The present disclosure relates generally to digital communications, and more particularly to a system and method for large scale multiple input multiple output (MIMO) beamforming.
In general, multiple input multiple output (MIMO) increases the capacity of a radio link through the use of multiple transmit antennas and multiple receive antennas. MIMO exploits multipath propagation to increase the capacity of the radio link. MIMO has proven to be effective at increasing the capacity of the radio link and has been accepted into a variety of technical standards, including WiFi or Wireless LAN: IEEE 802.11n, and IEEE 802.11ac; Evolved High-Speed Packet Access (HSPA+); Worldwide Interoperability for Microwave Access (WiMAX); and Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) Advanced.
Increasing the number of transmit antennas and receive antennas from a relatively small number (on the order of 10 or fewer) to a significantly larger number (on the order of 100, 1000, 10000, or more) can lead to even greater increases in the capacity of the radio link.
Beamforming is a signal processing technique used for directional communications (signal transmission and/or reception). Beamforming involves combining antenna elements in such a way that some directions experience constructive interference while other directions experience destructive interference, therefore generating a communications beam in an intended direction.
Example embodiments provide a system and method for large scale multiple input multiple output (MIMO) beamforming.
In accordance with an example embodiment, a method for operating a large scale MIMO communications device adapted to perform large scale MIMO communications is provided. The method includes determining beamforming coefficients for antennas of an antenna array in accordance with position information of antennas of the antenna array and directional information of a communications device with which the large scale MIMO communications device is communicating, applying the beamforming coefficients to the antennas of the antenna array, and communicating with the communications device using the antenna array.
In accordance with another example embodiment, a large scale MIMO communications device is provided. The large scale MIMO communications device includes an antenna array, a processor, and a computer readable storage medium storing programming for execution by the processor. The programming including instructions configuring the large scale MIMO communications device to determine beamforming coefficients for antennas of the antenna array in accordance with position information of antennas of the antenna array and directional information of a communications device with which the large scale MIMO communications device is communicating, apply the beamforming coefficients to the antennas of the antenna array, and communicate with the communications device using the antenna array.
In accordance with another example embodiment, a large scale MIMO communications system is provided. The large scale MIMO communications system includes a positioning system, and a large scale MIMO communications device. The positioning system transmits orthogonal reference signals. The large scale MIMO communications device includes an antenna array comprising a plurality of antenna units, a processor, and a computer readable storage medium storing programming for execution by the processor. The programming including instructions configuring the large scale MIMO communications system to determining positional information of antenna units of the antenna array in accordance with the orthogonal reference signals transmitted by the positioning system, determining beamforming coefficients for the antenna units of the antenna array in accordance with the positional information and directional information of a communications device operating in a coverage area of the large scale MIMO communications system, applying the beamforming coefficients to the antenna units of the antenna array, and communicating with the communications device using the antenna array.
Practice of the foregoing embodiments enable beamforming in large scale MIMO communications systems with irregular antenna arrays.
Moreover, the embodiments provide for beamforming in large scale MIMO communications systems with irregular antenna arrays that change over time.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The operating of the current example embodiments and the structure thereof are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific structures of the embodiments and ways to operate the embodiments disclosed herein, and do not limit the scope of the disclosure.
One embodiment relates to large scale multiple input multiple output (MIMO) beamforming. For example, a large scale MIMO communications device determines beamforming coefficients for antennas of an antenna array in accordance with position information of antennas of the antenna array and directional information of a communications device with which the large scale MIMO communications device is communicating, applies the beamforming coefficients to the antennas of the antenna array, and communicates with the communications device using the antenna array.
The embodiments will be described with respect to example embodiments in a specific context, namely MIMO communications systems that support very beamforming with antenna arrays having large numbers of transmit antennas and receive antennas and irregular configurations. The embodiments may be applied to standards compliant FD communications systems, such as those that are compliant with Third Generation Partnership Project (3GPP), IEEE 802.11, WiMAX, HSPA, and the like, technical standards, and non-standards compliant MIMO communications systems, that support beamforming with antenna arrays having very large numbers of transmit antennas and receive antennas and irregular configurations.
