A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The following commonly owned, co-pending United States patents and patent applications, including the present application, are related to each other. Each of the other patents/applications are incorporated by reference herein in its entirety:
U.S. patent application Ser. No. 11/525,394 entitled SYSTEM AND METHOD FOR PROVIDING DISPLAY TEMPLATES FOR CONTENT MANAGEMENT, by Ryan McVeigh et al., filed on Sep. 22, 2006.
The current invention relates generally to managing content for use with portals and other content delivery mechanisms, and more particularly to a mechanism for lightweight loading for managing content in federated content repositories.
Content repositories manage and provide access to large data stores such as a newspaper archives, advertisements, inventories, image collections, etc. A content repository can be a key component of a web application such as a portal, which must quickly serve up different types of content in response to user interaction. However, difficulties can arise when trying to integrate more than one vendor's content repository. Each may have its own proprietary application program interface and content services (e.g., conventions for searching and manipulating content, versioning, lifecycles and data formats). Furthermore, each time a repository is added to an application, the application software must be modified to accommodate these differences. What is needed is a coherent system and method for interacting with disparate repositories and for providing a uniform set of content services across all repositories, including those that lack such services.
The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. References to embodiments in this disclosure are not necessarily to the same embodiment, and such references mean at least one. While specific implementations are discussed, it is understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without departing from the scope and spirit of the invention.
In the following description, numerous specific details are set forth to provide a thorough description of the invention. However, it will be apparent to those skilled in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.
Although a diagram may depict components as logically separate, such depiction is merely for illustrative purposes. It can be apparent to those skilled in the art that the components portrayed can be combined or divided into separate software, firmware and/or hardware components. For example, one or more of the embodiments described herein can be implemented in a network accessible device/appliance such as a router. Furthermore, it can also be apparent to those skilled in the art that such components, regardless of how they are combined or divided, can execute on the same computing device or can be distributed among different computing devices connected by one or more networks or other suitable communication means.
In accordance with embodiments, there are provided mechanisms and methods for providing lightweight loading for managing content in federated content repositories. These mechanisms and methods for providing lightweight loading for managing content in federated content repositories can enable embodiments to provide subset(s) of content determined to satisfy the request from one or more content repositories integrated into a VCR. The ability of embodiments to provide subset(s) of content determined to satisfy the request can enable displaying content responsive to a request in a format appropriate to the requestor's request.
In an embodiment and by way of example, a method for providing lightweight loading for managing content in federated content repositories in a content management system is provided. A method embodiment includes receiving a request to access content stored in at least one of a plurality of content repositories via a common Application Programming Interface (API). Each one of the plurality of content repositories is integrated into a virtual content repository (VCR). The method also includes retrieving only a subset of content determined to satisfy the request from at least one of the plurality of content repositories. The subset is capable of being displayed to the requestor according to one of a paged result display model and a paged list display model. Further, the subset of the content is selected based upon a selection criterion specific to the at least one of the plurality of content repositories. By way of example and without limitation, this can include determining a subset of content that satisfies the request based upon a selection criteria selected from at least one of a paged result model and a paged list model. The method also includes providing the subset of content when information responsive to the request is to be displayed.
Embodiments can provide one or more of: a) faster retrievals of results for the first page (by loading less data initially); b) Sortable and Filterable ‘features’, which in certain cases, such as for existing non-BEA SPI implementations, includes rendering (i.e., loading all results into memory, then sorting); c) smaller amounts of data associated with a Paged Result (which typically will be stored in the session); and d) an architecture which supports future lightweight pagination performance improvements.
As used herein, the term result set is defined broadly as any result provided by one or more services. Result sets may include multiple entries into a single document, file, communication or other data construct. As used herein, the term (unbounded) result set may be represented as either a paged list or a paged result. Both support filtering and sorting features. As used herein, the term Paged Result model includes paged models focused on a paging result set, and that have the concept of a page, next page, previous page, etc. Paged Result Models are useful in user interface interactive applications, for example. Principle benefits of Paged Result Models are ‘loading in chunks’ and ‘faster loading’, inter alia. For example, API methods may be called which return Paged Result objects. The Paged Result objects may be examined in their entirety and discarded before the request completes or stored in a cache for subsequent examination. Embodiments may return only the first n pages of search results to be examined. This usage behavior may be used to improve performance and scalability by limiting the initial query and loading less detailed information, however, this is preferably transparent—the search results must always be correct.
An example Paged Result model embodiment supports sorting and filtering on multiple criteria (not just one), as well as using both the sorting and filtering features at the same time. It is noteworthy that the sorting and filtering features can also apply to the Page List result set model described herein below. A related form is the Sortable Paged Result, in which the caller is provided the capability to sort the result by an attribute. The admin tools client can use this feature to sort the tables of data by a column, for example. Another form, the Filterable Paged Result is a Paged Result that allows the caller to filter the result by an attribute, i.e., ‘startswith,’ ‘contains,’ etc. This form behaves like a simple search within existing results. The admin tools client can use this feature to filter the tables of data by a column value, for example.
As used herein the term Paged list model includes paged models focused on a ‘virtual’ result set, such as a list of items that have no concept of a page. Paged list models are useful for non-interactive applications, such as automated processing of a result set, for example. From a VCR client perspective, a page list looks just like a standard result set. A benefit that paged list models provide is that due to underlying lightweight loading, the result set is loaded in chunks, rather than all at once. This provides faster response times. This approach may be used in runtime portal (commerce) applications, for example. It is possible to create a Paged Result model from a Page dList model and vice-versa.
In embodiments, result sets (paged list or paged result) may be re-filtered and/or re-sorted, and filtering and/or sorting can also be independently applied, modified, and removed. For example, a user can start out with all node search results of type Article, apply a filter for all Article node results starting with ‘X’, sort the Article results by modification date (all Article nodes starting with ‘X’, sorted by mod date), remove the ‘X’ filtering (now all Article results present, still sorted by modification date), re-sort by type name (now all Article results present, sorted by type name), and finally remove the sort. (now all Article results present, possibly unsorted).
Embodiments may also provide one or more of customer sorting and filtering of paged results, a default sorting and filtering, a property sorting/filtering, a property type sorting and filtering, and object sorting and filtering. In embodiments, the order of sorting and filtering may be governed by precedence rules, which may be user definable.
While the present invention is described with reference to an embodiment in which techniques for providing lightweight loading for managing content to federated content repositories are implemented in an application server in conformance with the J2EE Management Framework using executable programs written in the Java™ programming language, the present invention is not limited to the J2EE Management Framework nor the Java™ programming language. Embodiments may be practiced using other interconnectivity specifications or programming languages, i.e., JSP and the like without departing from the scope of the embodiments claimed. (Java™ is a trademark of Sun Microsystems, Inc.).
A content repository 112 represents a searchable data store. Such systems can relate structured content and unstructured content (e.g., digitally scanned paper documents, Extensible Markup Language, Portable Document Format, Hypertext Markup Language, electronic mail, images, video and audio streams, raw binary data, etc.) into a searchable corpus. Content repositories can be coupled to or integrated with content management systems. Content management systems can provide for content workflow management, versioning, content review and approval, automatic content classification, event-driven content processing, process tracking and content delivery to other systems. By way of illustration, if a user fills out a loan application on a web portal, the portal can forward the application to a content repository which, in turn, can contact a bank system, receive notification of loan approval, update the loan application in the repository and notify the user by rendering the approval information in a format appropriate for the web portal.
