. For example, as shown in
Referring now to
With reference now to
As illustrated in
Those skilled in the art will recognize that the cutting tool may be motorized in certain embodiments, and/or alternatively, as illustrated in
Alternative Embodiment of Screw
Alternative Method for Developing Axis Normal to Lesion Site Surface
It should be noted that, alternatively, contact surfaces may be constructed of some pliable, or malleable material(s) so that independently moving rigid mechanical members are not necessary. As long as the contact surfaces provide a normalizing force to some central shaft when the contact surfaces are applied to the articular surface, a normal axis could be defined.
In another embodiment, this biaxial guide could be replaced by a series of sized “trials” or gauges of predefined surfaces of varying dimensions, which are simply pressed onto the articular surface to visually determine an appropriate fit. These gauges may resemble an implant, as described herein, without any features (e.g., fixation element or screw) on the underside, and may contain a handling tab or other element for holding the gauge. The contact surfaces of these gauges may have a circular cross section, an ovular cross section, or another cross-section comprising a plurality of points to surround a defect in an articular surface, and the plurality of points may or may not lie in the same plane. Although they may be less precise or less accurate than other measuring methods described herein, it is contemplated that implant selection could be made directly from these gauges.
Digital Measuring System
Exemplary strips and heads may include those manufactured by U.S. Digital™ Corporation of Vancouver, Wash., USA.
Turning now to
It should be noted that in the digital measuring system and method described hereinabove (as well as any of the mapping/measuring techniques herein), a second (or third, etc.) set of data points may be taken, and the subsequent set(s) of data points compared with the original data points taken, to reduce the margin of error from taking only a single set of data points. Thus, a software algorithm in a system or method consistent with the invention may comprise appropriate routines to effect such comparisons, for error reduction purposes.
Further Alternative Implant Structures
Turning to
The implant 6200 may include a radial ring 6220 formed on the bone-facing distal surface of the implant 6200. The radial ring may be dimensioned to the excised portion such that the arcuate shaped outer side surface 6223 defines the size of the cut portion in the articular surface. The radial ring 6220 may have a width r4 in a radial direction from the center point P of the implant 6200 and a height h1 in the z-axis direction. The arcuate shaped outer side surface 6223 of the radial ring 6220 may be a radial distance r1 from the center point P of the implant 6200. The radial ring 6220 may also include a plurality of radial slots 6224 spaced evenly along the circumference of the ring in order to assist with anchoring of the implant to the bone.
Turning the
The top or proximal surface 6232 of the protrusion 6204 may simply be an extension of the proximal or load bearing surface 6205 of the implant 6200. As such, the protrusion 6204 extends beyond the outside arcuate edge 6223 of the radial ring 6220. Accordingly, the protrusion 6204 has a width r3 at any one point along the perimeter of the implant 6200 equal to the difference between the radial distance r2 from the center point P of the implant to the exterior edge 6214 of the protrusion 6204 and the radial distance r1 from the center point P of the implant to the outside arcuate edge 6223 of the radial ring 6220. The width r3 of the protrusion may be a consistent width around the entire perimeter of the implant or may vary along the perimeter as conditions of the proximate articular cartilage vary.
The protrusion 6204 is also defined by a bone-facing or distal surface 6206 that may extend to cover a portion of the un-excised articular surface 6218. The distal surface 6206 of the protrusion 6204 may be shaped in any number of ways to match the mating edge of the articular surface 6218 proximate to the distal surface 6206 of the rim 6204. As illustrated in
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
The implant 6500 has a length from an anterior end of the implant to a posterior end of the implant along a segment of the arc ArcAP. The implant also had a width from the medial end of the implant to the lateral end of the implant along a segment of the arc ArcML. Obviously, the arc segment in the ML plane is less than the arc segment in the AP plane, for the non-round or elongate shaped implant 6500.
The implant 6500 may also have one concentric arcuate shaped side surface 6517 located opposite another concentric arcuate shaped side surface 6519. Such side surfaces 6517, 6519 are concentric with a common center. Such side surfaces 6517, 6519 are also configured to mate with a cut or reamed edge of bone and/or articular cartilage when seating the implant. The implant 6500 also has a length l6500 in a plane defined by the maximum distance between two points on the arcuate shaped side surfaces 6517, 6519.
The implant also may also have two other opposing side surfaces 6521, 6523. Such surfaces 6521, 6523 are generally flat to where the surface cutter “runs off” of the condyle. The distance in a plane between the two side surfaces 6521, 6523 define the width w6500 of the implant 6500. Having such an elongated or non-round implant allows the treatment of a greater variety of articular defects, and may also be effective in reducing fray between the perimeter of the cut articular cartilage and the implant 6500.
When articular surface mapping is done using one axis normal to the surface of the implant, two measuring probes may be utilized. One measuring probe may be utilized to map the points for the AP curve and another smaller diameter measuring probe may be utilized to map the points for the ML curve so as it is revolved its captures the data for points M and L. The implant 6500 may be defined by the ML curve swept along the AP curve as previously described herein. Alternatively, the implant may be a generic bone surface implant as previously described with reference to
Turning to
The implant site 6511 may be generated a number of ways. In one instance, a reaming or cutting tool 6524 having a circular blade portion 6526 with a blade diameter dblade greater than the width Wsurface of the articular surface 6608 to which the implant will be affixed may be utilized. Another exemplary reaming tool 744 is discussed more fully with reference to
This straight line distance dAP in an AP plane is dependent on a number of factors including the depth of the cutout bottom surface 6510 compared to the top or proximal surface 6505 of the implant, and the shape of the surrounding articular surface 6508 to which the implant will be applied. Once properly reamed, the implant site 6511 of
Turning to
In one exemplary method of setting the non-round implant 6500, the diameter φ1 of one measuring probe may be used to define the diameter dblade of a round blade 6526 from a reaming tool 6524. As such, the diameter φ1 of such a measuring probe may typically be equal to the diameter dblade of the round blade 6526 from a reaming tool 6524. The diameter φ2 from another measuring probe may defines the ML curve and hence the arcuate width of the implant along that curve.
Turning to
Protrusion 6605 is generally similar to protrusion 6606 so for clarity, description herein is made to protrusion 6606 only. Protrusion 6606 may extend radially from the arcuate shaped side surface 6623 to cover an un-excised portion 6634 of articular surface 6608 (see
The protrusion 6606 has a width r3 at any one point along the arc of the implant on the anterior side equal to the difference between the radial distance r2 from the center point P of the implant to the exterior edge 6640 of the protrusion 6606, and the radial distance r1 from the center point P of the implant to the outside arcuate side surface 6623. The width r3 of the rim may be a consistent width around the perimeter of the arc or may vary as conditions of the mating articular cartilage vary. Although not illustrated, the protrusions 6605, 6606 of the elongated implant 6600 may also have protuberance to more securely affix the rim to the articular cartilage as described and illustrated earlier with reference to
Turning to
Turning to
In other words, the implant 6700 is mapped and placed within the borders of the existing defect. As such, the portion of the articular surface excised for the implant site has a surface area less than the surface area of the defect. Such an alternative method may be accomplished by any of the variety of methods discussed herein. For instance, one method may include locating the defect in the articular surface, establishing a working axis substantially normal to the articular surface and substantially centered within the defect, excising a portion of the bone surface adjacent to the axis thereby creating an implant site 6711, and installing the implant in the implant site where a least a portion 6707, 6709 of the existing defect is exposed around a perimeter of the defect. Such a method may require measuring down to the exposed subchondral bone, or measuring the articular cartilage surface in closes proximity to the implant site. Of course, a portion of the defect 6707 proximate to the posterior side may, of course, have a different shape or configuration as that portion of the defect 6709 proximate to the anterior side of the implant 6700 when seated.
Turning to
Turning to
Turning to
According to another alternative embodiment, an implant having a resiliently deflectable proximal feature may be provided for replacing at least a portion of an articular surface. An implant load bearing surface for interacting with a coordinating articular surface is provided, wherein the contour of the load bearing surface may be generally based on a contour of an original articular surface being repaired or replaced, as described above in detail in the previous embodiments herein. The load bearing surface is configured to be at least partially deformable under an applied load. The deflection feature may provide additional resistance to any impact applied to the load bearing surface. Furthermore, the deflection feature of the implant consistent with the instant embodiment may be adapted to accommodate a load bearing surface contour that is not an exact match for an original articular surface.
Referring to
The first component 6902 may be configured to be received in an implant site created by excising a portion of an articular surface. Accordingly, the inner component 6902 may have a generally circular profile distal bone-facing surface 6906, which may include a generally centrally located tapered post mounting feature 6905 extending therefrom. Alternative locating mounting features may be employed instead of a tapered post, such as described above in previous embodiments herein. Many such alternatives will become apparent to those having skill in the art.
The shell component 6904 may include an upstanding peripheral rim 6908 formed on the bone-facing distal side of the implant 6900. The peripheral rim 6908 may be dimensioned to an excised portion of an implant site such that the shell component 6904 may be received in the implant site of an articular surface. The peripheral rim 6908 may include a plurality of radial slots 6910 spaced evenly along the distal edge of the peripheral rim 6908 in order to assist with anchoring of the implant to the bone.
Turning to
A pocket 6915 for receiving the inner component 6902 may be defined by the load bearing wall 6907 and inside diameter 6914 of the peripheral rim 6908. The outer diameter 6912 of the inner component 6902 and the inner diameter 6914 of the peripheral rim 6908 of the shell component may be sized to form a press fit or an interference fit. Seating of the inner component 6902 within the shell component 6904 may be controlled by location features on the respective components 6902, 6904. Exemplary location features may include hard stops 6916 and 6918 respectively on the inner component 6902 and the shell component 6904. The respective hard stops 6916 and 6918 may allow precise control of the seating depth of the inner component 6902 within the shell component 6904. Additionally, the inner edge of the pocket may include a radiused transition 6920 to prevent any localized stresses, such as may occur from either the press fit assembly of the inner component 6902 into the shell component 6904, or from the deflection of the load bearing wall 6907.
Turning next to
As shown, when assembled, the first inner component 6902 and the second shell component 6904 may be spaced apart, such that there is a gap 6924 between the adjacent faces of the inner component 6902 and shell component 6904. The space 6924, in conjunction with the relatively thin load bearing wall 6907 of the shell component 6904, allows the load bearing surface 6909 of the implant to permit at least partial deflection under load, as from an interacting articular surface. The maximum degree of deflection may be controlled by the space 6924 between the first component 6902 and the second component 6904.
The thickness of the resiliently deflectable load bearing wall 6907 may be varied to achieve different levels of resistance to deflection. Similarly, modulus of the material making of the load bearing wall 6907 may be varied to achieve different levels of resistance to deflection. Furthermore, the space 6924 between the first component 6902 and the second component 6904 may be filled with a material, such as air, fluid, polymer, etc. The type and character of any material disposed in the space 6924 may also be modified to adjust the deflection characteristics of the load bearing wall 6907.
