This disclosure relates in general to the field of network security and, more particularly, to local protection against malicious software.
The field of network security has become increasingly important in today's society. The Internet has enabled interconnection of different computer networks all over the world. The ability to effectively protect and maintain stable computers and systems, however, presents a significant obstacle for component manufacturers, system designers, and network operators. This obstacle is made even more complicated due to the continually-evolving array of tactics exploited by malicious operators. Of particular concern more recently are botnets, which may be used for a wide variety of malicious purposes. Once a malicious software program file (e.g., a bot) has infected a host computer, a malicious operator may issue commands from a “command and control server” to control the bot. Bots can be instructed to perform any number of malicious actions such as, for example, sending out spam or malicious emails from the host computer, stealing sensitive information from a business or individual associated with the host computer, propagating the botnet to other host computers, and/or assisting with distributed denial of service attacks. In addition, the malicious operator can sell or otherwise give access to the botnets to other malicious operators through the command and control servers, thereby escalating the exploitation of the host computers. Consequently, botnets provide a powerful way for malicious operators to access other computers and to manipulate those computers for any number of malicious purposes. Security professionals need to develop innovative tools to combat such tactics that allow malicious operators to exploit computers.
To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:
A method in one example implementation includes intercepting a network access attempt on a computing device and determining a software program file associated with the network access attempt. The method also includes evaluating a first criterion to determine whether the network access attempt is permitted and blocking the network access attempt if it is not permitted. Finally, the first criterion includes a trust status of the software program file. In specific embodiments, the trust status is defined as trusted if the software program file is included in a whitelist identifying trustworthy software program files and untrusted if the software program file is not included in a whitelist. In more specific embodiments the network access attempt is blocked if the software program file has an untrusted status. In another more specific embodiment, the method further includes searching one or more whitelists to determine whether the software program file is identified in one of the whitelists. In other more specific embodiments, the method includes evaluating a second criterion to determine whether the second criterion overrides the first criterion with the second criterion including a network access policy for the software program file. In yet another embodiment, an event may be logged if the trust status of the software program file is defined as untrusted, and such logging may occur instead of blocking the network access attempt or may occur in addition to blocking the network access attempt.
In example embodiments, local protection components 124 on hosts 120 and central protection components 135 in central server 130 may cooperate to provide a system for local protection against malicious software. In one embodiment, each software program file in executable software 122a, 122b, and 122c of hosts 120a, 120b, and 120c, respectively, is evaluated to determine a trust status (i.e., trusted or untrusted) using one or more trust evaluation techniques (e.g., whitelist comparisons, program file change comparisons, blacklist comparisons, etc.). A central untrusted software inventory 132 may include entries identifying each program file that is categorized as untrusted, and this inventory may also be locally stored on corresponding hosts 120a, 120b, and 120c. In other embodiments, evaluation of software program files of executable software 122a, 122b, and 122c to determine a trust status is performed in real-time for program files associated with each network access attempt. A network access attempt as used herein in this Specification is intended to include any inbound or outbound network access attempt on a host (e.g., accepting a connection request, making a connection request, receiving electronic data from a network, sending electronic data to a network). When a software process on one of hosts 120a, 120b, or 120c is associated with a network access attempt, the network access may be blocked if a trust status of any of the program files associated with the software process is determined to be untrusted. In example embodiments, the trust status may be determined using one of the untrusted software inventories or may be determined using one or more trust evaluation techniques in real-time. Policies may also be used to define blocking rules for software processes associated with untrusted program files (e.g., only allow access to a specified subnet of network addresses, block all inbound and outbound network access attempts, block only inbound or outbound network access attempts, block all local network access attempts and allow Internet traffic, etc.) Any network access attempts by software processes associated with untrusted program files may also be logged and aggregated for reporting.
For purposes of illustrating the techniques of the system for local protection against malicious software, it is important to understand the activities occurring within a given network. The following foundational information may be viewed as a basis from which the present disclosure may be properly explained. Such information is offered earnestly for purposes of explanation only and, accordingly, should not be construed in any way to limit the broad scope of the present disclosure and its potential applications. In addition, it will be appreciated that the broad scope of this disclosure intends for references to “program file”, “software program file”, and “executable software” to encompass any software file comprising instructions that can be understood and processed on a computer such as, for example, executable files, library modules, object files, other executable modules, script files, interpreter files, and the like.
Typical network environments used in organizations and by individuals include the ability to communicate electronically with other networks using, for example, the Internet to access web pages hosted on servers connected to the Internet, to send or receive electronic mail (i.e., email) messages, or to exchange files with end users or servers connected to the Internet. Malicious users are continuously developing new tactics using the Internet to spread malware and to gain access to confidential information.
Tactics that represent an increasing threat to computer security often include botnets. Botnets use a client-server architecture where a type of malicious software (i.e., a bot) is placed on a host computer and communicates with a command and control server, which may be controlled by a malicious user (e.g., a botnet operator). The bot may receive commands from the command and control server to perform particular malicious activities and, accordingly, may execute such commands. The bot may also send any results or pilfered information back to the command and control server. In addition to receiving commands to perform malicious activities, bots also typically include one or more propagation vectors that enable it to spread within an organization's network or across other networks to other organizations or individuals. Common propagation vectors include exploiting known vulnerabilities on hosts within the local network and sending malicious emails having a malicious program attached or providing malicious links within the emails. Bots may also infect host computers through, for example, drive-by downloads, viruses, worms, Trojan horses, etc.
Botnets provide a powerful way for botnet operators to compromise computer systems by employing a variety of attacks. Once a bot has infected a host computer, the command and control server can issue commands to the bot to perform various types of attacks. Commonly, botnets have been used to send bulk email and to perform distributed denial of service attacks. More recently, however, botnets have been used to perform more targeted attacks against businesses and individuals to obtain confidential data or other sensitive information such as intellectual property and financial data.
Existing firewall and network intrusion prevention technologies are generally deficient in recognizing and containing botnets. Bots are often designed to initiate communication with the command and control server and to masquerade as normal web browser traffic. Bots may be crafted with a command and control protocol that makes the bot appear to be making normal outbound network connections to a web server. For example, a bot may use a port typically used to communicate with a web server. Such bots, therefore, may not be detected by existing technologies without performing more detailed packet inspection of the web traffic. Moreover, once a bot is discovered, the botnet operator may simply find another way to masquerade network access attempts by the bot to continue to present as normal web traffic. More recently, botnet operators have crafted bots to use encryption protocols such as, for example, secure socket layer (SSL), thereby encrypting malicious network access attempts. Such encrypted traffic may use a Hypertext Transfer Protocol Secure (HTTPS) port such that only the endpoints involved in the encrypted session can decrypt the data. Thus, existing firewalls and other network intrusion prevention technologies are unable to perform any meaningful inspection of the web traffic. Consequently, bots continue to infect host computers within networks.
Other software security technology focused on preventing unauthorized program files from executing on a host computer may have undesirable side effects for end users or employees of a business or other organizational entity. Network or Information Technology (IT) administrators may be charged with crafting extensive policies relevant to all facets of the business entity to enable employees to obtain software and other electronic data from desirable and trusted network resources. Without extensive policies in place, employees may be prevented from downloading software and other electronic data from network resources that are not specifically authorized, even if such software and other data are legitimate and necessary for business activities. In addition, such systems may be so restrictive that if unauthorized software is found on a host computer, any host computer activities may be suspended pending network administrator intervention. For businesses, this type of system may interfere with legitimate and necessary business activities, resulting in worker downtime, lost revenue, significant Information Technology (IT) overhead, and the like.
A system and method for local protection against malicious software, as outlined in
Turning to the infrastructure of
In one example embodiment, local network 110 represents a network environment of an organization (e.g., a business, a school, a government entity, a family, etc.), with hosts 120a, 120b, and 120c representing end user computers operated by employees or other individuals associated with the organization. The end user computers may include computing devices such as desktops, laptops, mobile or handheld computing devices (e.g., personal digital assistants (PDAs) or mobile phones), or any other computing device capable of executing software processes associated with network access to local network 110. Connection between hosts 120a, 120b, and 120c, central server 130, and any additional components in local network 110 may include any appropriate medium such as, for example, cable, Ethernet, wireless (e.g., WiFi, 3G, 4G, etc.), ATM, fiber optics, etc.) It should be noted that the network configurations and interconnections shown and described herein are for illustrative purposes only.
In the example embodiment shown in
Whitelists and blacklists may be implemented using checksums where a unique checksum for each program file is stored, which can be readily compared to a computed checksum of a program file sought to be evaluated. A checksum can be a mathematical value or hash sum (e.g., a fixed string of numerical digits) derived by applying an algorithm to a software program file. If the algorithm is applied to a second software program file that is identical to the first software program file, then the checksums should match. However, if the second software program file is different (e.g., it has been altered in some way, it is a different version of the first software program file, it is a wholly different type of software, etc.) then the checksums are very unlikely to match.
Databases such as global whitelist 165 in
In the example embodiment shown in
In some embodiments, central protection components 135 of central server 130 evaluate each program file of executable software 122a, 122b, and 122c and categorize each program file as trusted or untrusted. The program files may be compared to internal whitelist 133, global whitelist 165, internal or external blacklists, or any combination thereof. If an evaluated program file is categorized as untrusted, an entry identifying the untrusted program file may be added to central untrusted software inventory 132. Central server 130 may also maintain logged events database 131 containing information related to network access attempts on any host 120a, 120b, and 120c within local network 110. Logged events database 131, central untrusted software inventory 132, and internal whitelist 133, may be provided in any network and device accessible to central server 130.
Turning to
In embodiments using central trusted cache 245, the cache may be implemented in hardware as a block of memory for temporary storage of entries (e.g., checksums) identifying program files that have been previously determined to have a trusted status, such as those program files found during searches of global and/or internal whitelists. Central trusted cache 245 can provide quick and transparent access to data indicating program files previously evaluated for a trust status. Thus, if a requested program file is found in central trusted cache 245 then a search of global and/or internal whitelists, or any other trust evaluation, may not need to be performed. In addition, embodiments using central trusted cache 245 may not need to maintain central untrusted software inventory 232.
Turning to
Host 300 may also include hardware components such as a network interface card (NIC) device 370, a processor 380, and a memory element 390. Local protection module 310 and transmission protocols, such as Transmission Control Protocol/Internet Protocol (TCP/IP) 350 and other protocols 360, may reside in a kernel space of host 300 and may be implemented as part of a network driver interface specification (NDIS) driver stack, which interfaces with NIC device 370. The operating system kernel provides a process traffic mapping element 365 for mapping software processes to their corresponding program files of executable software 340.
Data flows are shown between software manager module 320 and central server 200 including policy updates flow 322, untrusted software updates flow 324, and event flow 326. Data and control flows are also shown between software manager module 320 and local protection module 310 including policy updates flow 312, control flow 318, and event flow 316. Finally, software program inventory feed 335 is shown with a data flow 337 to central server 200.
Not shown in
Trust determination and logging activities for executable software 340 may, in example embodiments, be provided at least in part by administrative protection module 220 and software trust determination module 240 of central server 200, and by software program inventory feed 335, software manager module 320, and local protection module 310 of host 300. Information related to the trust determination and logging activities can be suitably rendered, or sent to a specific location (e.g., local untrusted software inventory 330, logged events database 231, etc.), or simply stored or archived (e.g., central untrusted software inventory 232, etc.), and/or properly displayed in any appropriate format (e.g., through management console 210, etc.). Security technology related to one or more such trust determination and logging activities can include elements such as ePolicy Orchestrator software, Application Control software, and/or Change Control software (all manufactured by McAfee, Inc. of Santa Clara, Calif.), or any other similar software. Thus, any such components may be included within the broad scope of the terms ‘administrative protection module’, ‘software trust determination module’, ‘software program inventory feed’, ‘software manager module’, and ‘local protection module’ as used herein in this Specification. Logged events database 231, central untrusted software inventory 232, internal whitelist 233, and local untrusted software inventory 330 may include information related to the trust determination and logging of electronic data (e.g., trust determinations for program files, network access attempts of software processes, etc.) and these elements can readily cooperate, coordinate, or otherwise interact with the modules and components of central server 200 and host 300.
