System and method for loading image correction data for displays

Information

  • Patent Grant
  • 10714018
  • Patent Number
    10,714,018
  • Date Filed
    Wednesday, May 17, 2017
    7 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
Abstract
Active-Matrix Organic Light-Emitting Diode (AMOLED) displays exhibit differences in luminance on a pixel to pixel basis, primarily as a result of process or construction inequalities, or from aging caused by operational use over time. To facilitate image correction, the initial non-uniformity correction data is obtained using methods, such as electrical measurement or a combination of electrical and optical measurement. Typically, the correction data is then stored on a non-volatile-memory chip on the display module itself. The proposed invention offers an alternate method for storing and loading the image correction data, thereby eliminating the need for memory chip in the display module.
Description
FIELD OF THE INVENTION

The present invention relates to image correction for displays, and in particular to a system and method for loading and saving image correction data for displays.


BACKGROUND OF THE INVENTION

Active-Matrix Organic Light-Emitting Diode (AMOLED) displays are well known in the art. Polysilicon and metal oxide semiconductor are popular materials used in the AMOLED displays, due to their low cost and well established infrastructure from thin-film transistor liquid crystal display (TFT-LCD) fabrication.


Typically, LED and AMOLED displays require some form of image correction post fabrication. All LED and AMOLED displays, regardless of backplane technology, exhibit differences in luminance on a pixel to pixel basis, primarily as a result of process or construction inequalities, or from aging caused by operational use over time. Luminance non-uniformities in a display may also arise from natural differences in chemistry and performance from the LED and OLED materials themselves. These non-uniformities must be managed by the LED and AMOLED display electronics in order for the display device to attain commercially acceptable levels of performance for mass-market use.


To facilitate image correction, for a given display, the initial non-uniformity correction data is typically acquired optically from the display, at the module level, prior to or after singularization. Other methods, such as electrical measurement or a combination of electrical and optical measurement, may also be used to acquire the correction data. The correction data is then stored on a non-volatile-memory (NVM) chip on the display module itself, as disclosed in U.S. Pat. No. 7,868,857, which is incorporated herein by reference. The extra NVM memory chip adds to the cost of the display module, and consumes valuable power and circuit board surface area.


An object of the present invention is to overcome the shortcomings of the prior art by providing a method of storing and loading the image correction data remote from the display module, thereby eliminating the need for NVM in the product.


SUMMARY OF INVENTION

Accordingly, the present invention relates to a method of loading image correction data for a display system used in a final product comprising:

    • determining initial correction data for the display system to correct for initial non-uniformity prior to assembly in the final product;
    • storing the initial correction data in a remote memory separate from the display system and the final product;
    • assembling the final product including the display system, and a memory store remote from the display system;
    • downloading the initial correction data from the remote memory and storing the initial correction data in the memory store on the final product; and
    • transmitting the initial correction data from the memory store to the display system for correcting the display system.


The present invention also relates to a display system for use in a video displaying product, which includes a video source and a memory store including initial correction data for the display system, the display system comprising:

    • a digital data processor for receiving luminance data in digital form from the video source over a video interface;
    • a data driver IC for converting the luminance data from digital form to voltage or current form;
    • a plurality of pixel circuits, each including a thin film transistor (TFT) and an organic light-emitting diode (OLED) for converting the voltage or current into visible light;
    • a compensation module capable of requesting the initial correction data from the memory store remote from the display system, receiving the initial correction data from the memory store over the video interface; and adjusting the luminance data to correct the display system using the initial correction data.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in greater detail with reference to the accompanying drawings which represent preferred embodiments thereof, wherein:



FIG. 1 is a schematic diagram of a final product including the display system in accordance with the present invention;



FIG. 2 is a schematic diagram of the display system of FIG. 1;



FIG. 3 is a flow chart of the method of the present invention;



FIG. 4 is a schematic diagram of an alternate embodiment of the display system of FIG. 1;



FIG. 5 is a schematic diagram of an alternate embodiment of the display system of FIG. 1;



FIG. 6 is a schematic diagram of an alternate embodiment of the display system of FIG. 1; and



FIG. 7 is a schematic diagram of an alternate embodiment of TFT-to-pixel circuit conversion algorithm module of the display system of FIG. 4, 5 or 6.





DETAILED DESCRIPTION OF THE INVENTIONS

While the present teachings are described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments. On the contrary, the present teachings encompass various alternatives and equivalents, as will be appreciated by those of skill in the art.



FIG. 1 illustrates a product or test system 10 in which a light emitting display system 100 of the present invention is installed. The product or test system 10 may include a control processor 15 for controlling the various systems of the product 10, and a user interface 20 for manually inputting instructions to the control processor 15. The user interface 20 may be integrated into the display system 100 or a separate entity. A memory store 25, such as an eMMC flash may be provided for storing control software, application software, and other data of a more personal nature, e.g. photographs, videos etc. A video source 102 is provided for transmitting luminance data to the display system 100 for display 50.



FIG. 2 illustrates the system and the operation of a light emitting display system 100 to which a compensation scheme in accordance with an embodiment of the present invention is applied. The video source 102 contains or transmits luminance data for each pixel in the display system 100, and sends the luminance data in the form of digital data 104 to a digital data processor 106. The digital data processor 106 may perform some data manipulation functions, such as scaling the resolution or changing the color of the display 100. The digital data processor 106 may include one or more of an application processor system on chip (APSOC), a central processing unit (CPU), a graphics processor unit (GPU).


The digital data processor 106 sends digital data 108 to a data driver IC 110. The data driver IC 110 converts the digital data 108 into an analog voltage or current 112. The analog voltage or current 112 is applied to a pixel circuit 114. The pixel circuit 114 includes thin film transistors (TFTs) 116 and a light-emitting diode (LED) or an organic light-emitting diode (OLED), hereinafter referred to as LED 120. The TFTs 116 convert that voltage or current 112 into another current 118 which flows through the LED 120. The LED 120 converts the current 118 into visible light 126. The LED 120 has an LED voltage 122, which is the voltage drop across the LED 120. The LED 120 also has an efficiency 124, which is a ratio of the amount of light emitted to the current through the LED 120. The pixel circuit 114 outputs the visible light 126 based on the analog voltage or current 112 for viewing by the user.


