The present invention relates to image correction for displays, and in particular to a system and method for loading and saving image correction data for displays.
Active-Matrix Organic Light-Emitting Diode (AMOLED) displays are well known in the art. Polysilicon and metal oxide semiconductor are popular materials used in the AMOLED displays, due to their low cost and well established infrastructure from thin-film transistor liquid crystal display (TFT-LCD) fabrication.
Typically, LED and AMOLED displays require some form of image correction post fabrication. All LED and AMOLED displays, regardless of backplane technology, exhibit differences in luminance on a pixel to pixel basis, primarily as a result of process or construction inequalities, or from aging caused by operational use over time. Luminance non-uniformities in a display may also arise from natural differences in chemistry and performance from the LED and OLED materials themselves. These non-uniformities must be managed by the LED and AMOLED display electronics in order for the display device to attain commercially acceptable levels of performance for mass-market use.
To facilitate image correction, for a given display, the initial non-uniformity correction data is typically acquired optically from the display, at the module level, prior to or after singularization. Other methods, such as electrical measurement or a combination of electrical and optical measurement, may also be used to acquire the correction data. The correction data is then stored on a non-volatile-memory (NVM) chip on the display module itself, as disclosed in U.S. Pat. No. 7,868,857, which is incorporated herein by reference. The extra NVM memory chip adds to the cost of the display module, and consumes valuable power and circuit board surface area.
An object of the present invention is to overcome the shortcomings of the prior art by providing a method of storing and loading the image correction data remote from the display module, thereby eliminating the need for NVM in the product.
Accordingly, the present invention relates to a method of loading image correction data for a display system used in a final product comprising:
The present invention also relates to a display system for use in a video displaying product, which includes a video source and a memory store including initial correction data for the display system, the display system comprising:
The invention will be described in greater detail with reference to the accompanying drawings which represent preferred embodiments thereof, wherein:
While the present teachings are described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments. On the contrary, the present teachings encompass various alternatives and equivalents, as will be appreciated by those of skill in the art.
The digital data processor 106 sends digital data 108 to a data driver IC 110. The data driver IC 110 converts the digital data 108 into an analog voltage or current 112. The analog voltage or current 112 is applied to a pixel circuit 114. The pixel circuit 114 includes thin film transistors (TFTs) 116 and a light-emitting diode (LED) or an organic light-emitting diode (OLED), hereinafter referred to as LED 120. The TFTs 116 convert that voltage or current 112 into another current 118 which flows through the LED 120. The LED 120 converts the current 118 into visible light 126. The LED 120 has an LED voltage 122, which is the voltage drop across the LED 120. The LED 120 also has an efficiency 124, which is a ratio of the amount of light emitted to the current through the LED 120. The pixel circuit 114 outputs the visible light 126 based on the analog voltage or current 112 for viewing by the user.
The digital data 104, the analog voltage/current 112, the current 118, and the visible light 126 all contain the exact same information, i.e. luminance data. They are simply different formats of the initial luminance data that came from the video source 102. The desired operation of the system is for a given value of luminance data from the video source 102 to always result in the same value of the visible light 126. In
However, there are several degradation factors which may cause errors on the visible light 126. Initial differences in luminance on a pixel to pixel basis are primarily as a result of process or construction inequalities. Luminance non-uniformities in a display system 100 may also arise from natural differences in chemistry and performance from the LED and OLED materials themselves. Moreover, with continued usage, the TFTs 116 will output lower current 118 for the same input from the data driver IC 110. With continued usage, the LED 120 will consume greater voltage 122 for the same input current 118. Because the TFTs 116 are not perfect current sources, this will actually reduce the input current 118 slightly. With continued usage, the LED 120 will lose efficiency 124, and emit less visible light 126 for the same input current 118.
Due to these degradation factors, the visible light output 126 will be less over time, even with the same luminance data being sent from the video source 102. Depending on the usage of the display, different pixels may have different amounts of degradation. Therefore, there will be an ever-increasing error between the required brightness of some pixels as specified by the luminance data in the video source 102, and the actual brightness of the pixels. The result is that the desired image will not show properly on the display 50.
Initial Non-Uniformity
With reference to
In order to remove the need for a separate NVM memory in the display system 100, the producer of the display system 100 may serialize the display system 100 and store the correction data in a network-connected or cloud server, i.e. remote from display system 100 and final product 10 (Step 302). When the display system 100 is integrated into the final product or the test system 10 (Step 303) the integrator may pull the correction data 75 from the network connector or cloud server and store onto the memory store 25 of the final product or test system 10 (Step 304). Typically, the final product 10 will have a large and relatively low-cost memory store 10, i.e. in terms of $/bit, available, such as an eMMC flash.
On power-on, a software driver running on the final product or test system 10 can load the correction data 75 from the large, low-cost memory store 25 and populate a correction data table inside of a compensation module 144 in the digital data processor 106, the display driver IC 110 or a discrete processing chip in the display system 100 using the same high speed video interface used for video data from the video source 102 (Step 305). The correction data 75 may be used by the compensation module 144 as part of the application processor, the GPU or the CPU of the digital data processor 106 or by the discrete compensation processing chip to correct the luminance data in its digital form 104 or 108. Alternatively, the compensation module 144 may be part of the display driver IC 110, and use the luminance data in digital form 108 or voltage or current form 112. The high speed video interface transfer speeds available between the video source 102 of the final product 10 and the digital data processor 106/display driver 110 enable fast correction data table loading. The correction data 75 and the luminance data 104 may be transmitted simultaneously over the video interface or the correction data 75 may be transmitted as part of the luminance data 104 over the video interface.
Besides the table upload speed, the final product 10 would not require any flash memory on the display module 100 as the memory store 25 of the final product 10 could be leveraged thus saving cost as well.