Intercepting and blocking activities for network access attempts may, in example embodiments, be provided at least in part in local protection module 310 and software manager module 320 of host 300, and administrative protection module 220 and policy module 230 of central server 200. Information related to the intercepting and blocking activities may be pushed to a specific location (e.g., central server 200, logged events database 231, local protection module 310, etc.), or simply stored or archived locally, and/or properly displayed in any appropriate format (e.g., through management console 210, etc.). Security technology related to one or more such intercepting and/or blocking activities can include elements such as McAfee® ePolicy Orchestrator software or any other similar software. Thus, any such components may be included within the broad scope of the terms ‘local protection module’, ‘software manager module’, ‘administrative protection module’ and ‘policy module’ as used herein in this Specification. Local untrusted software inventory 330, central untrusted software inventory 232, and policy database 235 may include information related to the intercepting and blocking of network access attempts (e.g., trust determinations for program files, policy configurations, etc.) and these elements can be readily accessed and otherwise interact with the modules and components of central server 200 and host 300.
After program files have been enumerated in step 410, each of the program files identified in the software inventory is evaluated to determine a trust status and to categorize accordingly as trusted (i.e., network access may be allowed) or untrusted (i.e., network access may be blocked or selectively allowed). After step 410, flow may pass to step 420 where the first program file is retrieved from the software inventory. Flow then passes to step 430 where the program file is evaluated and then categorized as trusted or untrusted, which will be further shown and described herein with reference to
In step 460 any newly categorized untrusted program files may be pushed to host 300 to update local untrusted software inventory 330. The push may occur from software trust determination module 240 of central server 200 to software manager module 320 of host 300 via untrusted software updates flow 324. In an example embodiment, software trust determination module 240 of central server 200 could receive a constant feed, or a nearly constant feed, from software program inventory feed 335 of a complete software inventory on host 300 or a software inventory of new or changed program files on host 300, such that central untrusted software inventory 232 and/or local untrusted software inventory 330 are substantially current in real-time. In other embodiments, software trust determination module 240 could receive the enumerated software inventory at regularly scheduled intervals (e.g., daily, hourly, half-hourly, etc.).
Turning to
If the program file is not found on any internal or external whitelist in steps 510 or 520, however, then the program file has an untrusted status. Flow may then move to step 530 where the program file may be evaluated to determine whether the program file satisfies any predefined condition that allows the program file to be promoted from the untrusted status to a trusted status. Such a predefined condition may include heuristic considerations such as, for example, software owned by an administrator, file access controls, file attributes (e.g., creation time, modification time, etc.), and the like. In one example, an untrusted program file owned by an administrator could be promoted to a trusted status and, therefore, flow could end so that the program file is categorized as trusted by not updating central untrusted software inventory 232. If the program file does not satisfy any predefined condition in step 530, however, then the untrusted status persists and the program file may be categorized as untrusted by updating central untrusted software inventory 232 to identify the program file in the last step 540.
Trust determination flow 500 may also include additional logic (not shown) to evaluate blacklists in addition to whitelists. Blacklists identify software program files known to be malicious. Blacklists may be provided by numerous sources including Artemis and Anti-Virus databases provided by McAfee, Inc., and locally maintained blacklists within a local network. In this embodiment, if the program file is found on any internal or external blacklist, then the program file is categorized as untrusted by updating central untrusted software inventory 232 to identify the program file. The untrusted program file information may also be pushed to host 300 to update local untrusted software inventory 330.
Turning to
In
In another embodiment, trust determination flows of
Alternative implementations to enumerate program files, determine a trust status, and categorize those program files will be readily apparent. Several embodiments previously shown and described herein refer to enumerating an inventory of executable software on each host in a network, such as host 300, pushing the software inventory to central server 200, determining the trust status associated with each program file in the inventory, updating central untrusted software inventory 232 accordingly, and then pushing untrusted software inventory updates to the appropriate host to be locally maintained in local untrusted software inventory 330. In alternative embodiments, however, the trust determination and categorization of software program files could be locally performed by each host and resulting information could be pushed to another location (e.g., central untrusted software inventory 232, etc.) and/or maintained locally (e.g., local untrusted software inventory 330, etc.).
Locally determining a trust status of software program files and then appropriately categorizing the program files could be performed by whitelist evaluations, blacklist evaluations, state change evaluations, or any other suitable trust evaluation technique. In such embodiments an inventory of executable software may be enumerated by, for example, McAfee® software (e.g., Policy Auditor, Application Control, or Change Control). When performing whitelist evaluations as shown in
One or more untrusted software inventories may be suitably configured in various forms in accordance with this disclosure. For example, an untrusted software inventory may reside only in individual hosts (e.g., untrusted software inventory 330), only in another location (e.g., central untrusted software inventory 232), or in some combination thereof. In one embodiment, local untrusted software inventory 330 may contain entries identifying untrusted program files found on host 300, but central untrusted software inventory 232 may contain entries for untrusted program files found on multiple hosts within the network. One exemplary embodiment of central untrusted software inventory 232 incorporates a database table format with one column corresponding to a host name and another column corresponding to a program path of the untrusted program file. Local untrusted software inventory 330 may have a similar format, or may be simplified, for example, to contain only the program file path entries.
Embodiments for enumeration and trust determination and categorization shown and described with reference to
In this alternative embodiment, a trusted software inventory, rather than an untrusted software inventory, could be created and maintained. Program files associated with a network access attempt could be evaluated to determine if each one is identified on the trusted software inventory. If the program files are all identified on the trusted software inventory, then the network access may be allowed. However, if any of the program files are not identified in the trusted software inventory, then network access may be blocked or selectively allowed, as further described herein. The trusted software inventory may be maintained centrally and/or locally and, in one embodiment, local trusted software inventories may be configured to include only the trusted program files on their corresponding hosts, all trusted program files from hosts within the network, and/or any other trusted program files as determined by a network administrator or other authorized user.
Turning to
Flow begins at step 710, where local protection module 310 intercepts an outbound network access attempt by software process 345. In one embodiment, processes from executable software 340 use the NDIS driver stack to access a network through NIC device 370 of host 300. Thus, software process 345 may attempt to access a network by sending electronic data through the NDIS driver stack. If the connection is using Internet Protocol Suite, then TCP/IP 350 breaks up the electronic data into packets and provides a requested destination address. Alternatively, the connection may use other protocols 360 (e.g., Internetwork Packet Exchange (IPX), NetBIOS Extended User Interface (NetBEUI), etc.) to prepare the electronic data for transmission. Once the outgoing packets have been prepared, local protection module 310 then intercepts the packets, which may be attempting any type of network access (e.g., an attempt to look up domain name service (DNS) host names, an attempt to connect to a remote host, an attempt to write to a socket already connected to a network, etc.).
After the outgoing packets have been intercepted, flow passes to step 720 where the operating system may be queried regarding which program files (e.g., executable files, library modules, object files, other executable modules, script files, interpreter files, etc.) correspond to the intercepted packets associated with executing software process 345. In this example, the intercepted packets are mapped to executing software process 345, which may be mapped to an executable file and one or more library modules loaded into process 345. The operating system kernel keeps process traffic mapping element 365 and provides such mapping information to local protection module 310 in step 720. Flow then passes to step 730, in which a query is made as to whether the one or more program files corresponding to the intercepted packets from process 345 are trusted. In one example, local protection module 310 may query software manager module 320 via control flow 318 for information regarding the program files. Software manager module 320 may then access local untrusted software inventory 330 to determine whether the program files are categorized as untrusted or trusted, and then return such information to local protection module 310 via control flow 318.
If any of the program files are categorized as untrusted (i.e., one or more of the program files are found on local untrusted software inventory 330) in step 730, then flow passes to step 740 to determine whether logging is enabled. If logging is enabled in step 740, then flow passes to step 750 to raise the event (i.e., the network access attempt) for logging. For example, event data (e.g., information related to the network access attempt and its associated program files) may be sent to software manager module 320 via event flow 316, and then software manager module 320 may either log the event data locally, or send the event data to another location for logging such as, for example, central server 200 via event flow 326. In example embodiments, administrative protection module 220 of central server 200 may be adapted to store the event data in a memory element such as logged events database 231. Examples of possible event data stored in logged events database 231 include identification and/or program paths of the program files associated with the intercepted packets, identification of the host on which the event occurred, a date and time stamp of the network access attempt, a type of network access attempt, a destination and/or source address of the network access attempt, port numbers associated with the network access attempt, and the like. Administrative protection module 220 may also provide access to logged events database 231 through management console 210 or other reporting mechanisms.
After the event has been raised for logging in step 750, or if logging was not enabled in step 740, then flow passes to step 760 to determine whether enforcement is enabled. If enforcement is not enabled, the flow passes to step 790 where software process 345 is allowed to access the network and the intercepted packets are passed to NIC device 370. However, if enforcement is enabled in step 760 then policy may be evaluated in step 770 to determine whether any configured policy overrides the untrusted status of the program files such that network access or selective network access associated with software process 345 is allowed.
In one embodiment, policy configurations may be crafted by a network administrator and such policies may be pushed to each host, such as host 300. For example, policy module 230 of central server 200 may allow an administrator or other authorized user to craft policy configurations through management console 210, and to store such policies in policy database 235. Administrative protection module 220 may then push any relevant policy configurations to software manager module 320 of host 300 via policy updates flow 322. Software manager module 320 may further push policy configurations to local protection module 310 via policy updates flow 312. Alternatively, policy configurations may be stored, for example, in a disk drive of host 300 and local protection module 310 may query software manager module 320 for any relevant policies for a particular process being evaluated.
Policy configurations may be implemented as desired by particular network owners. In some example embodiments, policy configurations may include one or more broad-based restrictions such as blocking all inbound and outbound network access, blocking all inbound network access and allowing outbound network access, or allowing inbound network access and blocking outbound network access. More specific strategies may also be employed, such as blocking outbound network access to the local network but allowing outbound network access to the Internet, or allowing inbound network access from a specified subnet of source addresses and/or allowing outbound network access to a specified subnet of destination addresses. Finally, even more granular strategies may be used such as blocking specified inbound and/or outbound network connections (e.g., domain name service (DNS), simple mail transfer protocol (SMTP), Internet Relay Chat (IRC), etc.). These example policy configurations are for illustrative purposes to show possibilities of network access restrictions and are intended to include any other policy configuration to restrict inbound and/or outbound network access or any combination thereof.
Specific network level policies may also be crafted for untrusted program files. For example, a policy may be crafted to redirect a network access attempt associated with an untrusted program file to another computing device, such as a secondary server. In one example, a potentially malicious network access attempt associated with an untrusted program file could be forced through additional firewalls, filters, antispam/antivirus gateways, proxies, and the like, when using this redirection. In another example, the secondary server may be configured to respond with one or more predefined commands upon receiving a network connection. Some bots are designed to self-destruct upon receiving particular commands and the secondary server could be configured to respond to a network connection with such commands, thereby causing a bot that has been redirected to the secondary server to be destroyed.
Particular policy configurations may be balanced between competing interests such as the need to prevent the propagation and potentially malicious activities of untrusted software and the need to conduct necessary business activities. For example, in a network having a host subnet and a server subnet, a policy may be configured to allow software processes associated with untrusted program files to access only the server subnet but not the host subnet. This may be desirable because it may prevent the propagation of malicious software to other hosts within the network, while allowing the host uninterrupted access to a secured server subnet. Another policy may block software processes associated with untrusted program files from accessing the Internet except for a known subnet hosting job critical services. Thus, many different blocking options may be employed by crafting policies allowing selective network access.