The digital data 104, the analog voltage/current 112, the current 118, and the visible light 126 all contain the exact same information, i.e. luminance data. They are simply different formats of the initial luminance data that came from the video source 102. The desired operation of the system is for a given value of luminance data from the video source 102 to always result in the same value of the visible light 126. In FIG. 2, one pixel circuit 114 is shown as an example; however, the light emitting display system 100 includes a plurality of pixel circuits 114.


However, there are several degradation factors which may cause errors on the visible light 126. Initial differences in luminance on a pixel to pixel basis are primarily as a result of process or construction inequalities. Luminance non-uniformities in a display system 100 may also arise from natural differences in chemistry and performance from the LED and OLED materials themselves. Moreover, with continued usage, the TFTs 116 will output lower current 118 for the same input from the data driver IC 110. With continued usage, the LED 120 will consume greater voltage 122 for the same input current 118. Because the TFTs 116 are not perfect current sources, this will actually reduce the input current 118 slightly. With continued usage, the LED 120 will lose efficiency 124, and emit less visible light 126 for the same input current 118.


Due to these degradation factors, the visible light output 126 will be less over time, even with the same luminance data being sent from the video source 102. Depending on the usage of the display, different pixels may have different amounts of degradation. Therefore, there will be an ever-increasing error between the required brightness of some pixels as specified by the luminance data in the video source 102, and the actual brightness of the pixels. The result is that the desired image will not show properly on the display 50.


Initial Non-Uniformity


With reference to FIG. 3, to facilitate image correction for the display system 100, initial non-uniformity correction data 75 is acquired during initial assembly or manufacture of the display system 100 (Step 301). The correction data 75 is typically acquired optically from the display, at the module level, prior to or after singularization of the pixels 114. Other methods, such as electrical measurement or a combination of electrical and optical measurement, may also be used to acquire the correction data 75.


In order to remove the need for a separate NVM memory in the display system 100, the producer of the display system 100 may serialize the display system 100 and store the correction data in a network-connected or cloud server, i.e. remote from display system 100 and final product 10 (Step 302). When the display system 100 is integrated into the final product or the test system 10 (Step 303) the integrator may pull the correction data 75 from the network connector or cloud server and store onto the memory store 25 of the final product or test system 10 (Step 304). Typically, the final product 10 will have a large and relatively low-cost memory store 10, i.e. in terms of $/bit, available, such as an eMMC flash.


On power-on, a software driver running on the final product or test system 10 can load the correction data 75 from the large, low-cost memory store 25 and populate a correction data table inside of a compensation module 144 in the digital data processor 106, the display driver IC 110 or a discrete processing chip in the display system 100 using the same high speed video interface used for video data from the video source 102 (Step 305). The correction data 75 may be used by the compensation module 144 as part of the application processor, the GPU or the CPU of the digital data processor 106 or by the discrete compensation processing chip to correct the luminance data in its digital form 104 or 108. Alternatively, the compensation module 144 may be part of the display driver IC 110, and use the luminance data in digital form 108 or voltage or current form 112. The high speed video interface transfer speeds available between the video source 102 of the final product 10 and the digital data processor 106/display driver 110 enable fast correction data table loading. The correction data 75 and the luminance data 104 may be transmitted simultaneously over the video interface or the correction data 75 may be transmitted as part of the luminance data 104 over the video interface.


Besides the table upload speed, the final product 10 would not require any flash memory on the display module 100 as the memory store 25 of the final product 10 could be leveraged thus saving cost as well.


The initial non-uniformity correction data 75 may be stored in the memory 25 as an integer value. The location of each integer in the memory 25 is related to the pixel's location on the LED or AMOLED display 50. The value of each integer is a number, which is added to the digital luminance data 104 by the compensation module 144 to compensate for the initial non-uniformity.


For example, digital luminance data may be represented to use 8-bits (256 values) for the brightness of a pixel. A value of 256 may represent maximum luminance for the pixel 114. A value of 128 may represent approximately 50% luminance. The value in the compensation table of the memory 25 may be the number that is added to the luminance data 104 to compensate for the non-uniformity. Therefore, the compensation module 144 in the digital data processor 106 may be implemented by a digital adder. It is noted that digital luminance data 104 may be represented by any number of bits, depending on the driver IC 110 used, for example, 6-bit, 8-bit, 10-bit, 14-bit, etc.


Degradation


With reference to FIG. 4, to help mitigate the degradation over time and update the initial non-uniformity correction data 75 to become compensation data 136, a compensation functions module 130 is provided with the display 50. The compensation functions module 130 includes a module 134 for implementing an algorithm, referred to as TFT-to-pixel circuit conversion algorithm, based on degradation data 132 from the pixel circuit 114. The degradation data 132 may be measured TFT degradation data or measured TFT and LED degradation data. The module 134 outputs calculated pixel circuit degradation (compensation) data 136 to the digital data processor 106.


The degradation data 132 is electrical data which represents how much a part of the pixel circuit 114 has been degraded. The data measured from the pixel circuit 114 may represent, for example, one or more characteristics of a part of the pixel circuit 114.


The degradation data 132 is measured from, for example, one or more thin-film-transistors (TFTs), an light emitting diode (LED), an organic light emitting diode (OLED), or a combination thereof. It is noted that the transistors of the pixel circuit 114 is not limited to the TFTs, and the light emitting device of the pixel circuit 114 is not limited to the OLED. The measured degradation data 132 may be digital or analog data. The display system 100 provides compensation data 136 based on measurement from a part of the pixel circuit 114, e.g. TFT 116 or LED 120, to compensate for non-uniformities in the display 50. The non-uniformities may include brightness non-uniformity, color non-uniformity, or a combination thereof. Factors for causing such non-uniformities may include, but not limited to, process or construction inequalities in the display, aging of pixel circuits, etc.