The initial non-uniformity correction data 75 may be stored in the memory 25 as an integer value. The location of each integer in the memory 25 is related to the pixel's location on the LED or AMOLED display 50. The value of each integer is a number, which is added to the digital luminance data 104 by the compensation module 144 to compensate for the initial non-uniformity.
For example, digital luminance data may be represented to use 8-bits (256 values) for the brightness of a pixel. A value of 256 may represent maximum luminance for the pixel 114. A value of 128 may represent approximately 50% luminance. The value in the compensation table of the memory 25 may be the number that is added to the luminance data 104 to compensate for the non-uniformity. Therefore, the compensation module 144 in the digital data processor 106 may be implemented by a digital adder. It is noted that digital luminance data 104 may be represented by any number of bits, depending on the driver IC 110 used, for example, 6-bit, 8-bit, 10-bit, 14-bit, etc.
Degradation
With reference to
The degradation data 132 is electrical data which represents how much a part of the pixel circuit 114 has been degraded. The data measured from the pixel circuit 114 may represent, for example, one or more characteristics of a part of the pixel circuit 114.
The degradation data 132 is measured from, for example, one or more thin-film-transistors (TFTs), an light emitting diode (LED), an organic light emitting diode (OLED), or a combination thereof. It is noted that the transistors of the pixel circuit 114 is not limited to the TFTs, and the light emitting device of the pixel circuit 114 is not limited to the OLED. The measured degradation data 132 may be digital or analog data. The display system 100 provides compensation data 136 based on measurement from a part of the pixel circuit 114, e.g. TFT 116 or LED 120, to compensate for non-uniformities in the display 50. The non-uniformities may include brightness non-uniformity, color non-uniformity, or a combination thereof. Factors for causing such non-uniformities may include, but not limited to, process or construction inequalities in the display, aging of pixel circuits, etc.
The degradation data 132 may be measured initially during manufacture or assembly, at a regular time interval, e.g. daily, weekly or monthly, or at a dynamically regulated time interval, e.g. upon request of user. The calculated pixel circuit degradation data 136 may be compensation data to correct non-uniformities in the display 50. The calculated pixel circuit degradation (compensation) data 136 may include any parameter to produce compensation. The compensation data 136 may be used at a regular time interval, e.g. each frame, regular interval, etc., or at a dynamically regulated timing. The measured degradation data 132, the compensation data 136 or a combination thereof may be stored in the memory store 25.
The TFT-to-pixel circuit conversion algorithm module 134 or the combination of the TFT-to-pixel circuit conversion algorithm module 134 and the digital data processor 106 estimates the degradation of the entire pixel circuit 114 based on the measured degradation data 132. Based on this estimation, the entire degradation of the pixel circuit 114 is compensated by adjusting, at the digital data processor 106, the luminance data (digital data 104) applied to a certain pixel circuit(s).
The display system 100 may modify or adjust the luminance data 104 applied to a degraded pixel circuit 114 or non-degraded pixel circuit 114. For example, if a constant value of visible light 126 is desired, the digital data processor 106 increases the luminance data for a pixel that is highly degraded, thereby compensating for the degradation.
In
The system 100 of
The pixel circuit 114 has a component that can be measured. The measurement obtained from the pixel circuit 114 is in some way related to the pixel circuit's degradation.
Referring to
Referring to
In
The calculated pixel circuit degradation data 136 stored in the memory 25 is always available for the digital data processor 106. Thus, the TFT degradation data 132 for each pixel 114 does not have to be measured every time the digital data processor 106 needs to use the data 132. The degradation data 132 may be measured infrequently in a random or predetermined time period, for example, once a day, once a week etc. Using a dynamic time allocation for the degradation measurement is another case, more frequent extraction at the beginning and less frequent extraction after the aging gets saturated.
The digital data processor 106 may include the compensation module 144 for taking input luminance data for the pixel circuit 114 from the video source 102, and modifying the input luminance data 104 based on degradation data 136 for that pixel circuit 114 or other pixel circuit. In
One example of the degradation data 136 used in the module 144 of the digital data processor 106 is illustrated in
For example, digital luminance data may be represented to use 8-bits (256 values) for the brightness of a pixel. A value of 256 may represent maximum luminance for the pixel. A value of 128 may represent approximately 50% luminance. The value in the table may be the number that is added to the luminance data 104 to compensate for the degradation. Therefore, the compensation module 144 in the digital data processor 106 may be implemented by a digital adder. It is noted that digital luminance data may be represented by any number of bits, depending on the driver IC 110 used (for example, 6-bit, 8-bit, 10-bit, 14-bit, etc.).
In
The additional inputs 190 may include measured parameters, such as voltage reading from current-programming pixels and current reading from voltage-programming pixels. These pixels may be different from a pixel circuit 114 from which the measured signal 132 is obtained. For example, a measurement is taken from a “pixel under test” and is used in combination with another measurement from a “reference pixel”. As described below, in order to determine how to modify luminance data 104 to a pixel 114, data from other pixels in the display may be used. The additional inputs 190 may include light measurements, such as measurement of an ambient light in a room. A discrete device or some kind of test structure around the periphery of the panel may be used to measure the ambient light. The additional inputs 190 may include humidity measurements, temperature readings, mechanical stress readings, other environmental stress readings, and feedback from test structures on the panel.
The other parameters may also include empirical parameters 192, such as the brightness loss in the LED 120 due to decreasing efficiency (ΔL), the shift in LED voltage 122 over time (ΔVoled), dynamic effects of Vt shift, parameters related to TFT performance, such as Vt, ΔVt, mobility (μ), inter-pixel non-uniformity, DC bias voltages in the pixel circuit, changing gain of current-mirror based pixel circuits, short-term and long-term based shifts in pixel circuit performance, pixel-circuit operating voltage variation due to IR-drop and ground bounce.
