The present invention relates to an improved system and method for magnetic position tracking, and more particularly to a system and a method that reduces the magnetic field induced noise signal in the sensor interconnect system by periodically switching the polarity of the noise signal.
Magnetic position tracking systems are becoming more widely used in the medical field, particularly when paired with an ultrasound imaging system. Due to the problems introduced into magnetic systems by conductive metals, medical magnetic tracking systems may operate in a low frequency band, in the sub 2 KHz range down to near DC levels. Distortion of the transmitted fields due to nearby conductive metals is minimized when operating in this low frequency range. A problem which arises due to these low frequencies is that the magnetic signals tend to be less affected by signal shielding materials such as aluminum or copper which are effective at higher frequencies. The shields for low frequency must employ high permeability materials and the design must be optimized such that leakage fields are well controlled. This makes the design of low frequency shielding much more difficult than for higher frequencies where thin conductive foils and loosely fitting shells can be employed. Due to the sensitive nature of the signals from the magnetic sensors, the signal path interconnect must be carefully designed to minimize sensitivity to the transmitted field. Electromotive force (EMF) errors are induced into the interconnect system if there is an unbalanced loop area within the interconnect system that is exposed to the transmitted field. In the case of an ultrasound probe, the probe interconnect system is designed to accommodate hundreds of co-axial cable elements and their associated terminations. This type of interconnect presents a relatively large unbalanced loop area into the signal path of the magnetic sensor.
Prior art systems have avoided this problem by running the optimized magnetic interconnect cable assembly adjacent to the probe interconnect cable assembly. The external mounting of the magnetic sensor and the bulk of a second independent cable running alongside the probe cable is objectionable to many end users. In order to disconnect a probe from the ultrasound chassis, both the probe interconnect and magnetic sensor interconnect must be disconnected. The mass of the probe interconnect, which is attached to the magnetic sensor cable and connector, stresses the smaller interconnect causing reliability concerns. Another limitation of prior art systems is seen when the sensor signals must be passed through a connector which shares the same physical structure as a therapeutic device, such as is found on an endoscope. In this case, the magnetic signal must be contained within the instrument due to size constraints. Currently, prior art systems employ magnetic shielding around the magnetic portion of the instrument connector. This shielding can become bulky, complex, and expensive. Sterilization and reprocessing are needed in order to safely re-use such an instrument, and these costs are moving the industry towards inexpensive disposable devices. The ability to pass the magnetic sensor signals through a single, uncomplicated, low cost interconnect, without adding large cost elements to the magnetic sensor, is thus very desirable.
In general, in one aspect, the invention features a system for magnetic position tracking of a device including a magnetic transmitter, a magnetic sensor, a computing system and a polarity inverter. The magnetic transmitter includes at least one transmitter coil that outputs a transmitted magnetic field having a time derivative component. The magnetic sensor includes at least one sensor coil that has coil terminals having a polarity, and the sensor coil is responsive to the time derivative component of the transmitted magnetic field and outputs a sensor signal. The computing system computes position and angular orientation data of a device based on the sensor signal and the polarity inverter is configured to connect to the coil terminals and to cause the polarity of the coil terminals to be reversed according to a switching signal.
Implementations of this aspect of the invention may include one or more of the following features. The system may further include a sign inverter configured to invert a digitized output from an analog to digital (A/D) converter. The sign inverter is operated concurrently with the switching signal, so that the polarity of the coil terminals is maintained at the computing system's input. The system may further include a synchronizer configured to operate concurrently with the magnetic transmitter. The system may further include averaging means. The sign inverter is also configured to invert the sensor signal at the A/D converter's input. The transmitted magnetic field may be a sinusoid. The sinusoid may include a plurality of sine waves. The sinusoid may be continuous with respect to time. The sinusoid may be time division multiplexed. The transmitted magnetic field may have one of trapezoidal, triangular, half sinusoid, exponential, or square amplitude versus time characteristics shape. The polarity inverter is located adjacent to the magnetic sensor. The polarity inverter is connected to the magnetic sensor via a twisted pair cable. The polarity inverter may be an analog switch. The switching signal is transmitted wirelessly or via a wired connection. The averaging means is configured to sum signals received with opposite polarity from the sign inverter. The averaging means may be a lowpass filter.