The degradation data 132 may be measured initially during manufacture or assembly, at a regular time interval, e.g. daily, weekly or monthly, or at a dynamically regulated time interval, e.g. upon request of user. The calculated pixel circuit degradation data 136 may be compensation data to correct non-uniformities in the display 50. The calculated pixel circuit degradation (compensation) data 136 may include any parameter to produce compensation. The compensation data 136 may be used at a regular time interval, e.g. each frame, regular interval, etc., or at a dynamically regulated timing. The measured degradation data 132, the compensation data 136 or a combination thereof may be stored in the memory store 25.


The TFT-to-pixel circuit conversion algorithm module 134 or the combination of the TFT-to-pixel circuit conversion algorithm module 134 and the digital data processor 106 estimates the degradation of the entire pixel circuit 114 based on the measured degradation data 132. Based on this estimation, the entire degradation of the pixel circuit 114 is compensated by adjusting, at the digital data processor 106, the luminance data (digital data 104) applied to a certain pixel circuit(s).


The display system 100 may modify or adjust the luminance data 104 applied to a degraded pixel circuit 114 or non-degraded pixel circuit 114. For example, if a constant value of visible light 126 is desired, the digital data processor 106 increases the luminance data for a pixel that is highly degraded, thereby compensating for the degradation.


In FIG. 4, the TFT-to-pixel circuit conversion algorithm module 134 is provided separately from the digital data processor 106. However, the TFT-to-pixel circuit conversion algorithm module 134 may be integrated into the digital data processor 106.


The system 100 of FIG. 4 measures the degradation of the TFTs 116 only. The degradation of the TFTs 116 and the LED 120 are usage-dependent, and the TFTs 116 and the LED 120 are always linked in the pixel circuit 114. Whenever the TFT 116 is stressed, the LED 120 is also stressed. Therefore, there is a predictable relationship between the degradation of the TFTs 116, and the degradation of the pixel circuit 114 as a whole. The TFT-to-pixel circuit conversion algorithm module 134 or the combination of the TFT-to-pixel circuit conversion algorithm module 134 and the digital data processor 106 estimates the degradation of the entire pixel circuit 114 based on the TFT degradation only. The embodiment of the present invention may also be applied to systems that monitor both TFT and LED degradation independently.


The pixel circuit 114 has a component that can be measured. The measurement obtained from the pixel circuit 114 is in some way related to the pixel circuit's degradation.



FIG. 5 illustrates a further example of the system 100 of FIG. 4. The system 100 of FIG. 5 measures the LED voltage 122. Thus, the measured degradation data 132A is related to the TFT 116 and the LED 120 degradation. The compensation functions module 130 of FIG. 3 implements the TFT-to-pixel circuit conversion algorithm 134 on the signal related to both the TFT degradation and LED degradation. The TFT-to-pixel circuit conversion algorithm module 134 or the combination of the TFT-to-pixel circuit conversion algorithm module 134 and the digital data processor 106 estimates the degradation of the entire pixel circuit 114 based on the TFT degradation and the LED degradation. The TFT degradation and LED degradation may be measured separately and independently.


Referring to FIGS. 4 and 5, the pixel circuit 114 may allow the current out of the TFTs 116 to be measured, and to be used as the measured TFT degradation data 132. The pixel circuit 114 may allow some part of the LED efficiency to be measured, and to be used as the measured TFT degradation data 132A. The pixel circuit 114 may also allow a node to be charged, and the measurement may be the time it takes for this node to discharge. The pixel circuit 114 may allow any parts of it to be electrically measured. Also, the discharge/charge level during a given time can be used for aging detection.


Referring to FIG. 6, an example of modules for the compensation scheme applied to the system of FIG. 4 is described. The compensation functions module 130 of FIG. 4 includes an analog/digital (A/D) converter 140. The A/D converter 140 converts the measured TFT degradation data 132 into digital measured TFT degradation data 132B. The digital measured TFT degradation data 132B is converted into the calculated pixel circuit degradation (compensation) data 136 at the TFT-to-Pixel circuit conversion algorithm module 134. The calculated pixel circuit degradation (compensation) data 136 may be stored in the memory 25 separate or in place of the original non-uniformity data 75. Since measuring TFT degradation data from some pixel circuits may take a long time, the calculated pixel circuit degradation data 136 is stored in the memory 25 for use.


In FIG. 6, the TFT-to-pixel circuit conversion algorithm 134 may be a digital algorithm. The digital TFT-to-pixel circuit conversion algorithm 134 may be implemented, for example, on a microprocessor, an FPGA, a DSP, or another device, but not limited to these examples.


The calculated pixel circuit degradation data 136 stored in the memory 25 is always available for the digital data processor 106. Thus, the TFT degradation data 132 for each pixel 114 does not have to be measured every time the digital data processor 106 needs to use the data 132. The degradation data 132 may be measured infrequently in a random or predetermined time period, for example, once a day, once a week etc. Using a dynamic time allocation for the degradation measurement is another case, more frequent extraction at the beginning and less frequent extraction after the aging gets saturated.


The digital data processor 106 may include the compensation module 144 for taking input luminance data for the pixel circuit 114 from the video source 102, and modifying the input luminance data 104 based on degradation data 136 for that pixel circuit 114 or other pixel circuit. In FIG. 6, the module 144 modifies luminance data 104 using the initial non-uniform data 75 and/or the degradation data 136 from the memory 25.


One example of the degradation data 136 used in the module 144 of the digital data processor 106 is illustrated in FIG. 6. The output of the TFT-to-pixel circuit conversion algorithm module 134 is an integer value. This integer is stored in a table in memory 25. The location of each integer in the table is related to the pixel's location on the LED or AMOLED display. Its value is a number, and is added to the digital luminance data 104 to compensate for the degradation.


For example, digital luminance data may be represented to use 8-bits (256 values) for the brightness of a pixel. A value of 256 may represent maximum luminance for the pixel. A value of 128 may represent approximately 50% luminance. The value in the table may be the number that is added to the luminance data 104 to compensate for the degradation. Therefore, the compensation module 144 in the digital data processor 106 may be implemented by a digital adder. It is noted that digital luminance data may be represented by any number of bits, depending on the driver IC 110 used (for example, 6-bit, 8-bit, 10-bit, 14-bit, etc.).