A virtual or federated content repository (hereinafter referred to as “VCR”) is a logical representation of one or more individual content repositories. For example, the VCR provides a single access point to multiple repositories from the standpoint of application layer 120 but does not shield from the user that there is more than one repository available. The VCR can also add content services to repositories that natively lack them. Typically, the user interacts with the VCR by specifying which repository an action is related to (such as adding a new node), or performing an action that applies to all repositories (such as searching for content). In various embodiments and by way of illustration, this can be accomplished in part by use of an API (application program interface) 100 and an SPI (service provider interface) 102. An API describes how entities in the application layer can interface with some program logic or functionality. The application layer can include applications (and subdivisions thereof) that utilize the API, such as processes, threads, servlets, portlets, objects, libraries, and other suitable application components. An SPI describes how a service provider (e.g., a content repository, a content management system) can be integrated into a system of some kind. The SPI isolates direct interaction with repositories from the API. In various embodiments, this can be accomplished at run-time wherein the API library dynamically links to or loads the SPI library. In another embodiment, the SPI can be part of a server process such that the API and the SPI can communicate over a network. The SPI can communicate with the repositories using any number of means including, but not limited to, shared memory, remote procedure calls and/or via one or more intermediate server processes.
Embodiments described herein include examples of techniques for providing lightweight loading for managing content. Lightweight loading techniques enable providing information from a VCR of integrated content repositories in manageable portions using a paged result model or a paged list model. Embodiments are enabled to determine a subset of content that satisfies a received request based upon a selection criteria selected from at least one of a paged result model and a paged list model. In an embodiment, an application making the request indicates the desired selection criterion upon which selection from at least one of a paged result model and a paged list model. In an embodiment the subset of content provided for display may be provided according to an ordering. The subset of content may be ordered according to one or more of a relevance criterion, a sorting, an ordering by repository, an ordering by a type of a node within the VCR, an ordering by a version identifier associated with at least a portion of the content. In an embodiment, a query to be applied to the subset of content is received. The subset of content is filtered according to the query to provide a filtered subset, which is provided responsive to the query. In a yet further embodiment, the filtered subset of content may be provided according to an ordering. The filtered subset of content may be ordered according to one or more of: a relevance criterion, a sorting, an ordering by repository, an ordering by a type of a node within the VCR, an ordering by a version identifier associated with at least a portion of the content.
Content repositories may comprise a variety of interfaces for connecting with the repository. For example, as shown in
API's and SPI's can be specified as a collection of classes/interfaces, data structures and/or methods/functions that work together to provide a programmatic means through which VCR service(s) can be accessed and utilized. By way of illustration, APIs and SPIs can be specified in an object-oriented programming language, such as Java™ (available from Sun Microsystems, Inc. of Mountain View, Calif.) and C# (available from Microsoft Corp. of Redmond, Wash.). The API and SPI can be exposed in a number of ways, including but not limited to static libraries, dynamic link libraries, distributed objects, servers, class/interface instances, and other suitable means.
In various embodiments, the API presents a unified view of all repositories to the application layer such that navigation, CRUD operations (create, read, update, delete), versioning, workflows, and searching operations initiated from the application layer operate on the repositories as though they were one. Repositories that implement the SPI can “plug into” the VCR. The SPI includes a set of interfaces and services that support API functionality at the repository level. The API and SPI share a content model that represents the combined content of all repositories as a hierarchical namespace of nodes. Given a node N, nodes that are hierarchically inferior to N are referred to as children of N, whereas nodes that are hierarchically superior to N are referred to as parents of N. The top-most level of the hierarchy is termed the federated root. There is no limit to the depth of the hierarchy. In various embodiments, repositories are children of the federated root. Each repository can itself have children.
By way of illustration, content mining facilities 104, processes/threads 106, tag libraries 108, integrated development environments (IDEs) 110, and other libraries 118 can all utilize the API to interact with a VCR. An IDE can provide the ability for a user to interactively build workflows and/or content views. Content mining facilities can include services for automatically extracting content from the VCR based on parameters. Java ServerPages™ tag libraries enable portals to interact with the VCR and surface its content on web pages. (Java ServerPages™ is available from Sun Microsystems, Inc.) In addition, it will be apparent to those of skill in the art that many other types of applications and software components utilize the API and are, as such, fully within the scope and spirit of the present disclosure.
In various embodiments, the API can include optimizations to improve the performance of interacting with the VCR. One or more caches 116 can be used to buffer search results and/or recently accessed nodes. Some implementations may include additional cache 119 in one or more repositories. In various embodiments, a cache can include a node cache and/or a binary cache. A node cache can be used to provide fast access to recently accessed nodes whereas a binary cache can be used to provide fast access to the binary content/data associated with each node in a node cache. The API can also provide a configuration facility 114 to enable applications, tools and libraries to configure caches and the VCR. In various embodiments, this facility can be can be configured via Java Management Extension (JMX) (available from Sun Microsystems, Inc.).
In various embodiments, a model for representing hierarchy information, content and data types is shared between the API and the SPI. In this model, a node can represent hierarchy information, content or schema information. Hierarchy nodes can serve as containers for other nodes in the namespace akin to a file subdirectory in a hierarchical file system. Schema nodes represent predefined data types. Content nodes represent content/data. Nodes can have a shape defined by their properties. A property associates a name, a data type and an optional a value that is appropriate for the type. In certain of these embodiments, the properties of content nodes contain values. By way of an illustration, a type can be any of the types described in Table 1. Those of skill in the art will appreciate that many more types are possible and fully within the scope and spirit of the present disclosure.
In various embodiments, a property can also indicate whether it is required, whether it is read-only, whether it provides a default value, and whether it specifies a property choice. A property choice indicates if a property is a single unrestricted value, a single restricted value, a multiple unrestricted value, or a multiple restricted value. Properties that are single have only one value whereas properties that are multiple can have more than one value. If a property is restricted, its value(s) are chosen from a finite set of values. But if a property is unrestricted, any value(s) can be provided for it. A property can also be designated as a primary property. By way of illustration, the primary property of a node can be considered its default content. For example, if a node contained a binary property to hold an image, it could also contain a second binary property to represent a thumbnail view of the image. If the thumbnail view was the primary property, software applications such as browser could display it by default.
A named collection of one or more property types is a schema. A schema node is a place holder for a schema. In various embodiments, schemas can be used to specify a node's properties. By way of illustration, a Person schema with three properties (Name, Address and DateofBirth) can be described for purposes of discussion as follows:
Schema Person = {
Various embodiments allow a node to be defined based on a schema. By way of illustration, a content node John can be given the same properties as the schema Person:
Content Node John is a Person
In this case, the node John would have the following properties: Name, Address and DateofBirth. Alternatively, a node can use one or more schemas to define individual properties. This is sometimes referred to as nested types. In the following illustration, John is defined having an Info property that itself contains the properties Name, Address and DateofBirth. In addition, John also has a CustomerId property:
Content Node John = {
Schemas can be defined logically in the VCR and/or in the individual repositories that form the VCR. In certain embodiments, schemas can inherit properties from at least one other schema. Schema inheritance can be unlimited in depth. That is, schema A can inherit from schema B, which itself can inherit from schema C, and so on. If several schemas contain repetitive properties, a “base” schema can be configured from which the other schemas can inherit. For example, a Person schema containing the properties Name, Address and DateofBirth, can be inherited by an Employee schema which adds its own properties (i.e., Employee ID, Date of Hire and Salary):
Schema Employee inherits from Person = {
Thus, as defined above the Employee schema has the following properties: Name, Address, DateofBirth, EmployeeID, DateofHire and Salary. If the Person schema had itself inherited properties from another schema, those properties would also belong to Employee.