In general, in another aspect, the invention features a method for magnetic position tracking of a device including the following steps. Providing a magnetic transmitter having at least one transmitter coil. The transmitter coil outputs a transmitted magnetic field having a time derivative component. Providing a magnetic sensor having at least one sensor coil. The sensor coil has coil terminals having a polarity, and the sensor coil is responsive to the time derivative component of the transmitted magnetic field and outputs a sensor signal. Providing a computing system for computing position and angular orientation data of a device based on the sensor signal and providing a polarity inverter configured to connect to the coil terminals and to cause the polarity of the coil terminals to be reversed according to a switching signal.
This invention is applicable to electromagnetic tracking of medical instruments. Applications include tracking of instruments such as ultrasound probes, biopsy needles, ablation instruments, and so on.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and description below. Other features, objects, and advantages of the invention will be apparent from the following description of the preferred embodiments, the drawings, and the claims.
Referring to the figures, wherein like numerals represent like parts throughout the several views:
The ideal magnetic tracking system receives 100% of its signal input exclusively from the sensor coil, where the sensor signal is a response to a transmitted time varying magnetic field. The sensor coil signal traverses the sensor assembly interconnect system travelling from the sensor coil through cable wires, to and through the connector, and through signal conditioning such as an amplifier and analog-to-digital converter mounted on a printed circuit board. The interconnect system components generate spurious signals in response to the transmitted time varying magnetic field. These spurious signals sum to corrupt the otherwise ideal sensor coil signal, and thus induce position and orientation error of the tracked instrument.
The invention described herein electronically periodically switches polarity of the summed spurious signal, enabling its self-cancellation. The invented polarity switch method and apparatus is applied to remove the spurious error-inducing signals generated within the interconnect, leaving the desired sensor coil signal uncorrupted.
Referring to
generated by the magnetic transmitter 4. Computer 7 receives the output signals from the magnetic sensor 1 by way of cable 5 and connector 6 and computes the position of magnetic sensor 1 relative to the magnetic transmitter 4.
Magnetic sensor 1 may contain one or more signal channels. In one example, a typical 6 degree of freedom magnetic position tracking system may be constructed using 3 signal channels within magnetic sensor 1 combined with 3 orthogonal magnetic transmitting coils housed within transmitter 4. For better clarity in this description, a single signal channel is described, because the operation of any additional signal channel is identical.
Referring to
Coil 13 detects the time derivative of the magnetic field, dB/dt, generated by the transmitter 4 according to the formula
A=area of coil 13 in square meters
N=number of turns in coil 13
U=free space permeability
dB/dt=time rate of change of the magnetic flux density, B, from transmitter 4, in Tesla per second.
It is important to ensure that coil 13 is the only element of magnetic sensor 1 that is responsive to the magnetic signal from transmitter 4. Any additional signal sources between coil 13 and A/D converter 9 will result in an incorrect position computation for sensor 1. Prior art systems depend upon a high quality twisted pair cable 5 to conduct the EMF from coil 13 to connector 6. The twisted pair cable 5 provides cancellation of magnetic signals by way of forming small opposing loops along its length, causing the EMF of each successive loop to change polarity with respect to its neighbors and thereby to cancel the effects of any external magnetic fields. This cancellation works well in a uniform magnetic field. However, in a gradient magnetic field, the dB/dt magnitude is not uniform along cable 5 and therefore the EMF for successive loops is not uniform. In this case cable 5 introduces a cable error, EMFcable. EMFcable has the highest magnitude when cable 5 is placed on or near the transmitter 4, due to the high gradient field near the transmitter 4. An example of this occurrence is when instrument 2 is an ultrasound transducer and the operator inadvertently pulls cable 5 across the transmitter 4.