This resilient deflection feature may provide some degree of shock absorption and/or aid in the smooth interaction with corresponding articular surfaces, and/or aid in the distribution of localized loading on the load bearing surface. The resilient deflection may be based on, for example, known force profiles for the replaced articular surface. In that regard,
Accordingly, those skilled in the art will recognize that the thickness of the load bearing wall can be adjusted to more closely mach the stiffness profile of the human anatomy. As alluded to above, silicon gel or other suitable fluid material can be placed in the gap 6924 to further control the stiffness profile of the implant.
It should be appreciated that there may be numerous alternative implant configurations capable of providing the deflection feature, including one piece, as well as two or more piece assemblies. Consistent with this aspect of the invention such alternatives may generally include a deflectable load bearing wall having a load bearing surface.
The exemplary implant 6900 may be surgically delivered to an implant site in a manner as discussed with respect to preceding embodiments of the invention. Similarly, as shown in
The terms “resiliently deformable”, as used in conjunction with this embodiment, shall be construed broadly to generally define the elestomeric properties of the implant. The term deflection means that the shape of load bearing surface is “dented” or bent when a load is applied, and that the material of the load bearing surface, being resiliently deformable, shall return to substantially its original shape when the load is removed.
Those skilled in the art will recognize that the present invention is subject to other modifications and/or alterations, all of which are deemed within the scope of the present invention, as defined in the hereinafter appended claims.
This application is a continuation application under 37 CFR §1.53(b) of U.S. application Ser. No. 10/373,463 filed Feb. 24, 2003 (now U.S. Pat. No. 7,678,151), which is a continuation-in-part application of application Ser. No. 10/162,533, filed Jun. 4, 2002 (now U.S. Pat. No. 6,679,917), which is itself a continuation-in-part application of application Ser. No. 10/024,077, filed Dec. 17, 2001 (now U.S. Pat. No. 6,610,067) which is itself a continuation-in-part application of application Ser. No. 09/846,657, filed May 1, 2001 (now U.S. Pat. No. 6,520,964) which claims the benefit of U.S. provisional application Ser. No. 60/201,049, filed May 1, 2000, all of which are incorporated herein for reference.
Number | Name | Date | Kind |
---|---|---|---|
992819 | Springer | May 1911 | A |
1451610 | Gestas | Apr 1923 | A |
2267925 | Johnston | Dec 1941 | A |
2379984 | Nereaux | Jul 1943 | A |
2381102 | Boyd | Oct 1943 | A |
2570465 | Lundholm | Oct 1951 | A |
3176395 | Warner et al. | Apr 1965 | A |
3715763 | Link | Feb 1973 | A |
3840905 | Deane | Oct 1974 | A |
3852830 | Marmor | Dec 1974 | A |
4016651 | Kawahara et al. | Apr 1977 | A |
4016874 | Maffei et al. | Apr 1977 | A |
4034418 | Jackson et al. | Jul 1977 | A |
4044464 | Schiess et al. | Aug 1977 | A |
4158894 | Worrell | Jun 1979 | A |
4319577 | Bofinger et al. | Mar 1982 | A |
4330891 | Brånemark et al. | May 1982 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4344192 | Imbert | Aug 1982 | A |
4433687 | Burke et al. | Feb 1984 | A |
4462120 | Rambert et al. | Jul 1984 | A |
4474177 | Whiteside | Oct 1984 | A |
4484570 | Sutter et al. | Nov 1984 | A |
4531517 | Forte et al. | Jul 1985 | A |
4535768 | Hourahane et al. | Aug 1985 | A |
4565768 | Nonogaki et al. | Jan 1986 | A |
4634720 | Dorman et al. | Jan 1987 | A |
4655752 | Honkanen et al. | Apr 1987 | A |
4661536 | Dorman et al. | Apr 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4664669 | Ohyabu et al. | May 1987 | A |
4673407 | Martin | Jun 1987 | A |
4693986 | Vit et al. | Sep 1987 | A |
4708139 | Dunbar, IV | Nov 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4714478 | Fischer | Dec 1987 | A |
4719908 | Averill et al. | Jan 1988 | A |
4722331 | Fox | Feb 1988 | A |
4729761 | White | Mar 1988 | A |
4781182 | Purnell et al. | Nov 1988 | A |
4788970 | Kara et al. | Dec 1988 | A |
4823780 | Odensten et al. | Apr 1989 | A |
4842604 | Dorman et al. | Jun 1989 | A |
4896663 | Vandewalls | Jan 1990 | A |
4911153 | Border | Mar 1990 | A |
4911720 | Collier | Mar 1990 | A |
4920958 | Walt et al. | May 1990 | A |
4927421 | Goble et al. | May 1990 | A |
4936853 | Fabian et al. | Jun 1990 | A |
4938778 | Ohyabu et al. | Jul 1990 | A |
4940467 | Tronzo | Jul 1990 | A |
4945904 | Bolton et al. | Aug 1990 | A |
4976037 | Hines | Dec 1990 | A |
4978258 | Lins | Dec 1990 | A |
4979957 | Hodorek | Dec 1990 | A |
4989110 | Zevin et al. | Jan 1991 | A |
4990163 | Ducheyne et al. | Feb 1991 | A |
4997434 | Seedhom et al. | Mar 1991 | A |
4998938 | Ghajar et al. | Mar 1991 | A |
5007930 | Dorman et al. | Apr 1991 | A |
5019104 | Whiteside et al. | May 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5092895 | Albrektsson et al. | Mar 1992 | A |
5100405 | McLaren | Mar 1992 | A |
5127920 | MacArthur | Jul 1992 | A |
5154720 | Trott et al. | Oct 1992 | A |
5180384 | Mikhail | Jan 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5201881 | Evans | Apr 1993 | A |
5207753 | Badrinath | May 1993 | A |
5211647 | Schmieding | May 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5234435 | Seagrave, Jr. | Aug 1993 | A |
5255838 | Gladdish, Jr. et al. | Oct 1993 | A |
5263498 | Caspari et al. | Nov 1993 | A |
5263987 | Shah | Nov 1993 | A |
5282863 | Burton | Feb 1994 | A |
5290313 | Heldreth | Mar 1994 | A |
5312411 | Steele | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5314482 | Goodfellow et al. | May 1994 | A |
5324295 | Shapiro | Jun 1994 | A |
5336224 | Selman | Aug 1994 | A |
5354300 | Goble et al. | Oct 1994 | A |
5358525 | Fox et al. | Oct 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5374270 | McGuire et al. | Dec 1994 | A |
5383937 | Mikhail | Jan 1995 | A |
5387218 | Meswania | Feb 1995 | A |
5395401 | Bahler | Mar 1995 | A |
5409490 | Ethridge | Apr 1995 | A |
5409494 | Morgan | Apr 1995 | A |
5413608 | Keller | May 1995 | A |
5423822 | Hershberger et al. | Jun 1995 | A |
5423823 | Schmieding | Jun 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5480443 | Elias | Jan 1996 | A |
5486178 | Hodge | Jan 1996 | A |
5509918 | Romano | Apr 1996 | A |
5520695 | Luckman | May 1996 | A |
5522900 | Hollister | Jun 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5540696 | Booth, Jr. et al. | Jul 1996 | A |
5562664 | Durlacher et al. | Oct 1996 | A |
5580353 | Mendes et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5593450 | Scott et al. | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5597273 | Hirsch | Jan 1997 | A |
5601550 | Esser | Feb 1997 | A |
5607480 | Beaty | Mar 1997 | A |
5616146 | Murray | Apr 1997 | A |
5620055 | Javerlhac | Apr 1997 | A |
5624463 | Stone et al. | Apr 1997 | A |
5632745 | Schwartz | May 1997 | A |
5634927 | Houston et al. | Jun 1997 | A |
5645598 | Brosnahan, III | Jul 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
5681320 | McGuire | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683400 | McGuire | Nov 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5700264 | Zucherman et al. | Dec 1997 | A |
5700265 | Romano | Dec 1997 | A |
5702401 | Shaffer | Dec 1997 | A |
5702465 | Burkinshaw | Dec 1997 | A |
5702467 | Gabriel et al. | Dec 1997 | A |
5741266 | Moran et al. | Apr 1998 | A |
5765973 | Hirsch et al. | Jun 1998 | A |
5769855 | Bertin et al. | Jun 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5771310 | Vannah | Jun 1998 | A |
5776137 | Katz | Jul 1998 | A |
5782835 | Hart et al. | Jul 1998 | A |
5800440 | Stead | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5816811 | Beaty | Oct 1998 | A |
5817095 | Smith | Oct 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5824105 | Ries et al. | Oct 1998 | A |
RE36020 | Moore et al. | Dec 1998 | E |
5882350 | Ralph et al. | Mar 1999 | A |
5885297 | Matsen, III | Mar 1999 | A |
5885298 | Herrington et al. | Mar 1999 | A |
5888210 | Draenert | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895390 | Moran et al. | Apr 1999 | A |
5911126 | Massen | Jun 1999 | A |
5918604 | Whelan | Jul 1999 | A |
5919196 | Bobic et al. | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5928241 | Menut et al. | Jul 1999 | A |
5928286 | Ashby et al. | Jul 1999 | A |
5964752 | Stone | Oct 1999 | A |
5964768 | Huebner | Oct 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
5968050 | Torrie | Oct 1999 | A |
5989269 | Vibe-Hansen et al. | Nov 1999 | A |
5990382 | Fox | Nov 1999 | A |
5997543 | Truscott | Dec 1999 | A |
5997582 | Weiss | Dec 1999 | A |
6004323 | Park et al. | Dec 1999 | A |
6010502 | Bagby | Jan 2000 | A |
6015411 | Ohkoshi et al. | Jan 2000 | A |
6017348 | Hart et al. | Jan 2000 | A |
6019767 | Howell | Feb 2000 | A |
6019790 | Holmberg et al. | Feb 2000 | A |