The TFT-to-pixel-circuit conversion algorithm in the module 134 and the compensation algorithm 144 in the digital data processor 106 work together to convert the measured TFT degradation data 132 into a luminance correction factor. The luminance correction factor has information about how the luminance data 104 for a given pixel 114 is to be modified, to compensate for the degradation in the pixel 114.
In
The value of the luminance correction factor may allow the visible light to remain constant, regardless of the degradation in the pixel circuit 114. The value of the luminance correction factor may allow the luminance of degraded pixels not to be altered at all; instead, the luminance of the non-degraded pixels to be decreased. In this case, the entire display may gradually lose luminance over time, however the uniformity may be high.
The calculation of a luminance correction factor may be implemented in accordance with a compensation of non-uniformity algorithm, such as a constant brightness algorithm, a decreasing brightness algorithm, or combinations thereof. The constant brightness algorithm and the decreasing brightness algorithm may be implemented on the TFT-to-pixel circuit conversion algorithm module 134 or the digital data processor 106. The constant brightness algorithm is provided for increasing brightness of degraded pixels so as to match non-degraded pixels. The decreasing brightness algorithm is provided for decreasing brightness of non-degraded pixels so as to match degraded pixels. These algorithm may be implemented by the TFT-to-pixel circuit conversion algorithm module 134, the digital data processor 144, or combinations thereof. It is noted that these algorithms are examples only, and the compensation of non-uniformity algorithm is not limited to these algorithms.
The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4354162 | Wright | Oct 1982 | A |
4758831 | Kasahara et al. | Jul 1988 | A |
4963860 | Stewart | Oct 1990 | A |
4975691 | Lee | Dec 1990 | A |
4996523 | Bell et al. | Feb 1991 | A |
5051739 | Hayashida et al. | Sep 1991 | A |
5222082 | Plus | Jun 1993 | A |
5266515 | Robb et al. | Nov 1993 | A |
5498880 | Lee et al. | Mar 1996 | A |
5589847 | Lewis | Dec 1996 | A |
5619033 | Weisfield | Apr 1997 | A |
5648276 | Hara et al. | Jul 1997 | A |
5670973 | Bassetti et al. | Sep 1997 | A |
5684365 | Tang et al. | Nov 1997 | A |
5686935 | Weisbrod | Nov 1997 | A |
5712653 | Katoh et al. | Jan 1998 | A |
5714968 | Ikeda | Feb 1998 | A |
5747928 | Shanks et al. | May 1998 | A |
5748160 | Shieh et al. | May 1998 | A |
5784042 | Ono et al. | Jul 1998 | A |
5790234 | Matsuyama | Aug 1998 | A |
5815303 | Berlin | Sep 1998 | A |
5870071 | Kawahata | Feb 1999 | A |
5874803 | Garbuzov et al. | Feb 1999 | A |
5880582 | Sawada | Mar 1999 | A |
5903248 | Irwin | May 1999 | A |
5917280 | Burrows et al. | Jun 1999 | A |
5923794 | McGrath et al. | Jul 1999 | A |
5952789 | Stewart et al. | Sep 1999 | A |
5990629 | Yamada et al. | Nov 1999 | A |
6023259 | Howard et al. | Feb 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6081131 | Ishii | Jun 2000 | A |
6091203 | Kawashima et al. | Jul 2000 | A |
6097360 | Holloman | Aug 2000 | A |
6144222 | Ho | Nov 2000 | A |
6157583 | Starnes et al. | Dec 2000 | A |
6166489 | Thompson et al. | Dec 2000 | A |
6177915 | Beeteson et al. | Jan 2001 | B1 |
6225846 | Wada et al. | May 2001 | B1 |
6229508 | Kane | May 2001 | B1 |
6232939 | Saito et al. | May 2001 | B1 |
6246180 | Nishigaki | Jun 2001 | B1 |
6252248 | Sano et al. | Jun 2001 | B1 |
6259424 | Kurogane | Jul 2001 | B1 |
6274887 | Yamazaki et al. | Aug 2001 | B1 |
6288696 | Holloman | Sep 2001 | B1 |
6300928 | Kim | Oct 2001 | B1 |
6303963 | Ohtani et al. | Oct 2001 | B1 |
6306694 | Yamazaki et al. | Oct 2001 | B1 |
6307322 | Dawson et al. | Oct 2001 | B1 |
6316786 | Mueller et al. | Nov 2001 | B1 |
6320325 | Cok et al. | Nov 2001 | B1 |
6323631 | Juang | Nov 2001 | B1 |
6323832 | Nishizawa et al. | Nov 2001 | B1 |
6345085 | Yeo et al. | Feb 2002 | B1 |
6348835 | Sato et al. | Feb 2002 | B1 |
6365917 | Yamazaki | Apr 2002 | B1 |
6373453 | Yudasaka | Apr 2002 | B1 |
6384427 | Yamazaki et al. | May 2002 | B1 |
6392617 | Gleason | May 2002 | B1 |
6399988 | Yamazaki | Jun 2002 | B1 |
6414661 | Shen et al. | Jul 2002 | B1 |
6420758 | Nakajima | Jul 2002 | B1 |
6420834 | Yamazaki et al. | Jul 2002 | B2 |
6420988 | Azami et al. | Jul 2002 | B1 |
6433488 | Bu | Aug 2002 | B1 |
6445376 | Parrish | Sep 2002 | B2 |