Turning back to step 770 of
With reference again to step 730, if the program files are categorized as trusted (i.e., none of the programs files are found on local untrusted software inventory 330), then flow passes to step 760 to determine whether enforcement is enabled. If enforcement is not enabled, the flow passes to step 790 where software process 345 is allowed network access and the intercepted packets are passed to NIC device 370. However, if enforcement is enabled in step 760 then policy may be evaluated in step 770 to determine whether a configured policy overrides the trusted status of the one or more program files. For example, if an untrusted program file was previously intercepted and a policy provided for some type of blocking to be applied to all outbound network access attempts, then any trusted program files associated with a subsequent network access attempt may be evaluated and possibly blocked from network access by that policy. Thus, if a policy overrides the trusted status of the one or more program files (i.e., policy does not allow network access), then flow passes to step 780 and software process 345 is blocked from network access. If the trusted status is not overridden by policy (i.e., policy allows network access or no policy is applicable) in step 770, however, then flow passes to step 790 where software process 345 is allowed network access and the intercepted packets are passed to NIC device 370.
Protection flow 700 of
Turning to
Software manager module 820, local untrusted software inventory 830, and software program inventory feed 835 may reside in a user space of host 800, along with any currently executing software processes such as software process 845. When a program file is executed and creates executing software process 845, as shown in the embodiment in
Data flows are shown between software manager module 820 and central server 200 including policy updates flow 822, untrusted software updates flow 824, and event flow 826. Data and control flows are also shown between software manager module 820 and network hooks 810, including policy updates flow 812, control flow 818, and event flow 816.
Host 800 may also include hardware components such as a network interface card (NIC) device 870, a processor 880, and a memory element 890. A kernel space of host 800 may include transmission protocols such as Transmission Control Protocol/Internet Protocol (TCP/IP) 850 and other protocols 860. Not shown in
Network hooks 810 and software manager module 820 may be configured to provide, at least in part, intercepting, blocking, and logging activities for network access attempts associated with processes from program files of executable software 840, such as software process 845, on host 800. Information related to the intercepting, blocking, and logging activities may be pushed to a specific location (e.g., central server 200, logged events database 231, etc.), or simply stored or archived locally, and/or properly displayed in any appropriate format (e.g., through management console 210, etc.). Security technology related to one or more such intercepting, blocking, and logging activities can include elements as previously described herein with reference to
Turning to
Flow begins at step 910, where network hooks 810 intercept an API outbound network access attempt (e.g., connect API, send API, etc.) from software process 845. Because network hooks 810 have been loaded into software process 845 as a dependency on Winsock library 815, network hooks 810 can intercept API network access attempts before they are passed to Winsock library 815, which interfaces to TCP/IP protocol stack 850. The network access attempt may be any type of network access (e.g., an attempt to look up domain name service (DNS) host names, an attempt to connect to a remote host, an attempt to write to a socket already connected to a network, etc.). Once the API has been intercepted, flow passes to step 920 to determine which program files (e.g., executable files, library modules, object files, other executable modules, script files, interpreter files, etc.) are associated with executing software process 845. In this example, the intercepted API is mapped to executing software process 845, which may be mapped to an executable file and one or more library modules loaded into process 845. In example embodiments, software manager module 820 is queried by network hooks 810 via control flow 818 regarding which program files are mapped to executing software process 845, which is mapped to the intercepted API. Software manager module 820 may use an operating system API to obtain such mapping information.
Once the program files are identified, flow passes to steps 930 through 990, which may be similar to steps 730 through 790 of protection flow 700 of
After the event has been raised for logging in step 950, then flow passes to step 960 to determine whether enforcement is enabled. If enforcement is not enabled, then software manager 820 may pass this information to network hooks 810 via control flow 818. The flow then passes to step 990 where software process 845 is allowed to access the network by passing the API to Winsock 815. However, if enforcement is enabled in step 960, policy may be evaluated in step 970 to determine whether any configured policy overrides the untrusted status of the one or more untrusted program files, as previously described herein with reference to
Policy configurations may be crafted by a network administrator or other authorized user through, for example, administrative protection module 220 of central server 200. Administrative protection module 220 may push any relevant policy configurations to software manager module 820 of host 800 via policy updates flow 822. If a policy has been crafted to allow selective network access by the one or more untrusted program files corresponding to software process 845, and the API conforms to the particular policy requirements (e.g., the API network access attempt includes a destination address within an allowed subnet of addresses in accordance with the policy, etc.) then software manager module 820 may return such information to network hooks 810 via control flow 818. Flow then passes to step 990 where the API is passed to Winsock 815 and software process 845 is allowed to access the network. However, if the policy does not allow network access in step 970 or if an applicable policy does not exist, then software manager module 820 may return such information to network hooks 810 via control flow 818, and flow then passes to step 980 where the API is not passed to Winsock 815. Instead, network hooks 810 may return an error condition to software process 845, thereby blocking network access.
With reference again to step 930, if the program files are categorized as trusted (i.e., the program files are not found on local untrusted software inventory 830) then flow passes to step 960 to determine whether enforcement is enabled. If enforcement is not enabled, the flow passes to step 990 where the API is passed to Winsock 815 and software process 845 is allowed to access the network. However, if enforcement is enabled in step 960 then policy may be evaluated in step 970 to determine whether a configured policy overrides the trusted status, as previously described herein with reference to
Protection flow 900 also represents a flow used for intercepting, blocking and logging activities for inbound network access attempts to host 300. At step 910, network hooks 810 intercept an API inbound network access attempt (e.g., listen API, accept API, etc.), from Winsock library 815. The inbound network access attempt is evaluated in steps 920 through 970, which have been previously described herein with reference to outbound intercepted APIs. If the flow from steps 920 through 970 proceeds to step 990, then the inbound network access attempt is permitted to access host 300. However, if the flow proceeds to step 980, then the inbound network access attempt is blocked from accessing host 300. In one example, blocking occurs by rejecting a listen or accept call and returning an error code to the caller of the listen or accept API. In addition, policy configurations for inbound network access may also be applied in step 970, as previously described herein with reference to
Turning to
Host 1000 may also include hardware components such as a network interface card (NIC) device 1070, a processor 1080, and a memory element 1090. Local protection module 1010 and transmission protocols, such as Transmission Control Protocol/Internet Protocol (TCP/IP) 1050 and other protocols 1060, may reside in a kernel space of host 1000 and may be implemented as part of a network driver interface specification (NDIS) driver stack, which interfaces with NIC device 1070, in a similar manner to the embodiment shown and described with reference to host 300 in
Data flows are shown between software manager module 1020 and central server 200 including policy updates flow 1022, whitelist query data flow 1024, and event flow 1026. Data and control flows are also shown between software manager module 1020 and local protection module 1010, including policy updates flow 1012, control flow 1018, and event flow 1016. Finally, checksum cache 1030 and local trusted cache 1035 may have bidirectional flows to software manager module 1020, and program file change monitor 1025 feeds software manager module 1020 with data indicating when a change has occurred in a program file. Not shown in
Local trusted cache 1035 and checksum cache 1030 may be configured in hardware of host 1000 as blocks of memory for temporary storage. Local trusted cache 1035 may contain entries (e.g., checksums) identifying program files that have previously been determined to have a trusted status using trust evaluation techniques such as searching global whitelists, searching internal whitelists, searching blacklists, evaluating program file changes, or any combination thereof. Thus, if a program file is found in local trusted cache 1035, then central server 200 may not need to be queried for a trust status of that particular program file. Checksum cache 1030 may contain entries (e.g., checksums and program file paths) identifying previously computed checksums of software program files on host 1000. Because checksum computation can use valuable processing resources, computed checksums may be stored in checksum cache 1030, along with a corresponding program file path to prevent unnecessary duplicative checksum computations. Such data stored in caches 1035 and 1030 can result in quicker retrieval and overall processing during network access attempts and software trust determination processing.
When program files change (e.g., new software version, software upgrade, etc.), their corresponding checksums change and, therefore, checksum cache 1030 may need to be updated. In example embodiments, program file change monitor 1025 can update checksum cache 1030 by performing an out of band inspection of the program files on host 1000 and providing a data feed indicating changed program files to software manager module 1020 to update checksum cache 1030. Existing change tracking products (e.g., McAfee® Change Control software, McAfee® Application Control software, McAfee® ePolicy Orchestrator software, McAfee® Policy Auditor software, Tripwire® software manufactured by Tripwire, Inc. of Portland, Oreg., etc.) may be used to examine the program files on host 1000 to determine whether a change has occurred. In example embodiments, program file change monitor 1025 may provide real-time data to software manager module 1020 indicating a change to a program file on host 1000. After receiving the changed program file data, software manager module 1020 may search checksum cache 1030 for a program file path corresponding to the changed program file and if found, may remove the checksum entry associated with the program file path. While checksum cache 1030 and program file change monitor 1025 provide one embodiment for providing, maintaining, and updating program file checksums for program files on host 1000, any number of alternative approaches could be utilized (e.g., remote checksum module, database implementation, etc.), as long as the appropriate checksum can be provided for the program file located at a given program file path.
In a system for local protection that implements the embodiment of host 1000 and central server 200, untrusted software inventories (e.g., local untrusted software inventories, central untrusted software inventory 232, etc.) may not be necessary components. Alternatively, central trusted cache 245 of central server 200, local trusted cache 1035 of host 1000, and checksum cache 1030 of host 1000 may be utilized for quick retrieval of data previously computed or otherwise determined during software trust determination processing.
Trust determination, blocking, intercepting, and logging activities for executable software 1040 may, in example embodiments, be provided at least in part by administrative protection module 220 and software trust determination module 240 of central server 200, and by software manager module 1020, program file change monitor 1025, and local protection module 1010 of host 1000. Information related to such activities can be suitably rendered, or sent to a specific location (e.g., checksum cache 1030, local trusted cache 1035, central trusted cache 245, logged events database 231, etc.), or simply stored or archived, and/or properly displayed in any appropriate format (e.g., through management console 210, etc.). Security technology related to one or more such trust determination, blocking, intercepting, and logging activities can include elements such as McAfee® ePolicy Orchestrator software, firewalling software such as McAfee® Host Intrusion Prevention System (HIPS) software, change tracking software, and/or any other similar software. Thus, any such components may be included within the broad scope of the terms ‘administrative protection module’, ‘software trust determination module’, ‘program file change monitor’, ‘software manager module’, and ‘local protection module’ as used herein in this Specification. Logged events database 231, internal whitelist 233, central trusted cache 245, checksum cache 1030, and local trusted cache 1035 may include information related to the trust determination, blocking, intercepting and logging of electronic data (e.g., trust determinations for program files, network access attempts of software processes, etc.) and these elements can readily cooperate, coordinate, or otherwise interact with the modules and components of central server 200 and host 1000.
Turning to
Flow begins at step 1110, where local protection module 1010 intercepts an outbound network access attempt by software process 1045. In one example, processes from executable software 1040 use the NDIS driver stack to access a network through NIC device 1070 of host 1000. Thus, software process 1045 may attempt to access a network by sending electronic data through the NDIS driver stack, as previously described herein with reference to
Once the outgoing packets have been intercepted, flow passes to step 1120 where the operating system may be queried regarding which program files (e.g., executable files, library modules, object files, other executable modules, script files, interpreter files, etc.) correspond to the intercepted packets from executing software process 1045. In this example, the intercepted packets are mapped to executing software process 1045, which may be mapped to an executable file and one or more library modules loaded into process 1045. The operating system kernel keeps process traffic mapping element 1065 and provides such mapping information to local protection module 1010 in step 1120.