In FIGS. 4, 5 and 6, the TFT-to-pixel circuit conversion algorithm module 134 has the measured TFT degradation data 132 or 132A as an input, and the calculated pixel circuit degradation data 136 as an output. However, there may be other inputs to the system to calculate compensation data 136 as well, as illustrated in FIG. 10. In the illustrated embodiment, the TFT-to-pixel circuit conversion algorithm module 134 processes the measured data 132 or 132A based on any one or more of additional inputs 190, e.g. temperature or other voltages, and empirical constants 192.


The additional inputs 190 may include measured parameters, such as voltage reading from current-programming pixels and current reading from voltage-programming pixels. These pixels may be different from a pixel circuit 114 from which the measured signal 132 is obtained. For example, a measurement is taken from a “pixel under test” and is used in combination with another measurement from a “reference pixel”. As described below, in order to determine how to modify luminance data 104 to a pixel 114, data from other pixels in the display may be used. The additional inputs 190 may include light measurements, such as measurement of an ambient light in a room. A discrete device or some kind of test structure around the periphery of the panel may be used to measure the ambient light. The additional inputs 190 may include humidity measurements, temperature readings, mechanical stress readings, other environmental stress readings, and feedback from test structures on the panel.


The other parameters may also include empirical parameters 192, such as the brightness loss in the LED 120 due to decreasing efficiency (ΔL), the shift in LED voltage 122 over time (ΔVoled), dynamic effects of Vt shift, parameters related to TFT performance, such as Vt, ΔVt, mobility (μ), inter-pixel non-uniformity, DC bias voltages in the pixel circuit, changing gain of current-mirror based pixel circuits, short-term and long-term based shifts in pixel circuit performance, pixel-circuit operating voltage variation due to IR-drop and ground bounce.


The TFT-to-pixel-circuit conversion algorithm in the module 134 and the compensation algorithm 144 in the digital data processor 106 work together to convert the measured TFT degradation data 132 into a luminance correction factor. The luminance correction factor has information about how the luminance data 104 for a given pixel 114 is to be modified, to compensate for the degradation in the pixel 114.


In FIG. 6, the majority of this conversion is done by the TFT-to-pixel-circuit conversion algorithm module 134. The module 134 calculates the luminance correction values entirely, and the digital adder 144 in the digital data processor 106 simply adds the luminance correction values to the digital luminance data 104. However, the system 100 may be implemented such that the TFT-to-pixel circuit conversion algorithm module 134 calculates only the degradation values, and the digital data processor 106 calculates the luminance correction factor from that data. The TFT-to-pixel circuit conversion algorithm 134 may employ fuzzy logic, neural networks, or other algorithm structures to convert the degradation data into the luminance correction factor.


The value of the luminance correction factor may allow the visible light to remain constant, regardless of the degradation in the pixel circuit 114. The value of the luminance correction factor may allow the luminance of degraded pixels not to be altered at all; instead, the luminance of the non-degraded pixels to be decreased. In this case, the entire display may gradually lose luminance over time, however the uniformity may be high.


The calculation of a luminance correction factor may be implemented in accordance with a compensation of non-uniformity algorithm, such as a constant brightness algorithm, a decreasing brightness algorithm, or combinations thereof. The constant brightness algorithm and the decreasing brightness algorithm may be implemented on the TFT-to-pixel circuit conversion algorithm module 134 or the digital data processor 106. The constant brightness algorithm is provided for increasing brightness of degraded pixels so as to match non-degraded pixels. The decreasing brightness algorithm is provided for decreasing brightness of non-degraded pixels so as to match degraded pixels. These algorithm may be implemented by the TFT-to-pixel circuit conversion algorithm module 134, the digital data processor 144, or combinations thereof. It is noted that these algorithms are examples only, and the compensation of non-uniformity algorithm is not limited to these algorithms.


The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.