In various embodiments, nodes have names/identifiers and can be specified programmatically or addressed using a path that designates the node's location in a VCR namespace. By way of illustration, the path can specify a path from the federated root (‘/’) to the node in question (‘c’):
/a/b/c
In this example, the opening ‘/’ represents the federated root, ‘a’ represents a repository beneath the federated root, ‘b’ is a hierarchy node within the ‘a’ repository, and ‘c’ is the node in question. The path can also identify a property (“property1”) on a node:
/a/b/c.property1
In aspects of these embodiments, the path components occurring prior to the node name can be omitted if the system can deduce the location of the node based on context information.
In various embodiments, a schema defined in one repository or the VCR can inherit from one or more schemas defined in the same repository, a different repository or the VCR. In certain aspects of these embodiments, if one or more of the repositories implicated by an inherited schema do not support inheritance, the inheriting schema can be automatically defined in the VCR by the API. In one embodiment, the inheriting schema is defined in the VCR by default.
By way of illustration, the Employee schema located in the Avitech repository inherits from the Person schema located beneath the Schemas hierarchy node in the BEA repository:
Schema /Avitech/Employee inherits from /BEA/Schemas/Person = {
In various embodiments, the link property type (see Table 1) allows for content reuse and the inclusion of content that may not be under control of the VCR. By way of illustration, the value associated with a link property can refer/point to any of the following: a content node in a VCR, an individual property on a content node in a VCR, a file on a file system, an object identified by a URL (Uniform Resource Locator), or any other suitable identifier. In various embodiments, when editing a content node that has a link property type, a user can specify the link destination (e.g., using a browser-type user interface). In certain aspects of these embodiments, if a link refers to a content node or a content node property that has been moved, the link can be resolved automatically by the system to reflect the new location.
In various embodiments, a value whose type is lookup (see Table 1) can hold an expression that can be evaluated to search the VCR for instances of content node(s) that satisfy the expression. Nodes that satisfy the expression (if any) can be made available for subsequent processing. In various embodiments, a lookup expression can contain one or more expressions that can substitute expression variables from: the content node containing the lookup property, a user profile, anything in the scope of a request or a session. In various embodiments, an expression can include mathematical, logical and Boolean operators, function/method invocations, macros, SQL (Structured Query Language), and any other suitable query language. In various embodiments, an expression can be pre-processed one or more times to perform variable substitution, constant folding and/or macro expansion. It will be apparent to those of skill in the art that many other types of expressions are possible and fully within the scope and spirit of this disclosure.
In various embodiments, when editing a content node that has a lookup property type, the user can edit the expression through a user interface that allows the user to build the expression by either entering it directly and/or by selecting its constituent parts. In addition, the user interface can enable the user to preview the results of the expression evaluation.
Database mapped property types (see Table 1) allow information to be culled (i.e., mapped) from one or more database tables (or other database objects) and manipulated through node properties. By way of illustration, a company might have “content” such as news articles stored as rows in one or more RDBMS (Relational Database Management System) tables. The company might wish to make use of this “content” via their portal implementation. Further, they might wish to manage the information in this table as if it existed in the VCR. Once instantiated, a content node property that is of the database mapped type behaves as though its content is in the VCR (rather than the database table). In one embodiment, all API operations on the property behave the same but ultimately operate on the information in the database table.
In various embodiments, a given database mapped property type can have an expression (e.g., SQL) which, when evaluated, resolves to a row and a column in a database table (or resolves to any kind of database object) accessible by the system over one or more networks. A database mapped property will be able to use either native database tables/objects or database views on those tables/objects. It will be appreciated by those of skill in the art that the present disclosure is not limited to any particular type of database or resolving expression.
In aspects of certain embodiments, a schema can be automatically created that maps to any row in a database table. The system can inspect the data structure of the table and pre-populate the schema with database mapped properties corresponding to columns from the table. The table column names can be used as the default property names and likewise the data type of each column will determine the data type of each corresponding property. The system can also indicate in the schema which properties correspond to primary key columns. If certain columns from the table are not to be used in the new schema, they can be un-mapped (i.e. deselected) by a user or a process. A content node can be based on such a schema and can be automatically bound to a row in a database table (or other database object) when it is instantiated. In various embodiments, a user can interactively specify the database object by browsing the database table.
While not required by all embodiments, some embodiments employ a display template (or “template”) to display content based on a schema. Templates can implement various “views”. By way of illustration, views could be “full”, “thumbnail”, and “list” but additional “views” could be defined by end-users. A full view can be the largest, or full page view of the content. A thumbnail view would be a very small view and a list view can be used when displaying multiple content nodes as a “list” on the page (e.g., a product catalog search results page). In various embodiments, the association between a schema and templates can be one-to-many. A template can be designated as the default template for a schema. In certain of these embodiments, templates can be designed with the aid of an integrated development environment (IDE). It is noteworthy that template technology is not limited to web applications. Other delivery mechanisms such as without limitation mobile phones, XML, and the like can be enabled by this technology.
In various embodiments and by way of illustration, display templates can be implemented using HTML (Hypertext Markup Language) and JSP (Java® Server Pages). By way of a further illustration, such a display template can be accessed from a web page through a JSP tag that can accept as an argument the identifier of a content node. Given the content node, the node's schema and associated default display template can be derived and rendered. Alternatively, the JSP tag can take an additional argument to specify a view other than the default. In another embodiment, display templates can be automatically generated (e.g., beforehand or dynamically at run-time) based on a content node's schema. In other embodiments, the view (e.g., full, thumbnail, list) can be determined automatically based on the contents of an HTTP request.
In various embodiments, a role is a dynamic set of users. By way of illustration, a role can be based on functional responsibilities shared by its members. In aspects of these embodiments, a role can be defined by one or more membership criteria. Role mapping is the process by which it is determined whether or not a user satisfies the membership criteria for a given role. For purposes of discussion, a role can be described as follows:
Role = PMembers + [Membership Criteria]
where PMembers is a set of user(s), group(s) and/or other role(s) that form a pool of potential members of this role subject to the Membership Criteria, if any. A user or a process can be in a role, if that user or process belongs to PMembers or satisfies the Membership Criteria. It is noteworthy that a user or process does not need to be a member of PMembers to be considered a member of the role. For example, it is possible to define a role with a criterion such as: “Only on Thursdays” as its membership criteria. All users would qualify as a member of this role on Thursdays. The Membership Criteria can include one or more conditions. By way of illustration, such conditions can include, but are not limited to, one or more (possibly nested and intermixed) Boolean, mathematical, functional, relational, and/or logical expressions. By way of illustration, consider the following Administrator role:
Administrator = Joe, Mary, SuperUser + CurrentTime > 5:00 pm
The role has as its potential members two users (Joe and Mary) and users belonging to the user group named SuperUser. The membership criteria includes a condition that requires the current time to be after 5:00 pm. Thus, if a user is Joe, Mary or belongs to the SuperUser group, and the current time is after 5:00 pm, the user is a member of the Administrator role.
In various embodiments, roles can be associated with Resource(s). By way of illustration, a resource can be any system and/or application asset (e.g., VCR nodes and node properties, VCR schemas and schema properties, operating system resources, virtual machine resources, J2EE application resources, and any other entity that can be used by or be a part of software/firmware of some kind). Typically, resources can be arranged in one or more hierarchies such that parent/child relationships are established (e.g., the VCR hierarchical namespace and the schema inheritance hierarchy). In certain of these embodiments, a containment model for roles is followed that enables child resources to inherit roles associated with their parents. In addition, child resources can override their parents' roles with roles of their own.