Flow may then pass to steps 1132-1136, designated by 1130, which may be performed for each program file associated with the network access attempt. In step 1132, a query is made as to whether a checksum of a first program file associated with the network access attempt is found in checksum cache 1030. In one embodiment, checksum cache 1030 will be searched for a program file path of the first program file. If the program file path is not found, then a checksum is computed for the first program file in step 1134. In step 1136, checksum cache 1030 is updated with the program file path and the newly computed checksum. Steps 1132-1136 are repeated for each additional program file associated with the network access attempt. In one example scenario, a checksum may not be found in step 1132 if the checksum was previously removed from checksum cache 1030 when software manager module 1020 received a data feed from program file change monitor 1025 indicating the program file had changed. Thus, in this scenario, a new checksum would be computed in step 1134 for the changed program file and then stored in checksum cache 1030 in step 1136. As previously mentioned herein, any alternative approach could be utilized to provide checksums as long as the appropriate checksum can be provided for a program file located at a given program file path.
After steps 1132-1136 are performed for each program file associated with the network access attempt, flow then passes to step 1140. In step 1140, a query is made as to whether all program files associated with the network access attempt are found in local trusted cache 1035, and if so, then each of the program files has previously been determined to have a trusted status and flow passes to step 1170 to determine whether enforcement is enabled. If enforcement is not enabled, then flow passes to step 1190 where software process 1045 is allowed network access and the intercepted packets are passed to NIC device 1070. However, if enforcement is enabled in step 1170 then policy may be evaluated in step 1175 to determine whether policy overrides the trusted status of the one or more program files, as previously described herein with reference to
Policy configurations may be crafted by a network administrator, as previously described herein, and such policies may be pushed to host 1000 via policy updates flow 1022. Software manager module 1020 may further push policy configurations to local protection module 1010 via policy updates flow 1012. Alternatively, policy configurations may be stored, for example, in a memory element such as in disk drives of host 1000 and local protection module 1010 may query software manager module 1020 for any relevant policies for a particular process and/or program file being evaluated.
If a policy overrides the trusted status of the one or more program files (i.e., policy does not allow network access), as previously described herein, then flow passes to step 1180 where the software process 1045 is blocked from network access and the outgoing packets are not passed to NIC device 1070. However, if in step 1175 the trusted status of the one or more program files is not overridden by policy (i.e., a policy allows network access or no policy is applicable) then flow passes to step 1190 where the outgoing packets are passed to NIC device 1070 and software process 1045 is allowed to access the network.
With reference again to step 1140, if any program file associated with the network access attempt is not found in local trusted cache 1035, then flow passes to step 1145 where the central server 200 is queried for a trust determination of those program files that were not found in local trusted cache 1035, which will be further shown and described herein with reference to
Flow then passes to step 1155 where a query is made as to whether all program files are trusted (i.e., no program files associated with the network access attempt were determined to have an untrusted status per the query to central server 200). If all of the program files are trusted, then flow passes to step 1170 to determine whether enforcement is enabled. If enforcement is not enabled, then flow passes to step 1190 where software process 1045 is allowed network access and the intercepted packets are passed to NIC device 1070. However, if enforcement is enabled in step 1170 then policy may be evaluated in step 1175 to determine whether policy overrides the trusted status, as previously described herein. If a policy overrides the trusted status of the one or more program files, then flow passes to step 1180 where software process 1045 is blocked from network access. However, if in step 1175 the trusted status of the one or more program files is not overridden by policy, then flow passes to step 1190 where software process 1045 is allowed network access and the outgoing packets are passed to NIC device 1070.
With reference again to step 1155, if not all program files have a trusted status (i.e., at least one program file associated with the network access attempt was determined to have an untrusted status per the query to central server 200), then flow passes to step 1160 to determine whether logging is enabled. If logging is enabled, then flow passes to step 1165 to raise the event (i.e., the network access attempt) for logging, as previously described herein with reference to
If a policy has been crafted to allow selective network access by the one or more untrusted program files corresponding to software process 1045, and the intercepted packets conform to the particular policy requirements (e.g., the packets include a destination address within an allowed subnet of addresses in accordance with the policy, etc.) then flow passes to step 1190 where the intercepted packets are passed to NIC device 1070 and software process 1045 is allowed to access the network. However, if the untrusted status of the program file is not overridden by policy (i.e., policy does not allow access or no policy is applicable), then flow passes to step 1180 where the intercepted packets are not passed to NIC device 1070 and software process 1045 is blocked from network access.
Protection flow 1100 of
Turning to
In step 1230, one or more global whitelists, such as global whitelist 165 shown in
It will be apparent that the embodiment shown and described in
It will also be appreciated that the various embodiments of the system could be implemented using alternative host configurations. For example, the embodiments with untrusted software inventories have been shown and described being implemented in a network with hosts having NDIS driver stack and API hooking configurations. The embodiments of the system without untrusted software inventories have been shown and described as being implemented in networks having NDIS driver stack host configurations. However, any of the embodiments could be implemented in networks having NDIS driver stack, API hooking, or various other host configurations (e.g., Transport Driver Interface (TDI), Unix Streams, kernel-space network stack hooking, etc.). For example, in a TDI implementation, local protection components may be implemented and function in a similar manner to those shown in
In one alternative embodiment of a system and method for local protection against malicious software, the system may be configured to enumerate program files out of band, determine trust status of those enumerated program files, and block network access by untrusted program files using Intel® Active Management Technology (AMT), manufactured by Intel Corporation of Santa Clara, Calif. In this example embodiment, AMT may be used to perform out of band inspection of program files of a host, such as host 120a, 120b, or 120c and create a software inventory. After this enumeration has been performed, the program files in the software inventory may be evaluated to determine a trust status as described herein in this Specification, and a local and/or central untrusted software inventory may be created and updated. Using AMT, firewall rules related to any untrusted program files may then be configured in the hardware of the respective host. Specifically, filters placed on a NIC device of the host may be configured to block untrusted program files. This configuration may be performed at specified times (e.g., predetermined time intervals, whenever the untrusted software inventory is updated, on demand, etc.).
In an alternative AMT embodiment, the configuration of filters on the NIC device may be performed in real-time. Each time a network access attempt occurs, interception, determination of associated program files, and trust determination of the program files may be performed, for example, as shown and described herein with reference to the embodiments of
In another embodiment, application level filtering may be used in local protection components, such as local protection components 124a, 124b, and 124c of
In yet another embodiment, a system and method for protecting computer networks may be implemented in a virtualized environment. In this example embodiment, out of band inspections of hard disk files that support virtualized machines can be performed. A disk file of a host, such as host 120a, 120b, or 120c, may be opened from a hypervisor on which the virtual machine is running, such that all executable software can be seen and enumerated. The enumerated software program files can be evaluated to determine a trust status as described herein in this Specification, and an untrusted software inventory can be created and maintained. The hypervisor may also be used to filter network access attempts such that inbound and outbound network access attempts associated with untrusted software program files can be blocked. This embodiment may be deployed in a data center or virtual desktop interface (VDI) environment. In an alternative embodiment, once the untrusted software inventory is created using out of band inspections of virtual machine disk files, enforcement may be performed using other techniques described herein in this Specification (e.g., NDIS stack, API hooking, etc.).
Software for achieving the operations outlined herein can be provided at various locations (e.g., the corporate IT headquarters, end user computers, distributed servers in a cloud, etc.). In other embodiments, this software could be received or downloaded from a web server (e.g., in the context of purchasing individual end-user licenses for separate networks, devices, servers, etc.) in order to provide this system for local protection against malicious software. In one example implementation, this software is resident in one or more computers sought to be protected from a security attack (or protected from unwanted or unauthorized manipulations of data).
In other examples, the software of the system for local protection against malicious software could involve a proprietary element (e.g., as part of a network security solution with McAfee® Application Control software, McAfee® Change Control software, McAfee® ePolicy Orchestrator software, McAfee® Policy Auditor software, McAfee® Artemis Technology software, McAfee® Host Intrusion Prevention software, McAfee® VirusScan software, etc.), which could be provided in (or be proximate to) these identified elements, or be provided in any other device, server, network appliance, console, firewall, switch, router, information technology (IT) device, distributed server, etc., or be provided as a complementary solution (e.g., in conjunction with a firewall), or provisioned somewhere in the network.
In an example local network 110 as shown in
In certain example implementations, the activities involved in protecting computer networks against malicious software outlined herein may be implemented in software. This could be inclusive of software provided in central server 130 (e.g., central protection components 135) and hosts 120 (e.g., local protection components 124). These components, elements and/or modules can cooperate with each other in order to perform activities to provide local protection against malicious software such as botnets, as discussed herein. In other embodiments, these features may be provided external to these elements, included in other devices to achieve these intended functionalities, or consolidated in any appropriate manner. For example, the protection activities could be further localized in hosts 120 or further centralized in central server 130, and some of the illustrated processors may be removed, or otherwise consolidated to accommodate the particular system configuration. In a general sense, the arrangement depicted in
All of these elements (hosts 120 and central server 130) include software (or reciprocating software) that can coordinate, manage, or otherwise cooperate in order to achieve the protection activities, including trust determination, logging, and enforcement, as outlined herein. In still other embodiments, one or all of these elements may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof. In the implementation involving software, such a configuration may be inclusive of logic encoded in one or more tangible media (e.g., embedded logic provided in an application specific integrated circuit (ASIC), digital signal processor (DSP) instructions, software (potentially inclusive of object code and source code) to be executed by a processor, or other similar machine, etc.), with the tangible media being inclusive of non-transitory media. In some of these instances, one or more memory elements (as shown in various FIGURES including
Any of these elements (e.g., a computer, a host, a server, a distributed server, etc.) can include memory elements for storing information to be used in achieving the protection activities as outlined herein. Additionally, each of these devices may include a processor that can execute software or an algorithm to perform the protection activities as discussed in this Specification. These devices may further keep information in any suitable memory element (e.g., random access memory (RAM), ROM, EPROM, EEPROM, ASIC, etc.), software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein (e.g., logged events database, central untrusted software inventory, local untrusted software inventory, internal whitelist, policy database, process traffic mapping database, checksum cache, local trusted cache, central trusted cache, etc.) should be construed as being encompassed within the broad term ‘memory element.’ Similarly, any of the potential processing elements, modules, and machines described in this Specification should be construed as being encompassed within the broad term ‘processor.’ Each of the computers, hosts, servers, distributed servers, etc. may also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment.
Note that with the examples provided herein, interaction may be described in terms of two, three, four, or more network components. However, this has been done for purposes of clarity and example only. It should be appreciated that the system for local protection against malicious software can be consolidated in any suitable manner. Along similar design alternatives, any of the illustrated computers, modules, components, and elements of the FIGURES may be combined in various possible configurations, all of which are clearly within the broad scope of this Specification. In certain cases, it may be easier to describe one or more of the functionalities of a given set of flows by only referencing a limited number of components or network elements. Therefore, it should also be appreciated that the system of
It is also important to note that the operations described with reference to the preceding FIGURES illustrate only some of the possible scenarios that may be executed by, or within, the system for local protection against malicious software. Some of these operations may be deleted or removed where appropriate, or these operations may be modified or changed considerably without departing from the scope of the discussed concepts. In addition, the timing of these operations and various steps may be altered considerably and still achieve the results taught in this disclosure. For example, trust determination processing may evaluate internal whitelists prior to global or external whitelists. Thus, the preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by the system in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings of the discussed concepts.
This Application is a continuation (and claims the benefit under 35 U.S.C. §120) of U.S. application Ser. No. 12/844,892, filed Jul. 28, 2010, entitled “SYSTEM AND METHOD FOR LOCAL PROTECTION AGAINST MALICIOUS SOFTWARE,” Inventors Rishi Bhargava, et al. This application is related to co-pending U.S. patent application Ser. No. 12/844,964, filed Jul. 28, 2010, entitled “SYSTEM AND METHOD FOR NETWORK LEVEL PROTECTION AGAINST MALICIOUS SOFTWARE,” Inventors Rishi Bhargava, et al. The disclosures of both of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.