6468638 | Jacobsen et al. | Oct 2002 | B2 |
6489952 | Tanaka et al. | Dec 2002 | B1 |
6501098 | Yamazaki | Dec 2002 | B2 |
6501466 | Yamagashi et al. | Dec 2002 | B1 |
6512271 | Yamazaki et al. | Jan 2003 | B1 |
6518594 | Nakajima et al. | Feb 2003 | B1 |
6524895 | Yamazaki et al. | Feb 2003 | B2 |
6531713 | Yamazaki | Mar 2003 | B1 |
6559594 | Fukunaga et al. | May 2003 | B2 |
6573195 | Yamazaki et al. | Jun 2003 | B1 |
6573584 | Nagakari et al. | Jun 2003 | B1 |
6576926 | Yamazaki et al. | Jun 2003 | B1 |
6577302 | Hunter | Jun 2003 | B2 |
6580408 | Bae et al. | Jun 2003 | B1 |
6580657 | Sanford et al. | Jun 2003 | B2 |
6583775 | Sekiya et al. | Jun 2003 | B1 |
6583776 | Yamazaki et al. | Jun 2003 | B2 |
6587086 | Koyama | Jul 2003 | B1 |
6593691 | Nishi et al. | Jul 2003 | B2 |
6594606 | Everitt | Jul 2003 | B2 |
6597203 | Forbes | Jul 2003 | B2 |
6611108 | Kimura | Aug 2003 | B2 |
6617644 | Yamazaki et al. | Sep 2003 | B1 |
6618030 | Kane et al. | Sep 2003 | B2 |
6641933 | Yamazaki et al. | Nov 2003 | B1 |
6661180 | Koyama | Dec 2003 | B2 |
6661397 | Mikami et al. | Dec 2003 | B2 |
6670637 | Yamazaki et al. | Dec 2003 | B2 |
6677713 | Sung | Jan 2004 | B1 |
6680577 | Inukai et al. | Jan 2004 | B1 |
6687266 | Ma et al. | Feb 2004 | B1 |
6690344 | Takeuchi et al. | Feb 2004 | B1 |
6693388 | Oomura | Feb 2004 | B2 |
6693610 | Shannon et al. | Feb 2004 | B2 |
6697057 | Koyama et al. | Feb 2004 | B2 |
6720942 | Lee et al. | Apr 2004 | B2 |
6734636 | Sanford et al. | May 2004 | B2 |
6738034 | Kaneko et al. | May 2004 | B2 |
6738035 | Fan | May 2004 | B1 |
6771028 | Winters | Aug 2004 | B1 |
6777712 | Sanford et al. | Aug 2004 | B2 |
6780687 | Nakajima et al. | Aug 2004 | B2 |
6806638 | Lih et al. | Oct 2004 | B2 |
6806857 | Sempel et al. | Oct 2004 | B2 |
6809706 | Shimoda | Oct 2004 | B2 |
6859193 | Yumoto | Feb 2005 | B1 |
6861670 | Ohtani et al. | Mar 2005 | B1 |
6873117 | Ishizuka | Mar 2005 | B2 |
6873320 | Nakamura | Mar 2005 | B2 |
6878968 | Ohnuma | Apr 2005 | B1 |
6909114 | Yamazaki | Jun 2005 | B1 |
6909419 | Zavracky et al. | Jun 2005 | B2 |
6919871 | Kwon | Jul 2005 | B2 |
6937215 | Lo | Aug 2005 | B2 |
6940214 | Komiya et al. | Sep 2005 | B1 |
6943500 | LeChevalier | Sep 2005 | B2 |
6954194 | Matsumoto et al. | Oct 2005 | B2 |
6956547 | Bae et al. | Oct 2005 | B2 |
6995510 | Murakami et al. | Feb 2006 | B2 |
6995519 | Arnold et al. | Feb 2006 | B2 |
7022556 | Adachi | Apr 2006 | B1 |
7023408 | Chen et al. | Apr 2006 | B2 |
7027015 | Booth, Jr. et al. | Apr 2006 | B2 |
7034793 | Sekiya et al. | Apr 2006 | B2 |
7088051 | Cok | Aug 2006 | B1 |
7106285 | Naugler | Sep 2006 | B2 |
7116058 | Lo et al. | Oct 2006 | B2 |
7129914 | Knapp et al. | Oct 2006 | B2 |
7129917 | Yamazaki et al. | Oct 2006 | B2 |
7141821 | Yamazaki et al. | Nov 2006 | B1 |
7161566 | Cok et al. | Jan 2007 | B2 |
7193589 | Yoshida et al. | Mar 2007 | B2 |
7199516 | Seo et al. | Apr 2007 | B2 |
7220997 | Nakata | May 2007 | B2 |
7235810 | Yamazaki et al. | Jun 2007 | B1 |
7245277 | Ishizuka | Jul 2007 | B2 |
7248236 | Nathan et al. | Jul 2007 | B2 |
7264979 | Yamagata et al. | Sep 2007 | B2 |
7274345 | Imamura et al. | Sep 2007 | B2 |
7274363 | Ishizuka et al. | Sep 2007 | B2 |
7279711 | Yamazaki et al. | Oct 2007 | B1 |
7304621 | Oomori et al. | Dec 2007 | B2 |
7310092 | Imamura | Dec 2007 | B2 |
7315295 | Kimura | Jan 2008 | B2 |
7317429 | Shirasaki et al. | Jan 2008 | B2 |
7319465 | Mikami et al. | Jan 2008 | B2 |
7321348 | Cok et al. | Jan 2008 | B2 |
7339636 | Voloschenko et al. | Mar 2008 | B2 |
7355574 | Leon et al. | Apr 2008 | B1 |
7358941 | Ono et al. | Apr 2008 | B2 |
7402467 | Kadono et al. | Jul 2008 | B1 |
7414600 | Nathan et al. | Aug 2008 | B2 |
7432885 | Asano et al. | Oct 2008 | B2 |
7474285 | Kimura | Jan 2009 | B2 |
7485478 | Yamagata et al. | Feb 2009 | B2 |
7502000 | Yuki et al. | Mar 2009 | B2 |
7535449 | Miyazawa | May 2009 | B2 |
7554512 | Steer | Jun 2009 | B2 |
7569849 | Nathan et al. | Aug 2009 | B2 |
7619594 | Hu | Nov 2009 | B2 |
7619597 | Nathan et al. | Nov 2009 | B2 |
7697052 | Yamazaki et al. | Apr 2010 | B1 |
7825419 | Yamagata et al. | Nov 2010 | B2 |
7859492 | Kohno | Dec 2010 | B2 |
7868857 | Nathan | Jan 2011 | B2 |
7868859 | Tomida et al. | Jan 2011 | B2 |
7876294 | Sasaki et al. | Jan 2011 | B2 |
7948170 | Striakhilev et al. | May 2011 | B2 |
7969390 | Yoshida | Jun 2011 | B2 |
7995010 | Yamazaki et al. | Aug 2011 | B2 |
8044893 | Nathan et al. | Oct 2011 | B2 |
8115707 | Nathan et al. | Feb 2012 | B2 |