An additional source of error occurs where the signals from coil 13 pass through connector 6. In most high density pin type connectors, the pins form a parallel path over their mating length. This path has a net area described by the product of pin length and pin separation. This net area is shown as a connector pin loop 14 in
Lpin=length of a connector pin
Wpin=pin separation distance
U=free space permeability
dB/dt=time rate of change of the magnetic flux density, B, from transmitter 4
An important factor with the EMF error from loop 14 is that loop 14 may be located near transmitter 4 while sensor 1 may be near the outside limits of its range. Thus dB/dt at loop 14 may be orders of magnitude larger than the dB/dt at coil 13. This could occur, for example, if an ultrasound operator positions computer 7 and connector 6 near the transmitter 4 due to space constraints in a procedure room. Prior art systems commonly place a restriction on the position of the connector 6 relative to the transmitter 4, a common restriction being 0.6 meters of minimum separation. Prior art systems also commonly employ a magnetic shield around connector 6, to decrease the dB/dt magnitude at loop 14. Such a shield adds cost and bulk to connector 6, and can cause distortion of the magnetic field transmitted by transmitter 4 if placed too closely.
An additional source of EMF error is the net loop area of the printed circuit board traces, as the physical paths of the signal lines through amplifier 8 and into A/D 9 are separate. The loop formed by these printed circuit board traces is shown by trace area 15 in
Atrace=trace loop area
U=free space permeability
dB/dt=time rate of change of the magnetic flux density, B, from transmitter 4
Prior art systems protect area 15 using magnetic shielding and also attempt to locate the transmitter drive circuitry as far from area 15 as is practical.
Once the signal from coil 13 is digitized by the A/D converter 9 it is no longer susceptible to dB/dt effects from transmitter 4 and is processed by processor 10.
The total signal at the input of the A/D converter 9 is thus;
EMFtotal=EMFcoil+EMFcable+EMFconnector+EMFtrace
The last three terms of this equation are significant errors that need to be minimized.
The above mentioned cable, connector and trace errors (EMFcoil, EMFconnector, EMFtrace) are minimized in the present invention by periodically switching the polarity of the noise signal. Referring to
Referring to
EMFcoil+EMFcable+EMFconnector+EMFtrace
This equation is described in U.S. Pat. No. 6,172,499, the contents of which are expressly incorporated herein by reference. At the boundary between pulse 19 and pulse 20, polarity control 11 is switched to logic 1 and multiplier 12 is set to negate data from A/D 9. The EMFtotal for the rising and falling edges of pulse B is integrated within processor 10 to produce an output proportional to
EMFcoil−EMFcable−EMFconnector−EMFtrace
If we add the integral results from first pulse 19 and second pulse 20 and divide by two, the resulting average is an integral proportional only to EMFcoil. Since the positions of computer 7, connector 6, and portions of cable 5 are relatively stable with respect to transmitter 4, the magnitudes of EMFcable, EMFconnector, and EMFtrace remain essentially constant during the pulse AB sequence. The present invention thus eliminates the need to shield loop 14, area 15, and eliminates gradient error from cable 5.
Placing a lowpass filter at the output of multiplier 12 can also accomplish the averaging function of the first pulse 19 and second pulse 20 sequence. The lowpass filter should be chosen such that the ripple at the output of multiplier 12 as an amplitude function of
EMFcable+EMFconnector+EMFtrace
is within acceptable limits and the system response bandwidth is adequately fast. For example, in a system employing the present invention, a 4th order infinite impulse response (IIR) filter, implemented in a digital signal processor (DSP), with a cutoff frequency of 2 Hz is adequate for a system employing a three axis transmitter 4 and a three axis sensor 1 operating at 240 transmitter pulses per second.