Number | Name | Date | Kind |
---|---|---|---|
4688169 | Joshi | Aug 1987 | A |
4982430 | Frezza et al. | Jan 1991 | A |
5155847 | Kirouac et al. | Oct 1992 | A |
5222134 | Waite et al. | Jun 1993 | A |
5390314 | Swanson | Feb 1995 | A |
5521849 | Adelson et al. | May 1996 | A |
5560008 | Johnson et al. | Sep 1996 | A |
5699513 | Feigen et al. | Dec 1997 | A |
5778226 | Adams et al. | Jul 1998 | A |
5778349 | Okonogi | Jul 1998 | A |
5787427 | Benantar et al. | Jul 1998 | A |
5842017 | Hookway et al. | Nov 1998 | A |
5873086 | Fujii et al. | Feb 1999 | A |
5884298 | Smith, II et al. | Mar 1999 | A |
5907709 | Cantey et al. | May 1999 | A |
5907860 | Garibay et al. | May 1999 | A |
5926832 | Wing et al. | Jul 1999 | A |
5944839 | Isenberg | Aug 1999 | A |
5974149 | Leppek | Oct 1999 | A |
5987610 | Franczek et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991881 | Conklin et al. | Nov 1999 | A |
6064815 | Hohensee et al. | May 2000 | A |
6073142 | Geiger et al. | Jun 2000 | A |
6141698 | Krishnan et al. | Oct 2000 | A |
6182142 | Win et al. | Jan 2001 | B1 |
6192401 | Modiri et al. | Feb 2001 | B1 |
6192475 | Wallace | Feb 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6275938 | Bond et al. | Aug 2001 | B1 |
6321267 | Donaldson | Nov 2001 | B1 |
6338149 | Ciccone, Jr. et al. | Jan 2002 | B1 |
6356957 | Sanchez, II et al. | Mar 2002 | B2 |
6393465 | Leeds | May 2002 | B2 |
6442686 | McArdle et al. | Aug 2002 | B1 |
6449040 | Fujita | Sep 2002 | B1 |
6453468 | D'Souza | Sep 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6496477 | Perkins et al. | Dec 2002 | B1 |
6587877 | Douglis et al. | Jul 2003 | B1 |
6611925 | Spear | Aug 2003 | B1 |
6658645 | Akuta et al. | Dec 2003 | B1 |
6662219 | Nishanov et al. | Dec 2003 | B1 |
6748534 | Gryaznov et al. | Jun 2004 | B1 |
6769008 | Kumar et al. | Jul 2004 | B1 |
6769115 | Oldman | Jul 2004 | B1 |
6795966 | Lim et al. | Sep 2004 | B1 |
6832227 | Seki et al. | Dec 2004 | B2 |
6834301 | Hanchett | Dec 2004 | B1 |
6847993 | Novaes et al. | Jan 2005 | B1 |
6907600 | Neiger et al. | Jun 2005 | B2 |
6918110 | Hundt et al. | Jul 2005 | B2 |
6930985 | Rathi et al. | Aug 2005 | B1 |
6934755 | Saulpaugh et al. | Aug 2005 | B1 |
6941470 | Jooste | Sep 2005 | B1 |
6988101 | Ham et al. | Jan 2006 | B2 |
6988124 | Douceur et al. | Jan 2006 | B2 |
7007302 | Jagger et al. | Feb 2006 | B1 |
7010796 | Strom et al. | Mar 2006 | B1 |
7024548 | O'Toole, Jr. | Apr 2006 | B1 |
7039949 | Cartmell et al. | May 2006 | B2 |
7054930 | Cheriton | May 2006 | B1 |
7065767 | Kambhammettu et al. | Jun 2006 | B2 |
7069330 | McArdle et al. | Jun 2006 | B1 |
7082456 | Mani-Meitav et al. | Jul 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096500 | Roberts et al. | Aug 2006 | B2 |
7124409 | Davis et al. | Oct 2006 | B2 |
7139916 | Billingsley et al. | Nov 2006 | B2 |
7152148 | Williams et al. | Dec 2006 | B2 |
7159036 | Hinchliffe et al. | Jan 2007 | B2 |
7177267 | Oliver et al. | Feb 2007 | B2 |
7203864 | Goin et al. | Apr 2007 | B2 |
7251655 | Kaler et al. | Jul 2007 | B2 |
7290266 | Gladstone et al. | Oct 2007 | B2 |
7302558 | Campbell et al. | Nov 2007 | B2 |
7330849 | Gerasoulis et al. | Feb 2008 | B2 |
7340684 | Ramamoorthy et al. | Mar 2008 | B2 |
7346781 | Cowle et al. | Mar 2008 | B2 |
7349931 | Horne | Mar 2008 | B2 |
7350204 | Lambert et al. | Mar 2008 | B2 |
7353501 | Tang et al. | Apr 2008 | B2 |
7360097 | Rothstein | Apr 2008 | B2 |
7363022 | Whelan et al. | Apr 2008 | B2 |
7370360 | van der Made | May 2008 | B2 |
7385938 | Beckett et al. | Jun 2008 | B1 |
7406517 | Hunt et al. | Jul 2008 | B2 |
7441265 | Staamann et al. | Oct 2008 | B2 |
7463590 | Mualem et al. | Dec 2008 | B2 |
7464408 | Shah et al. | Dec 2008 | B1 |
7506155 | Stewart et al. | Mar 2009 | B1 |
7506170 | Finnegan | Mar 2009 | B2 |
7506364 | Vayman | Mar 2009 | B2 |
7546333 | Alon et al. | Jun 2009 | B2 |
7546594 | McGuire et al. | Jun 2009 | B2 |
7552479 | Conover et al. | Jun 2009 | B1 |
7577995 | Chebolu et al. | Aug 2009 | B2 |
7603552 | Sebes et al. | Oct 2009 | B1 |
7607170 | Chesla | Oct 2009 | B2 |
7657599 | Smith | Feb 2010 | B2 |
7669195 | Qumei | Feb 2010 | B1 |
7685635 | Vega et al. | Mar 2010 | B2 |
7694150 | Kirby | Apr 2010 | B1 |
7698744 | Fanton et al. | Apr 2010 | B2 |
7703090 | Napier et al. | Apr 2010 | B2 |
7739497 | Fink et al. | Jun 2010 | B1 |
7757269 | Roy-Chowdhury et al. | Jul 2010 | B1 |
7765538 | Zweifel et al. | Jul 2010 | B2 |
7783735 | Sebes et al. | Aug 2010 | B1 |
7809704 | Surendran et al. | Oct 2010 | B2 |
7814554 | Ragner | Oct 2010 | B1 |
7818377 | Whitney et al. | Oct 2010 | B2 |
7823148 | Deshpande et al. | Oct 2010 | B2 |
7836504 | Ray et al. | Nov 2010 | B2 |
7840968 | Sharma et al. | Nov 2010 | B1 |
7849507 | Bloch et al. | Dec 2010 | B1 |
7853643 | Martinez et al. | Dec 2010 | B1 |
7856661 | Sebes et al. | Dec 2010 | B1 |
7865931 | Stone et al. | Jan 2011 | B1 |
7870387 | Bhargava et al. | Jan 2011 | B1 |
7873955 | Sebes et al. | Jan 2011 | B1 |
7895573 | Bhargava et al. | Feb 2011 | B1 |
7908653 | Brickell et al. | Mar 2011 | B2 |
7925722 | Reed et al. | Apr 2011 | B1 |
7937455 | Saha et al. | May 2011 | B2 |
7950056 | Satish et al. | May 2011 | B1 |
7966659 | Wilkinson et al. | Jun 2011 | B1 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
8015388 | Rihan et al. | Sep 2011 | B1 |
8015563 | Araujo et al. | Sep 2011 | B2 |
8028340 | Sebes et al. | Sep 2011 | B2 |
8055904 | Cato et al. | Nov 2011 | B1 |
8195931 | Sharma et al. | Jun 2012 | B1 |
8205188 | Ramamoorthy et al. | Jun 2012 | B2 |
8209680 | Le et al. | Jun 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8234713 | Roy-Chowdhury et al. | Jul 2012 | B2 |
8307437 | Sebes et al. | Nov 2012 | B2 |
8321932 | Bhargava et al. | Nov 2012 | B2 |
8332929 | Bhargava et al. | Dec 2012 | B1 |
8352930 | Sebes et al. | Jan 2013 | B1 |
8381284 | Dang et al. | Feb 2013 | B2 |
8387046 | Montague et al. | Feb 2013 | B1 |
8515075 | Saraf et al. | Aug 2013 | B1 |
8539063 | Sharma et al. | Sep 2013 | B1 |
8544003 | Sawhney et al. | Sep 2013 | B1 |
8549003 | Bhargava et al. | Oct 2013 | B1 |
8549546 | Sharma et al. | Oct 2013 | B2 |
8555404 | Sebes et al. | Oct 2013 | B1 |
8561051 | Sebes et al. | Oct 2013 | B2 |
8561082 | Sharma et al. | Oct 2013 | B2 |
8584199 | Chen et al. | Nov 2013 | B1 |
8701182 | Bhargava et al. | Apr 2014 | B2 |
8707422 | Bhargava et al. | Apr 2014 | B2 |
8707446 | Roy-Chowdhury et al. | Apr 2014 | B2 |
8713668 | Cooper et al. | Apr 2014 | B2 |
8739272 | Cooper et al. | May 2014 | B1 |
8762928 | Sharma et al. | Jun 2014 | B2 |
8763118 | Sebes et al. | Jun 2014 | B2 |
8793489 | Polunin et al. | Jul 2014 | B2 |
8800024 | Cooper et al. | Aug 2014 | B2 |
8843903 | Blaser et al. | Sep 2014 | B1 |
8869265 | Dang et al. | Oct 2014 | B2 |
8904520 | Nachenberg et al. | Dec 2014 | B1 |
8925101 | Bhargava et al. | Dec 2014 | B2 |
8938800 | Bhargava et al. | Jan 2015 | B2 |
8973146 | Ramanan et al. | Mar 2015 | B2 |
9112830 | Cooper et al. | Aug 2015 | B2 |
9134998 | Roy-Chowdhury et al. | Sep 2015 | B2 |
20020056076 | van der Made | May 2002 | A1 |
20020069367 | Tindal et al. | Jun 2002 | A1 |
20020083175 | Afek et al. | Jun 2002 | A1 |
20020099671 | Mastin Crosbie et al. | Jul 2002 | A1 |
20020114319 | Liu et al. | Aug 2002 | A1 |
20030014667 | Kolichtchak | Jan 2003 | A1 |
20030023736 | Abkemeier | Jan 2003 | A1 |
20030033510 | Dice | Feb 2003 | A1 |
20030061506 | Cooper et al. | Mar 2003 | A1 |
20030065945 | Lingafelt et al. | Apr 2003 | A1 |
20030073894 | Chiang et al. | Apr 2003 | A1 |
20030074552 | Olkin et al. | Apr 2003 | A1 |
20030088680 | Nachenberg et al. | May 2003 | A1 |
20030115222 | Oashi et al. | Jun 2003 | A1 |
20030120601 | Ouye et al. | Jun 2003 | A1 |
20030120811 | Hanson et al. | Jun 2003 | A1 |
20030120935 | Teal et al. | Jun 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030163718 | Johnson et al. | Aug 2003 | A1 |
20030167292 | Ross | Sep 2003 | A1 |
20030167399 | Audebert et al. | Sep 2003 | A1 |
20030200332 | Gupta et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030220944 | Schottland et al. | Nov 2003 | A1 |
20030221190 | Deshpande et al. | Nov 2003 | A1 |
20040003258 | Billingsley et al. | Jan 2004 | A1 |
20040015554 | Wilson | Jan 2004 | A1 |
20040051736 | Daniell | Mar 2004 | A1 |
20040054928 | Hall | Mar 2004 | A1 |
20040057454 | Hennegan et al. | Mar 2004 | A1 |
20040088398 | Barlow | May 2004 | A1 |
20040139206 | Claudatos et al. | Jul 2004 | A1 |
20040143749 | Tajali et al. | Jul 2004 | A1 |
20040153650 | Hillmer | Aug 2004 | A1 |
20040167906 | Smith et al. | Aug 2004 | A1 |
20040172551 | Fielding et al. | Sep 2004 | A1 |
20040230963 | Rothman et al. | Nov 2004 | A1 |
20040243678 | Smith et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050005006 | Chauffour et al. | Jan 2005 | A1 |
20050018651 | Yan et al. | Jan 2005 | A1 |
20050022014 | Shipman | Jan 2005 | A1 |
20050071633 | Rothstein | Mar 2005 | A1 |
20050086047 | Uchimoto et al. | Apr 2005 | A1 |
20050091321 | Daniell et al. | Apr 2005 | A1 |
20050091487 | Cross et al. | Apr 2005 | A1 |
20050108516 | Balzer et al. | May 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114672 | Duncan et al. | May 2005 | A1 |
20050132346 | Tsantilis | Jun 2005 | A1 |
20050198519 | Tamura et al. | Sep 2005 | A1 |
20050228990 | Kato et al. | Oct 2005 | A1 |
20050235360 | Pearson | Oct 2005 | A1 |
20050256907 | Novik et al. | Nov 2005 | A1 |
20050257207 | Blumfield et al. | Nov 2005 | A1 |
20050257265 | Cook et al. | Nov 2005 | A1 |
20050260996 | Groenendaal | Nov 2005 | A1 |
20050262558 | Usov | Nov 2005 | A1 |
20050273858 | Zadok et al. | Dec 2005 | A1 |
20050283823 | Okajo et al. | Dec 2005 | A1 |
20050289538 | Black-Ziegelbein et al. | Dec 2005 | A1 |
20060004875 | Baron et al. | Jan 2006 | A1 |
20060015501 | Sanamrad et al. | Jan 2006 | A1 |
20060037016 | Saha et al. | Feb 2006 | A1 |
20060072451 | Ross | Apr 2006 | A1 |