In various embodiments, Membership Criteria can be based at least partially on a node's properties. This allows for roles that can compare information about a user/process to content in the VCR, for example. In various embodiments, a node's property can be programmatically accessed using dot notation: Article.Creator is the Creator property of the Article node. By way of illustration, assume an Article node that represents a news article and includes two properties: Creator and State. A system can automatically set the Creator property to the name of the user that created the article. The State property indicates the current status of the article from a publication workflow standpoint (e.g., whether the article is a draft or has been approved for publication). In this example, two roles are defined (see Table 2).
The Submitter and Approver roles are associated with the Article node. Content nodes instantiated from this schema will inherit these roles. If a user attempting to access the article is the article's creator and the article's state is Draft, the user can be in the Submitter role. Likewise, if a user belongs to an Editor group and the article's state is Submitted or Approved, then the user can belong to the Approver role.
In various embodiments, a policy can be used to determine what capabilities or privileges for a given resource are made available to the policy's Subjects (e.g., user(s), group(s) and/or role(s)). For purposes of discussion, a policy can be described as follows:
Policy = Resource + Privilege(s) + Subjects
Policy mapping is the process by which Policy Criteria, if any, are evaluated to determine which Subjects are granted access to one or more Privileges on a Resource. Policy Criteria can include one or more conditions. By way of illustration, such conditions can include, but are not limited to, one or more (possibly nested and intermixed) Boolean, mathematical, functional, relational, and/or logical expressions. Aspects of certain embodiments allow policy mapping to occur just prior to when an access decision is rendered for a resource.
Similar to roles, in certain of these embodiments a containment model for policies is followed that enables child resources to inherit policies associated with their parents. In addition, child resources can override their parents' polices with policies of their own.
In various embodiments, policies on nodes can control access to privileges associated with the nodes. By way of illustration, given the following policies:
Policy1 = Printer504 + Read/View + Marketing
Policy2 = Printer504 + All + Engineering
the Marketing role can read/view and browse the Printer504 resource whereas the Engineering role has full access to it (“All”). These privileges are summarized in Table 3. Policy1 allows a user in the Marketing role to merely view the properties of Printer504 whereas Policy2 allows a user in the Engineering role to view and modify its properties, to create content nodes based on Printer504 (assuming it is a schema), and to delete the resource.
Aspects of certain of these embodiments include an implied hierarchy for privileges wherein child privilege(s) of a parent privilege are automatically granted if the parent privilege is granted by a policy.
In various embodiments, the containment models for polices and roles are extended to allow the properties of a node to inherit the policies and roles that are incident on the node. Roles/polices on properties can also override inherited roles/polices. For purposes of illustration, assume the following policy on a Power property of Printer504:
Policy3 = Printer504.Power + Update + Marketing
In Policy3, the Marketing role is granted the right to update the Power property for the printer resource Printer504 (e.g., control whether the printer is turned on or off). By default, the Read/View property is also granted according to an implied privilege hierarchy. (There is no Browse privilege for this property.) See Table 4. Alternatively, if there was no implied privilege hierarchy, the Power property would inherit the read/view privilege for the Marketing role from its parent, Printer504. Although no policy was specified for the Power property and the Engineering role, the privileges accorded to the Engineering role can be inherited from a parent node. These privileges are summarized in Table 4.
In various embodiments, the ability to instantiate a node based on a schema can be privileged. This can be used to control which types of content can be created by a user or a process. By way of illustration, assume the following policy:
Policy4 = Press_Release + Instantiate + Marketing, Manager
Policy4 specifies that nodes created based on the schema Press_Release can only be instantiated by users/processes who are members of the Marketing and/or Manager roles. In aspects of certain of these embodiments, user interfaces can use knowledge of these policies to restrict available user choices (e.g., users should only be able to see and choose schemas on which they have the Instantiate privilege).
In various embodiments, policies can be placed on schemas. For purposes of illustration, assume the following policies:
Policy5 = Press_Release + Read/View + Everyone
Policy6 = Press_Release + All + Public_Relations
With reference to Table 5 and by way of illustration, assume a content node instance was created based on the Press Release schema. By default, it would have the same roles/polices as the Press Release schema. If a policy was added to the node giving a role “Editor” the privilege to update the node, the result would be additive. That is, Everyone and Public Relations would maintain their original privileges.
In various embodiments, policies can be placed on properties within a schema, including property choices. (Property choices are a predetermined set of allowable values for a given property. For example, a “colors” property could have the property choices “red”, “green” and “blue”.)
The ContentManagerFactory 202 can serve as a representation of an access device from an application program's 200 point of view. In aspects of these embodiments, the ContentManagerFactory attempts to connect all available repositories to the device (e.g., 212-216); optionally with user or process credentials. In various embodiments, this can be based on the Java™ Authentication and Authorization Service (available from Sun Microsystems, Inc.). Those of skill in the art will recognize that many authorization schemes are possible without departing from the scope and spirit of the present disclosure. An SPI Repository object 206-210 represents each available content repository. In an embodiment, the ContentManagerFactory can invoke a connect( ) method on the set of Repository objects. It is noteworthy that, in some embodiments, the notion of “connecting” to a repository is not exposed to users. In various embodiments, the ContentManagerFactory returns a list of repository session objects to the application program, one for each repository for which a connection was attempted. Any error in the connection procedure can be described by the session object's state. In another embodiment, the ContentManagerFactory can connect to a specific repository given the repository name. In various embodiments, the name of a repository can be a URI (uniform resource identifier).
In an embodiment, an application making the request provides an indication of a desired selection criterion upon which selection from at least one of a paged result model and a paged list model is made.
In an embodiment the subset of content provided for display may be provided according to an ordering. The subset of content may be ordered according to one or more of a sorting, an ordering by repository, an ordering by a type of a node within the VCR, an ordering by a version identifier associated with at least a portion of the content, a custom sorting by node type-specific properties, a sorting by create/modification dates, and an ordering on multiple columns is also possible—for example, first by x, then by y, then by z, and so forth.
In an embodiment, a query to be applied to the subset of content is received. The subset of content is filtered according to the query to provide a filtered subset, which is provided responsive to the query.
In a yet further embodiment, the filtered subset of content may be provided according to an ordering. The filtered subset of content may be ordered according to one or more of: a sorting, an ordering by repository, an ordering by a type of a node within the VCR, an ordering by a version identifier associated with at least a portion of the content, and multiple levels of filtering are also possible—for example, filter where name starts with ‘Fred’ and type is ‘Article’ and modification date >X. Embodiments may also support the converse by providing the capability to filter a set of ordered content.
Some embodiments may also include redacting content received from the VCR prior to providing the content responsive to the request when the request does not satisfy the selected security policy. Alternatively, other embodiments may redact the request prior to accessing content in the VCR when the request does not satisfy the selected security policy. In another alternative approach, embodiments may block the request altogether when the request does not satisfy the selected security policy.
Embodiments may also provide the ability to provide results while transparently loading data in chunks, for example, a paged result.
In one embodiment, an initial query for both all query result IDs, and all query result Nodes is made. Everything is loaded into memory initially and no queries are made as pagination occurs. While such approaches have an advantage of providing everything in memory, these approaches can be computationally expensive in terms of speed and storage.