6045564 | Walen | Apr 2000 | A |
6052909 | Gardner | Apr 2000 | A |
6059831 | Braslow et al. | May 2000 | A |
6071310 | Picha et al. | Jun 2000 | A |
6081741 | Hollis | Jun 2000 | A |
6086593 | Bonutti | Jul 2000 | A |
6086614 | Mumme | Jul 2000 | A |
6102948 | Brosnahan, III | Aug 2000 | A |
6120511 | Chan | Sep 2000 | A |
6120542 | Camino et al. | Sep 2000 | A |
6132433 | Whelan | Oct 2000 | A |
6146385 | Torrie et al. | Nov 2000 | A |
6149654 | Johnson | Nov 2000 | A |
6152960 | Pappas | Nov 2000 | A |
6159216 | Burkinshaw et al. | Dec 2000 | A |
6165223 | Metzger et al. | Dec 2000 | A |
6168626 | Hyon et al. | Jan 2001 | B1 |
6171340 | McDowell | Jan 2001 | B1 |
6193724 | Chan | Feb 2001 | B1 |
6206885 | Ghahremani et al. | Mar 2001 | B1 |
6206926 | Pappas | Mar 2001 | B1 |
6217549 | Selmon et al. | Apr 2001 | B1 |
6217619 | Keller | Apr 2001 | B1 |
6235060 | Kubein-Meesenburg et al. | May 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6254605 | Howell | Jul 2001 | B1 |
6270347 | Webster et al. | Aug 2001 | B1 |
6280474 | Cassidy et al. | Aug 2001 | B1 |
6299645 | Ogden | Oct 2001 | B1 |
6299648 | Doubler et al. | Oct 2001 | B1 |
6306142 | Johanson et al. | Oct 2001 | B1 |
6315798 | Ashby et al. | Nov 2001 | B1 |
6322500 | Sikora et al. | Nov 2001 | B1 |
6328752 | Sjostrom et al. | Dec 2001 | B1 |
6342075 | MacArthur | Jan 2002 | B1 |
6358251 | Mirza | Mar 2002 | B1 |
6358253 | Torrie et al. | Mar 2002 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6375658 | Hangody et al. | Apr 2002 | B1 |
6383188 | Kuslich | May 2002 | B2 |
6415516 | Tirado et al. | Jul 2002 | B1 |
6443954 | Bramlet et al. | Sep 2002 | B1 |
6451023 | Salazar et al. | Sep 2002 | B1 |
6461373 | Wyman et al. | Oct 2002 | B2 |
6468309 | Lieberman | Oct 2002 | B1 |
6478178 | Montgomery | Nov 2002 | B2 |
6478801 | Ralph et al. | Nov 2002 | B1 |
6478822 | Leroux et al. | Nov 2002 | B1 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6494914 | Brown et al. | Dec 2002 | B2 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6527754 | Tallarida et al. | Mar 2003 | B1 |
6530956 | Mansmann | Mar 2003 | B1 |
6537274 | Katz | Mar 2003 | B1 |
6540786 | Chibrac et al. | Apr 2003 | B2 |
6551322 | Lieberman | Apr 2003 | B1 |
6554866 | Aicher et al. | Apr 2003 | B1 |
6575980 | Robie et al. | Jun 2003 | B1 |
6575982 | Bonutti | Jun 2003 | B1 |
6585666 | Suh et al. | Jul 2003 | B2 |
6591581 | Schmieding | Jul 2003 | B2 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6602258 | Katz | Aug 2003 | B1 |
6607561 | Brannon | Aug 2003 | B2 |
6610067 | Tallarida et al. | Aug 2003 | B2 |
6610095 | Pope et al. | Aug 2003 | B1 |
6623474 | Ponzi | Sep 2003 | B1 |
6626950 | Brown et al. | Sep 2003 | B2 |
6629997 | Mansmann | Oct 2003 | B2 |
6632246 | Simon et al. | Oct 2003 | B1 |
6679917 | Ek | Jan 2004 | B2 |
6746451 | Middleton et al. | Jun 2004 | B2 |
6755837 | Ebner | Jun 2004 | B2 |
6755865 | Tarabishy | Jun 2004 | B2 |
6770078 | Bonutti | Aug 2004 | B2 |
6783550 | MacArthur | Aug 2004 | B2 |
6783551 | Metzger et al. | Aug 2004 | B1 |
6802864 | Tornier | Oct 2004 | B2 |
6814735 | Zirngibl et al. | Nov 2004 | B1 |
6827722 | Schoenefeld | Dec 2004 | B1 |
6860902 | Reiley | Mar 2005 | B2 |
6884246 | Sonnabend et al. | Apr 2005 | B1 |
6884621 | Liao et al. | Apr 2005 | B2 |
6893467 | Bercovy | May 2005 | B1 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6926739 | O'Connor | Aug 2005 | B1 |
6962577 | Tallarida et al. | Nov 2005 | B2 |
6969393 | Pinczewski et al. | Nov 2005 | B2 |
6984248 | Hyde, Jr. | Jan 2006 | B2 |
6989016 | Tallarida et al. | Jan 2006 | B2 |
7029479 | Tallarida et al. | Apr 2006 | B2 |
7048767 | Namavar | May 2006 | B2 |
7063717 | St. Pierre et al. | Jun 2006 | B2 |
7112205 | Carrison | Sep 2006 | B2 |
7115131 | Engh et al. | Oct 2006 | B2 |
7118578 | West, Jr. et al. | Oct 2006 | B2 |
7156880 | Evans et al. | Jan 2007 | B2 |
7160305 | Schmieding | Jan 2007 | B2 |
7163541 | Ek | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7192431 | Hangody et al. | Mar 2007 | B2 |
7192432 | Wetzler et al. | Mar 2007 | B2 |
7204839 | Dreyfuss et al. | Apr 2007 | B2 |
7204854 | Guederian et al. | Apr 2007 | B2 |
7235107 | Evans et al. | Jun 2007 | B2 |
7238189 | Schmieding et al. | Jul 2007 | B2 |
7241316 | Evans et al. | Jul 2007 | B2 |
7264634 | Schmieding | Sep 2007 | B2 |
7290347 | Augostino et al. | Nov 2007 | B2 |
7303577 | Dean | Dec 2007 | B1 |
7311702 | Tallarida et al. | Dec 2007 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7371260 | Malinin | May 2008 | B2 |
7462199 | Justin et al. | Dec 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7476250 | Mansmann | Jan 2009 | B1 |
7491235 | Fell | Feb 2009 | B2 |
7501073 | Wen et al. | Mar 2009 | B2 |
7510558 | Tallarida | Mar 2009 | B2 |
7531000 | Hodorek | May 2009 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7569059 | Cerundolo | Aug 2009 | B2 |
7572291 | Gil et al. | Aug 2009 | B2 |
7575578 | Wetzler et al. | Aug 2009 | B2 |
7578824 | Justin et al. | Aug 2009 | B2 |
7604641 | Tallarida et al. | Oct 2009 | B2 |
7611653 | Elsner et al. | Nov 2009 | B1 |
7618451 | Berez et al. | Nov 2009 | B2 |
7618462 | Ek | Nov 2009 | B2 |
7632294 | Milbodker et al. | Dec 2009 | B2 |
7641658 | Shaolian et al. | Jan 2010 | B2 |
7641689 | Fell et al. | Jan 2010 | B2 |
7670381 | Schwartz | Mar 2010 | B2 |
7678151 | Ek | Mar 2010 | B2 |
7682540 | Boyan et al. | Mar 2010 | B2 |
7687462 | Ting et al. | Mar 2010 | B2 |
7708741 | Bonutti | May 2010 | B1 |
7713305 | Ek | May 2010 | B2 |
7722676 | Hanson et al. | May 2010 | B2 |
7731720 | Sand et al. | Jun 2010 | B2 |
7758643 | Stone et al. | Jul 2010 | B2 |
7806872 | Ponzi | Oct 2010 | B2 |
7815645 | Haines | Oct 2010 | B2 |
7828853 | Ek et al. | Nov 2010 | B2 |
7842042 | Reay-Young et al. | Nov 2010 | B2 |
7857817 | Tallarida et al. | Dec 2010 | B2 |
7896883 | Ek et al. | Mar 2011 | B2 |
7896885 | Miniaci et al. | Mar 2011 | B2 |
7901408 | Ek et al. | Mar 2011 | B2 |
7914545 | Ek | Mar 2011 | B2 |
7931683 | Weber et al. | Apr 2011 | B2 |
7951163 | Ek | May 2011 | B2 |
7955382 | Flanagan et al. | Jun 2011 | B2 |
7959636 | Schmieding | Jun 2011 | B2 |
7967823 | Ammann et al. | Jun 2011 | B2 |
7993360 | Hacker et al. | Aug 2011 | B2 |
7993369 | Dreyfuss | Aug 2011 | B2 |
7998206 | Shepard | Aug 2011 | B2 |
8012206 | Schmieding | Sep 2011 | B2 |
8021367 | Bourke et al. | Sep 2011 | B2 |
8038652 | Morrison et al. | Oct 2011 | B2 |
8038678 | Schmieding et al. | Oct 2011 | B2 |
8043315 | Shepard | Oct 2011 | B2 |
8043319 | Lyon et al. | Oct 2011 | B2 |
8048079 | Iannarone | Nov 2011 | B2 |
8048157 | Albertorio | Nov 2011 | B2 |
8057478 | Kuczynski et al. | Nov 2011 | B2 |
8062301 | Ammann et al. | Nov 2011 | B2 |
8062319 | O'Quinn et al. | Nov 2011 | B2 |
8083746 | Novak | Dec 2011 | B2 |
8083749 | Taber | Dec 2011 | B2 |
8083803 | Albertorio et al. | Dec 2011 | B2 |
8097040 | Russo et al. | Jan 2012 | B2 |
8137406 | Novak et al. | Mar 2012 | B2 |
8142502 | Stone et al. | Mar 2012 | B2 |
8147559 | Tallarida et al. | Apr 2012 | B2 |
8152847 | Strzepa et al. | Apr 2012 | B2 |
8162947 | Dreyfuss | Apr 2012 | B2 |
8167951 | Ammann et al. | May 2012 | B2 |
8177738 | Schmieding et al. | May 2012 | B2 |
8177841 | Ek | May 2012 | B2 |
8182489 | Horacek | May 2012 | B2 |
8202282 | Schmieding et al. | Jun 2012 | B2 |
8202296 | Burkhart | Jun 2012 | B2 |
8202297 | Burkhart | Jun 2012 | B2 |
8202298 | Cook et al. | Jun 2012 | B2 |
8202306 | Dreyfuss | Jun 2012 | B2 |
8202318 | Willobee | Jun 2012 | B2 |
8211112 | Novak et al. | Jul 2012 | B2 |
8221455 | Shurnas et al. | Jul 2012 | B2 |
8231653 | Dreyfuss | Jul 2012 | B2 |
8231674 | Albertorio et al. | Jul 2012 | B2 |
8236000 | Ammann et al. | Aug 2012 | B2 |
8298247 | Sterrett et al. | Oct 2012 | B2 |
8298284 | Cassani | Oct 2012 | B2 |
8308662 | Lo | Nov 2012 | B2 |
8308732 | Millett et al. | Nov 2012 | B2 |
8323347 | Guederian et al. | Dec 2012 | B2 |
8328716 | Schmieding et al. | Dec 2012 | B2 |
8333774 | Morrison | Dec 2012 | B2 |
8343186 | Dreyfuss et al. | Jan 2013 | B2 |
8348960 | Michel et al. | Jan 2013 | B2 |
8348975 | Dreyfuss | Jan 2013 | B2 |
8353915 | Helenbolt et al. | Jan 2013 | B2 |
8361159 | Ek | Jan 2013 | B2 |
8377068 | Aker et al. | Feb 2013 | B2 |
8382789 | Weber et al. | Feb 2013 | B2 |
8382810 | Peterson et al. | Feb 2013 | B2 |
8388624 | Ek et al. | Mar 2013 | B2 |
8398678 | Baker et al. | Mar 2013 | B2 |
8409209 | Ammann et al. | Apr 2013 | B2 |
8409250 | Schmieding et al. | Apr 2013 | B2 |
8419794 | ElAttrache et al. | Apr 2013 | B2 |
8425554 | Denove et al. | Apr 2013 | B2 |
8430909 | Dreyfuss | Apr 2013 | B2 |
8435272 | Dougherty et al. | May 2013 | B2 |
8439976 | Albertorio et al. | May 2013 | B2 |
8444680 | Dooney, Jr. et al. | May 2013 | B2 |
8460317 | Merves | Jun 2013 | B2 |
8460318 | Murray et al. | Jun 2013 | B2 |
8460350 | Albertorio et al. | Jun 2013 | B2 |
8460379 | Albertorio et al. | Jun 2013 | B2 |
20010010023 | Schwartz et al. | Jul 2001 | A1 |
20010012967 | Mosseri | Aug 2001 | A1 |