8378362 | Heo et al. | Feb 2013 | B2 |
8493295 | Yamazaki et al. | Jul 2013 | B2 |
8497525 | Yamagata et al. | Jul 2013 | B2 |
9001097 | Al-Dahle | Apr 2015 | B2 |
9385169 | Chaji et al. | Jul 2016 | B2 |
9606607 | Chaji | Mar 2017 | B2 |
9633597 | Nathan et al. | Apr 2017 | B2 |
9728135 | Nathan et al. | Aug 2017 | B2 |
9741292 | Nathan et al. | Aug 2017 | B2 |
10049643 | Wu | Aug 2018 | B1 |
20010002703 | Koyama | Jun 2001 | A1 |
20010004190 | Nishi et al. | Jun 2001 | A1 |
20010013806 | Notani | Aug 2001 | A1 |
20010015653 | De Jong et al. | Aug 2001 | A1 |
20010020926 | Kujik | Sep 2001 | A1 |
20010024186 | Kane | Sep 2001 | A1 |
20010026127 | Yoneda et al. | Oct 2001 | A1 |
20010026179 | Saeki | Oct 2001 | A1 |
20010026257 | Kimura | Oct 2001 | A1 |
20010030323 | Ikeda | Oct 2001 | A1 |
20010033199 | Aoki | Oct 2001 | A1 |
20010038098 | Yamazaki et al. | Nov 2001 | A1 |
20010043173 | Troutman | Nov 2001 | A1 |
20010045929 | Prache et al. | Nov 2001 | A1 |
20010052006 | Sempel et al. | Dec 2001 | A1 |
20010052898 | Osame et al. | Dec 2001 | A1 |
20020000576 | Inukai | Jan 2002 | A1 |
20020011796 | Koyama | Jan 2002 | A1 |
20020011799 | Kimura | Jan 2002 | A1 |
20020011981 | Kujik | Jan 2002 | A1 |
20020015031 | Fujita et al. | Feb 2002 | A1 |
20020015032 | Koyama et al. | Feb 2002 | A1 |
20020030528 | Matsumoto et al. | Mar 2002 | A1 |
20020030647 | Hack et al. | Mar 2002 | A1 |
20020036463 | Yoneda et al. | Mar 2002 | A1 |
20020047852 | Inukai et al. | Apr 2002 | A1 |
20020048829 | Yamazaki et al. | Apr 2002 | A1 |
20020050795 | Imura | May 2002 | A1 |
20020053401 | Ishikawa et al. | May 2002 | A1 |
20020070909 | Asano et al. | Jun 2002 | A1 |
20020080108 | Wang | Jun 2002 | A1 |
20020084463 | Sanford et al. | Jul 2002 | A1 |
20020101172 | Bu | Aug 2002 | A1 |
20020101433 | McKnight | Aug 2002 | A1 |
20020113248 | Yamagata et al. | Aug 2002 | A1 |
20020122308 | Ikeda | Sep 2002 | A1 |
20020130686 | Forbes | Sep 2002 | A1 |
20020154084 | Tanaka et al. | Oct 2002 | A1 |
20020158823 | Zavracky et al. | Oct 2002 | A1 |
20020163314 | Yamazaki et al. | Nov 2002 | A1 |
20020167471 | Everitt | Nov 2002 | A1 |
20020180369 | Koyama | Dec 2002 | A1 |
20020180721 | Kimura et al. | Dec 2002 | A1 |
20020186214 | Siwinski | Dec 2002 | A1 |
20020190332 | Lee et al. | Dec 2002 | A1 |
20020190924 | Asano et al. | Dec 2002 | A1 |
20020190971 | Nakamura et al. | Dec 2002 | A1 |
20020195967 | Kim et al. | Dec 2002 | A1 |
20020195968 | Sanford et al. | Dec 2002 | A1 |
20030020413 | Oomura | Jan 2003 | A1 |
20030030603 | Shimoda | Feb 2003 | A1 |
20030062524 | Kimura | Apr 2003 | A1 |
20030063081 | Kimura et al. | Apr 2003 | A1 |
20030071804 | Yamazaki et al. | Apr 2003 | A1 |
20030071821 | Sundahl | Apr 2003 | A1 |
20030076048 | Rutherford | Apr 2003 | A1 |
20030090445 | Chen et al. | May 2003 | A1 |
20030090447 | Kimura | May 2003 | A1 |
20030090481 | Kimura | May 2003 | A1 |
20030095087 | Libsch | May 2003 | A1 |
20030107560 | Yumoto et al. | Jun 2003 | A1 |
20030111966 | Mikami et al. | Jun 2003 | A1 |
20030122745 | Miyazawa | Jul 2003 | A1 |
20030140958 | Yang et al. | Jul 2003 | A1 |
20030151569 | Lee et al. | Aug 2003 | A1 |
20030169219 | LeChevalier | Sep 2003 | A1 |
20030174152 | Noguchi | Sep 2003 | A1 |
20030178617 | Appenzeller et al. | Sep 2003 | A1 |
20030179626 | Sanford et al. | Sep 2003 | A1 |
20030197663 | Lee et al. | Oct 2003 | A1 |
20030206060 | Suzuki | Nov 2003 | A1 |
20030230980 | Forrest et al. | Dec 2003 | A1 |
20040027063 | Nishikawa | Feb 2004 | A1 |
20040056604 | Shih et al. | Mar 2004 | A1 |
20040066357 | Kawasaki | Apr 2004 | A1 |
20040070557 | Asano et al. | Apr 2004 | A1 |
20040080262 | Park et al. | Apr 2004 | A1 |
20040080470 | Yamazaki et al. | Apr 2004 | A1 |
20040090400 | Yoo | May 2004 | A1 |
20040108518 | Jo | Jun 2004 | A1 |
20040113903 | Mikami et al. | Jun 2004 | A1 |
20040129933 | Nathan et al. | Jul 2004 | A1 |
20040130516 | Nathan et al. | Jul 2004 | A1 |
20040135749 | Kondakov et al. | Jul 2004 | A1 |
20040145547 | Oh | Jul 2004 | A1 |
20040150592 | Mizukoshi et al. | Aug 2004 | A1 |
20040150594 | Koyama et al. | Aug 2004 | A1 |
20040150595 | Kasai | Aug 2004 | A1 |
20040155841 | Kasai | Aug 2004 | A1 |
20040174347 | Sun et al. | Sep 2004 | A1 |
20040174349 | Libsch | Sep 2004 | A1 |
20040183759 | Stevenson et al. | Sep 2004 | A1 |
20040189627 | Shirasaki et al. | Sep 2004 | A1 |
20040196275 | Hattori | Oct 2004 | A1 |
20040201554 | Satoh | Oct 2004 | A1 |