20060075299 | Chandramouleeswaran et al. | Apr 2006 | A1 |
20060075478 | Hyndman et al. | Apr 2006 | A1 |
20060080656 | Cain et al. | Apr 2006 | A1 |
20060085785 | Garrett | Apr 2006 | A1 |
20060101277 | Meenan et al. | May 2006 | A1 |
20060133223 | Nakamura et al. | Jun 2006 | A1 |
20060136910 | Brickell et al. | Jun 2006 | A1 |
20060136911 | Robinson et al. | Jun 2006 | A1 |
20060143713 | Challener et al. | Jun 2006 | A1 |
20060195906 | Jin et al. | Aug 2006 | A1 |
20060200863 | Ray et al. | Sep 2006 | A1 |
20060230314 | Sanjar et al. | Oct 2006 | A1 |
20060236398 | Trakic et al. | Oct 2006 | A1 |
20060259734 | Sheu et al. | Nov 2006 | A1 |
20060277603 | Kelso et al. | Dec 2006 | A1 |
20070011746 | Malpani et al. | Jan 2007 | A1 |
20070028303 | Brennan | Feb 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070039049 | Kupferman et al. | Feb 2007 | A1 |
20070050579 | Hall et al. | Mar 2007 | A1 |
20070050764 | Traut | Mar 2007 | A1 |
20070074199 | Schoenberg | Mar 2007 | A1 |
20070083522 | Nord et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070136579 | Levy et al. | Jun 2007 | A1 |
20070143851 | Nicodemus et al. | Jun 2007 | A1 |
20070157303 | Pankratov | Jul 2007 | A1 |
20070169079 | Keller et al. | Jul 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070220061 | Tirosh et al. | Sep 2007 | A1 |
20070220507 | Back et al. | Sep 2007 | A1 |
20070253430 | Minami et al. | Nov 2007 | A1 |
20070256138 | Gadea et al. | Nov 2007 | A1 |
20070271561 | Winner et al. | Nov 2007 | A1 |
20070297333 | Zuk et al. | Dec 2007 | A1 |
20070297396 | Eldar et al. | Dec 2007 | A1 |
20070300215 | Bardsley | Dec 2007 | A1 |
20080005737 | Saha et al. | Jan 2008 | A1 |
20080005798 | Ross | Jan 2008 | A1 |
20080010304 | Vempala et al. | Jan 2008 | A1 |
20080022384 | Yee et al. | Jan 2008 | A1 |
20080034416 | Kumar et al. | Feb 2008 | A1 |
20080034418 | Venkatraman et al. | Feb 2008 | A1 |
20080052468 | Speirs et al. | Feb 2008 | A1 |
20080059123 | Estberg et al. | Mar 2008 | A1 |
20080082662 | Dandliker et al. | Apr 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080086513 | O'Brien | Apr 2008 | A1 |
20080115012 | Jann et al. | May 2008 | A1 |
20080120499 | Zimmer et al. | May 2008 | A1 |
20080141371 | Bradicich et al. | Jun 2008 | A1 |
20080163207 | Reumann et al. | Jul 2008 | A1 |
20080163210 | Bowman et al. | Jul 2008 | A1 |
20080165952 | Smith et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080235534 | Schunter et al. | Sep 2008 | A1 |
20080282080 | Hyndman et al. | Nov 2008 | A1 |
20080294703 | Craft et al. | Nov 2008 | A1 |
20080295173 | Tsvetanov | Nov 2008 | A1 |
20080301770 | Kinder | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090038017 | Durham et al. | Feb 2009 | A1 |
20090043993 | Ford et al. | Feb 2009 | A1 |
20090055693 | Budko et al. | Feb 2009 | A1 |
20090063665 | Bagepalli et al. | Mar 2009 | A1 |
20090113110 | Chen et al. | Apr 2009 | A1 |
20090144300 | Chatley et al. | Jun 2009 | A1 |
20090150639 | Ohata | Jun 2009 | A1 |
20090178110 | Higuchi | Jul 2009 | A1 |
20090220080 | Herne et al. | Sep 2009 | A1 |
20090249053 | Zimmer et al. | Oct 2009 | A1 |
20090249438 | Litvin et al. | Oct 2009 | A1 |
20090320010 | Chow et al. | Dec 2009 | A1 |
20090320133 | Viljoen et al. | Dec 2009 | A1 |
20090320140 | Sebes et al. | Dec 2009 | A1 |
20090328144 | Sherlock et al. | Dec 2009 | A1 |
20090328185 | van den Berg et al. | Dec 2009 | A1 |
20100049973 | Chen | Feb 2010 | A1 |
20100071035 | Budko et al. | Mar 2010 | A1 |
20100100970 | Roy-Chowdhury et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100138430 | Gotou | Jun 2010 | A1 |
20100188976 | Rahman et al. | Jul 2010 | A1 |
20100250895 | Adams et al. | Sep 2010 | A1 |
20100281133 | Brendel | Nov 2010 | A1 |
20100293225 | Sebes et al. | Nov 2010 | A1 |
20100299277 | Emelo et al. | Nov 2010 | A1 |
20100332910 | Ali et al. | Dec 2010 | A1 |
20110029772 | Fanton et al. | Feb 2011 | A1 |
20110035423 | Kobayashi et al. | Feb 2011 | A1 |
20110047542 | Dang et al. | Feb 2011 | A1 |
20110047543 | Mohinder | Feb 2011 | A1 |
20110061092 | Bailloeul et al. | Mar 2011 | A1 |
20110077948 | Sharma et al. | Mar 2011 | A1 |
20110078550 | Nabutovsky | Mar 2011 | A1 |
20110093842 | Sebes | Apr 2011 | A1 |
20110093950 | Bhargava et al. | Apr 2011 | A1 |
20110113467 | Agarwal et al. | May 2011 | A1 |
20110119760 | Sebes et al. | May 2011 | A1 |
20110138461 | Bhargava et al. | Jun 2011 | A1 |
20110246753 | Thomas | Oct 2011 | A1 |
20110302647 | Bhattacharya et al. | Dec 2011 | A1 |
20120030750 | Bhargava et al. | Feb 2012 | A1 |
20120110666 | Ogilvie | May 2012 | A1 |
20120159631 | Niemela et al. | Jun 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120233611 | Voccio | Sep 2012 | A1 |
20120278853 | Roy-Chowdhury et al. | Nov 2012 | A1 |
20120290827 | Bhargava et al. | Nov 2012 | A1 |
20120290828 | Bhargava et al. | Nov 2012 | A1 |
20120297176 | Bhargava et al. | Nov 2012 | A1 |
20130024934 | Sebes et al. | Jan 2013 | A1 |
20130091318 | Bhattacharjee et al. | Apr 2013 | A1 |
20130097355 | Dang et al. | Apr 2013 | A1 |
20130097356 | Dang et al. | Apr 2013 | A1 |
20130097658 | Cooper et al. | Apr 2013 | A1 |
20130097692 | Cooper et al. | Apr 2013 | A1 |
20130117823 | Dang et al. | May 2013 | A1 |
20130179971 | Harrison | Jul 2013 | A1 |
20130227683 | Bettini et al. | Aug 2013 | A1 |
20130246044 | Sharma et al. | Sep 2013 | A1 |
20130246393 | Saraf et al. | Sep 2013 | A1 |
20130246423 | Bhargava et al. | Sep 2013 | A1 |
20130246685 | Bhargava et al. | Sep 2013 | A1 |
20130247016 | Sharma et al. | Sep 2013 | A1 |
20130247027 | Shah et al. | Sep 2013 | A1 |
20130247032 | Bhargava et al. | Sep 2013 | A1 |
20130247181 | Saraf et al. | Sep 2013 | A1 |
20130247192 | Krasser et al. | Sep 2013 | A1 |
20130247201 | Alperovitch et al. | Sep 2013 | A1 |
20130247226 | Sebes et al. | Sep 2013 | A1 |
20130268994 | Cooper et al. | Oct 2013 | A1 |
20140090061 | Avasarala et al. | Mar 2014 | A1 |
20140101783 | Bhargava et al. | Apr 2014 | A1 |
20140189859 | Ramanan et al. | Jul 2014 | A1 |
20140237584 | Cooper et al. | Aug 2014 | A1 |
20140250492 | Cooper et al. | Sep 2014 | A1 |
20140283065 | Teddy et al. | Sep 2014 | A1 |
20140283066 | Teddy et al. | Sep 2014 | A1 |
20140317592 | Roy-Chowdhury et al. | Oct 2014 | A1 |
20140351895 | Bhargava et al. | Nov 2014 | A1 |
20150121449 | Cp | Apr 2015 | A1 |
20150180997 | Ramanan et al. | Jun 2015 | A1 |
20150200968 | Bhargava et al. | Jul 2015 | A1 |
20150365380 | Cooper et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1383295 | Dec 2002 | CN |
101147379 | Mar 2008 | CN |
101218568 | Jul 2008 | CN |
101569129 | Oct 2009 | CN |
101636998 | Jan 2010 | CN |
103283202 | Sep 2013 | CN |
1 482 394 | Dec 2004 | EP |
2 037 657 | Mar 2009 | EP |
2599026 | Jun 2013 | EP |
2599276 | Jun 2013 | EP |
2004524598 | Aug 2004 | JP |
2005-275839 | Jun 2005 | JP |
2005-202523 | Jul 2005 | JP |
2006-59217 | Mar 2006 | JP |
2006-302292 | Nov 2006 | JP |
2007-500396 | Jan 2007 | JP |
2008-506303 | Feb 2008 | JP |
2008-217306 | Sep 2008 | JP |
2009-510858 | Mar 2009 | JP |
2010-16834 | Jan 2010 | JP |
WO 9844404 | Oct 1998 | WO |
WO 0184285 | Nov 2001 | WO |
WO 2006012197 | Feb 2006 | WO |
WO 2006124832 | Nov 2006 | WO |
WO 2007016478 | Feb 2007 | WO |
WO 2008054997 | May 2008 | WO |
WO 2011003958 | Jan 2011 | WO |
WO 2011059877 | May 2011 | WO |
WO 2012015485 | Feb 2012 | WO |
WO 2012015489 | Feb 2012 | WO |
WO 2012116098 | Aug 2012 | WO |
WO 2013058940 | Apr 2013 | WO |
WO 2013058944 | Apr 2013 | WO |
WO 2014105308 | Jul 2014 | WO |
WO 2015060857 | Apr 2015 | WO |
Entry |
---|
USPTO Dec. 24, 2012 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
USPTO Jul. 16, 2013 Final Office Action from U.S. Appl. No. 13/032,851. |
USPTO Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249. |
International Search Report and Written Opinion, International Application No. PCT/US2012/057312, mailed Jan. 31, 2013, 10 pages. |
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,196. |
International Search Report and Written Opinion, International Application No. PCT/US2012/057153, mailed Dec. 26, 2012, 8 pages. |
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900. |
USPTO Sep. 13, 2013 Final Office Action from U.S. Appl. No. 13/275,249, 21 pages. |
USPTO Oct. 2, 2013 Final Office Action from U.S. Appl. No. 13/275,196, 21 pages. |
USPTO Oct. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,892, 36 pages. |
USPTO Oct. 25, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,964, 39 pages. |
U.S. Appl. No. 14/045,208, filed Oct. 3, 2013, entitled “Execution Environment File Inventory,” Inventors: Rishi Bhargava, et al., 33 pages. |
USPTO Sep. 27, 2013, Notice of Allowance from U.S. Appl. No. 13/437,900, 12 pages. |
PCT Application Serial No. PCT/US13/71327, filed Nov. 21, 2013, entitled “Herd Based Scan Avoidance System in a Network Environment,”, 46 pages. |
USPTO Dec. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
U.S. Appl. No. 14/127,395, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,” filed Dec. 18, 2013, Inventors: Chandan Cp et al., 76 pages. |
USPTO Dec. 26, 2013 Notice of Allowance from U.S. Appl. No. 13/275,249, 32 pages. |
USPTO Dec. 16, 2013 Notice of Allowance from U.S. Appl. No. 13/275,196, 11 pages. |
USPTO Jan. 13, 2014 Notice of Allowance from U.S. Appl. No. 13/437,900, 30 pages. |
Patent Examination Report No. 1, Australian Application No. 2011283164, mailed Jan. 14, 2014, 6 pages. |
USPTO Mar. 24, 2014 Notice of Allowance from U.S. Appl. No. 13/275,196, 9 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2013/071327, mailed Mar. 7, 2014, 12 pages. |
USPTO Apr. 15, 2014 Notice of Allowance from U.S. Appl. No. 12/844,892, 9 pages. |
U.S. Appl. No. 14/257,770, entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle,” filed Apr. 21, 2014, Inventors: Rahul Roy-Chowdhury et al., 56 pages. |
International Preliminary Report on Patentability in International Application No. PCT/US2012/057312, mailed Apr. 22, 2014, 5 pages. |