Claims
  • 1. A method of loading image correction data for a display system used in a final product, including a memory store, comprising: determining initial correction data for the display system to correct for initial non-uniformity prior to assembly in the final product;storing the initial correction data in a remote memory separate from the display system and the final product;assembling the final product including the display system, and the memory store remote from the display system;downloading the initial correction data from the remote memory and storing the initial correction data in the memory store on the final product during the assembly of the final product; andtransmitting the initial correction data from the memory store to the display system for correcting the display system.
  • 2. The method according to claim 1, wherein the final product includes a video source; wherein the display system includes a digital data processor configured for capable of receiving luminance data from the video source over a video interface; andwherein the step of transmitting the initial correction data to the display system comprises transmitting the initial correction data over the video interface to a compensation processor in the digital data processor.
  • 3. The method according to claim 2, wherein the digital data processor includes a central processing unit and a graphics unit; and wherein the compensation processor corrects the luminance data in digital form in the central processing unit or the graphics processing unit.
  • 4. The method according to claim 2, wherein the display system includes the digital data processor and a data driver IC configured for receiving luminance data from the video source over the video interface; and wherein the step of transmitting the initial correction data to the display system comprises transmitting the initial correction data over the video interface to the compensation processor in the data driver IC.
  • 5. The method according to claim 4, wherein the compensation processor corrects the luminance data in digital, voltage or current form in the data driver IC.
  • 6. The method according to claim 2, wherein the initial correction data comprises an integer value corresponding to each pixel in the display system, which are added to the luminance data by the compensation processor to compensate for the initial non-uniformity.
  • 7. The method according to claim 2, further comprising: determining degradation correction data for the display system to correct for degradation effects during use in the final product;storing the degradation correction data in the memory store in the final product;transmitting the degradation correction data from the memory store to the display system over the video interface for correcting the display system.
  • 8. The method according to claim 7, wherein the step of determining the degradation correction data comprises determining a degradation of each thin filmed transistor in each pixel of the display system.
  • 9. The method according to claim 7, wherein the step of determining the degradation correction data comprises determining degradation of each organic light emitting diode in each pixel of the display system.
  • 10. The method according to claim 7, wherein the degradation correction data comprises an integer value corresponding to each pixel in the display system, which are added to the luminance data by the compensation processor to compensate for the degradation effects.
  • 11. A display system including a plurality of pixels for use in a video displaying product, which includes a video source and a memory store including initial correction data for the display system to correct initial non-uniformity in the plurality of pixels, the display system comprising: a digital data processor for receiving luminance data in digital form from the video source over a video interface;a data driver IC for converting the luminance data from digital form to voltage or current form;a plurality of pixel circuits, each including a thin film transistor (TFT) and a light-emitting diode (LED) for converting the voltage or current into visible light;a compensation processor configured for requesting the initial correction data from the memory store in the video display product remote from the display system, receiving the initial correction data from the memory store over the video interface; and adjusting the luminance data to correct the display system using the initial correction data.
  • 12. The display system according to claim 11, wherein the digital data processor includes a central processing unit and a graphics processing unit; and wherein the compensation processor is configured to correct the luminance data in digital form in the central processing unit or the graphics processing unit.
  • 13. The display system according to claim 11, wherein the compensation processor is comprised in the data driver IC.
  • 14. The display system according to claim 13, wherein the compensation processor corrects the luminance data in voltage or current form in the data driver IC.
  • 15. The display system according to claim 11, wherein the initial correction data comprises an integer value corresponding to each pixel in the display system, which are added to the luminance data by the compensation processor to compensate for the initial non-uniformity.
  • 16. The display system according to claim 11, further comprising a compensation functions processor configured for: determining degradation correction data for the display system to correct for degradation effects during use in the video displaying product; andstoring the degradation correction data in the memory store in the video displaying product;receiving the degradation correction data from the memory store for correcting the display system.
  • 17. The display system according to claim 16, wherein the compensation functions processor is also configured for determining degradation of each thin filmed transistor in each pixel of the display system.
  • 18. The display system according to claim 16, wherein the compensation functions processor is also configured for determining degradation of each organic light emitting diode in each pixel of the display system.
  • 19. The display system according to claim 16, wherein the degradation correction data comprises an integer value corresponding to each pixel in the display system, which are added to the luminance data by the compensation processor to compensate for the degradation effects.