20040207615 | Yumoto | Oct 2004 | A1 |
20040233125 | Tanghe et al. | Nov 2004 | A1 |
20040239596 | Ono et al. | Dec 2004 | A1 |
20040252089 | Ono et al. | Dec 2004 | A1 |
20040257355 | Naugler | Dec 2004 | A1 |
20040263437 | Hattori | Dec 2004 | A1 |
20050007357 | Yamashita et al. | Jan 2005 | A1 |
20050030267 | Tanghe et al. | Feb 2005 | A1 |
20050035709 | Furuie et al. | Feb 2005 | A1 |
20050067970 | Libsch et al. | Mar 2005 | A1 |
20050067971 | Kane | Mar 2005 | A1 |
20050068270 | Awakura | Mar 2005 | A1 |
20050088085 | Nishikawa et al. | Apr 2005 | A1 |
20050088103 | Kageyama et al. | Apr 2005 | A1 |
20050110420 | Arnold et al. | May 2005 | A1 |
20050117096 | Voloschenko et al. | Jun 2005 | A1 |
20050134526 | Willem | Jun 2005 | A1 |
20050140598 | Kim et al. | Jun 2005 | A1 |
20050140610 | Smith et al. | Jun 2005 | A1 |
20050145891 | Abe | Jul 2005 | A1 |
20050156831 | Yamazaki et al. | Jul 2005 | A1 |
20050168416 | Hashimoto et al. | Aug 2005 | A1 |
20050206590 | Sasaki et al. | Sep 2005 | A1 |
20050225686 | Brummack et al. | Oct 2005 | A1 |
20050260777 | Brabec et al. | Nov 2005 | A1 |
20050264149 | Cok | Dec 2005 | A1 |
20050269959 | Uchino et al. | Dec 2005 | A1 |
20050269960 | Ono et al. | Dec 2005 | A1 |
20050285822 | Reddy et al. | Dec 2005 | A1 |
20050285825 | Eom et al. | Dec 2005 | A1 |
20060007072 | Choi et al. | Jan 2006 | A1 |
20060012310 | Chen et al. | Jan 2006 | A1 |
20060017669 | Cok | Jan 2006 | A1 |
20060027807 | Nathan et al. | Feb 2006 | A1 |
20060030084 | Young | Feb 2006 | A1 |
20060038758 | Routley et al. | Feb 2006 | A1 |
20060044227 | Hadcock | Mar 2006 | A1 |
20060061248 | Cok | Mar 2006 | A1 |
20060066527 | Chou | Mar 2006 | A1 |
20060077135 | Cok | Apr 2006 | A1 |
20060092185 | Jo et al. | May 2006 | A1 |
20060221326 | Cok | Oct 2006 | A1 |
20060232522 | Roy et al. | Oct 2006 | A1 |
20060261841 | Fish | Nov 2006 | A1 |
20060264143 | Lee et al. | Nov 2006 | A1 |
20060273997 | Nathan et al. | Dec 2006 | A1 |
20060284801 | Yoon et al. | Dec 2006 | A1 |
20060284895 | Marcu | Dec 2006 | A1 |
20070001937 | Park et al. | Jan 2007 | A1 |
20070001939 | Hashimoto et al. | Jan 2007 | A1 |
20070008268 | Park et al. | Jan 2007 | A1 |
20070008297 | Bassetti | Jan 2007 | A1 |
20070046195 | Chin et al. | Mar 2007 | A1 |
20070069998 | Naugler et al. | Mar 2007 | A1 |
20070080905 | Takahara | Apr 2007 | A1 |
20070080906 | Tanabe | Apr 2007 | A1 |
20070080908 | Nathan et al. | Apr 2007 | A1 |
20070080918 | Kawachi et al. | Apr 2007 | A1 |
20070103419 | Uchino et al. | May 2007 | A1 |
20070132790 | Miller | Jun 2007 | A1 |
20070182671 | Nathan et al. | Aug 2007 | A1 |
20070273294 | Nagayama | Nov 2007 | A1 |
20070285359 | Ono | Dec 2007 | A1 |
20070290958 | Cok | Dec 2007 | A1 |
20070296672 | Kim et al. | Dec 2007 | A1 |
20080042943 | Cok | Feb 2008 | A1 |
20080042948 | Yamashita et al. | Feb 2008 | A1 |
20080055209 | Cok | Mar 2008 | A1 |
20080074413 | Ogura | Mar 2008 | A1 |
20080088549 | Nathan et al. | Apr 2008 | A1 |
20080122803 | Izadi et al. | May 2008 | A1 |
20080230118 | Nakatani et al. | Sep 2008 | A1 |
20090032807 | Shinohara et al. | Feb 2009 | A1 |
20090051283 | Cok et al. | Feb 2009 | A1 |
20090160743 | Tomida et al. | Jun 2009 | A1 |
20090162961 | Deane | Jun 2009 | A1 |
20090174628 | Wang et al. | Jul 2009 | A1 |
20090213046 | Nam | Aug 2009 | A1 |
20100052524 | Kinoshita | Mar 2010 | A1 |
20100078230 | Rosenblatt et al. | Apr 2010 | A1 |
20100079711 | Tanaka | Apr 2010 | A1 |
20100097335 | Jung et al. | Apr 2010 | A1 |
20100133994 | Song et al. | Jun 2010 | A1 |
20100134456 | Oyamada | Jun 2010 | A1 |
20100140600 | Clough et al. | Jun 2010 | A1 |
20100156279 | Tamura et al. | Jun 2010 | A1 |
20100237374 | Chu et al. | Sep 2010 | A1 |
20100328294 | Sasaki et al. | Dec 2010 | A1 |
20110090210 | Sasaki et al. | Apr 2011 | A1 |
20110133636 | Matsuo et al. | Jun 2011 | A1 |
20110180825 | Lee et al. | Jul 2011 | A1 |
20120105507 | An | May 2012 | A1 |
20120147025 | Pyo | Jun 2012 | A1 |
20120212468 | Govil | Aug 2012 | A1 |
20130009930 | Cho et al. | Jan 2013 | A1 |
20130032831 | Chaji et al. | Feb 2013 | A1 |
20130113785 | Sumi | May 2013 | A1 |
20140016005 | Kishima | Jan 2014 | A1 |
20140111567 | Nathan | Apr 2014 | A1 |
20140232709 | Dunn | Aug 2014 | A1 |
20140300756 | Murase | Oct 2014 | A1 |
20150116364 | Aurongzeb | Apr 2015 | A1 |
20150213771 | Ohnishi | Jul 2015 | A1 |
20160171925 | Hussain | Jun 2016 | A1 |
20170124947 | Kim | May 2017 | A1 |
20170287390 | Lee | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