20010034526 | Kuslich et al. | Oct 2001 | A1 |
20010039455 | Simon et al. | Nov 2001 | A1 |
20010053914 | Landry et al. | Dec 2001 | A1 |
20010056266 | Tallarida et al. | Dec 2001 | A1 |
20020022847 | Ray, III et al. | Feb 2002 | A1 |
20020022889 | Chibrac et al. | Feb 2002 | A1 |
20020049444 | Knox | Apr 2002 | A1 |
20020055783 | Tallarida et al. | May 2002 | A1 |
20020106393 | Bianchi et al. | Aug 2002 | A1 |
20020138150 | Leclercq | Sep 2002 | A1 |
20020143342 | Hangody et al. | Oct 2002 | A1 |
20020147498 | Tallarida et al. | Oct 2002 | A1 |
20020155144 | Troczynski et al. | Oct 2002 | A1 |
20020156480 | Overes et al. | Oct 2002 | A1 |
20020173797 | Van Zile et al. | Nov 2002 | A1 |
20030028196 | Bonutti | Feb 2003 | A1 |
20030060887 | Ek | Mar 2003 | A1 |
20030065391 | Re et al. | Apr 2003 | A1 |
20030100953 | Rosa et al. | May 2003 | A1 |
20030105465 | Schmieding et al. | Jun 2003 | A1 |
20030120276 | Tallarida et al. | Jun 2003 | A1 |
20030120278 | Morgan et al. | Jun 2003 | A1 |
20030130741 | McMinn | Jul 2003 | A1 |
20030144736 | Sennett | Jul 2003 | A1 |
20030171756 | Fallin et al. | Sep 2003 | A1 |
20030181878 | Tallarida et al. | Sep 2003 | A1 |
20030195470 | Ponzi | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030204267 | Hazebrouck et al. | Oct 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030216742 | Wetzler et al. | Nov 2003 | A1 |
20030225456 | Ek | Dec 2003 | A1 |
20030225457 | Justin et al. | Dec 2003 | A1 |
20030229352 | Penenberg | Dec 2003 | A1 |
20040015170 | Tallarida et al. | Jan 2004 | A1 |
20040033212 | Thomson et al. | Feb 2004 | A1 |
20040034359 | Schmieding et al. | Feb 2004 | A1 |
20040034437 | Schmieding | Feb 2004 | A1 |
20040039389 | West, Jr. et al. | Feb 2004 | A1 |
20040082906 | Tallarida et al. | Apr 2004 | A1 |
20040092946 | Bagga et al. | May 2004 | A1 |
20040106928 | Ek | Jun 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040138758 | Evans et al. | Jul 2004 | A1 |
20040148030 | Ek | Jul 2004 | A1 |
20040153087 | Sanford et al. | Aug 2004 | A1 |
20040167632 | Wen et al. | Aug 2004 | A1 |
20040167633 | Wen et al. | Aug 2004 | A1 |
20040176775 | Burkus et al. | Sep 2004 | A1 |
20040193172 | Ross et al. | Sep 2004 | A1 |
20040193267 | Jones et al. | Sep 2004 | A1 |
20040193268 | Hazebrouck | Sep 2004 | A1 |
20040193281 | Grimes | Sep 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040210209 | Yeung et al. | Oct 2004 | A1 |
20040210309 | Denzer et al. | Oct 2004 | A1 |
20040220574 | Pelo et al. | Nov 2004 | A1 |
20040230315 | Ek | Nov 2004 | A1 |
20040260303 | Carrison | Dec 2004 | A1 |
20050015153 | Goble et al. | Jan 2005 | A1 |
20050038520 | Binette et al. | Feb 2005 | A1 |
20050043805 | Chudik | Feb 2005 | A1 |
20050043808 | Felt et al. | Feb 2005 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20050075642 | Felt | Apr 2005 | A1 |
20050143731 | Justin et al. | Jun 2005 | A1 |
20050143745 | Hodorek et al. | Jun 2005 | A1 |
20050143831 | Justin et al. | Jun 2005 | A1 |
20050149044 | Justin et al. | Jul 2005 | A1 |
20050154398 | Miniaci et al. | Jul 2005 | A1 |
20050177171 | Wetzler et al. | Aug 2005 | A1 |
20050209705 | Niederauer et al. | Sep 2005 | A1 |
20050222687 | Vunjak-Novakovic et al. | Oct 2005 | A1 |
20050229323 | Mills et al. | Oct 2005 | A1 |
20050251268 | Truncale | Nov 2005 | A1 |
20050287187 | Mansmann | Dec 2005 | A1 |
20060004461 | Justin et al. | Jan 2006 | A1 |
20060009774 | Goble et al. | Jan 2006 | A1 |
20060020343 | Ek | Jan 2006 | A1 |
20060052878 | Schmieding | Mar 2006 | A1 |
20060058744 | Tallarida et al. | Mar 2006 | A1 |
20060058809 | Zink et al. | Mar 2006 | A1 |
20060058883 | Aram et al. | Mar 2006 | A1 |
20060069394 | Weiler et al. | Mar 2006 | A1 |
20060074430 | Deffenbaugh et al. | Apr 2006 | A1 |
20060085006 | Ek | Apr 2006 | A1 |
20060085077 | Cook et al. | Apr 2006 | A1 |
20060149370 | Schmieding et al. | Jul 2006 | A1 |
20060167560 | Heck et al. | Jul 2006 | A1 |
20060184187 | Surti | Aug 2006 | A1 |
20060190002 | Tallarida | Aug 2006 | A1 |
20060195112 | Ek | Aug 2006 | A1 |
20060229726 | Ek | Oct 2006 | A1 |
20060271059 | Reay-Young et al. | Nov 2006 | A1 |
20070005143 | Ek | Jan 2007 | A1 |
20070038302 | Shultz et al. | Feb 2007 | A1 |
20070038307 | Webster et al. | Feb 2007 | A1 |
20070073394 | Seedhom et al. | Mar 2007 | A1 |
20070093842 | Schmieding | Apr 2007 | A1 |
20070093848 | Harris et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070093896 | Malinin | Apr 2007 | A1 |
20070118136 | Ek | May 2007 | A1 |
20070118224 | Shah et al. | May 2007 | A1 |
20070123921 | Ek | May 2007 | A1 |
20070134291 | Ting et al. | Jun 2007 | A1 |
20070179608 | Ek | Aug 2007 | A1 |
20070233128 | Schmieding et al. | Oct 2007 | A1 |
20070244484 | Luginbuehl | Oct 2007 | A1 |
20070250067 | Schmieding et al. | Oct 2007 | A1 |
20070255399 | Eliasen et al. | Nov 2007 | A1 |
20070255412 | Hajaj et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070270873 | Flickinger et al. | Nov 2007 | A1 |
20070282455 | Luginbuehl et al. | Dec 2007 | A1 |
20070288031 | Dreyfuss et al. | Dec 2007 | A1 |
20070299519 | Schmieding | Dec 2007 | A1 |
20080004659 | Burkhart et al. | Jan 2008 | A1 |
20080015709 | Evans et al. | Jan 2008 | A1 |
20080027430 | Montgomery et al. | Jan 2008 | A1 |
20080033443 | Sikora et al. | Feb 2008 | A1 |
20080033447 | Sand | Feb 2008 | A1 |
20080046084 | Sledge | Feb 2008 | A1 |
20080086139 | Bourke et al. | Apr 2008 | A1 |
20080097618 | Baker et al. | Apr 2008 | A1 |
20080103506 | Volpi et al. | May 2008 | A1 |
20080154271 | Berberich et al. | Jun 2008 | A1 |
20080172125 | Ek | Jul 2008 | A1 |
20080183290 | Baird et al. | Jul 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080195113 | Sikora | Aug 2008 | A1 |
20080208201 | Moindreau et al. | Aug 2008 | A1 |
20080275512 | Albertorio et al. | Nov 2008 | A1 |
20080306483 | Iannarone | Dec 2008 | A1 |
20080317807 | Lu et al. | Dec 2008 | A1 |
20090018543 | Ammann et al. | Jan 2009 | A1 |
20090054899 | Ammann et al. | Feb 2009 | A1 |
20090069816 | Sasing et al. | Mar 2009 | A1 |
20090076512 | Ammann et al. | Mar 2009 | A1 |
20090112211 | Johnstone | Apr 2009 | A1 |
20090138077 | Weber et al. | May 2009 | A1 |
20090143783 | Dower | Jun 2009 | A1 |
20090143784 | Petersen et al. | Jun 2009 | A1 |
20090149860 | Scribner et al. | Jun 2009 | A1 |
20090198288 | Hoof et al. | Aug 2009 | A1 |
20090210057 | Liao et al. | Aug 2009 | A1 |
20090216285 | Ek et al. | Aug 2009 | A1 |
20090222012 | Karnes et al. | Sep 2009 | A1 |
20090228105 | Son et al. | Sep 2009 | A1 |
20090234452 | Steiner et al. | Sep 2009 | A1 |
20090264889 | Long et al. | Oct 2009 | A1 |
20090264928 | Blain | Oct 2009 | A1 |
20100003638 | Collins et al. | Jan 2010 | A1 |
20100015244 | Jain et al. | Jan 2010 | A1 |
20100028387 | Balasundaram et al. | Feb 2010 | A1 |
20100028999 | Nain | Feb 2010 | A1 |
20100036381 | Vanleeuwen et al. | Feb 2010 | A1 |
20100092535 | Cook et al. | Apr 2010 | A1 |
20100112519 | Hall et al. | May 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100256645 | Zajac et al. | Oct 2010 | A1 |
20100256758 | Gordon et al. | Oct 2010 | A1 |
20100268227 | Tong et al. | Oct 2010 | A1 |
20100268346 | Tong et al. | Oct 2010 | A1 |
20110009964 | Schwartz et al. | Jan 2011 | A1 |
20110059312 | Howling et al. | Mar 2011 | A1 |
20110066242 | Lu et al. | Mar 2011 | A1 |
20110125263 | Webster et al. | May 2011 | A1 |
20110152869 | Ek et al. | Jun 2011 | A1 |
20110196367 | Gallo | Aug 2011 | A1 |
20110238069 | Zajac et al. | Sep 2011 | A1 |
20110251621 | Sluss et al. | Oct 2011 | A1 |
20110257753 | Gordon et al. | Oct 2011 | A1 |
20110300186 | Hellstrom et al. | Dec 2011 | A1 |
20110301716 | Sirivisoot et al. | Dec 2011 | A1 |
20120027837 | DeMuth et al. | Feb 2012 | A1 |
20120109136 | Bourque et al. | May 2012 | A1 |
20120116502 | Su et al. | May 2012 | A1 |
20120123474 | Zajac et al. | May 2012 | A1 |
20120123541 | Albertorio et al. | May 2012 | A1 |
20120150225 | Burkhart et al. | Jun 2012 | A1 |
20120150286 | Weber et al. | Jun 2012 | A1 |
20120165868 | Burkhart et al. | Jun 2012 | A1 |
20120183799 | Steele et al. | Jul 2012 | A1 |
20120185058 | Albertorio et al. | Jul 2012 | A1 |
20120189833 | Suchanek et al. | Jul 2012 | A1 |
20120189844 | Jain et al. | Jul 2012 | A1 |
20120209278 | Ries et al. | Aug 2012 | A1 |
20120265298 | Schmieding et al. | Oct 2012 | A1 |
20130023907 | Sterrett et al. | Jan 2013 | A1 |
20130023927 | Cassani | Jan 2013 | A1 |
20130046312 | Millett et al. | Feb 2013 | A1 |
20130096563 | Meade et al. | Apr 2013 | A1 |
20130096612 | Zajac et al. | Apr 2013 | A1 |
20130103104 | Krupp et al. | Apr 2013 | A1 |
20130110165 | Burkhart et al. | May 2013 | A1 |
20130138108 | Dryfuss et al. | May 2013 | A1 |
20130138150 | Baker et al. | May 2013 | A1 |
20130150885 | Dreyfuss | Jun 2013 | A1 |
20130165954 | Dreyfuss et al. | Jun 2013 | A1 |
20130165972 | Sullivan | Jun 2013 | A1 |
20130178871 | Koogle, Jr. et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2001262308 | Dec 2001 | AU |
2001259327 | Feb 2005 | AU |