  • 20. A video display product, comprising: a display system including a plurality of pixel circuits;a video source for transmitting luminance data to the display system;a memory store including initial correction data to correct initial non-uniformity in the plurality of pixels for the display system remote from the display system;a user interface for inputting commands from a user;a control processor for controlling interaction between the user interface, the video source and the display system;wherein the display system comprises: a digital data processor for receiving the luminance data in digital form from the video source over a video interface;a data driver IC for converting the luminance data from digital form to voltage or current form;the plurality of pixel circuits, each including a thin film transistor (TFT) and a light-emitting diode (LED) for converting the voltage or current into visible light; anda compensation processor configured for requesting the initial correction data from the memory store in the video display product remote from the display system; receiving the initial correction data from the memory store over the video interface; and adjusting the luminance data to correct the display system using the initial correction data.
US Referenced Citations (391)
Number Name Date Kind
4354162 Wright Oct 1982 A
4758831 Kasahara et al. Jul 1988 A
4963860 Stewart Oct 1990 A
4975691 Lee Dec 1990 A
4996523 Bell et al. Feb 1991 A
5051739 Hayashida et al. Sep 1991 A
5222082 Plus Jun 1993 A
5266515 Robb et al. Nov 1993 A
5498880 Lee et al. Mar 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara et al. Jul 1997 A
5670973 Bassetti et al. Sep 1997 A
5684365 Tang et al. Nov 1997 A
5686935 Weisbrod Nov 1997 A
5712653 Katoh et al. Jan 1998 A
5714968 Ikeda Feb 1998 A
5747928 Shanks et al. May 1998 A
5748160 Shieh et al. May 1998 A
5784042 Ono et al. Jul 1998 A
5790234 Matsuyama Aug 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov et al. Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows et al. Jun 1999 A
5923794 McGrath et al. Jul 1999 A
5952789 Stewart et al. Sep 1999 A
5990629 Yamada et al. Nov 1999 A
6023259 Howard et al. Feb 2000 A
6069365 Chow et al. May 2000 A
6081131 Ishii Jun 2000 A
6091203 Kawashima et al. Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6157583 Starnes et al. Dec 2000 A
6166489 Thompson et al. Dec 2000 A
6177915 Beeteson et al. Jan 2001 B1
6225846 Wada et al. May 2001 B1
6229508 Kane May 2001 B1
6232939 Saito et al. May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano et al. Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6274887 Yamazaki et al. Aug 2001 B1
6288696 Holloman Sep 2001 B1
6300928 Kim Oct 2001 B1
6303963 Ohtani et al. Oct 2001 B1
6306694 Yamazaki et al. Oct 2001 B1
6307322 Dawson et al. Oct 2001 B1
6316786 Mueller et al. Nov 2001 B1
6320325 Cok et al. Nov 2001 B1
6323631 Juang Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6345085 Yeo et al. Feb 2002 B1
6348835 Sato et al. Feb 2002 B1
6365917 Yamazaki Apr 2002 B1
6373453 Yudasaka Apr 2002 B1
6384427 Yamazaki et al. May 2002 B1
6392617 Gleason May 2002 B1
6399988 Yamazaki Jun 2002 B1
6414661 Shen et al. Jul 2002 B1
6420758 Nakajima Jul 2002 B1
6420834 Yamazaki et al. Jul 2002 B2
6420988 Azami et al. Jul 2002 B1
6433488 Bu Aug 2002 B1
6445376 Parrish Sep 2002 B2
6468638 Jacobsen et al. Oct 2002 B2
6489952 Tanaka et al. Dec 2002 B1
6501098 Yamazaki Dec 2002 B2
6501466 Yamagashi et al. Dec 2002 B1
6512271 Yamazaki et al. Jan 2003 B1
6518594 Nakajima et al. Feb 2003 B1
6524895 Yamazaki et al. Feb 2003 B2
6531713 Yamazaki Mar 2003 B1
6559594 Fukunaga et al. May 2003 B2
6573195 Yamazaki et al. Jun 2003 B1
6573584 Nagakari et al. Jun 2003 B1
6576926 Yamazaki et al. Jun 2003 B1
6577302 Hunter Jun 2003 B2
6580408 Bae et al. Jun 2003 B1
6580657 Sanford et al. Jun 2003 B2
6583775 Sekiya et al. Jun 2003 B1
6583776 Yamazaki et al. Jun 2003 B2
6587086 Koyama Jul 2003 B1
6593691 Nishi et al. Jul 2003 B2
6594606 Everitt Jul 2003 B2
6597203 Forbes Jul 2003 B2
6611108 Kimura Aug 2003 B2
6617644 Yamazaki et al. Sep 2003 B1
6618030 Kane et al. Sep 2003 B2
6641933 Yamazaki et al. Nov 2003 B1
6661180 Koyama Dec 2003 B2
6661397 Mikami et al. Dec 2003 B2
6670637 Yamazaki et al. Dec 2003 B2
6677713 Sung Jan 2004 B1
6680577 Inukai et al. Jan 2004 B1
6687266 Ma et al. Feb 2004 B1
6690344 Takeuchi et al. Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon et al. Feb 2004 B2
6697057 Koyama et al. Feb 2004 B2
6720942 Lee et al. Apr 2004 B2
6734636 Sanford et al. May 2004 B2
6738034 Kaneko et al. May 2004 B2
6738035 Fan May 2004 B1
6771028 Winters Aug 2004 B1
6777712 Sanford et al. Aug 2004 B2
6780687 Nakajima et al. Aug 2004 B2
6806638 Lih et al. Oct 2004 B2
6806857 Sempel et al. Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6859193 Yumoto Feb 2005 B1
6861670 Ohtani et al. Mar 2005 B1
6873117 Ishizuka Mar 2005 B2
6873320 Nakamura Mar 2005 B2
6878968 Ohnuma Apr 2005 B1
6909114 Yamazaki Jun 2005 B1
6909419 Zavracky et al. Jun 2005 B2
6919871 Kwon Jul 2005 B2
6937215 Lo Aug 2005 B2
6940214 Komiya et al. Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6954194 Matsumoto et al. Oct 2005 B2
6956547 Bae et al. Oct 2005 B2
6995510 Murakami et al. Feb 2006 B2
6995519 Arnold et al. Feb 2006 B2
7022556 Adachi Apr 2006 B1
7023408 Chen et al. Apr 2006 B2
7027015 Booth, Jr. et al. Apr 2006 B2
7034793 Sekiya et al. Apr 2006 B2
7088051 Cok Aug 2006 B1
7106285 Naugler Sep 2006 B2
7116058 Lo et al. Oct 2006 B2
7129914 Knapp et al. Oct 2006 B2
7129917 Yamazaki et al. Oct 2006 B2
7141821 Yamazaki et al. Nov 2006 B1
7161566 Cok et al. Jan 2007 B2
7193589 Yoshida et al. Mar 2007 B2
7199516 Seo et al. Apr 2007 B2
7220997 Nakata May 2007 B2
7235810 Yamazaki et al. Jun 2007 B1
7245277 Ishizuka Jul 2007 B2
7248236 Nathan et al. Jul 2007 B2
7264979 Yamagata et al. Sep 2007 B2
7274345 Imamura et al. Sep 2007 B2
7274363 Ishizuka et al. Sep 2007 B2
7279711 Yamazaki et al. Oct 2007 B1
7304621 Oomori et al. Dec 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7317429 Shirasaki et al. Jan 2008 B2
7319465 Mikami et al. Jan 2008 B2
7321348 Cok et al. Jan 2008 B2
7339636 Voloschenko et al. Mar 2008 B2
7355574 Leon et al. Apr 2008 B1
7358941 Ono et al. Apr 2008 B2
7402467 Kadono et al. Jul 2008 B1
7414600 Nathan et al. Aug 2008 B2
7432885 Asano et al. Oct 2008 B2
7474285 Kimura Jan 2009 B2
7485478 Yamagata et al. Feb 2009 B2