In addition to magnetic EMF error cancellation, the present invention may also be employed to remove EMF errors from sources such as ground coupling. Current from computer 7 flowing into transmitter 4 may induce some resistive voltage drops within the conductors of computer 7. One important conductor is the grounding system. Generally the circuitry will employ a ground plane on a printed circuit board. This ground plane generally has a small but measurable resistance, on the order of a milliohm for points a few centimeters apart. Imperfections in amplifier 8, ground feedthrough from biasing circuitry, and numerous other parasitic sources can cause error signals to appear at the output of amplifier 8. Collectively these EMF error sources are shown as circuit error source 17. Source 17 will exhibit a reasonably constant response to each of pulse 19 and pulse 20 in
Referring to
The system of
EMFcoil=A*N*U*B*sin ωt
A=area of coil 13 in square meters
N=number of turns in coil 13
U=free space permeability
B=peak to peak magnitude of field, in Tesla
ω=angular frequency of magnetic field, in radians per second
t=time, in seconds
Parasitic, unbalanced loops exposed to the magnetic field from transmitter 4 are added to the signal from coil 13 and the digitized signal at processor 10 is described as
EMFtotal=(EMFcoil+EMFcable+EMFconnector+EMFtrace)*sin ωt
EMFcoil sin ωt=signal from coil 13 due to magnetic field from transmitter 4
EMFcable sin ωt=induced EMF due to gradient field of transmitter 4 acting on cable 5.
EMFconnector sin ωt=induced EMF in connector pin loop 14 due to magnetic field from transmitter 4.
EMFtrace sin ωt=induced EMF from printed circuit board trace loops
EMFtrace sin ωt=induced EMF in trace area 15 due to magnetic field from transmitter 4
Ideally, EMFcoil sin ωt would be the only signal digitized by the A/D converter 9 and processed by processor 10 and by a demodulator. EMFcable sin ωt, EMFconnector sin ωt, and EMFtrace sin ωt are undesireable signals.
The total signal at the A/D converter 9 due to transmitter 4 is described as
EMFtotal=(EMFcoil+EMFcable+EMFconnector+EMFtrace)*sin ωt
After demodulation and detection in processor 10, the value corresponding to EMFtotal is stored and the polarity control 11 is switched. The output of the A/D converter 9 is then equal
EMFtotal=(EMFcoil−EMFcable−EMFconnector−EMFtrace)*sin ωt
Demodulating and detecting this second sequence and averaging with the stored result from the first results in an output value proportional only to EMFcoil. It should be noted that it is not required that the AC magnetic field 27 be continuous, nor fixed in frequency. The technique shown will work with time division multiplexed AC magnetic fields, and with fixed, variable, or multiple frequencies.
In the embodiment of
The embodiment of
1) Define a measurement sequence, including magnetic transmitter excitations and receipt of magnetic signals from sensor coils.
2) Feeding coil signals into a switching array capable of reversing the coil polarity relative to subsequent interconnect and processing elements. The switching array should be located such that parasitic loops are located between the switching array and the A/D converter.
3) Controlling the switching array such that the processor receiving A/D data inverts the data synchronously with coil polarity changes at the output of the switching array.
4) Alternating the polarity of the switching array and A/D sign inversion such that these operations are synchronous with the defined magnetic transmitter excitation sequences.
5) Averaging alternate sign inverted processed data sequences such that the offset components cancel, or alternatively low pass filtering the processed data sequence, or alternatively storing a sequence of a first polarity, subtracting a sequence of opposing polarity, and utilizing the remainder offset value to correct future readings.