2002248198 | May 2007 | AU |
2005202099 | Jun 2007 | AU |
2002357284 | Aug 2007 | AU |
2006202337 | May 2008 | AU |
2003262428 | Aug 2009 | AU |
2007216648 | Nov 2009 | AU |
2004216106 | Jun 2010 | AU |
2008207536 | Mar 2011 | AU |
2470194 | Feb 2011 | CA |
2933174 | Apr 1980 | DE |
3516743 | Nov 1986 | DE |
3840466 | Jun 1990 | DE |
19505083 | Nov 1995 | DE |
0241240 | Oct 1987 | EP |
0350780 | Jul 1989 | EP |
0350780 | Jan 1990 | EP |
0485678 | May 1992 | EP |
0327387 | Sep 1992 | EP |
0505634 | Sep 1992 | EP |
0736292 | Oct 1996 | EP |
0903125 | Mar 1999 | EP |
0903127 | Mar 1999 | EP |
0993812 | Apr 2000 | EP |
0661023 | Aug 2001 | EP |
1426013 | Sep 2004 | EP |
1278460 | Apr 2009 | EP |
2314257 | Feb 2013 | EP |
2242068 | Mar 1975 | FR |
2642301 | Mar 1990 | FR |
2676917 | Dec 1992 | FR |
2693650 | Jan 1994 | FR |
2718014 | Oct 1995 | FR |
2733904 | Nov 1996 | FR |
2739151 | Mar 1997 | FR |
2281577 | Mar 1995 | GB |
2372707 | Sep 2002 | GB |
61502029 | Sep 1986 | JP |
63300758 | Dec 1988 | JP |
3504932 | Oct 1991 | JP |
H03-092328 | Nov 1992 | JP |
518511 | Mar 1993 | JP |
06339490 | Dec 1994 | JP |
11244315 | Sep 1999 | JP |
2001525210 | Dec 2001 | JP |
2002291779 | Oct 2002 | JP |
2003534096 | Nov 2003 | JP |
8803781 | Jun 1988 | WO |
8909578 | Oct 1989 | WO |
9427507 | Dec 1994 | WO |
9624304 | Aug 1996 | WO |
9722306 | Jun 1997 | WO |
9920192 | Apr 1999 | WO |
0013597 | Mar 2000 | WO |
0105336 | Jan 2001 | WO |
0166021 | Sep 2001 | WO |
0166022 | Sep 2001 | WO |
0182677 | Nov 2001 | WO |
0191648 | Dec 2001 | WO |
0191672 | Dec 2001 | WO |
0217821 | Mar 2002 | WO |
02086180 | Oct 2002 | WO |
03047470 | Jun 2003 | WO |
03051210 | Jun 2003 | WO |
03051211 | Jun 2003 | WO |
03061516 | Jul 2003 | WO |
03065909 | Aug 2003 | WO |
2004014261 | Feb 2004 | WO |
2004026170 | Apr 2004 | WO |
2004052216 | Jun 2004 | WO |
2004075777 | Sep 2004 | WO |
2005051231 | Jun 2005 | WO |
2005512331 | Jun 2005 | WO |
2006004885 | Jan 2006 | WO |
2006091686 | Aug 2006 | WO |
Entry |
---|
Notice of Allowance dated Nov. 26, 2010 issued in related U.S. Appl. No. 11/209,170. |
Supplemental Notice of Allowance dated Dec. 8, 2010 issued in related U.S. Appl. No. 11/209,170. |
Notice of Allowance dated Dec. 13, 2010 issued in related U.S. Appl. No. 12/397,095. |
Notice of Allowance dated Jan. 5, 2011 issued in related U.S. Appl. No. 11/326,133. |
Supplemental Notice of Allowance dated Jan. 5, 2011 issued in related U.S. Appl. No. 11/326,133. |
Canadian Office Action dated Jan. 7, 2011 issued in related Canadian Patent Application No. 2407440. |
European Office Action dated Dec. 23, 2010 issued in related European Patent Application No. 028051882.9-2310. |
European Office Action dated Dec. 30, 2010 issued in related European Patent Application No. 01997077.1-2310. |
Notice of Allowance dated Dec. 12, 2011 issued in U.S. Appl. No. 12/582,345, 19 pages. |
U.S. Office Action dated Dec. 22, 2011 issued in U.S. Appl. No. 11/623,513, 8 pages. |
U.S. Office Action dated Dec. 27, 2011 issued in U.S. Appl. No. 12/620,309, 10 pages. |
U.S. Office Action dated Jan. 4, 2012 issued in U.S. Appl. No. 12/001,473, 19 pages. |
U.S. Office Action dated Jan. 10, 2012 issued in U.S. Appl. No. 12/031,534, 9 pages. |
U.S. Office Action dated Jan. 18, 2012 issued in U.S. Appl. No. 12/778,055, 9 pages. |
European Office Action dated Jan. 23, 2012 issued in European Patent Application No. 01 997 077.1, 3 pages. |
Habermeyer, Peter, ATOS News, Oct. 2005, “The Artificial Limb “Eclipse”—A new draft without shank in the implantation of artificial shoulder limbs”, cover page w/pp. 40-41, with English translation dated Jan. 13, 2006 (2 pgs). |
Thermann, et al, ATOS Newsletter, Jun. 2005, Aktuelle Therrien, (16 pages). |
Gray, Henry, Anatomy of the Human Body, 1918, 6d. The Foot 1. The Tarsus, II. Osteology, cover page and 12 pgs, ww. Bartleby.com/107/63.html#i268 Oct. 25, 2004. |
Chainsaw, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chainsaw&printable=yes, Jun. 26, 2007 (3 pages). |
Cannulated Hemi Implants from Vielex, (3 pages). |
APTA | Knee,/http://www.apta.org/AM/PrinerTemplate.cfm?Section=Home&TEMPLATE=/CM/HTMLDisplay.dfg&... Jun. 25, 2007 (1page). |
Arthrosurface, Restoring the Geometry of Motion, HemiCAP Patello—Femoral Resurfacing System (19 pages). |
Anatomical Arthroplastie, Total Evolutive Shoulder System T.E.S.S., Biomet France, Biomet Europe (4 pages). |
American Machinist, Full-radius milling cutters, http://www.americanmachinist.com/Classes/Article/ArticleDraw—P.aspx, Jun. 26, 2007 (1 page). |
Chuck (engineering),Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chuck—%28engineering%29&printable=yes, Jun. 25, 2007, (4 pages). |
Dovetail Rails, http://www.siskiyou.com/MDRSeries.htm, Jun. 25, 2007 (2 pages). |
Knee Resurfacing, Permedica, GKS, Global Knee System. Cod. 104570 vers 1.0 del Mar. 15, 2006 (8pages). |
Major Biojoint System, La nuova frontiera della biointegrazione naturale, Finceramica Biomedical solutions (4 pages). |
Makita Industrial Power Tools, Product Details Print Out, Chain Mortiser, http://www.makita.com/menu.php?pg=product—det—prn&tag=7104L, Jun. 26, 2007 (3pgs). |
Milling machine, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Milling—machine&printable=yes, Jun. 26, 2007 (4 pages). |
Mortise and tenon, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Mortise—and—tenon&printable=yes, Jun. 25, 2007 (3 pages). |
Oka et al, “Development of artificial articular cartilage”, Proc Instn Mech Engrs vol. 214 Part H, 2000 pp. 59-68 (10 pages). |
Reversed Arthroplastie, Total Evolutive Shoulder System T.E.S.S., Biomet France, Biomet Europe (4 pages). |
M. Siguier, MD et al, “Preliminary Results of Partial Surface Replacement of the Femoral Head in Osteonecrosis”, The Jorunal of Arthroplasty, vol. 14, No. 1, 1999, pp. 45-51. |
T. Siguier, MD et al, Partial Resurfacing Arthroplasty of the Femoral Head in Avascular Necrosis, Clinical Orthopaedics and Related Research, No. 386, 2001, pp. 85-92. |
Suganuma, et al—“Arthroscopically Assisted Treatment of Tibial Plateau Fractures”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 20, No. 10, Dec. 2004, pp. 1084-1089 (6 pages). |
The Mini Uni: A New Solution for Arthritic Knew Pain and Disability, AORI, 4 pages, www.aori.org/uniknee.htm Apr. 20, 2004. |
The Stone Clinic, Orthopaedic Surgery Sports Medicine and Rehabilitation, Unicompartmental Replacement (partial knee joint replacement), Aug. 21, 2000, 3 pages, www.stoneclinic.com/unicopartrepl.htm, Apr. 20, 2004. |
Ushio et al, “Partial hemiarthroplasty for the treatment of osteonecrosis of the femoral hear”, An Experimantal Study in the Dog, The Journal of Bone and Joint Surgery, vol. 85-B, No. 6, Aug. 2003, pp. 922-930 (9 pages). |
Russell E. Windsor, MD, In-Depth Topic Reviews, Unicompartmental Knee Replacement, Nov. 7, 2002, 9 pages. |
Yaw angle, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Yaw—angle&printable=yes, Jun. 25, 2007 (1 page). |
Bale, MD, Reto J., et al, “Osteochondral Lesions of the Talus: Computer=assisted Retrograde Drilling Feasibility and Accuracy in Initial Experriencesl”, (Radiology. 2001;218:278-282) © RSNA, 2001. |
Biomet/Copeland, “Aequalis® Resurfacing Head” Tornier, Scientific Vision, Surgical Leadership, SS-401 Jan. 2007. |
Kumai, M.D., Tsukasa, et al Arthroscopic Drilling for the Treatment of Osteochondral Lesions of the Talus*, The Journal of Bone & Joint Surgery, American vol. 81:1229-35(1999). |
Matsusue, M.D., Yoshitaka, et al, “Arthroscopic Osteochondral Autograft Transplantation for Chondral Lesion of the Tibial Plateau of the Knee”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 17, No. 6 (Jul.-Aug.), 2001:pp. 653-659. |
Pill M.S., P.T., Stephan G. et al, “Osteochondritis Dissecans of the Knee: Experiences at the Children's Hospital of Philadelphia and a Review of Literature”, the University of Pennsylvania Orthopaedic Journal 14: 25-33, 2001. |
Schneider, T., et al, “Arthroscopy of the ankle joint. A list of indications and realistic expectations”, Foot and Ankle Surgery 1996 2:189-193, © 1996 Arnette Blackwell SA. |
Taranow WS, et al, “Retrograde drilling of osteochondral lesions of the medial talar dome”, PubMed, www.pubmed.gov, A service of the National Library of Medicing and the Natinal Institutes of Health, Foot Ankle Int. Aug. 20, 1998; 20 (8):474-80. |
Ueblacker, M.D., Peter, et al, “Retrograde Cartilage Transplantation of the Proximal and Distal Tibia”, Arthroscopy: The Journal of Arthroscipic and Related Surgery, vol. 20, No. 1 Jan. 2004: pp. 73-78. |
USPTO Office Action dated Dec. 21, 2007 issued in corresponding U.S. Appl. No. 11/169,326. |
USPTO Office Action dated Dec. 26, 2007 issued in U.S. Appl. No. 11/379,151. |
USPTO Office Action dated Oct. 9, 2007 issued in U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Aug. 29, 2007 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated May 31, 2007 issued in corresponding U.S. Appl. No. 11/326,133. |