7502000 Yuki et al. Mar 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan et al. Aug 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan et al. Nov 2009 B2
7697052 Yamazaki et al. Apr 2010 B1
7825419 Yamagata et al. Nov 2010 B2
7859492 Kohno Dec 2010 B2
7868857 Nathan Jan 2011 B2
7868859 Tomida et al. Jan 2011 B2
7876294 Sasaki et al. Jan 2011 B2
7948170 Striakhilev et al. May 2011 B2
7969390 Yoshida Jun 2011 B2
7995010 Yamazaki et al. Aug 2011 B2
8044893 Nathan et al. Oct 2011 B2
8115707 Nathan et al. Feb 2012 B2
8378362 Heo et al. Feb 2013 B2
8493295 Yamazaki et al. Jul 2013 B2
8497525 Yamagata et al. Jul 2013 B2
9001097 Al-Dahle Apr 2015 B2
9385169 Chaji et al. Jul 2016 B2
9606607 Chaji Mar 2017 B2
9633597 Nathan et al. Apr 2017 B2
9728135 Nathan et al. Aug 2017 B2
9741292 Nathan et al. Aug 2017 B2
10049643 Wu Aug 2018 B1
20010002703 Koyama Jun 2001 A1
20010004190 Nishi et al. Jun 2001 A1
20010013806 Notani Aug 2001 A1
20010015653 De Jong et al. Aug 2001 A1
20010020926 Kujik Sep 2001 A1
20010024186 Kane Sep 2001 A1
20010026127 Yoneda et al. Oct 2001 A1
20010026179 Saeki Oct 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010033199 Aoki Oct 2001 A1
20010038098 Yamazaki et al. Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache et al. Nov 2001 A1
20010052006 Sempel et al. Dec 2001 A1
20010052898 Osame et al. Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020011981 Kujik Jan 2002 A1
20020015031 Fujita et al. Feb 2002 A1
20020015032 Koyama et al. Feb 2002 A1
20020030528 Matsumoto et al. Mar 2002 A1
20020030647 Hack et al. Mar 2002 A1
20020036463 Yoneda et al. Mar 2002 A1
20020047852 Inukai et al. Apr 2002 A1
20020048829 Yamazaki et al. Apr 2002 A1
20020050795 Imura May 2002 A1
20020053401 Ishikawa et al. May 2002 A1
20020070909 Asano et al. Jun 2002 A1
20020080108 Wang Jun 2002 A1
20020084463 Sanford et al. Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020101433 McKnight Aug 2002 A1
20020113248 Yamagata et al. Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020130686 Forbes Sep 2002 A1
20020154084 Tanaka et al. Oct 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020163314 Yamazaki et al. Nov 2002 A1
20020167471 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura et al. Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190332 Lee et al. Dec 2002 A1
20020190924 Asano et al. Dec 2002 A1
20020190971 Nakamura et al. Dec 2002 A1
20020195967 Kim et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura et al. Apr 2003 A1
20030071804 Yamazaki et al. Apr 2003 A1
20030071821 Sundahl Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090445 Chen et al. May 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030095087 Libsch May 2003 A1
20030107560 Yumoto et al. Jun 2003 A1
20030111966 Mikami et al. Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030140958 Yang et al. Jul 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030169219 LeChevalier Sep 2003 A1
20030174152 Noguchi Sep 2003 A1
20030178617 Appenzeller et al. Sep 2003 A1
20030179626 Sanford et al. Sep 2003 A1
20030197663 Lee et al. Oct 2003 A1
20030206060 Suzuki Nov 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040027063 Nishikawa Feb 2004 A1
20040056604 Shih et al. Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano et al. Apr 2004 A1
20040080262 Park et al. Apr 2004 A1
20040080470 Yamazaki et al. Apr 2004 A1
20040090400 Yoo May 2004 A1
20040108518 Jo Jun 2004 A1
20040113903 Mikami et al. Jun 2004 A1
20040129933 Nathan et al. Jul 2004 A1
20040130516 Nathan et al. Jul 2004 A1
20040135749 Kondakov et al. Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi et al. Aug 2004 A1
20040150594 Koyama et al. Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun et al. Sep 2004 A1
20040174349 Libsch Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040189627 Shirasaki et al. Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040201554 Satoh Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040233125 Tanghe et al. Nov 2004 A1
20040239596 Ono et al. Dec 2004 A1
20040252089 Ono et al. Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20050007357 Yamashita et al. Jan 2005 A1
20050030267 Tanghe et al. Feb 2005 A1
20050035709 Furuie et al. Feb 2005 A1
20050067970 Libsch et al. Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050088085 Nishikawa et al. Apr 2005 A1
20050088103 Kageyama et al. Apr 2005 A1
20050110420 Arnold et al. May 2005 A1
20050117096 Voloschenko et al. Jun 2005 A1
20050134526 Willem Jun 2005 A1
20050140598 Kim et al. Jun 2005 A1
20050140610 Smith et al. Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki et al. Jul 2005 A1
20050168416 Hashimoto et al. Aug 2005 A1
20050206590 Sasaki et al. Sep 2005 A1
20050225686 Brummack et al. Oct 2005 A1
20050260777 Brabec et al. Nov 2005 A1
20050264149 Cok Dec 2005 A1
20050269959 Uchino et al. Dec 2005 A1
20050269960 Ono et al. Dec 2005 A1
20050285822 Reddy et al. Dec 2005 A1
20050285825 Eom et al. Dec 2005 A1
20060007072 Choi et al. Jan 2006 A1
20060012310 Chen et al. Jan 2006 A1
20060017669 Cok Jan 2006 A1
20060027807 Nathan et al. Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038758 Routley et al. Feb 2006 A1
20060044227 Hadcock Mar 2006 A1
20060061248 Cok Mar 2006 A1
20060066527 Chou Mar 2006 A1
20060077135 Cok Apr 2006 A1
20060092185 Jo et al. May 2006 A1
20060221326 Cok Oct 2006 A1
20060232522 Roy et al. Oct 2006 A1
20060261841 Fish Nov 2006 A1
20060264143 Lee et al. Nov 2006 A1
20060273997 Nathan et al. Dec 2006 A1
20060284801 Yoon et al. Dec 2006 A1
20060284895 Marcu Dec 2006 A1
20070001937 Park et al. Jan 2007 A1
20070001939 Hashimoto et al. Jan 2007 A1
20070008268 Park et al. Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070046195 Chin et al. Mar 2007 A1
20070069998 Naugler et al. Mar 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan et al. Apr 2007 A1
20070080918 Kawachi et al. Apr 2007 A1
20070103419 Uchino et al. May 2007 A1
20070132790 Miller Jun 2007 A1
20070182671 Nathan et al. Aug 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070290958 Cok Dec 2007 A1
20070296672 Kim et al. Dec 2007 A1
20080042943 Cok Feb 2008 A1
20080042948 Yamashita et al. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan et al. Apr 2008 A1
20080122803 Izadi et al. May 2008 A1
20080230118 Nakatani et al. Sep 2008 A1
20090032807 Shinohara et al. Feb 2009 A1
20090051283 Cok et al. Feb 2009 A1
20090160743 Tomida et al. Jun 2009 A1
20090162961 Deane Jun 2009 A1
20090174628 Wang et al. Jul 2009 A1
20090213046 Nam Aug 2009 A1
20100052524 Kinoshita Mar 2010 A1