In an alternative embodiment, live query results are provided without temporary result-set storage. Initially, some but not all Node data is loaded. As pagination occurs, additional query(ies) may be made for additional Node data. For example, on pagination, retrieve all nodes on page 3 where NodeID>11000, NodeID<11500. In this approach, there is no need to temporarily store result set; access to first page of results is faster; and it will scale better in a server Java Virtual Machine (JVM) due to less memory for Node[ ]. However, the search result set can change while paginating, leading to duplicate or missing nodes.
In another alternative approach, a query is made for all result IDs both on paged result creation and anytime pagination occurs. When needed, a current page of Nodes is loaded. This approach has the advantage of supporting direct (random) access to specific pages. However, for wide queries, time to switch pages will be as long as time to resolve query result IDs, and increases as number of query results increases. It may take awhile to flip to the next page—time to load next page will be approx same as time to load first page. Server memory to store ID[ ] in Paged Result object and session replication may become issues. It is noteworthy that this can be addressed by supporting a Paged Result object with re-query capabilities. For example, only store the first X result set IDs, then if a pagination attempt occurs beyond the results, the query is re-issued and a different set of Ids is stored. A drawback of this approach is back-end resource consumption to service wide query may be increased.
In a yet further alternative embodiment, a query for result IDs is performed dynamically as needed. This may also be included in some embodiments as an optional feature. This approach initially loads some but not all ID data. As pagination occurs, a query for additional ID data is performed. For example, on pagination, retrieve third page of IDs for this query. An advantage of this embodiment is that more efficient back-end queries can be achieved since queries will be narrower, i.e., it will scale better for large queries. Also, this approach is expected to scale better in a server JVM due to less memory being required for each ID[ ]. Another advantage is that this approach should theoretically support any-size query results.
In a still further alternative embodiment, live query results with temporary result-set storage is provided. A query for all-pages of query result IDs is made initially, then query for one or more pages of result set Node data as pagination occurs. Disadvantages of this approach can include a need to store query result set ID[ ] somewhere (e.g., a database) and the full query result ID may require SPI resource consumption to be large for wide queries (lots of nodes) and server JVM memory consumption for ID[ ].
In a yet further alternative embodiment, the result set is stored in a database and the result set ID is stored in a Paged Result object. Disadvantages of this approach can include a need to age search results from database table so they don't accumulate over time and a need for temporary storage in the database. For an ‘all nodes’ query, this might be significant. The result set does not change as pagination occurs, so the Paged Result object references a snapshot in time. Advantage of this approach is the relatively small size of the Paged Result object.
In an embodiment, queries against SPI repositories will be limited by the current SPI architecture. To improve performance of the Extended SPI repositories (like a BEA repository), results paging is accomplished differently based on the repository type:
1. For BEA repository—provide live query results without temporary result-set storage by initially loading some but not all Node data. As pagination occurs, query for additional Node data. Otherwise, query for all result IDs both on paged result creation and anytime pagination occurs. When needed, load current page of Nodes if possible.
2—For a non-BEA repository, provide live query results without temporary result-set storage by initially loading some but not all Node data. As pagination occurs, query for additional Node data.
Embodiments employing the Java Database Connectivity (JDBC) API, and certain databases that support directly accessing results at a given index, may make use of a JDBC scrollable result set method—ResultSet.absolute(int rowNum) which supports moving the cursor to a given row number. Another alternative is to just call ResultSet.next( ) the appropriate number of times. JDBC and some databases support limiting the total number of results returned. JDBC has a Statement setMaxRows(int rowlimit) method. Oracle has a query hint to indicate that not all rows are expected to be examined. Queries can often be constructed using a ‘not in . . . ’ syntax to load a specific set of rows. Such concerns are often database specific.
In other aspects, the invention encompasses in some embodiments, computer apparatus, computing systems and machine-readable media configured to carry out the foregoing methods. In addition to an embodiment consisting of specifically designed integrated circuits or other electronics, the present invention may be conveniently implemented using a conventional general purpose or a specialized digital computer or microprocessor programmed according to the teachings of the present disclosure, as will be apparent to those skilled in the computer art.
Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art. The invention may also be implemented by the preparation of application specific integrated circuits or by interconnecting an appropriate network of conventional component circuits, as will be readily apparent to those skilled in the art.
The present invention includes a computer program product which is a storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the present invention. The storage medium can include, but is not limited to, any type of rotating media including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
Stored on any one of the machine readable medium (media), the present invention includes software for controlling both the hardware of the general purpose/specialized computer or microprocessor, and for enabling the computer or microprocessor to interact with a human user or other mechanism utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, operating systems, and user applications.
Included in the programming (software) of the general/specialized computer or microprocessor are software modules for implementing the teachings of the present invention, including, but not limited to providing mechanisms and methods for providing lightweight loading for managing content to federated content repositories as discussed herein.
Computing system 400 comprises components coupled via one or more communication channels (e.g., bus 401) including one or more general or special purpose processors 402, such as a Pentium®, Centrino®, Power PC®, digital signal processor (“DSP”), and so on. System 400 components also include one or more input devices 403 (such as a mouse, keyboard, microphone, pen, and so on), and one or more output devices 404, such as a suitable display, speakers, actuators, and so on, in accordance with a particular application. (It will be appreciated that input or output devices can also similarly include more specialized devices or hardware/software device enhancements suitable for use by the mentally or physically challenged.)
System 400 also includes a machine readable storage media reader 405 coupled to a machine readable storage medium 406, such as a storage/memory device or hard or removable storage/memory media; such devices or media are further indicated separately as storage 408 and memory 409, which may include hard disk variants, floppy/compact disk variants, digital versatile disk (“DVD”) variants, smart cards, read only memory, random access memory, cache memory, and so on, in accordance with the requirements of a particular application. One or more suitable communication interfaces 407 may also be included, such as a modem, DSL, infrared, RF or other suitable transceiver, and so on for providing inter-device communication directly or via one or more suitable private or public networks or other components that may include but are not limited to those already discussed.
Working memory 410 further includes operating system (“OS”) 411 elements and other programs 412, such as one or more of application programs, mobile code, data, and so on for implementing system 400 components that might be stored or loaded therein during use. The particular OS or OSs may vary in accordance with a particular device, features or other aspects in accordance with a particular application (e.g. Windows®, WindowsCE™, Mac™, Linux, Unix or Palm™ OS variants, a cell phone OS, a proprietary OS, Symbian™, and so on). Various programming languages or other tools can also be utilized, such as those compatible with C variants (e.g., C++, C#), the Java™ 2 Platform, Enterprise Edition (“J2EE”) or other programming languages in accordance with the requirements of a particular application. Other programs 412 may further, for example, include one or more of activity systems, education managers, education integrators, or interface, security, other synchronization, other browser or groupware code, and so on, including but not limited to those discussed elsewhere herein.
When implemented in software (e.g. as an application program, object, agent, downloadable, servlet, and so on in whole or part), a learning integration system or other component may be communicated transitionally or more persistently from local or remote storage to memory (SRAM, cache memory, etc.) for execution, or another suitable mechanism can be utilized, and components may be implemented in compiled or interpretive form. Input, intermediate or resulting data or functional elements may further reside more transitionally or more persistently in a storage media, cache or other volatile or non-volatile memory, (e.g., storage device 408 or memory 409) in accordance with a particular application.