While it is understood that communications systems may employ multiple base stations capable of communicating with a number of users, only one base station, and a number of users are illustrated for simplicity.
In communications system 100, the K users share the same communications system resources (such as time-frequency resources). To simplify discussion, each user is equipped with only one antenna. However, the example embodiments presented herein are operable with users with any number of antennas. Each of the M receive antennas at MIMO base station 105 are equipped with its own radio frequency (RF) hardware (such as filters, amplifiers, mixers, modulators, demodulators, constellation mappers, constellation demappers, and the like), analog to digital (A/D) converters, digital to analog (D/A) converters, as well as a local processing unit that is capable of performing a limited amount of processing. The local processing unit, the antenna and the associated hardware may be referred to as an antenna unit (AU). The local processing unit is referred to herein as an AU processing unit.
Communications system 100 may be represented as a mathematical model expressible as:
where X is a transmitted symbol vector of length K in which each element xk represents a data symbol associated with user k; Y is a received sample vector of length M in which each element ym represents a sample of receive antenna m; N is a receiver noise sample vector of length M in which each element nm represents the noise receive on receive antenna m, it is assumed that N is additive white Gaussian noise (AWGN); A is a channel matrix of size M by K in which each element am,k represents a channel transfer function between user k and receive antenna in; K is the number of users served by MIMO base station 105; and M is the number of receive antennas of MIMO base station 105. In general, a MIMO receiver has to resolve the above expression and given the received sample vector Y, find an estimate of the transmitted symbol vector X (denoted X) that is as close as possible to the transmitted symbol vector X.
Communications system 200 may be represented as a mathematical model expressible as:
where X is a transmitted symbol vector of length K in which each element xk represents a symbol of user k; R is a received sampled vector of length K in which each element rk represents a sample received by user k; N is a received noise vector of length K in which each element nk represents noise received by user k (it is assumed that N is AWGN); A is a channel matrix of size M by K in which each element am,k represents the channel transfer function between user k and transmit antenna m; and W is a precoding matrix of size K by M.
As discussed previously, beamforming is a signal processing technique used for directional communications (signal transmission and/or reception). Beamforming involves combining antenna elements in such a way that some directions experience constructive interference while other directions experience destructive interference, therefore generating a communications beam in an intended direction. Therefore, in order to utilize beamforming, a communications device needs to obtain directional information regarding other communications devices with which it is communicating. From the directional information, the communications device may be able to generate antenna coefficients to generate communications beams directed towards the other communications devices.
Operations 300 begin with the large scale MIMO communications device generating beamforming coefficients for the antennas of the antenna array (block 305). The generation of the beamforming coefficients may include the large scale MIMO communications device performing acquisition to obtain directional information regarding other communications devices with which it is communicating (block 310), measuring positions for each of the antennas in the antenna array (block 312), determining channel gains for channels between the antennas and the other communications devices (block 314), and generating the antenna beamforming coefficients based on the channel gains (block 316). Detailed discussions of the measuring of the positions for each of the antennas in the antenna array, the generating of the channel gains, and the generating of the antenna beamforming coefficients are provided below.
The large scale MIMO communications device applies the beamforming coefficients (block 320). Applying the beamforming coefficients may involve providing appropriate beamforming coefficients to the antennas of the antenna array. The large scale MIMO communications device communicates with the other communications devices using the antenna array (block 325). The large scale MIMO communications device may transmit using the antenna array, receive using the antenna array, or a combination of both.