U.S. Appl. No. 14/263,164, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” filed Apr. 28, 2014, Inventors: Geoffrey Cooper et al., 38 pages. |
U.S. Appl. No. 14/277,954, entitled “System and Method for Interlocking a Host and a Gateway,” filed May 15, 2014, Inventors: Geoffrey Cooper et al., 42 pages. |
USPTO Jun. 6, 2014 Final Office Action from U.S. Appl. No. 12/844,964, 30 pages. |
USPTO Jun. 4, 2014 Notice of Allowance from U.S. Appl. No. 13/032,851, 16 pages. |
“Optical stateful security filtering approach based on code words,” Sliti, M.; Boudriga, N., 2013 IEEE Symposium on Computers and Communications (ISCC), 10 pages. |
Rothenberg, et al., “A Review of Policy-Based Resource and Admission Control Functions in Evolving Access and Next Generation Networks,” Journal of Network and Systems Management, 16.1 (2008: 14-45, 32 pages. |
USPTO Jun. 4, 2014 Nonfinal Office Action from U.S. Appl. No. 13/728,705, 16 pages. |
Jun. 2, 2014 Office Action in Korean Patent Appln. No. 2013-7022241, [English translation], 6 pages. |
USPTO Aug. 11, 2014 Notice of Allowance from U.S. Appl. No. 12/844,892, 8 pages. |
USPTO Sep. 11, 2014 Notice of Allowance from U.S. Appl. No. 12/844,964, 10 pages. |
USPTO Oct. 27, 2014 Notice of Allowance from U.S. Appl. No. 13/728,705, 25 pages. |
Muttik, Igor, and Chris Barton, “Cloud security technologies,” Information security technical report 14.1 (2009), 1-6, 6 pages. |
Nov. 13, 2014 Office Action in Japanese Patent Application No. 2013-521770, English translation, 2 pages. |
Patent Examination Report No. 1, Australian Application No. 2012220642, mailed Nov. 5, 2014, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2013-7022241, mailed on Dec. 12, 2014, 3 pages. |
Extended European Search Report in Application No. 12842144.3-1853/2769509 PCT/US2012/057312, mailed Feb. 6, 2015, 6 pages. |
Notice of Reasons for Refusal in Japanese Patent Application No. JP 2013-521767, mailed on Feb. 17, 2015, 5 pages of English language translation, 4 pages of Japanese language Office Action. |
U.S. Appl. No. 14/251,009, entitled “Method and Apparatus for Process Enforced Configuration Management,” filed Apr. 11, 2014, Inventors: Rishi Bhargava et al., 37 pages. |
U.S. Appl. No. 14/599,811, entitled “System and Method for Network Level Protection Against Malicious Software,” filed Jan. 19, 2015, Inventors: Rishi Bhargava et al., 59 pages. |
Feb. 27, 2015 Office Action in Japanese Patent Application No. 2013-521770, English translation, 3 pages. |
Oct. 27, 2014 Office Action in EP Application No. 11 703 741.6-1870, 6 pages. |
Feb. 28, 2015 Office Action in CN Application No. 2011800469004, English translation, 29 pages. |
Mar. 23, 2015 Office Action in CN Application No. 201180046850X, English translation, 38 pages. |
Apr. 20, 2015 Office Action in Japanese Patent Appln. No. 2013-555531, [English translation], 2 pages. |
Cheneau, Tony, et al., “Significantly improved performances of the cryptographically generated addresses thanks to ECC and GPGPU,” Computers & Security, vol. 29, No. 4, Jun. 2010, pp. 419-431, 13 pages. |
USPTO Jul. 6, 2015 Nonfinal Rejection from U.S. Appl. No. 14/127,395, 32 pages. |
USPTO Jul. 16, 2015 Corrected Notice of Allowability in U.S. Appl. No. 13/032,851, 3 pages. |
USPTO Aug. 12, 2015 Nonfinal Rejection from U.S. Appl. No. 14/263,164, 33 pages. |
U.S. Appl. No. 14/827,396, entitled “System and Method for Interlocking a Host and a Gateway,” filed Aug. 17, 2015, Inventors: Geoffrey Howard Cooper et al., 30 pages. |
USPTO Oct. 19, 2015 Notice of Allowance from U.S. Appl. No. 14/263,164, 13 pages. |
Decision to Grant a Patent in Japanese Patent Application No. JP 2013-521767, mailed on Oct. 22, 2015, 3 pages of English language translation. |
Sep. 8, 2015 Office Action in Japanese Patent Application No. 2013-555531, English translation, 2 pages. |
USPTO Nov. 6, 2015 Nonfinal Rejection from U.S. Appl. No. 14/277,954, 32 pages. |
USPTO Nov. 23, 2015 Nonfinal Rejection from U.S. Appl. No. 14/599,811, 27 pages. |
Nov. 20, 2015 Office Action in CN Application No. 201180046850X, English translation, 36 pages. |
Nov. 20, 2015 Office Action in CN Application No. 201280050877.0, English translation, 5 pages. |
Nov. 13, 2015 Office Action in CN Application No. 201280010062.X, English translation, 5 pages. |
USPTO Dec. 2, 2015 Notice of Allowance from U.S. Appl. No. 14/127,395, 7 pages. |
Baba, Tatsuya, et al., “A Proposal of an Integrated Worm Countermeasure System Based on Dynamic VLAN Control,” Journal of Information Processing Society of Japan, Japan, Information Processing Society of Japan, Aug. 15, 2006, vol. 47, No. 8, pp. 2449-2511, 14 pages, English language Abstract only. |
Fujita, Keisuke, et al., “Proposal of DF system with boot control function against unauthorized programs,” Transactions of Computer Security Symposium 2007, Japan, Information Processing Society of Japan, Oct. 31, 2007, vol. 2007, No. 10, pp. 501-506, 7 pages, English language Abstract only. |
Ashiwa, Takashi, “IT Keyword too late to ask: Bot,” Nikkei Computer, Japan, Nikkei Business Publications, Oct. 30, 2006, No. 664, pp. 244-249, 14 pages, 7 pages of English translation. |
Mar. 2, 2015 Office Action in Korean Patent Appln. No. 2014-7021824, [English translation], 4 pages. |
Apr. 29, 2015 Supplementary European Search Report in EP Application No. EP 12 84 1554, 7 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2013/071327, mailed Jul. 9, 2015, 11 pages. |
“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2, http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+architecture—Q1+2008.pdf, printed Aug. 18, 2009 (9 pages). |
Eli M. Dow, et al., “The Xen Hypervisor,” INFORMIT, dated Apr. 10, 2008, http://www.informit.com/articles/printerfriendly.aspx?p=1187966, printed Aug. 11, 2009 (13 pages). |
Desktop Management and Control, Website: http://www.vmware.com/solutions/desktop/, printed Oct. 12, 2009, 1 page. |
Secure Mobile Computing, Website: http://www.vmware.com/solutions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages. |
Barrantes et al., “Randomized Instruction Set Emulation to Dispurt Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-289. |
Gaurav et al., “Countering Code-Injection Attacks with Instruction-Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280. |
Check Point Software Technologies Ltd.: “ZoneAlarm Security Software User Guide Version 9”, Aug. 24, 2009, XP002634548, 259 pages, retrieved from Internet: URL:http://download.zonealarm.com/bin/media/pdf/zaclient91—user—manual.pdf. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority (1 page), International Search Report (4 pages), and Written Opinion (3 pages), mailed Mar. 2, 2011, International Application No. PCT/US2010/055520. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (6 pages), and Written Opinion of the International Searching Authority (10 pages) for International Application No. PCT/US2011/020677 mailed Jul. 22, 2011. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (3 pages), and Written Opinion of the International Search Authority (6 pages) for International Application No. PCT/US2011/024869 mailed Jul. 14, 2011. |
Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for Trusted Computing,” XP-002340992, SOSP'03, Oct. 19-22, 2003, 14 pages. |
IA-32 Intel® Architecture Software Developer's Manual, vol. 3B; Jun. 2006; pp. 13, 15, 22 and 145-146. |
Notification of International Preliminary Report on Patentability and Written Opinion mailed May 24, 2012 for International Application No. PCT/US2010/055520, 5 pages. |
Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems, IBM research Report, Feb. 2, 2005, 13 pages. |
Kurt Gutzmann, “Access Control and Session Management in the HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Computing. |
“Apache Hadoop Project,” http://hadoop.apache.org/, retrieved and printed Jan. 26, 2011, 3 pages. |
“Cbl, composite blocking list,” http://cbl.abuseat.org, retrieved and printed Jan. 26, 2011, 8 pages. |
A Tutorial on Clustering Algorithms, retrieved Sep. 10, 2010 from http://home.dei.polimi.it/matteucc/clustering/tutorial.html, 6 pages. |
A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Pason, N. Weaver, and S. Savage, “Botnet Judo: Fighting Spam with Itself,” in Proceedings of the 17th Annual Network and Distributed System Security Symposium (NDSS'10), Feb. 2010, 19 pages. |
A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet membership using DNSBL counter-intelligence,” in Proceedings of the 2nd USENIX Steps to Reducing Unwanted Traffic on the Internet, 2006, 6 pages. |
A. Ramachandran, N. Feamster, and S. Vempala, “Filtering Spam with Behavioral Blacklisting,” in Proceedings of ACM Conference on Computer Communications Security, 2007, 10 pages. |
B. Stone-Gross, M. Cova, L. Cavallor, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet: Analysis of a Botnet Takeover,” in Proceedings of the 16th ACM Conference on Computer and Communications Security, 2009, 13 pages. |
C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, and S. Savage, “Spamalytics: An Empirical Analysis of Spam Marketing Conversion,” in Proceedings of the 15th ACM conference on Computer and Communications Security, 2008, 12 pages. |
C.J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” in Journal of Data Mining and Knowledge Discovery, 1998, 43 pages. |
E-Mail Spamming Botnets: Signatures and Characteristics, Posted Sep. 22, 2008, http://www.protofilter.com/blog/email-spam-botnets-signatures.html, retrieved and printed Feb. 2, 2011, 4 pages. |
G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command and Control Channels in Network Traffic,” in Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08), Feb. 2008, 24 pages. |
G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation,” in Proceedings of the 16th USNIX Security Symposium, 2007, 34 pages. |