Other features, aspects and objects of the invention can be obtained from a review of the figures and the claims. It is to be understood that other embodiments of the invention can be developed and fall within the spirit and scope of the invention and claims. The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
This application claims the benefit of U.S. Provisional Patent Application No. 60/720,860 entitled IMPROVED CONTENT MANAGEMENT, by Ryan McVeigh et al., filed Sep. 26, 2005, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5237614 | Weiss | Aug 1993 | A |
5335345 | Frieder et al. | Aug 1994 | A |
5341478 | Travis, Jr. et al. | Aug 1994 | A |
5347653 | Flynn et al. | Sep 1994 | A |
5355474 | Thuraisingham et al. | Oct 1994 | A |
5369702 | Shanton | Nov 1994 | A |
5426747 | Weinreb et al. | Jun 1995 | A |
5544322 | Cheng et al. | Aug 1996 | A |
5557747 | Rogers et al. | Sep 1996 | A |
5619710 | Travis, Jr. et al. | Apr 1997 | A |
5627886 | Bowman | May 1997 | A |
5671360 | Hambrick et al. | Sep 1997 | A |
5757669 | Christie et al. | May 1998 | A |
5806066 | Golshani et al. | Sep 1998 | A |
5825883 | Archibald et al. | Oct 1998 | A |
5826000 | Hamilton | Oct 1998 | A |
5848396 | Gerace | Dec 1998 | A |
5867667 | Butman et al. | Feb 1999 | A |
5872928 | Lewis et al. | Feb 1999 | A |
5873088 | Hiyashi et al. | Feb 1999 | A |
5889953 | Thebaut et al. | Mar 1999 | A |
5911143 | Deinhart et al. | Jun 1999 | A |
5918210 | Rosenthal et al. | Jun 1999 | A |
5925136 | Watts | Jul 1999 | A |
5941947 | Brown et al. | Aug 1999 | A |
5950195 | Stockwell et al. | Sep 1999 | A |
5954798 | Shelton et al. | Sep 1999 | A |
5956400 | Chaum et al. | Sep 1999 | A |
5966707 | Van Huben et al. | Oct 1999 | A |
5987469 | Lewis et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
6006194 | Merel | Dec 1999 | A |
6014666 | Hellend et al. | Jan 2000 | A |
6023765 | Khun | Feb 2000 | A |
6029144 | Barrett et al. | Feb 2000 | A |
6029182 | Nehab et al. | Feb 2000 | A |
6029196 | Lenz | Feb 2000 | A |
6054910 | Tada et al. | Apr 2000 | A |
6055515 | Consentino et al. | Apr 2000 | A |
6073242 | Hardy et al. | Jun 2000 | A |
6083276 | Davidson et al. | Jul 2000 | A |
6088679 | Barkley | Jul 2000 | A |
6098173 | Elgressy et al. | Aug 2000 | A |
6108687 | Craig | Aug 2000 | A |
6122647 | Horowitz et al. | Sep 2000 | A |
6141010 | Hoyle | Oct 2000 | A |
6141686 | Jackowski et al. | Oct 2000 | A |
6148333 | Guedalia et al. | Nov 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6157924 | Austin | Dec 2000 | A |
6158010 | Moriconi et al. | Dec 2000 | A |
6161139 | Win et al. | Dec 2000 | A |
6167407 | Nachenberg et al. | Dec 2000 | A |
6167445 | Gai et al. | Dec 2000 | A |
6167448 | Hemphill et al. | Dec 2000 | A |
6169794 | Oshimi et al. | Jan 2001 | B1 |
6170009 | Mandal et al. | Jan 2001 | B1 |
6178172 | Rochberger | Jan 2001 | B1 |
6182142 | Win et al. | Jan 2001 | B1 |
6182226 | Reid et al. | Jan 2001 | B1 |
6182277 | Degroot et al. | Jan 2001 | B1 |
6185587 | Bernardo et al. | Feb 2001 | B1 |
6188399 | Voas et al. | Feb 2001 | B1 |
6195696 | Baber et al. | Feb 2001 | B1 |
6202066 | Barkley et al. | Mar 2001 | B1 |
6202157 | Brownlie et al. | Mar 2001 | B1 |
6202207 | Donohue | Mar 2001 | B1 |
6205466 | Karp et al. | Mar 2001 | B1 |
6209101 | Mitchem et al. | Mar 2001 | B1 |
6216134 | Heckerman et al. | Apr 2001 | B1 |
6216231 | Stubblebine | Apr 2001 | B1 |
6226745 | Wiederhold | May 2001 | B1 |
6233576 | Lewis | May 2001 | B1 |
6236991 | Frauenhofer et al. | May 2001 | B1 |
6241608 | Torango | Jun 2001 | B1 |
6243747 | Lewis et al. | Jun 2001 | B1 |
6253321 | Nikander et al. | Jun 2001 | B1 |
6256741 | Stubblebine | Jul 2001 | B1 |
6260050 | Yost et al. | Jul 2001 | B1 |
6269393 | Yost et al. | Jul 2001 | B1 |
6269456 | Hodges et al. | Jul 2001 | B1 |
6275941 | Saito et al. | Aug 2001 | B1 |
6278452 | Huberman et al. | Aug 2001 | B1 |
6285366 | Ng et al. | Sep 2001 | B1 |
6285983 | Jenkins | Sep 2001 | B1 |
6285985 | Horstmann | Sep 2001 | B1 |
6292900 | Ngo et al. | Sep 2001 | B1 |
6295607 | Johnson | Sep 2001 | B1 |
6301613 | Ahlstrom et al. | Oct 2001 | B1 |
6304881 | Halim et al. | Oct 2001 | B1 |
6308163 | Du et al. | Oct 2001 | B1 |
6317868 | Grimm et al. | Nov 2001 | B1 |
6321336 | Applegate et al. | Nov 2001 | B1 |
6327594 | Van Huben et al. | Dec 2001 | B1 |
6327618 | Ahlstrom et al. | Dec 2001 | B1 |
6327628 | Anuff | Dec 2001 | B1 |
6336073 | Ihara et al. | Jan 2002 | B1 |
6339423 | Sampson et al. | Jan 2002 | B1 |
6339826 | Hayes, Jr. et al. | Jan 2002 | B2 |
6341352 | Child et al. | Jan 2002 | B1 |
6349297 | Shaw et al. | Feb 2002 | B1 |
6353886 | Howard et al. | Mar 2002 | B1 |
6357010 | Viets | Mar 2002 | B1 |
6360230 | Chan et al. | Mar 2002 | B1 |
6360363 | Moser et al. | Mar 2002 | B1 |
6366915 | Rubert et al. | Apr 2002 | B1 |
6377973 | Gideon | Apr 2002 | B2 |
6381579 | Gervais et al. | Apr 2002 | B1 |
6385627 | Cragun | May 2002 | B1 |
6393474 | Eichert et al. | May 2002 | B1 |
6397222 | Zellweger | May 2002 | B1 |
6397231 | Salisbury et al. | May 2002 | B1 |
6412070 | Van Dyke et al. | Jun 2002 | B1 |
6412077 | Roden et al. | Jun 2002 | B1 |
6418448 | Sarkar | Jul 2002 | B1 |
6430556 | Goldberg et al. | Aug 2002 | B1 |
6434607 | Haverstock et al. | Aug 2002 | B1 |
6438563 | Kawagoe | Aug 2002 | B1 |
6449638 | Wecker et al. | Sep 2002 | B1 |
6457007 | Kikuchi et al. | Sep 2002 | B1 |