Typically, performing acquisition to obtain directional information involves the large scale MIMO communications device using an antenna array to scan over a search space using communications beams to measure received energy from the other communications devices. The large scale MIMO communications device may select a number of communications beams corresponding to measured received energy exceeding a specified threshold. The selected communications beams correspond to the directions of the other communications devices. Normally, the acquisition process may be slow since the large scale MIMO communications device may have a large number of communications beams with which to scan the search space. Furthermore, when the antenna array of the large scale MIMO communications device has a large number of antennas, the communications beams generated by the antenna array are narrow, which may require the large scale MIMO communications device to use a large number of communications beams to fully scan the search space. In a co-assigned U.S. Patent Application entitled “System and Method for Large Scale Multiple Input Multiple Output Communications”, attorney docket number HW 84543089US01, which is hereby incorporated herein by reference, a fast acquisition technique is presented which helps to speed up the acquisition process by partitioning the search space and the antenna array. In the fast acquisition technique, different portions of the antenna array are assigned to scan different parts of the search space. Reducing the size of the search space affords a reduction in the time required to scan the search space. An additional reduction in the scanning time is obtained due to the wider communications beams generated by the smaller number of antennas in each portion of the antenna array; the wider communications beams help to speed up the scan of the search space. Therefore, the combination of the smaller search space and the wider communications beams significantly shortens the acquisition time.
According to an example embodiment, a time of arrival (TOA) method is used to determine coordinates of each antenna in an antenna array. TOA is a technique that is used in positioning systems, such as Global Positioning System (GPS). TOA uses delays in received reference signals transmitted by a plurality of reference signal generators to determine the position of an antenna that received the reference signals.
Reference signal generators transmit orthogonal reference signals that individually arrive at antenna M 505 with different delay. The delays associated with the reference signals are expressible as
c
2·(τm0−tm)2=(X0−xm)2+(Y0−ym)2+(Z0−zm)2
c
2·(τm1−tm)2=(X1−xm)2+(Y1−ym)2+(Z1−zm)2
c
2·(τm2−tm)2=(X2−xm)2+(Y2−ym)2+(Z2−zm)2′
c
2·(τm3−tm)2=(X3−xm)2+(Y3−ym)2+(Z3−zm)2
where (Xk, Yk, Zk) is the coordinates of a k-th reference signal generator, (xm, ym, zm) is the unknown coordinates of antenna M 505, tm is an unknown time offset of antenna M 505, τmk is a time of arrival of reference signals sent by reference signal generator k at antenna M 505, and c is the speed of light. Since there are 4 equations and 4 unknowns (xm, ym, zm, tm), it is possible to solve for the 4 unknowns to determine the coordinates of antenna M 505 and the time offset for antenna M 505 (xm, ym, zm, tm).
In an outdoor deployment, it may be possible to use an existing positioning system, such as GPS, for example, to determine the positions of the antennas in an antenna array. However, in an indoor deployment where GPS signals have trouble penetrating walls, a portable reference signal generating system may be used.
According to an alternative example embodiment, if the positions of 4 or more of the antennas of an antenna array are known, the 4 or more antennas are used as reference signal generators and send orthogonal reference signals to be used to determine the positions of the remaining antennas of the antenna array.
Since the antennas of the antenna array are usually in a constant location or moving very slowly, the antenna array is stable. Therefore, there is not a problem with antenna position determining precision. The determining of the position of the antennas may be performed during a wake up, initialization, or re-initialization process. Hence, there are typically no strict time limits on determining the positions of the antennas of the antenna array. The relatively relaxed time constraints may enable position estimation averaging over an extended amount of time in order to obtain a desired level of precision, with position estimation precision increasing with increased averaging time.
According to an example embodiment, the channel gains are determined for the antennas in the antenna array based on the positions of the antennas and the directional information. The channel gains are determined for channels from each of the antennas in the antenna array to each of the other communications devices.
In a typical large scale MIMO implementation, a large number (M×N) omni-directional antennas are mounted on a flat surface with a consistent spacing between antennas (a·λ×b·λ), where N and M are integer values and l is wavelength of a signal.
Therefore, the beam arrives at antenna #n 705 with a complex gain expressible as
Hence, antenna arrays that are tuned to the receive the signal from direction α may be configured with coefficients that match the complex gain H*n(α).