1294034 | Jan 1992 | CA |
2109951 | Nov 1992 | CA |
2 249 592 | Jul 1998 | CA |
2 368 386 | Sep 1999 | CA |
2 242 720 | Jan 2000 | CA |
2 354 018 | Jun 2000 | CA |
2 436 451 | Aug 2002 | CA |
2 438 577 | Aug 2002 | CA |
2 483 645 | Dec 2003 | CA |
2 463 653 | Jan 2004 | CA |
2498136 | Mar 2004 | CA |
2522396 | Nov 2004 | CA |
2443206 | Mar 2005 | CA |
2472671 | Dec 2005 | CA |
2567076 | Jan 2006 | CA |
2526782 | Apr 2006 | CA |
1381032 | Nov 2002 | CN |
1448908 | Oct 2003 | CN |
1776922 | May 2006 | CN |
101032027 | Sep 2007 | CN |
20 2006 00542 | Jun 2006 | DE |
0 940 796 | Sep 1999 | EP |
1 028 471 | Aug 2000 | EP |
1 103 947 | May 2001 | EP |
1 130 565 | Sep 2001 | EP |
1 184 833 | Mar 2002 | EP |
1 194 013 | Apr 2002 | EP |
1 310 939 | May 2003 | EP |
1 335 430 | Aug 2003 | EP |
1 372 136 | Dec 2003 | EP |
1 381 019 | Jan 2004 | EP |
1 418 566 | May 2004 | EP |
1 429 312 | Jun 2004 | EP |
1 439 520 | Jul 2004 | EP |
1 465 143 | Oct 2004 | EP |
1 467 408 | Oct 2004 | EP |
1 517 290 | Mar 2005 | EP |
1 521 203 | Apr 2005 | EP |
2317499 | May 2011 | EP |
2 205 431 | Dec 1988 | GB |
09 090405 | Apr 1997 | JP |
10-153759 | Jun 1998 | JP |
10-254410 | Sep 1998 | JP |
11 231805 | Aug 1999 | JP |
11-282419 | Oct 1999 | JP |
2000056847 | Feb 2000 | JP |
2000-077192 | Mar 2000 | JP |
2000-089198 | Mar 2000 | JP |
2000-352941 | Dec 2000 | JP |
2002-91376 | Mar 2002 | JP |
2002-268576 | Sep 2002 | JP |
2002-278513 | Sep 2002 | JP |
2002-333862 | Nov 2002 | JP |
2003-022035 | Jan 2003 | JP |
2003-076331 | Mar 2003 | JP |
2003-150082 | May 2003 | JP |
2003-177709 | Jun 2003 | JP |
2003-271095 | Sep 2003 | JP |
2003-308046 | Oct 2003 | JP |
2005-057217 | Mar 2005 | JP |
2006065148 | Mar 2006 | JP |
2009282158 | Dec 2009 | JP |
485337 | May 2002 | TW |
502233 | Sep 2002 | TW |
538650 | Jun 2003 | TW |
569173 | Jan 2004 | TW |
WO 9425954 | Nov 1994 | WO |
WO 9948079 | Sep 1999 | WO |
WO 0127910 | Apr 2001 | WO |
WO 02067327 | Aug 2002 | WO |
WO 03034389 | Apr 2003 | WO |
WO 03063124 | Jul 2003 | WO |
WO 03077231 | Sep 2003 | WO |
WO 03105117 | Dec 2003 | WO |
WO 2004003877 | Jan 2004 | WO |
WO 2004034364 | Apr 2004 | WO |
WO 2005022498 | Mar 2005 | WO |
WO 2005029455 | Mar 2005 | WO |
WO 2005055185 | Jun 2005 | WO |
WO 2006053424 | May 2006 | WO |
WO 2006063448 | Jun 2006 | WO |
WO 2006137337 | Dec 2006 | WO |
WO 2007003877 | Jan 2007 | WO |
WO 2007079572 | Jul 2007 | WO |
WO 2010023270 | Mar 2010 | WO |
Entry |
---|
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009 (3 pages). |
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages). |
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages). |
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages). |
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages). |
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages). |
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages). |
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages). |
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages). |
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages). |
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages). |
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages). |
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007. |
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006. |
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008. |
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages). |
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages). |
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated My 2003 (4 pages). |
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages). |
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages). |
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages). |
Chaji et al.: “Low-Cost AMOLED Television with Ignis Compensating Technology”; dated May 2008 (4 pages). |
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages). |
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages). |
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages). |
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages). |
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages). |
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages). |
Chaji et al.: “Stable Pixel Circuit for Small-Area High- Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages). |
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages). |
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages). |