Several embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation application and claims priority under 35 USC §120 to U.S. patent application Ser. No. 13/534,666, filed Jun. 27, 2012, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3717749 | Rogers | Feb 1973 | A |
4305035 | Mach | Dec 1981 | A |
4611169 | Hermann | Sep 1986 | A |
4945305 | Blood | Jul 1990 | A |
5239474 | Eaton | Aug 1993 | A |
5276282 | Russell | Jan 1994 | A |
5353795 | Souza | Oct 1994 | A |
5377678 | Dumoulin et al. | Jan 1995 | A |
5557206 | Won | Sep 1996 | A |
5600330 | Blood | Feb 1997 | A |
5744953 | Hansen | Apr 1998 | A |
5831260 | Hansen | Nov 1998 | A |
5953683 | Hansen | Sep 1999 | A |
6172499 | Ashe | Jan 2001 | B1 |
6246231 | Ashe | Jun 2001 | B1 |
6316934 | Amorai-Moriya | Nov 2001 | B1 |
6362625 | Wiegert | Mar 2002 | B1 |
6385482 | Boksberger et al. | May 2002 | B1 |
6487516 | Amorai-Moriya | Nov 2002 | B1 |
6528991 | Ashe | Mar 2003 | B2 |
6754596 | Ashe | Jun 2004 | B2 |
6754609 | Lescourret | Jun 2004 | B2 |
6781380 | Wiegert | Aug 2004 | B1 |
6784660 | Ashe | Aug 2004 | B2 |
6856823 | Ashe | Feb 2005 | B2 |
6898299 | Brooks | May 2005 | B1 |
6963301 | Schantz | Nov 2005 | B2 |
6993443 | Harle | Jan 2006 | B2 |
7096148 | Anderson | Aug 2006 | B2 |
7298314 | Schantz | Nov 2007 | B2 |
7307595 | Schantz | Dec 2007 | B2 |
7373271 | Schneider | May 2008 | B1 |
7394254 | Rieke et al. | Jul 2008 | B2 |
7414571 | Schantz | Aug 2008 | B2 |
7876109 | Mohr | Jan 2011 | B2 |
7907701 | Anderson | Mar 2011 | B2 |
8228028 | Schneider | Jul 2012 | B2 |
8378664 | Hinz | Feb 2013 | B2 |
20030011359 | Ashe | Jan 2003 | A1 |
20030078003 | Hunter | Apr 2003 | A1 |
20030094940 | Duenisch | May 2003 | A1 |
20030233042 | Ashe | Dec 2003 | A1 |
20040030379 | Hamm | Feb 2004 | A1 |
20040088136 | Ashe | May 2004 | A1 |
20060122497 | Glossop | Jun 2006 | A1 |
20060192550 | Sandquist | Aug 2006 | A1 |
20060238199 | Larsen | Oct 2006 | A1 |
20060273795 | Rieke et al. | Dec 2006 | A1 |
20060293593 | Govari | Dec 2006 | A1 |
20070078334 | Scully | Apr 2007 | A1 |
20070270722 | Loeb | Nov 2007 | A1 |
20070278008 | Kuckes | Dec 2007 | A1 |
20080094057 | Ashe | Apr 2008 | A1 |
20080162074 | Schneider | Jul 2008 | A1 |
20090030646 | Jones | Jan 2009 | A1 |
20090076746 | Higgins | Mar 2009 | A1 |
20090105779 | Moore | Apr 2009 | A1 |
20090195202 | Takeuchi | Aug 2009 | A1 |
20090295391 | Bosnar | Dec 2009 | A1 |
20100053789 | Duric | Mar 2010 | A1 |
20100082280 | Schneider | Apr 2010 | A1 |
20100250176 | Reene | Sep 2010 | A1 |
20100315080 | Duncan | Dec 2010 | A1 |
20120056616 | May | Mar 2012 | A1 |
20120223699 | Holman | Sep 2012 | A1 |
20120286786 | Schellekens et al. | Nov 2012 | A1 |
20130166002 | Jung | Jun 2013 | A1 |
20130296691 | Ashe | Nov 2013 | A1 |
20140002063 | Ashe | Jan 2014 | A1 |
20140159707 | Ashe | Jun 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160302872 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13534666 | Jun 2012 | US |
Child | 15193344 | US |