6460084 | Van Horne et al. | Oct 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6463440 | Hind et al. | Oct 2002 | B1 |
6466239 | Ishikawa | Oct 2002 | B2 |
6466932 | Dennis et al. | Oct 2002 | B1 |
6473791 | Al-Ghosein et al. | Oct 2002 | B1 |
6477543 | Huang et al. | Nov 2002 | B1 |
6477575 | Koeppel et al. | Nov 2002 | B1 |
6484177 | Van Huben et al. | Nov 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6487594 | Bahlmann | Nov 2002 | B1 |
6510513 | Danieli | Jan 2003 | B1 |
6519647 | Howard et al. | Feb 2003 | B1 |
6530024 | Proctor | Mar 2003 | B1 |
6539375 | Kawasaki | Mar 2003 | B2 |
6542993 | Erfani | Apr 2003 | B1 |
6571247 | Danno et al. | May 2003 | B1 |
6574736 | Andrews | Jun 2003 | B1 |
6581054 | Bogrett | Jun 2003 | B1 |
6581071 | Gustman et al. | Jun 2003 | B1 |
6584454 | Hummel, Jr. et al. | Jun 2003 | B1 |
6587849 | Mason et al. | Jul 2003 | B1 |
6587876 | Mahon et al. | Jul 2003 | B1 |
6615218 | Mandal et al. | Sep 2003 | B2 |
6618806 | Brown et al. | Sep 2003 | B1 |
7111321 | Watts et al. | Sep 2003 | B1 |
6633538 | Tanaka et al. | Oct 2003 | B1 |
6654747 | Van Huben et al. | Nov 2003 | B1 |
6665677 | Wotring et al. | Dec 2003 | B1 |
6668354 | Chen et al. | Dec 2003 | B1 |
6671689 | Papierniak | Dec 2003 | B2 |
6684369 | Bernardo et al. | Jan 2004 | B1 |
6694306 | Nishizawa | Feb 2004 | B1 |
6697805 | Choquier et al. | Feb 2004 | B1 |
6715077 | Vasudevan et al. | Mar 2004 | B1 |
6721888 | Liu et al. | Apr 2004 | B1 |
6725333 | Degenaro et al. | Apr 2004 | B1 |
6728713 | Beach et al. | Apr 2004 | B1 |
6732144 | Kizu et al. | May 2004 | B1 |
6735586 | Timmons | May 2004 | B2 |
6735624 | Rubin et al. | May 2004 | B1 |
6735701 | Jacobson | May 2004 | B1 |
6738789 | Multer | May 2004 | B2 |
6745207 | Reuter et al. | Jun 2004 | B2 |
6751657 | Zothner | Jun 2004 | B1 |
6751659 | Fenger et al. | Jun 2004 | B1 |
6754672 | McLauchlin | Jun 2004 | B1 |
6757698 | McBride et al. | Jun 2004 | B2 |
6757822 | Feirtag et al. | Jun 2004 | B1 |
6769095 | Brassard et al. | Jul 2004 | B1 |
6769118 | Garrison et al. | Jul 2004 | B2 |
6772157 | Barnett et al. | Aug 2004 | B2 |
6772332 | Boebert et al. | Aug 2004 | B1 |
6779002 | Mwaura | Aug 2004 | B1 |
6789202 | Ko et al. | Sep 2004 | B1 |
6792537 | Liu et al. | Sep 2004 | B1 |
6832313 | Parker | Dec 2004 | B1 |
6834284 | Acker et al. | Dec 2004 | B2 |
6853997 | Wotring et al. | Feb 2005 | B2 |
6854035 | Dunham et al. | Feb 2005 | B2 |
6856999 | Flanagin et al. | Feb 2005 | B2 |
6857012 | Sim et al. | Feb 2005 | B2 |
6865549 | Connor | Mar 2005 | B1 |
6873988 | Herrmann et al. | Mar 2005 | B2 |
6880005 | Bell et al. | Apr 2005 | B1 |
6886100 | Harrah et al. | Apr 2005 | B2 |
6889222 | Zhao | May 2005 | B1 |
6901403 | Bata et al. | May 2005 | B1 |
6904433 | Kapitskaia et al. | Jun 2005 | B2 |
6904454 | Stickler | Jun 2005 | B2 |
6912538 | Stapel et al. | Jun 2005 | B2 |
6917975 | Griffin et al. | Jul 2005 | B2 |
6918088 | Clark et al. | Jul 2005 | B2 |
6920457 | Pressmar | Jul 2005 | B2 |
6922695 | Skufca | Jul 2005 | B2 |
6925487 | Kim | Aug 2005 | B2 |
6931549 | Ananda | Aug 2005 | B1 |
6934532 | Coppinger et al. | Aug 2005 | B2 |
6934699 | Haas et al. | Aug 2005 | B1 |
6934934 | Osborne | Aug 2005 | B1 |
6947989 | Gulotta et al. | Sep 2005 | B2 |
6950825 | Chang et al. | Sep 2005 | B2 |
6957261 | Lortz | Oct 2005 | B2 |
6961897 | Peel et al. | Nov 2005 | B1 |
6965999 | Fox et al. | Nov 2005 | B2 |
6970445 | O'Neill et al. | Nov 2005 | B2 |
6970840 | Yu et al. | Nov 2005 | B1 |
6970876 | Hotti et al. | Nov 2005 | B2 |
6978379 | Goh et al. | Dec 2005 | B1 |
6985915 | Somalwar et al. | Jan 2006 | B2 |
6987580 | Watanabe et al. | Jan 2006 | B2 |
6988138 | Alcorn et al. | Jan 2006 | B1 |
7003578 | Kanada et al. | Feb 2006 | B2 |
7010537 | Eyal et al. | Mar 2006 | B2 |
7013485 | Brown et al. | Mar 2006 | B2 |
7035857 | Reeves et al. | Apr 2006 | B2 |
7035879 | Shi et al. | Apr 2006 | B2 |
7035944 | Fletcher et al. | Apr 2006 | B2 |
7043472 | Aridor et al. | May 2006 | B2 |
7043685 | Azuma | May 2006 | B2 |
7047522 | Dixon et al. | May 2006 | B1 |
7051016 | Winkler | May 2006 | B2 |
7051071 | Stewart | May 2006 | B2 |
7051316 | Charisius et al. | May 2006 | B2 |
7054910 | Nordin et al. | May 2006 | B1 |
7062490 | Adya et al. | Jun 2006 | B2 |
7062511 | Poulsen | Jun 2006 | B1 |
7076652 | Ginter et al. | Jul 2006 | B2 |
7080000 | Cambridge | Jul 2006 | B1 |
7085755 | Bluhm et al. | Aug 2006 | B2 |
7085994 | Gvily | Aug 2006 | B2 |
7089584 | Sharma | Aug 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7093261 | Harper et al. | Aug 2006 | B1 |
7093283 | Chen et al. | Aug 2006 | B1 |
7096224 | Murthy et al. | Aug 2006 | B2 |
7111153 | Kuttanna et al. | Sep 2006 | B2 |
7124192 | High et al. | Oct 2006 | B2 |
7124413 | Klemm et al. | Oct 2006 | B1 |
7134076 | Bahrs et al. | Nov 2006 | B2 |
7146564 | Kim et al. | Dec 2006 | B2 |
7174563 | Brownlie et al. | Feb 2007 | B1 |
7185192 | Kahn | Feb 2007 | B1 |
7219140 | Marl et al. | May 2007 | B2 |
7269664 | Hutsch et al. | Sep 2007 | B2 |
7272625 | Hannel et al. | Sep 2007 | B1 |
20010009016 | Hofmann et al. | Jul 2001 | A1 |
20010032128 | Kepecs | Oct 2001 | A1 |
20010034771 | Hutsch et al. | Oct 2001 | A1 |
20010034774 | Watanabe et al. | Oct 2001 | A1 |
20010039586 | Primak et al. | Nov 2001 | A1 |
20010044810 | Timmons | Nov 2001 | A1 |