Therefore, the beam arrives at antenna (n, m) 755 with a complex gain expressible as
Hence, antenna arrays that are tuned to the receive the signal from direction (a, 13) may be configured with coefficients that match the complex gain H*n(α).
The antennas of the large scale MIMO antenna arrays discussed in
H
n,m(α, β)=exp(j·2π·(n·a·cos(α)·cos(β)+m·b·cos(α)·sin(β))).
Therefore, the channel for antenna (n, m) located at
is expressible as
where Gk is the complex amplitude of beam k.
However, the antennas in the antenna array do not have to be in a plane, nor does the antenna spacing have to be uniform. For discussion purposes, consider a situation wherein a large scale MIMO communications device has an antenna array with P antennas where the antennas are located at a set of coordinates (x, y, z)p.
According to the definition of a far field, in order to determine the coefficients for the antennas for direction (α, β), the distance from the antenna array to the target in direction (α, β) must be at least an order of magnitude greater than the size of the antenna array. The coordinates of the target are expressible as
x
T
=R·cos(α)·cos(β),
y
T
=R·cos(α)·sin(β),
z
T
=R·sin(α),
where R is at least an order of magnitude greater than √{square root over (xp2+yp2+zp2 )} for any antenna p. It may be shown that the complex gain of each antenna p is expressible as
which may be normalized as
It can also be shown that
Therefore, the channel for antenna m located at (xm, ym, zm) is expressible as
where Gk is the complex amplitude of beam k and antenna 0 is located at reference point (x0, y0, z0)
A received sample of antenna in at time t is expressible as
Y
m(t)=Hm·D(t)+Noisem(t),
where Noisem(t) is the thermal noise of antenna in at time t, and D(t) is the data symbol at time t, which also can be re-written as
Using multi-beam maximum ratio combining (MRC) decoding, an output at time t of a MRC decoder is expressible as
which also can be re-written as
where Rk(t, αk, βk) is the MRC decoder output for beam k at time t, which is expressible as
Utilizing the expressions for Rk(t, αk, βk) and Ym(t) above, and since the beams are orthogonal to each other, it may be shown that the MRC decoder output for beam k at time t is approximately equal to the data symbol at time t multiplied by the complex amplitude of beam k: Rk(t, αk, βk)≈Gk·D(t). Suppose that the pilot sequence of length N is known (i.e., D(t)=PLT(t) For (0≦t≦N)), then the Least Mean Squared (LMS) complex gain estimation is expressible as
The expression for Hp(α, β) and
The antenna array, which may be non-planar with non-uniform antenna spacing, may also be non-rigid. Being non-rigid means that the antennas in the antenna array may move or otherwise change position as a function of time. Although the antennas in the antenna array may move, reference signal generators (such as shown in
According to an example embodiment, the surface area of a lighter than air airship provides for a very large antenna array that is usable in implementing a communications system with extremely narrow communications beams. As discussed previously, a beamwidth of a communications beam is inversely proportional to the number of antennas of the antenna array. Furthermore, the communications beam will have a very large antenna gain that compensates for long distance losses.
According to an example embodiment, a very large antenna array disposed on the surface of a lighter than air airship provides coverage for state-sized areas. The extremely narrow communications beams, coupled with very large antenna gains, may allow for communications system with a coverage area on the order of a hundred thousand or more square miles.