European Search Report and Written Opinion for Application No. 08 86 5338 dated Nov. 2, 2011 (7 pages). |
European Search Report for European Application No. EP 04 78 6661 dated Mar. 9, 2009. |
European Search Report for European Application No. EP 05 75 9141 dated Oct. 30, 2009. |
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages). |
European Search Report for European Application No. EP 07 71 9579 dated May 20, 2009. |
European Search Report dated Mar. 26, 2012 in corresponding European Patent Application No. 10000421.7 (6 pages). |
Extended European Search Report dated Apr. 27, 2011 issued during prosecution of European patent application No. 09733076.5 (13 pages). |
Goh et al., “A New a-Si:H Thin Film Transistor Pixel Circul for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, 4 pages. |
International Search Report for International Application No. PCT/CA02/00180 dated Jul. 31, 2002 (3 pages). |
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005. |
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages). |
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005. |
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007. |
International Search Report for International Application No. PCT/CA2008/002307, dated Apr. 28, 2009 (3 pages). |
International Search Report for International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Search Report dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages). |
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages). |
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages). |
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages). |
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004. |
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages). |
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page). |
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages). |
Nathan et al.: “Invited Paper: a -Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages). |
Nathan et al.: “Thin film imaging technology on glass and plastic” ICM 2000, Proceedings of the 12th International Conference on Microelectronics, (IEEE Cat. No. 00EX453), Tehran Iran; dated Oct. 31-Nov. 2, 2000, pp. 11-14, ISBN: 964-360-057-2, p. 13, col. 1, line 11-48; (4 pages). |
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486. |
Office Action issued in Chinese Patent Application 200910246264.4 dated Jul. 5, 2013; 8 pages. |
Patent Abstracts of Japan, vol. 2000, No. 09, Oct. 13, 2000—JP 2000 172199 A, Jun. 3, 2000, abstract. |
Patent Abstracts of Japan, vol. 2002, No. 03, Apr. 3, 2002 (Apr. 4, 2004 & JP 2001 318627 A (Semiconductor EnergyLab DO LTD), Nov. 16, 2001, abstract, paragraphs '01331-01801, paragraph '01691, paragraph '01701, paragraph '01721 and figure 10. |
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages. |
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages). |
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages). |
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages). |
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages). |
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages). |
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages). |
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages). |
Sanford, James L., et al., “4.2 TFT AMOLED Pixel Circuits and Driving Methods”, SID 03 Digest, ISSN/0003, 2003, pp. 10-13. |
Stewart M. et al., “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices, vol. 48, No. 5; Dated May, 2001 (7 pages). |
Tatsuya Sasaoka et al., “24.4L; Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC)”, SID 01 Digest, (2001), pp. 384-387. |
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009. |
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages). |
Written Opinion dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (6 pages). |
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592. |
Zhiguo Meng et al; “24.3: Active-Matrix Organic Light-Emitting Diode Display Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film implemented Using Transistors”, SID 01Digest, (2001), pp. 380-383. |
International Search Report for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (4 pages). |
Written Opinion for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (5 pages). |
Extended European Search Report for Application No. EP 14181848.4, dated Mar. 5, 2015, (9 pages). |
Number | Date | Country | |
---|---|---|---|
20180336827 A1 | Nov 2018 | US |