USPTO Office Action dated Apr. 26, 2007 issued in U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Apr. 4, 2007 issued in corresponding U.S. Appl. No. 10/789,545. |
USPTO Office Action dated Mar. 15, 2007 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated Feb. 20, 2007 issued in corresponding U.S. Appl. No. 11/326,133. |
USPTO Office Action dated Nov. 6, 2006 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated Oct. 17, 2006 issued in U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Oct. 31, 2006 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated Jul. 25, 2006 issued in U.S. Appl. No. 10/760,965. |
USPTO Office action dated May 10, 2006 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Apr. 21, 2006 issued in corresponding U.S. Appl. No. 10/308,718. |
USPTO Office Action dated Nov. 9, 2005 issued in corresponding U.S. Appl. No. 10/308,718. |
USPTO Office action dated Dec. 8, 2005 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Aug. 31, 2005 issued in corresponding U.S. Appl. No. 10/308,718. |
USPTO Office action dated Aug. 16, 2005 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office action dated Jan. 27, 2005 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office action dated Aug. 13, 2004 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Notice of Allowance issued Sep. 26, 2003 in U.S. Appl. No. 10/162,533. |
USPTO Notice of Allowance issued May 12, 2003 in U.S. Appl. No. 10/024,077. |
USPTO Office Action dated Apr. 1, 2003 issued in U.S. Appl. No. 10/162,533. |
USPTO Office action dated Mar. 28, 2003 issued in corresponding U.S. Appl. No. 10/024,077. |
USPTO Notice of Allowance issued Sep. 30, 2002 in U.S. Appl. No. 09/846,657. |
USPTO Office Action dated Apr. 2, 2002 issued in corresponding U.S. Appl. No. 09/846,657. |
USPTO Office Action dated Feb. 27, 2002 issued in corresponding U.S. Appl. No. 09/846,657. |
USPTO Office Action dated Jan. 3, 2002 issued in corresponding U.S. Appl. No. 09/846,657. |
AU Examiners report dated Jan. 18, 2006 issued in corresponding Australian patnet application No. 2005202099. |
AU Examiners report dated Jan. 12, 2007 issued in corresponding Australian patnet application No. 2006202337. |
AU Examiners report dated Feb. 21, 2007 issued in corresponding Australian patnet application No. 2005202099. |
AU Examiners report dated May 23, 2007 issued in corresponding Australian patnet application No. 2005202099. |
AU Notice of Acceptance dated Aug. 6, 2007 in Patent Application No. 20022357284. |
EPO supplementary partial search report dated May 10, 2004 issued in corresponding European application 01932833.5-231-/US0114061. |
EPO supplementary search report dated Aug. 30, 2004 issued in corresponding European application 01932833.5. |
EPO Office Action dated Aug. 23, 2004, received in related EPO application No. 03 026 286.9 (4 pgs). |
EPO Office Action dated Mar. 15, 2005, received in related EPO application No. 03 026 286.9, (3 pgs). |
EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Feb. 26, 2004 (5pgs). |
EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Apr. 27, 2004 (6pgs). |
Examination Report dated Feb. 22, 2005 received in corresponding European Application No. 01932833.5 (3pages). |
EPO Office Action dated Sep. 22, 2005 issued in corresponding European application 01932833.5-2310. |
EPO Office Action dated Sep. 11, 2006 issued in corresponding European application 01932833.5-2310. |
International Preliminary Examination Report dated Aug. 19, 2004 issued in corresponding PCT patent application No. PCT/US02/40310. |
International Preliminary Examination Report dated Nov. 5, 2002 issued in corresponding PCT patent application No. PCT/US01/14061. |
US Office Action issued in related US Application No. 10994453 dated Feb. 25, 2008. |
International Preliminary Examination Report dated Nov. 12, 2002 issued in corresponding PCT patent application No. PCT/US01/48821. |
International Preliminary Examination Report dated Sep. 12, 2003 issued in corresponding PCT patent application No. PCT/US02/40310. |
International Preliminary Examination Report dated Oct. 27, 2003 issued in corresponding PCT patent application No. PCT/US01/48821. |
U.S. Office Action dated Oct. 21, 2008 issued in related U.S. Appl. No. 11/461,240. |
U.S. Office Action dated Jun. 25, 2008 issued in related U.S. Appl. No. 11/359,891. |
U.S. Office Action dated Sep. 25, 2008 issued in related U.S. Appl. No. 11/326,133. |
U.S. Office Action dated Jul. 2, 2008 issued in related U.S. Appl. No. 11/379,151. |
European Office Action dated Oct. 6, 2008 issued in related European Patent Application No. 01932833.5-2310. |
U.S. Office Action dated Jun. 27, 2008 issued in related U.S. Appl. No. 10/760,965. |
International Search Report and Written Opinion dated Oct. 1, 2008 issued in related International Patent Application No. PCT/US08/53194. |
International Search Report and Written Opinion dated Oct. 9, 2008 issued in related International Patent Application No. PCT/US07/82262. |
European Search Report dated Nov. 4, 2008 issued in related European Patent Application No. 04811836.8-2310. |
Habermeyer, “Eclipse, Schaftfreie Schulterprothese Operationsanleitung,” (dated unknown). |
United States Office Action issued is related U.S. Appl. No. 10/760,965 dated Feb. 19, 2008. |
Australian Office Action issued in related Australian Patent Application No. 2003262428 dated Mar. 20, 2008. |
Australian Office Action issued in related Australian Patent Application No. 2004293042 dated Feb. 20, 2008. |
U.S. Office Action issued in related U.S. Appl. No. 11/326,133 dated Jun. 12, 2008. |
International Search Report and Written Opinion dated Jun. 24, 2008 issued in related International Patent Application No. PCT/US07/73685. |
International Search Report and Written Opinion dated Jun. 11, 2008 issued in related International Patent Application No. PCT/US07125284. |
International Search Report and Written Opinion dated Aug. 8, 2008 issued in related International Patent Application No. PCT/US08/53988. |
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Jun. 5, 2007. |
Japanese Office Action dated Jul. 22, 2008 issued in related Japanese Patent Application No. 2006-501193. |
U.S. Office Action issued in related U.S. Appl. No. 10/373,463 dated Apr. 21, 2008. |
Notice of Allowance received in U.S. Appl. No. 10/618,887 dated Aug. 15, 2008. |
Australia Office Action issued in related Australian Patent Application No. 2007216648 dated May 30, 2008. |
European Office Action issued in related European Patent Application No. 01932833.5-2310 dated Apr. 25, 2008. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jun. 30, 2008. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jul. 27, 2007. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Apr. 17, 2007. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Mar. 9, 2007. |
Canadian Office Action issued in related Canadian Patent Application No. 2546582 dated Aug. 21, 2008. |
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Sep. 3, 2008. |
Notice of Reasons for Rejection issued in related Japanese Patent Application No. 2003-394702 mailed Jul. 21, 2009. |
Notice of Reasons for Rejection issued in related Japanese Patent Application No. 20-541615 mailed May 26, 2009. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2007/025284 dated Jun. 25, 2009. |
Office Action issued in related Australian Patent Application No. 2007216648 dated Jul. 28, 2009. |
European Search Report dated Jul. 10, 2009 issued in related European Patent Application No. 09002088.4. |
U.S. Office Action dated Aug. 30, 2006 issued in related U.S. Appl. No. 10/618,887. |
U.S. Office Action dated Jan. 15, 2008 issued in related U.S. Appl. No. 10/618,887. |
U.S. Office Action dated May 18, 2009 issued in related U.S. Appl. No. 11/209,170. |
U.S. Office Action dated May 28, 2009 issued in related U.S. Appl. No. 11/359,891. |
U.S. Office Action dated May 13, 2009 issued in related U.S. Appl. No. 11/359,892. |
International Search Report and Written Opinion dated Jun. 1, 2009 issued in related International Patent Application No. PCT/US2009/035889. |
International Preliminary Report and Patentability dated May 7, 2009 issued in related International Patent Application No. PCT/US2007/082262. |
Supplemental European Search Report dated May 28, 2009 issued in related International European Patent Application No. 01997077.1. |
Supplemental European Search Report dated May 11, 2009 issued in related International European Patent Application No. 02805182.9. |
Notice of Allowance dated Feb. 20, 2009 issued in related U.S. Appl. No. 10/618,887. |
U.S. Office Action dated Jan. 9, 2009 issued in related U.S. Appl. No. 10/373,463. |
Canadian Office Action dated Dec. 9, 2008 issued in related Canadian Patent Application No. 2407440. |
Supplemental European Search Report dated Nov. 6, 2008 issued in related European Patent Application No. 05791453.3-2310. |
Japanese Office Action dated Dec. 19, 2008 issued in Japanese Patent Application No. 2006501193. |
