This invention relates to the field of joint prosthesis, and more particularly, to a joint resurfacing device and system for repairing defects in the articular surface of bones in the foot.
The talus is located in the center of the ankle and is primarily responsible for load transfer from the tibia through the entire foot. The talus is one of the main load bearing articulating surfaces within the human ankle and is commonly the location of ankle pain. Ankle pain is commonly associated with the presence of osteochondral lesion and joint arthritis. There are several methods of relieving ankle pain that range from non-surgical approaches to arthroscopic and surgical procedures. One cause of ankle pain is the location of osteochondral lesions on the medial and lateral talar dome. The talar dome is a common location for lesions surpassed only by the knee and possibly the elbow. The formation of lesions has been attributed to several factors but the location of these lesions on the talar dome is primarily attributed to the talar dome equator bearing the maximum stress during load bearing activities. A common method of correcting these deficiencies in the knee is by performing arthroplasty, arthrodesis or a hemiarthroplasty.
In addition to osteochondral lesions, arthritis of the ankle is another common pathology effecting ankle pain. Ankle arthritis is commonly treated by a wide variety of surgical procedures, ranging from steroid injections, arthrodesis and total joint replacement. With the exception of injections and medications, the arthrodesis and total joint replacement procedures commonly require six weeks in a non-weight bearing cast, six weeks in a walking cast and rehabilitation in addition to the extensive recovery time. However, these aforementioned procedures commonly reduce the natural ankle kinematics.
Hemiarthroplasty is a common procedure performed within the human knee. Generally, a hemiarthroplasty results from only a portion of the native articulating surface being damaged and requiring a partial arthroplasty procedure. This results in a proportional section of the damaged tissue being removed and replaced with an implant serving as the new articulating surface, while leaving intact most of the native cartilage as possible. However, this is currently limited within the human ankle due to the amount of bone that is removed to make space for the implant. In addition, the means of fixation has been well documented as an issue with keeping the implant fixed to the bone where migration and settling issues have been prevalent.
Currently, there are only a few implants designed to aid in the correction of osteocondral lesions and severe ankle arthritis without performing arthroplasty or arthrodesis. While talus resurfacing is known, resurfacing has been primarily done through an arthroscopic process without an implant. This arthroscopic process is limited to removal of large defects and replaced with autograph or allograph cartilage taken from a donor site.
Also, ankle fusion and total joint replacement are aggressive procedures with difficult revision options and are therefore typically reserved for late stage disease. In the ankle, there are few, if any, options for early surgical treatment that preserves the option for fusion, partial and total joint replacement, should they become necessary at a later time.
There is therefore a need for a joint resurfacing device and system and method of use that overcomes some or all of the previously delineated drawbacks of prior joint resurfacing devices.
An object of the present invention is to overcome the drawbacks of previous inventions.
Another object of the present invention is to provide a novel and useful joint resurfacing device for restoring the articulating surface of the talus through a minimally invasive procedure.
Another object of the present invention is to restore the articulating surface through minimal distraction of the joint.
Another object of the present invention is to provide a system for restoring the articulating surface of a talus bone with a dynamic fixation assembly.
Another object of the present invention is to provide a method for resurfacing the articulating surface of the talus.
Another object of the invention is to provide an option for early, tissue sparing treatment, which preserves the option for subsequent revision surgery including fusion, partial and total joint replacement
Another object of the invention is to provide a means by which the ankle can be repaired via resurfacing the talar surface and then, in a modular manner, adding the tibial surface at a later date, if necessary.
In a first non-limiting aspect of the present invention, an implant device is provided for a talar joint resurfacing. The implant comprises a generally curved member having a lateral portion, a distal portion, an exterior surface and an inferior surface. The exterior surface is provided to be slidably coupled to a tibial joint. The inferior surface is provided to be coupled to a talar dome.
In a second non-limiting aspect of the present invention, a system for resurfacing a joint in a foot is provided. The system comprises an implant device for replacing damaged tissue at the talus, a trial inserter assembly and a guide assembly. The implant device includes a generally curved member having a lateral portion and a distal portion. The implant device has an exterior surface provided to be slidably coupled to a tibial joint. The implant also comprises an inferior surface selectively coupled to a talar dome in a threaded fixation device, where the threaded fixation device is selected from the group consisting of a dynamic fixation device or a static screw device.
In a third non-limiting aspect of the present invention, a system for resurfacing a joint in a foot is provided. The system comprises an implant device for replacing damaged tissue at the talus, a trial inserter assembly and a guide assembly. The implant device includes a generally curved member having a lateral portion and a distal portion. The implant device has an exterior surface provided to be slidably coupled to a tibial joint. The implant also comprises an inferior surface having an osteoconductive material, thereby causing the implant device to be selectively coupled to a talar dome.