20100078230 Rosenblatt et al. Apr 2010 A1
20100079711 Tanaka Apr 2010 A1
20100097335 Jung et al. Apr 2010 A1
20100133994 Song et al. Jun 2010 A1
20100134456 Oyamada Jun 2010 A1
20100140600 Clough et al. Jun 2010 A1
20100156279 Tamura et al. Jun 2010 A1
20100237374 Chu et al. Sep 2010 A1
20100328294 Sasaki et al. Dec 2010 A1
20110090210 Sasaki et al. Apr 2011 A1
20110133636 Matsuo et al. Jun 2011 A1
20110180825 Lee et al. Jul 2011 A1
20120105507 An May 2012 A1
20120147025 Pyo Jun 2012 A1
20120212468 Govil Aug 2012 A1
20130009930 Cho et al. Jan 2013 A1
20130032831 Chaji et al. Feb 2013 A1
20130113785 Sumi May 2013 A1
20140016005 Kishima Jan 2014 A1
20140111567 Nathan Apr 2014 A1
20140232709 Dunn Aug 2014 A1
20140300756 Murase Oct 2014 A1
20150116364 Aurongzeb Apr 2015 A1
20150213771 Ohnishi Jul 2015 A1
20160171925 Hussain Jun 2016 A1
20170124947 Kim May 2017 A1
20170287390 Lee Oct 2017 A1
Foreign Referenced Citations (85)
Number Date Country
1294034 Jan 1992 CA
2109951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 483 645 Dec 2003 CA
2 463 653 Jan 2004 CA
2498136 Mar 2004 CA
2522396 Nov 2004 CA
2443206 Mar 2005 CA
2472671 Dec 2005 CA
2567076 Jan 2006 CA
2526782 Apr 2006 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1776922 May 2006 CN
101032027 Sep 2007 CN
20 2006 00542 Jun 2006 DE
0 940 796 Sep 1999 EP
1 028 471 Aug 2000 EP
1 103 947 May 2001 EP
1 130 565 Sep 2001 EP
1 184 833 Mar 2002 EP
1 194 013 Apr 2002 EP
1 310 939 May 2003 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
1 439 520 Jul 2004 EP
1 465 143 Oct 2004 EP
1 467 408 Oct 2004 EP
1 517 290 Mar 2005 EP
1 521 203 Apr 2005 EP
2317499 May 2011 EP
2 205 431 Dec 1988 GB
09 090405 Apr 1997 JP
10-153759 Jun 1998 JP
10-254410 Sep 1998 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000056847 Feb 2000 JP
2000-077192 Mar 2000 JP
2000-089198 Mar 2000 JP
2000-352941 Dec 2000 JP
2002-91376 Mar 2002 JP
2002-268576 Sep 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-022035 Jan 2003 JP
2003-076331 Mar 2003 JP
2003-150082 May 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2005-057217 Mar 2005 JP
2006065148 Mar 2006 JP
2009282158 Dec 2009 JP
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
569173 Jan 2004 TW
WO 9425954 Nov 1994 WO
WO 9948079 Sep 1999 WO
WO 0127910 Apr 2001 WO
WO 02067327 Aug 2002 WO
WO 03034389 Apr 2003 WO
WO 03063124 Jul 2003 WO
WO 03077231 Sep 2003 WO
WO 03105117 Dec 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004034364 Apr 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006137337 Dec 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2010023270 Mar 2010 WO
Non-Patent Literature Citations (81)
Entry
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009 (3 pages).
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated My 2003 (4 pages).
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji et al.: “Low-Cost AMOLED Television with Ignis Compensating Technology”; dated May 2008 (4 pages).
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji et al.: “Stable Pixel Circuit for Small-Area High- Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report and Written Opinion for Application No. 08 86 5338 dated Nov. 2, 2011 (7 pages).
European Search Report for European Application No. EP 04 78 6661 dated Mar. 9, 2009.
European Search Report for European Application No. EP 05 75 9141 dated Oct. 30, 2009.
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages).
European Search Report for European Application No. EP 07 71 9579 dated May 20, 2009.
European Search Report dated Mar. 26, 2012 in corresponding European Patent Application No. 10000421.7 (6 pages).
Extended European Search Report dated Apr. 27, 2011 issued during prosecution of European patent application No. 09733076.5 (13 pages).
Goh et al., “A New a-Si:H Thin Film Transistor Pixel Circul for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, 4 pages.
International Search Report for International Application No. PCT/CA02/00180 dated Jul. 31, 2002 (3 pages).
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages).
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
International Search Report for International Application No. PCT/CA2008/002307, dated Apr. 28, 2009 (3 pages).
International Search Report for International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages).
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages).
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages).
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan et al.: “Invited Paper: a -Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages).
Nathan et al.: “Thin film imaging technology on glass and plastic” ICM 2000, Proceedings of the 12th International Conference on Microelectronics, (IEEE Cat. No. 00EX453), Tehran Iran; dated Oct. 31-Nov. 2, 2000, pp. 11-14, ISBN: 964-360-057-2, p. 13, col. 1, line 11-48; (4 pages).
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Office Action issued in Chinese Patent Application 200910246264.4 dated Jul. 5, 2013; 8 pages.
Patent Abstracts of Japan, vol. 2000, No. 09, Oct. 13, 2000—JP 2000 172199 A, Jun. 3, 2000, abstract.
Patent Abstracts of Japan, vol. 2002, No. 03, Apr. 3, 2002 (Apr. 4, 2004 & JP 2001 318627 A (Semiconductor EnergyLab DO LTD), Nov. 16, 2001, abstract, paragraphs '01331-01801, paragraph '01691, paragraph '01701, paragraph '01721 and figure 10.
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Sanford, James L., et al., “4.2 TFT AMOLED Pixel Circuits and Driving Methods”, SID 03 Digest, ISSN/0003, 2003, pp. 10-13.
Stewart M. et al., “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices, vol. 48, No. 5; Dated May, 2001 (7 pages).
Tatsuya Sasaoka et al., “24.4L; Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC)”, SID 01 Digest, (2001), pp. 384-387.
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Written Opinion dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (6 pages).
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
Zhiguo Meng et al; “24.3: Active-Matrix Organic Light-Emitting Diode Display Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film implemented Using Transistors”, SID 01Digest, (2001), pp. 380-383.
International Search Report for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (4 pages).
Written Opinion for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (5 pages).
Extended European Search Report for Application No. EP 14181848.4, dated Mar. 5, 2015, (9 pages).
Related Publications (1)
Number Date Country
20180336827 A1 Nov 2018 US