Japanese Office Action dated Jan. 13, 2009 issued in Japanese Patent Application No. 2003552147. |
International Search Report dated Jan. 30, 2006 issued in related International Patent Application No. PCT/US04/39181. |
U.S. Office Action dated Mar. 27, 2009 issued in related U.S. Appl. No. 11/169,326. |
European Office Action dated Feb. 26, 2009 in related European Patent Application No. 05791453.3. |
Notice of Allowance issued in corresponding U.S. Appl. No. 10/618,887 dated Sep. 13, 2007. |
International Preliminary Report on Patentability and Written Opinion dated May 22, 2006 in corresponding PCT patent application No. PCT/US04/039181. |
English language translation of Japanese Office Action dated Aug. 9, 2007 issued in corresponding Japanese application No. 2003-552148. |
Canadian Office Action dated Jan. 2, 2008 issued in corresponding Canadian Application No. 2407440. |
International Preliminary Report on Patentability and Written Opinion dated Mar. 1, 2007 in corresponding PCT patent application No. PCT/US051030120. |
International Preliminary Report on Patentability and Written Opinion dated Jun. 28, 2007 in corresponding PCT patent application No. PCT/US2005/005980. |
International Preliminary Report on Patentability and Written Opinion dated Jul. 19, 2007 in corresponding PCT patent application No. PCT/US20061000380. |
International Search Report dated Dec. 27, 2001 issued in corresponding PCT patent application No. PCT/US01/14061. |
Office Action issued in corresponding U.S. Appl. No. 10/741,044 dated Oct. 26, 2005. |
International Search Report dated May 23, 2003 issued in corresponding PCT patent application No. PCT/US02140310. |
International Search Report and Written Opinion dated Dec. 30, 2004 issued in corresponding PCT patent application No. PCT/US04/05539. |
International Search Report and Written Opinion dated Jan. 30, 2006 issued in corresponding PCT patent application No. PCT/US04/39181. |
International Search Report and Written Opinion dated Aug. 30, 2006 issued in corresponding PCT patent application No. PCT/US06/06323. |
International Search Report and Written Opinion dated Sep. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/30120. |
International Search Report and Written Opinion dated Nov. 27, 2006 issued in corresponding PCT patent application No. PCT/US06/00380. |
International Search Report and Written Opinion dated Nov. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/023200. |
International Search Report and Written Opinion dated May 22, 2007 issued in corresponding PCT patent application No. PCT/US05/05980. |
International Search Report and Written Opinion dated Aug. 8, 2007 issued in corresponding PCT patent application No. PCT/US06/29875. |
Notice of Allowance issued in corresponding U.S. Appl. No. 10/308,718 dated Sep. 11, 2006. |
Office Action issued in corresponding U.S. Appl. No. 11/326,133 dated Oct. 17, 2007. |
Notice of Reasons for Rejection dated Nov. 17, 2009 issued in Japanese Patent Application No. 2007-519417. |
European Search Report dated Dec. 3, 2009 issued in related European Patent Application No. 06735827.5. |
Office Action dated Dec. 24, 2009 issued in related U.S. Appl. No. 10/994,453. |
Supplemental Notice of Allowance dated Nov. 25, 2009 issued in related U.S. Appl. No. 10/373,463. |
U.S. Office Action dated Sep. 2, 2009 issued in relation U.S. Appl. No. 10/994,453. |
U.S. Office Action dated Oct. 5, 2009 issued in relation U.S. Appl. No. 10/789,545. |
U.S. Office Action dated Oct. 15, 2009 issued in relation U.S. Appl. No. 11/551,912. |
U.S. Office Action dated Oct. 14, 2009 issued in relation U.S. Appl. No. 11/461,240. |
International Preliminary Report on Patentability dated Aug. 20, 2009 issued in related International Patent Application No. PCT/US2008/053194. |
Australian Notice of Allowance dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007216648. |
Notice of Allowance dated Aug. 27, 2009 issued in related U.S. Appl. No. 10/760,965. |
Notice of Allowance dated Oct. 9, 2009 issued in related U.S. Appl. No. 10/373,463. |
Australian Office Action dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007203623. |
Notice of Allowance dated Aug. 25, 2009 issued in related U.S. Appl. No. 11/379,151. |
Japanese Notice of Reasons for Rejection dated Sep. 8, 2009 issued in related Japanese Patent Application No. 2003552147. |
European Office Action dated Jan. 11, 2010 issued in related European Patent Application No. 2005218302. |
U.S. Office Action dated Jan. 25, 2010 issued in related U.S. Appl. No. 11/326,133. |
International Preliminary Report on Patentability dated Aug. 20, 2009 issued in related International Patent Application No. 2008053194. |
McCarty, III., et al., “Nonarthoplasty Treatment of Glenohumeral Cartilage Lesions,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 21, No. 9; Sep. 2005 (pp. 1131-1142). |
Bushnell, et al., “Bony Instability of the Shoulder,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 24, No. 9; Sep. 2005 (pp. 1061-1073). |
Scalise, et al., “Resurfacing Arthroplasty of the Humerus: Indications, Surgical Technique, and Clinical Results,” Techniques in Shoulder and Elbow Surgery 8(3):152-160; 2007. |
Davidson, et al., “Focal Anatomic Patellofemoral Inlay Resurfacing: Theoretic Basis, Surgical Technique, and Case Reports,” Orthop. Clin. N. Am., 39 (2008) pp. 337-346. |
Provencher, et al., “Patellofemoral Kinematics After Limited Resurfacing of the Trochlea,” The Journal of Knee Surgery, vol. 22 No. 2 (2008) pp. 1-7. |
Dawson, et al., “The Management of Localized Articular Cartilage Lesions of the Humeral Head in the Athlete,” Operative Techniques in Sports Medicine, vol. 16, Issue 1, pp. 14-20 (2008). |
Uribe, et al., “Partial Humeral Head Resurfacing for Osteonecrosis,” Journal of Shoulder and Elbow Surgery, (2009) 6 pages. |
Burks, “Implant Arthroplasty of the First Metatarsalphalangeal Joint,” Clin. Podiatr. Med. Surg., 23 (2006) pp. 725-731. |
Hasselman, et al., “Resurfacing of the First Metatarsal Head in the Treatment of Hallux Rigidus,” Techniques in Foot & Ankle Surgery 7(1):31-40, 2008. |
Gelenkoberflachen, et al., “Partial hemi-resurfacing of the hip joint—a new approach to treat local osteochondral defects?” Biomed Tech 2006; 51:371-376 (2006). |
Sullivan, “Hallux Rigidus: MTP Implant Arthroplasty,” Foot Ankle Clin. N. Am. 14 (2009) pp. 33-42. |
Cook, et al., “Meta-analysis of First Metatarsophalangeal Joint Implant Arthroplasty,” Journal of Foot and Ankle Surgery, vol. 48, Issue 2, pp. 180-190 (2009). |
Derner, “Complications and Salvage of Elective Central Metatarsal Osteotomies,” Clin. Podiatr. Med. Surg. 26 (2009) 23-35. |
Kirker-Head, et al., “Safety of, and Biological Functional Response to, a Novel Metallic Implant for the Management of Focal Full-Thickness Cartilage Defects: Preliminary Assessment in an Animal Model Out to 1 year,” Journal of Orthopedic Research, May 2006 pp. 1095-1108. |
Beecher, et al. “Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study,” Knee Surg Sports Traumatol Arthrosc. Jan. 2008; 16(1): 56-63. |
United States Office Action dated May 13, 2009 issued in related U.S. Appl. No. 11/359,892. |
United States Office Action dated May 18, 2009 issued in related U.S. Appl. No. 11/209,170. |
United States Office Action dated May 1, 2009 issued in related U.S. Appl. No. 11/461,240. |
Australian Office Action dated Jan. 29, 2009 issued in related Australian Patent Application No. 2004216106. |
European Search Report dated Apr. 22, 2009 issued in related European Patent Application No. 09002088.4. |
Examination Report dated Dec. 30, 2011 issued in European Patent Application No. 09 002 088.4, 6 pages. |
Intent to Grant dated Feb. 17, 2012 issued in European Patent Application No. 02 805 182.9, 5 pages. |
Notice of Allowance dated Feb. 24, 2012 issued in U.S. Appl. No. 12/027,121, 9 pages. |
Intent to Grant dated Feb. 29, 2012 issued in European Patent Application No. 10 012 693.7, 5 pages. |
Supplemental Notice of Allowance dated Mar. 2, 2012 issued in U.S. Appl. No. 12/027,121, 2 pages. |
Office Action dated Mar. 2, 2012 issued in U.S. Appl. No. 12/713,135, 7 pages. |
Australian Office Action dated Apr. 9, 2010 issued in related Australian Patent Application No. 2005260590. |
U.S. Office Action dated Mar. 2, 2010 issued in related U.S. Appl. No. 11/169,326. |
U.S. Office Action dated Mar. 9, 2010 issued in related U.S. Appl. No. 11/359,892. |
Australian Office Action dated Feb. 26, 2010 issued in related Australian Patent Application No. 2008207536. |
Supplemental Notice of Allowance dated Feb. 2, 2010 issued in related U.S. Appl. No. 10/373,463. |
European office communication dated Feb. 10, 2010 issued in European Patent Application No. 09002088.4-2310. |
Extended Search Report dated Feb. 22, 2011 issued in European Patent Application No. 10012693.7, 8 pages. |
Notice of Allowance dated Mar. 2, 2011 issued in Australian Patent Application No. 2008207536, 3 pages. |