G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Analysis of Network Traffic for Protocol and Structure-Independent Botnet Detection,” in Proceedings of the 17th USENIX Security Symposium, 2008, 15 pages. |
I. Jolliffe, “Principal Component Analysis,” in Springer Series in Statistics, Statistical Theory and Methods, 2nd ed.), 2002, 518 pages. |
J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Proceedings of Sixth Symposium on Operating System Design and Implementation, OSDI, 2004, 13 pages. |
J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation,” in Proceedings of the USENIX HotBots, 2007, 12 pages. |
J.B. Grizzard, V. Sharma, C. Nunnery, B.B. Kang, and D. Dagon, “Peer-to-Peer Botnets: Overview and Case Study,” in Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets, Apr. 2007, 14 pages. |
J.P. John, A. Moshchuk, S.D. Gribble, and A. Krishnamurthy, “Studying Spamming Botnets Using Botlab,” in Proceedings of the 6th UENIX Symposium on Networked Systems Design and Implementation, 2009, 16 pages. |
K. Li, Z. Zhong, and L. Ramaswamy, “Privacy-Aware Collaborative Spam Filtering,” in Journal of IEEE Transactions on Parallel and Distributed Systems, vol. 29, No. 5, May 2009, pp. 725-739. |
L. Zhuang, J. Dunagan, D.R. Simon, H.J. Wang, and J.D. Tygar, “Characterizing botnets from email spam records,” in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats), 2008, 18 pages. |
M. Frigo and S.G. Johnson, “The Design and Implementation of FFTW3,” in Proceedings of the IEEE 93(2), Invited paper, Special Issue on Program Generation, Optimization, and Platform Adaptation, 2005, 16 pages. |
R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious Flux Service Networks through Passive Analysis of Recursive DNS Traces,” in Proceedings of the 25th Annual Computer Security Applications Conference (ACSAC 2009), Dec. 2009, 10 pages. |
X. Jiang, D. Xu, and Y.-M. Wang, “Collapsar: A VM-Based Honeyfarm and Reverse Honeyfarm Architecture for Network Attack Capture and Detention,” in Journal of Parallel and Distributed Computing, Special Issue on Security in Grid and Distributed Systems, 2006, 16 pages. |
Y. Tang, S. Krasser, P. Judge, and Y.-Q. Zhang, “Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data,” in Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), Nov. 2006, 6 pages. |
Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum, “BotGraph: Large Scale Spamming Botnet Detection,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 26 pages. |
Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigraphy, Geoff Hulten, and Ivan Osipkov, “Spamming Botnets: Signatures and Characteristics,” SIGCOMM '08, Aug. 17, 22, 2008, http://ccr.sigcomm.org/online/files/p171-xie.pdf, pp. 171-182. |
Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Analysis of Large-Scale Botnet probing Events,” in Proceedings of ACM Symposium on Information, Computer and Communications Security (ASIACCS)), 2009, 12 pages. |
Myung-Sup Kim et al., “A load cluster management system using SNMP and web”, [Online], May 2002, pp. 367-378, [Retrieved from Internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/nem.453/pdf>. |
G. Pruett et al., “BladeCenter systems management software”, [Online], Nov. 2005, pp. 963-975, [Retrieved from Internet on Oct. 24, 2012], <http://citeseerx.lst.psu.edu/viewdoc/download?doi=10.1.1.91.5091&rep=rep1&type=pdf>. |
Philip M. Papadopoulos et al., “NPACI Rocks: tools and techniques for easily deploying manageable Linux clusters” [Online], Aug. 2002, pp. 707-725, [Retrieved from internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/cpe.722/pdf>. |
Thomas Staub et al., “Secure Remote Management and Software Distribution for Wireless Mesh Networks”, [Online], Sep. 2007, pp. 1-8, [Retrieved from Internet on Oct. 24, 2012], <http://cds.unibe.ch/research/pub—files/B07.pdf>. |
“What's New: McAfee VirusScan Enterprise, 8.8,” copyright 2010, retrieved on Nov. 23, 2012 at https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT—DOCUMENTATION/22000/PD22973/en—US/VSE%208.8%20-%20What's%20New.pdf, 4 pages. |
“McAfee Management for Optimized Virtual Environments,” copyright 2012, retrieved on Nov. 26, 2012 at AntiVirushttp://www.mcafee.com/us/resources/data-sheets/ds-move-anti-virus.pdf, 2 pages. |
Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, Apr. 1992, retrieved on Dec. 14, 2012 from http://www.ietf.org/rfc/rfc1321.txt, 21 pages. |
Hinden, R. and B. Haberman, “Unique Local IPv6 Unicast Addresses”, RFC 4193, Oct. 2005, retrieved on Nov. 20, 2012 from http://tools.ietf.org/pdf/rfc4193.pdf, 17 pages. |
“Secure Hash Standard (SHS)”, Federal Information Processing Standards Publication, FIPS PUB 180-4, Mar. 2012, retrieved on Dec. 14, 2012 from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 35 pages. |
An Analysis of Address Space Layout Randomization on Windows Vista™, Symantec Advanced Threat Research, copyright 2007 Symantec Corporation, available at http://www.symantec.com/avcenter/reference/Address—Space—Layout—Randomization.pdf, 19 pages. |
Bhatkar, et al., “Efficient Techniques for Comprehensive Protection from Memory Error Exploits,” USENIX Association, 14th USENIX Security Symposium, Aug. 1-5, 2005, Baltimore, MD, 16 pages. |
Dewan, et al., “A Hypervisor-Based System for Protecting Software Runtime Memory and Persistent Storage,” Spring Simulation Multiconference 2008, Apr. 14-17, 2008, Ottawa, Canada, (available at website: www.vodun.org/papers/2008—secure—locker—submit—v1-1.pdf, printed Oct. 11, 2011), 8 pages. |
Shacham, et al., “On the Effectiveness of Address-Space Randomization,” CCS'04, Oct. 25-29, 2004, Washington, D.C., Copyright 2004, 10 pages. |
International Search Report and Written Opinion mailed Dec. 14, 2012 for International Application No. PCT/US2012/055674, 9 pages. |
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/020677 (9 pages). |
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/024869 (6 pages). |
Office Action received for U.S. Appl. No. 12/844,892, mailed on Jan. 17, 2013, 29 pages. |
Office Action received for U.S. Appl. No. 12/844,892, mailed on Sep. 6, 2012, 33 pages. |
Datagram Transport Layer Security Request for Comments 4347, E. Rescorla, et al., Stanford University, Apr. 2006, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc4347.pdf, 26 pages. |
Internet Control Message Protocol Request for Comments 792, J. Postel, ISI, Sep. 1981, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/html/rfc792, 22 pages. |
Mathew J. Schwartz, “Palo Alto Introduces Security for Cloud, Mobile Users,” retrieved Feb. 9, 2011 from http://www.informationweek.com/news/security/perimeter/showArticle.jhtml?articleID-22, 4 pages. |
Requirements for IV Version 4 Routers Request for Comments 1812, F. Baker, Cisco Systems, Jun. 1995, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc1812.pdf, 176 pages. |
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198, Issued Mar. 6, 2002, Federal Information Processing Standards Publication, retrieved and printed on Oct. 17, 2011 from http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf, 20 pages. |
Zhen Chen et al., “Application Level Network Access Control System Based on TNC Architecture for Enterprise Network,” In: Wireless communications Networking and Information Security (WCNIS), 2010 IEEE International Conference, Jun. 25-27, 2010 (5 pages). |
International Search Report and Written Opinion, International Application No. PCT/US2012/026169, mailed Jun. 18, 2012, 11 pages. |
Narten et al., RFC 4861, “Neighbor Discovery for IP version 6 (IPv6)”, Sep. 2007, retrieved from http://tools.ietf.org/html/rfc4861, 194 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2012/026169, mailed Aug. 27, 2013, 8 pages. |
PCT Application Serial No. PCT/US13/66690, filed Oct. 24, 2013, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,”, 67 pages. |
Patent Examination Report No. 1, Australian Application No. 2011283160, mailed Oct. 30, 2013, 3 pages. |
International Preliminary Report on Patentability in International Application No. PCT/US2012/057153, mailed Apr. 22, 2014, 4 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2013/066690, mailed Jul. 10, 2014, 12 pages. |
Aug. 12, 2014 Office Action in Japanese Patent Application No. 2013-555531, English translation, 3 pages. |
Office Action in CN 201180046900.4, mailed on Nov. 3, 2015, English translation, 29 pages. |
U.S. Appl. No. 14/045,208, filed Oct. 3, 2013. |
U.S. Appl. No. 14/848,522, filed Sep. 9, 2015. |
U.S. Appl. No. 14/251,009, filed Apr. 11, 2014. |
U.S. Appl. No. 12/291,232, filed Nov. 7, 2008. |
U.S. Appl. No. 14/599,811, filed Jan. 19, 2015. |
U.S. Appl. No. 13/229,502, filed Sep. 9, 2011. |
U.S. Appl. No. 14/827,396, filed Aug. 17, 2015. |
U.S. Appl. No. 14/263,164, filed Apr. 28, 2014. |
U.S. Appl. No. 14/277,954, filed May 15, 2014. |
U.S. Appl. No. 14/635,096, filed Mar. 2, 2015. |
U.S. Appl. No. 14/127,395, filed Dec. 18, 2013. |
USPTO Feb. 2, 2016 Notice of Allowance from U.S. Appl. No. 14/263,164, 10 pages. |
USPTO Feb. 17, 2016 Nonfinal Rejection from U.S. Appl. No. 14/635,096, 17 pages. |
Mar. 9, 2016 Office Action in CN Application No. 2011800469004, with English translation, 17 pages. |
USPTO Apr. 5, 2016 Notice of Allowance from U.S. Appl. No. 14/277,954, 16 pages. |
Apr. 8, 2016 Office Action in EP Application No. 11 710 915.7, 5 pages. |
Feb. 25, 2016 Office Action in CN Application No. 201280053580.X, with English translation, 16 pages. |
May 3, 2016 Office Action in CN Application No. 201180046850X, with English translation, 10 pages. |
USPTO Jun. 6, 2016 Notice of Allowance from U.S. Appl. No. 14/127,395, 40 pages. |
USPTO Jun. 6, 2016 Final Rejection from U.S. Appl. No. 14/599,811, 66 pages. |
Number | Date | Country | |
---|---|---|---|
20150180884 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12844892 | Jul 2010 | US |
Child | 14583509 | US |