In a fourth non-limiting aspect of the present invention, a system for resurfacing a joint in a foot is provided. The system comprises an implant device for replacing damaged tissue at the talus, a trial inserter assembly and a guide assembly. The implant device includes a generally curved member having a lateral portion and a distal portion. The implant device has an exterior surface provided to be slidably coupled to a tibial joint. The implant also comprises an inferior surface having fins or spikes, thereby causing the implant device to be selectively coupled to a talar dome.
In a fifth non-limiting aspect of the present invention, a method for resurfacing a joint in a foot is provided. First, a mid-foot incision is made in the foot. The talus in then prepared for restoration by distracting the tibial-talar joint and the damaged tissue is removed from the surface of the talus. Next, a trial inserter assembly is used to assist the surgeon in achieving the proper depth and alignment of implant device. After the correct trial-sized device has been determined, the surgeon will position the trial-sized device onto the talus and selectively couple guide assembly to the trial-sized device for accurate positioning of a drill guide. A guide wire is then installed and a hole is drilled in the talus using the guide wire. Following, an implant inserter is used to thread into the implant device. Once the implant device is installed, the threaded rod is pulled back through the tunnel until the implant device comes into contact with the talus. Next, the implant inserter is removed and a dynamic fixation device is inserted for ridged connection to the implant device using a screwdriver.
A further understanding of the present invention can be obtained by reference to a preferred embodiment set forth in the illustrations of the accompanying drawings. Although the illustrated embodiment is merely exemplary of systems and methods for carrying out the present invention, both the organization and method of operation of the invention, in general, together with further objectives and advantages thereof, may be more easily understood by reference to the drawings and the following description. The drawings are not intended to limit the scope of this invention, which is set forth with particularity in the claims as appended or as subsequently amended, but merely to clarify and exemplify the invention.
For a more complete understanding of the present invention, reference is now made to the following drawings in which:
The present invention may be understood more readily by reference to the following detailed description of preferred embodiment of the invention. However, techniques, systems and operating structures in accordance with the present invention may be embodied in a wide variety of forms and modes, some of which may be quite different from those in the disclosed embodiment. Consequently, the specific structural and functional details disclosed herein are merely representative, yet in that regard, they are deemed to afford the best embodiment for purposes of disclosure and to provide a basis for the claims herein, which define the scope of the present invention. It must be noted that, as used in the specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly indicates otherwise.
Referring now to
As shown in
As shown in
Further, as shown in
It should be appreciated that in one non-limiting embodiment, implant 110 may be made from a Titanium material, although, in other non-limiting embodiments, implant 110 may be made from Cobalt Chrome, Stainless Steel, PEEK, PE, PEEK, NiTi or any other biocompatible material. It should also be appreciated that thickness 310 of implant 110 (previously shown in
Guide assembly 900 is illustrated in
In operation and as best shown in
Next in step 1108, as shown in
Once the hole is drilled, guide assembly 900 and trial inserter assembly 700 are removed and, in step 1114, an implant inserter 1005 is used to thread into implant device 110 as shown in
As shown in
It should be appreciated that
It should also be appreciated that implant device 110, in other non-limiting embodiments, may be utilized for tibial resurfacing. As such, the implant device 110 may vary in size in order to accommodate the articulating surface of the tibia. The implant device 110 may be selectively attached to the articulating surface of the tibial bone in order to replace any deteriorated or damaged bone or tissue.
Furthermore, in other non-limiting embodiments, a pair of implant devices 110 may be utilized concomitantly for tibia and talus resurfacing. Particularly, a pair of substantially similar implant devices 110 may be provided with varying sizes to accommodate the geometries of the talus and the tibia. The pair of implant devices 110 is selectively coupled to both the talus and the tibial bones in order to be concomitantly coupled to the articulating surfaces of the talar and tibial bones in a mirrored configuration. In this configuration, the tibial implant device 110 resides opposite the talar implant device 110. As such, the tibial implant device 110 may be shorter than the talar implant device 110 in order to accommodate the concomitant use of talar implant device 110 and tibial implant device 110. In this manner, the talus and tibial bones will be slidably coupled to each other by the plurality of implant devices 110. So, the tibial surface will have a mirrored configuration to the talar component.
It should be understood that this invention is not limited to the disclosed features and other similar method and system may be utilized without departing from the spirit and the scope of the present invention.
While the present invention has been described with reference to the preferred embodiment and alternative embodiments, which embodiments have been set forth in considerable detail for the purposes of making a complete disclosure of the invention, such embodiments are merely exemplary and are not intended to be limiting or represent an exhaustive enumeration of all aspects of the invention. The scope of the invention, therefore, shall be defined solely by the following claims. Further, it will be apparent to those of skill in the art that numerous changes may be made in such details without departing from the spirit and the principles of the invention. It should be appreciated that the present invention is capable of being embodied in other forms without departing from its essential characteristics.
This application claims the benefit of Provisional Application No. 61/135,715, filed Jul. 23, 2008, the entire contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61135715 | Jul 2008 | US |