Notice of Allowance dated Mar. 15, 2011 issued in U.S. Appl. No. 11/551,912, 7pages. |
U.S. Office Action dated Apr. 11, 2011 issued in U.S. Appl. No. 11/779,044, 10 pages. |
Notice of Allowance dated Apr. 28, 2011 issued in U.S. Appl. No. 12/027,121, 9 pages. |
International Search Report and Written Opinion dated Apr. 21, 2010 issued in related International Patent Application No. PCT/US2010/025095. |
International Search Report and Written Opinion dated May 3, 2010 issued in related International Patent Application No. PCT/US2010/025464. |
European Office Action dated Apr. 13, 2010 issued in related European Patent Application No. 02805182.9-2310. |
European Office Action dated Mar. 25, 2010 issued in related European Patent Application No. 01997077.1-2310. |
U.S. Office Action dated May 18, 2010 issued in related U.S. Appl. No. 12/415,503. |
U.S. Office Action dated May 11, 2011 issued in U.S. Appl. No. 11/623,513, 12 pages. |
U.S. Office Action dated May 11, 2011 issued in U.S. Appl. No. 12/001,473, 18 pages. |
U.S. Office Action dated May 16, 2011 issued in U.S. Appl. No. 12,582,345, 9 pages. |
International Search Report and Written Opinion dated May 19, 2011 issued in PCT Application No. PCT/US2011/027451, 11 pages. |
Canadian Notice of Allowance dated Jun. 1, 2011 issued in Canadian Patent Application No. 2,470,936, 1 page. |
Examiner interview summary dated Jul. 1, 2011 issued in European Patent Application No. 02 805 182.9, 3 pages. |
U.S. Final Office Action dated Jul. 8, 2011 issued in U.S. Appl. No. 11/169,326, 26 pages. |
Japanese Notice of Reasons for Rejection dated Jun. 1, 2010 issued in related Japanese Patent Application No. 2003394702. |
European Office Action dated Jun. 1, 2010 issued in related European Patent Application No. 04811836.8-2310. |
Japanese Notice of Reasons for Rejection dated Jun. 29, 2010 issued in related Japanese Patent Application No. 2007519417. |
Australian Office Action dated Jun. 11, 2010 issued in related Australian Patent Application No. 2005277078. |
International Search Report dated Jun. 9, 2010 issued in related International Patent Application No. PCT/US2010/031594. |
European Office Action dated May 7, 2010 issued in related European Patent Application No. 06733631.3-2310. |
International Search Report dated Jun. 18, 2010 issued in related International Patent Application No. PCT/US2010/031602. |
U.S. Office Action dated Jun. 8, 2010 issued in related U.S. Appl. No. 11/209,170. |
Office Action dated Sep. 2, 2010 issued in related U.S. Appl. No. 12/415,503. |
Office Action dated Aug. 30, 2010 issued in related U.S. Appl. No. 12/397,095. |
Office Action dated Jul. 21, 2010 issued in related U.S. Appl. No. 11/551,912. |
Office Action dated Aug. 5, 2010 issued in related U.S. Appl. No. 11/325,133. |
Notice of Allowance dated Aug. 6, 2010 issued in related U.S. Appl. No. 11/359,892. |
Canadian Office Action dated Jul. 29, 2010 issued in related Canadian Patent Application No. 2470936. |
Supplemental European Search Report dated Aug. 9, 2010 issued in related European Patent Application No. 04714211.2-2300. |
Australian Office Action dated Aug. 23, 2010 issued in related Australian Patent Application No. 2006203909. |
Ascension Orthopedics, Inc., Ascension Orthopedics Announces Market Release of TITAN™ Inset Mini Glenoid, PR Newswire, downloaded from internet Jul. 18, 2011, http://www.orthospinenews.com/ascension-orthopedics-announces-market-release-of-titan™-inset-mini-glenoid, Jul. 6, 2011, 2 pages. |
PCT International Preliminary Report on Patentability dated Sep. 9, 2011 issued in PCT Patent Application No. PCT/US2010/025464, 7 pages. |
Notice of Allowance dated Sep. 9, 2010 issued in related U.S. Appl. No. 10/994,453. |
Office Action dated Sep. 21, 2010 issued in related U.S. Appl. No. 11/169,326. |
Office Action dated Sep. 29, 2010 issued in related U.S. Appl. No. 11/461,240. |
Office Action dated Oct. 11, 2010 issued in related Australian Patent Application No. 2006216725. |
International Preliminary Report on Patentability dated Sep. 16, 2010 issued in related International Patent Application No. PCT/US20091035889. |
Supplemental Notice of Allowance dated Oct. 13, 2010 issued in related U.S. Appl. No. 10/994,453. |
Supplemental Notice of Allowance dated Oct. 6, 2010 issued in related U.S. Appl. No. 12/415,503. |
U.S. Office Action dated Oct. 15, 2010 received in related U.S. Appl. No. 12/027,121. |
U.S. Supplemental Notice of Allowance dated Oct. 28, 2010 issued in related U.S. Appl. No. 12/415,503. |
European Search Report dated Nov. 4, 2010 issued in related European Patent Application No. 07862736.1-1269. |
International Preliminary Report on Patentability dated Sep. 1, 2011 issued in PCT International Patent Application No. PCT/US2010/025095, 8 pages. |
International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031602, 8 pages. |
International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031594, 7 pages. |
U.S. Office Action dated Nov. 1, 2011 issued in U.S. Appl. No. 12/713,135, 10 pages. |
U.S. Notice of Allowance dated 11/23/11 issued in U.S. Appl. No. 11/623,513, 19 pages. |
U.S. Office Action dated Nov. 28, 2011 issued in U.S. Appl. No. 12/711,039, 6 pages. |
U.S. Office Action dated Mar. 29, 2012 issued in U.S. Appl. No. 10/789,545, 7 pages. |
U.S. Notice of Allowance dated May 31, 2012 issued in U.S. Appl. No. 11/623,513, 5 pages. |
Preliminary Report on Patentability dated Sep. 20, 2012 issued in PCT Patent Application No. PCT/US2011/027451, 3 pages. |
Extended Search Report dated Jul. 3, 2012 issued in European Patent Application No. 12002103.5, 5 pages. |
Decision to Grant dated Jul. 26, 2012 issued in European Patent Application No. 10012693.7, 1 page. |
Final Office Action dated Aug. 13, 2012 issued in U.S. Appl. No. 12/711,039, 12 pages. |
Office Action dated Aug. 14, 2012 issued in U.S. Appl. No. 12/001,473, 17 pages. |
Office Action dated Aug. 20, 2012 issued in U.S. Appl. No. 13/037,998, 11 pages. |
Office Action dated Aug. 21, 2012 issued in U.S. Appl. No. 13/043,430, 11 pages. |
Notice of Allowability dated Oct. 9, 2012, issued in U.S. Appl. No. 12/713,135, 5 pages. |
Notice of Allowability dated Oct. 11, 2012, issued in U.S. Appl. No. 11/169,326, 2 pages. |
U.S. Office Action dated Oct. 23, 2012, issued in U.S. Appl. No. 13/042,382, 17 pages. |
U.S. Office Action dated Oct. 24, 2012, issued in U.S. Appl. No. 12/942,923, 9 pages. |
U.S. Office Action dated Oct. 31 2012, issued in U.S. Appl. No. 13/075,006, 9 pages. |
U.S. Office Action dated Aug. 28, 2012 issued in U.S. Appl. No. 12/762,948, 12 pages. |
U.S. Notice of Allowance dated Sep. 4, 2012 issued in U.S. Appl. No. 11/169,326, 6 pages. |
Extended European Search report mailed Dec. 10, 2012 issued in European Patent Application No. 07844549.1, 6 pages. |
Supplementary European Search Report dated Jan. 3, 2013 issued in European Patent Application No. 05763817.3, 3 pages. |
Great Britain Examination Report dated Feb. 6, 2013 issued in Great Britain Patent Application No. 1114417.7, 2 pages. |
Supplementary European Search Report dated Feb. 18, 2013 issued in European Patent Application No. 08729178.7, 10 pages. |
U.S. Office Action dated Feb. 25, 2013 issued in U.S. Appl. No. 12/762,920, 8 pages. |
Canadian Office Action dated Dec. 13, 2012 issued in Canadian Patent Application No. 2,407,440, 6 pages. |
International Search Repoort and Written Opinion dated Mar. 8, 2013 issued in PCT Patent Application No. PCT/US12/71199, 13 pages. |
U.S. Office Action dated Apr. 15, 2013 issued in U.S. Appl. No. 13/470,678, 10 pages. |
U.S. Office Action dated Apr. 22, 2013 issued in U.S. Appl. No. 12/001,473, 16 pages. |
U.S. Office Action dated Apr. 23, 2013 issued in U.S. Appl. No. 13/037,998, 8 pages. |
European Intent to Grant dated Apr. 29, 2013 issued in European Patent Application No. 07 862 736.1, 7 pages. |
U.S. Office Action dated May 15, 2013 issued in U.S. Appl. No. 12/762,948, 10 pages. |
European Office Action dated Apr. 16, 2013 issued in European Patent Application No. 12 002 103.5, 5 pages. |
U.S. Applicant Initiated Interview Summary dated May 15, 2013 issued in U.S. Appl. No. 12/762,920, 3 pages. |
European Office Action dated May 15, 2013 issued in European Patent Application No. 05 763 817.3, 4 pages. |
U.S. Final Office Action dated Jun. 5, 2013 issued in U.S. Appl. No. 12/942,923, 26 pages. |
U.S. Final Office Action dated Jun. 24, 2013 issued in U.S. Appl. No. 13/042,382, 28 pages. |
U.S. Notice of Allowance dated Jun. 14, 2013 issued in U.S. Appl. No. 13/043,430, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20100204701 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
60201049 | May 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10373463 | Feb 2003 | US |
Child | 12725181 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10162533 | Jun 2002 | US |
Child | 10373463 | US | |
Parent | 10024077 | Dec 2001 | US |
Child | 10162533 | US | |
Parent | 09846657 | May 2001 | US |
Child | 10024077 | US |