20010047485 | Brown et al. | Nov 2001 | A1 |
20020005867 | Gvily | Jan 2002 | A1 |
20020010741 | Stewart | Jan 2002 | A1 |
20020019827 | Shiman et al. | Feb 2002 | A1 |
20020023084 | Eyal et al. | Feb 2002 | A1 |
20020023122 | Polizzi et al. | Feb 2002 | A1 |
20020029296 | Anuff et al. | Mar 2002 | A1 |
20020046099 | Frengut et al. | Apr 2002 | A1 |
20020059394 | Sanders | May 2002 | A1 |
20020062451 | Scheidt et al. | May 2002 | A1 |
20020067370 | Forney et al. | Jun 2002 | A1 |
20020069261 | Bellare et al. | Jun 2002 | A1 |
20020087571 | Stapel et al. | Jul 2002 | A1 |
20020103818 | Amberden | Aug 2002 | A1 |
20020104071 | Charisius et al. | Aug 2002 | A1 |
20020107913 | Rivera et al. | Aug 2002 | A1 |
20020107920 | Hotti | Aug 2002 | A1 |
20020111998 | Kim | Aug 2002 | A1 |
20020112171 | Ginter et al. | Aug 2002 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020124053 | Adams et al. | Sep 2002 | A1 |
20020135617 | Samid | Sep 2002 | A1 |
20020143819 | Han et al. | Oct 2002 | A1 |
20020147645 | Alao et al. | Oct 2002 | A1 |
20020147696 | Acker | Oct 2002 | A1 |
20020147801 | Gullotta et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020152279 | Sollenberger et al. | Oct 2002 | A1 |
20020161903 | Besaw | Oct 2002 | A1 |
20020169893 | Chen et al. | Nov 2002 | A1 |
20020169975 | Good | Nov 2002 | A1 |
20020173971 | Stirpe et al. | Nov 2002 | A1 |
20020178119 | Griffin et al. | Nov 2002 | A1 |
20020188869 | Patrick | Dec 2002 | A1 |
20020194267 | Flesner et al. | Dec 2002 | A1 |
20030014442 | Shiigi et al. | Jan 2003 | A1 |
20030032409 | Hutcheson et al. | Feb 2003 | A1 |
20030033315 | Winkler | Feb 2003 | A1 |
20030046576 | High, Jr. et al. | Mar 2003 | A1 |
20030065721 | Roskind | Apr 2003 | A1 |
20030069874 | Hertzog | Apr 2003 | A1 |
20030078959 | Yeung et al. | Apr 2003 | A1 |
20030078972 | Tapissier et al. | Apr 2003 | A1 |
20030088617 | Clark et al. | May 2003 | A1 |
20030110448 | Haut et al. | Jun 2003 | A1 |
20030115484 | Moriconi et al. | Jun 2003 | A1 |
20030120686 | Kim et al. | Jun 2003 | A1 |
20030126236 | Marl et al. | Jul 2003 | A1 |
20030126464 | McDaniel et al. | Jul 2003 | A1 |
20030126558 | Griffin | Jul 2003 | A1 |
20030131113 | Reeves et al. | Jul 2003 | A1 |
20030135490 | Barrett et al. | Jul 2003 | A1 |
20030140308 | Murthy et al. | Jul 2003 | A1 |
20030145275 | Qian et al. | Jul 2003 | A1 |
20030146937 | Lee | Aug 2003 | A1 |
20030167315 | Chowdry et al. | Sep 2003 | A1 |
20030167455 | Iborra et al. | Sep 2003 | A1 |
20030182577 | Mocek | Sep 2003 | A1 |
20030187956 | Belt et al. | Oct 2003 | A1 |
20030188085 | Arakawa et al. | Oct 2003 | A1 |
20030200350 | Kumar et al. | Oct 2003 | A1 |
20030204481 | Lau | Oct 2003 | A1 |
20030212766 | Giles et al. | Nov 2003 | A1 |
20030216938 | Shour | Nov 2003 | A1 |
20030220913 | Doganata et al. | Nov 2003 | A1 |
20030220963 | Golovinsky et al. | Nov 2003 | A1 |
20030229501 | Copeland et al. | Dec 2003 | A1 |
20030229623 | Chang et al. | Dec 2003 | A1 |
20040003071 | Mathew et al. | Jan 2004 | A1 |
20040010719 | Daenen | Jan 2004 | A1 |
20040019650 | Auvenshire | Jan 2004 | A1 |
20040024812 | Park et al. | Feb 2004 | A1 |
20040030744 | Rubin et al. | Feb 2004 | A1 |
20040030795 | Hesmer et al. | Feb 2004 | A1 |
20040064633 | Oota | Apr 2004 | A1 |
20040078371 | Worrall et al. | Apr 2004 | A1 |
20040093344 | Berger | May 2004 | A1 |
20040098467 | Dewey et al. | May 2004 | A1 |
20040098470 | Kurihara | May 2004 | A1 |
20040098606 | Tan et al. | May 2004 | A1 |
20040107360 | Hermann et al. | Jun 2004 | A1 |
20040125144 | Yoon | Jul 2004 | A1 |
20040162733 | Griffin | Aug 2004 | A1 |
20040162905 | Griffin | Aug 2004 | A1 |
20040162906 | Griffin | Aug 2004 | A1 |
20040167880 | Smith | Aug 2004 | A1 |
20040167899 | Patadia et al. | Aug 2004 | A1 |
20040205473 | Fisher et al. | Oct 2004 | A1 |
20040205557 | Bahrs et al. | Oct 2004 | A1 |
20040215635 | Chang et al. | Oct 2004 | A1 |
20040215650 | Shaji et al. | Oct 2004 | A1 |
20040230546 | Rogers | Nov 2004 | A1 |
20040236760 | Arkeketa et al. | Nov 2004 | A1 |
20040243824 | Jones | Dec 2004 | A1 |
20050021502 | Chen et al. | Jan 2005 | A1 |
20050021656 | Callegari | Jan 2005 | A1 |
20050050184 | Boden et al. | Mar 2005 | A1 |
20050060324 | Johnson et al. | Mar 2005 | A1 |
20050086206 | Balasubramanian et al. | Apr 2005 | A1 |
20050086469 | Dunagan et al. | Apr 2005 | A1 |
20050097008 | Ehring et al. | May 2005 | A1 |
20050198617 | Kim et al. | Sep 2005 | A1 |
20050256894 | Talanis et al. | Nov 2005 | A1 |
20050257267 | Williams et al. | Nov 2005 | A1 |
20060005150 | Pankovcin | Jan 2006 | A1 |
20060059107 | Elmore et al. | Mar 2006 | A1 |
20060085412 | Johnson et al. | Apr 2006 | A1 |
20060122882 | Brown et al. | Jun 2006 | A1 |
20060167858 | Dennis et al. | Jul 2006 | A1 |
20060167935 | Atarashi et al. | Jul 2006 | A1 |
20060225123 | Childress et al. | Oct 2006 | A1 |
20060277594 | Chiavegatto et al. | Dec 2006 | A1 |
20070083484 | McVeigh et al. | Apr 2007 | A1 |
20070294743 | Kaler et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
697662 | Feb 1996 | EP |
1 256 889 | Nov 2002 | EP |
0038078 | Jun 2000 | WO |
0114962 | Mar 2001 | WO |
0167285 | Sep 2001 | WO |
0177823 | Oct 2001 | WO |
02063496 | Aug 2002 | WO |
02075597 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070073672 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60720860 | Sep 2005 | US |