The communications system as described in
Array of AUs 1110 may be arranged in a mesh configuration. Each AU in array of AUs 1110 is connected to a subset of neighboring AUs. As an illustrative example, AU 1115 is located at a vertex and is connected to two neighboring AUs (AU 1117 and AU 1121). While AU 1117 is located on an edge and is connected to three neighboring AUs (AU 1115, AU 1119, and AU 1123) and AU 1119 is located in a field of AUs and is connected to four neighboring AUs (AU 1117, AU 1121, AU 1125, and AU 1127). The AUs in array of AUs 1110 may be connected to central processing unit 1105 by one or more buses. Alternatively, central processing unit 1105 may be connected to a subset of the AUs in array AUs 1110. As an illustrative example, array of AUs 1110 may include an end AU 1130 that is connected to a subset of neighboring AUs (two neighboring AUs as shown in
The AUs in array of AUs 1110 may be spaced regularly apart from one another, e.g., the AUs (or the antennas therein) are spaced one-half wavelength apart. Alternatively, the AUs in array of AUs 1110 may be irregularly spaced apart from one another, e.g., some AUs may be spaced regularly apart while others may be irregularly spaced apart, or none of the AUs are spaced apart by the same amount. The AUs in array of AUs 1110 may be planar (where all of the AUs lie in a single plane) or non-planar (where at least some of the AUs lie in different planes).
Autocorrelation connection 1220 allows for the exchange of the accumulated autocorrelation matrix and has sufficient bandwidth to support the transfer of K by K-sized matrices. MRC connection 1225 allows for the exchange of the accumulated MRC vector and has sufficient bandwidth to support the transfer of K-sized vectors. Reference connection 1230 allows for the exchange of reference signals for use in channel estimation and has sufficient bandwidth to support the transfer of K-sized vectors. TX symbols connection 1235 allows for the exchange of TX symbols for transmission precoding and transmission and has sufficient bandwidth to support the transfer of K-sized vectors. The connections may be bi-directional in nature, allowing the AUs in the plurality of AUs to exchange information with one another. A control bus allows for the exchange of control signals regulating the operation of MIMO communications device.
MIMO communications device 1200 includes a plurality of adders (such as adders 1245 and 1250) to accumulate information from neighboring AUs. As shown in
A positioning unit 1318 is configured to assist in determining a position of AU 1300 using received reference signals (such as those transmitted by positioning systems 500 and 900), while a multiply unit 1322 is configured to multiply coefficients provided by coefficients unit 1320 with signals provided by the central processing unit. As an illustrative example, multiply unit 1322 may multiply transmission symbols provided by the central processing unit with channel transfer functions. An adder 1328 combines the outputs of multiplier 1328 and provides the combine value to a D/A converter 1320. AU 1300 also includes transmitter RF circuitry 1332, which may include filters, modulators, constellation mappers, and so on.
In some embodiments, the processing system 1400 is included in a network device that is accessing, or part otherwise of, a telecommunications network. In one example, the processing system 1400 is in a network-side device in a wireless or wireline telecommunications network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an applications server, or any other device in the telecommunications network. In other embodiments, the processing system 1400 is in a user-side device accessing a wireless or wireline telecommunications network, such as a mobile station, a user equipment (UE), a personal computer (PC), a tablet, a wearable communications device (e.g., a smartwatch, etc.), or any other device adapted to access a telecommunications network.
In some embodiments, one or more of the interfaces 1410, 1412, 1414 connects the processing system 1400 to a transceiver adapted to transmit and receive signaling over the telecommunications network.
The transceiver 1500 may transmit and receive signaling over any type of communications medium. In some embodiments, the transceiver 1500 transmits and receives signaling over a wireless medium. For example, the transceiver 1500 may be a wireless transceiver adapted to communicate in accordance with a wireless telecommunications protocol, such as a cellular protocol (e.g., long-term evolution (LTE), etc.), a wireless local area network (WLAN) protocol (e.g., Wi-Fi, etc.), or any other type of wireless protocol (e.g., Bluetooth, near field communication (NFC), etc.). In such embodiments, the network-side interface 1502 comprises one or more antenna/radiating elements. For example, the network-side interface 1502 may include a single antenna, multiple separate antennas, or a multi-antenna array configured for multi-layer communication, e.g., single input multiple output (SIMO), multiple input single output (MISO), multiple input multiple output (MIMO), etc. In other embodiments, the transceiver 1500 transmits and receives signaling over a wireline medium, e.g., twisted-pair cable, coaxial cable, optical fiber, etc. Specific processing systems and/or transceivers may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.