Although the conventional magnetic recording transducer 10 functions, there are drawbacks. In particular, the conventional magnetic recording transducer 10 may not function adequately at higher recording densities. Two-dimensional magnetic recording (TDMR) technology may enable significantly higher recording densities. In TDMR, multiple read sensors are used. These sensors are longitudinally distributed along the cross track direction. The central sensor reads the data from a track of interest, while the outer sensors sense the data in adjacent tracks in order to account for noise.
Although TDMR might be capable of higher recording densities, issues may complicate fabrication of a read transducer or adversely affect its performance. Fabrication of an additional read sensor above the read sensor 14 shown, in place of the shield 20, may be complicated. Further, the shields 12 and 20 and the magnetic bias structures 16 are desired to be biased. The free layers of the read sensors are also magnetically biased in a different direction from the shields and magnetic bias structures. Providing the desired magnetic biasing of the shields and read sensors may be difficult to accomplish. Consequently, a transducer suitable for use in TDMR is desired.
The disk drive 100 includes media 101, a slider 102, a head 103 including a write transducer 104 and a read transducer 110. The write transducer includes at least a write pole 106 and coil(s) 108 for energizing the pole 106. Additional and/or different components may be included in the disk drive 100. Although not shown, the slider 102, and thus the transducers 104 and 110 are generally attached to a suspension (not shown). The transducers 104 and 110 are fabricated on the slider 102 and include an ABS proximate to the media 101 during use. Although both a write transducer 104 and a read transducer 110 are shown, in other embodiments, only a read transducer 110 may be present. Further, multiple read and/or write transducers may be used. The read transducer 110 includes multiple read sensors 112 and 114, shields 120 and 160 and middle shield(s) 130/150. In addition, magnetic bias structures 111 and 116 for the sensors 112 and 114, respectively, are used.
The read transducer 110 includes multiple read sensors 112 and 114 having sensor layers 113 and 115, respectively, that may be free layers in a giant magnetoresistive (GMR) sensor or a tunneling magnetoresistive (TMR) sensor. Thus, each sensor 112 and 114 may include a pinning layer, a pinned layer and a nonmagnetic spacer layer in addition to the free layer 113 and 115, respectively. For simplicity, only the free layers 113 and 115 are separately labeled. The sensors 112 and 114 may also include other layers such as seed layer(s) (not shown) and capping layer(s) (not shown). The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other embodiments, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113 and 115 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS in
The read sensors 112 and 114 may have different widths in the track width, or cross-track, direction. However, in other embodiments, the widths of the sensors 112 and 114 may be the same. The widths of the sensors 112 and 114 may also be based on the track pitch. In the embodiment shown, the read sensors 112 and 114 are offset in the cross track direction. Therefore, the centers of each of the read sensors 112 and 114 are not aligned along a line that runs the down track direction. In other embodiments, the read sensors 112 and 114 might be aligned. The read sensor 114 is also in a down track direction from the read sensor 112. The read sensor 114 is thus closer to the trailing edge of the slider 102 than the read sensor 112 is.
Also shown are bias structures 111 and 116 that magnetically bias the read sensors 112 and 114, respectively. The magnetic bias structure(s) 111 and/or 116 may be soft bias structures fabricated with soft magnetic material(s). In other embodiments, the magnetic bias structure(s) 111 and/or 116 may be hard magnetic bias structures. In still other embodiments, the magnetic bias structure(s) 111 and/or 116 may have both magnetically hard and magnetically soft regions. Other mechanisms for biasing the sensors 112, and 114 might also be used.
The read sensors 112 and 114 are separated by middle shield(s) 130/150. In embodiments in which only a single middle shield is used, then the insulator 140 may be omitted. The read sensors 112 and 114 and shield 130 are surrounded by first (bottom) shield 120 and second (top) shield 160. In the embodiment shown in
The bottom middle shield 150 is a monolithic shield. In the embodiment shown, the bottom middle shield 150 includes a single typically soft magnetic layer. In other embodiments, multiple material(s) and/or layers may be used. For example, the bottom middle shield 150 may include a NiFe layer and/or a CoFe layer.
The top middle shield 130 is an antiferromagnetically coupled (AFC) shield. The AFC middle shield 130 includes multiple magnetic layers 132 and 136 separated by a nonmagnetic layer 134 and magnetically coupled to an antiferromagnetic (AFM) layer 138. Although not shown, seed and/or capping layer(s) may be used. The magnetic layers 132 and 136 are antiferromagnetically coupled, typically via a Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. The ferromagnetic layers 132 and/or 134 may include multiple sublayers. For example, the bottom ferromagnetic layer 132 may include a thin amorphous layer 131, such as a CoFeB insertion layer. In some embodiments, the bottom layer 132 consists of NiFe layers separated by a thin CoFeB insertion layer 131 and topped by a CoFe layer. For example the bottom layer may include at least two hundred and not more than three hundred Angstroms of NiFe topped by not more than ten Angstroms of CoFeB, at least twenty-five Angstroms and not more than thirty five Angstroms of NiFe and at least five and not more than fifteen Angstroms of CoFe closest to the nonmagnetic layer 134. However other thicknesses and materials may be present. The top ferromagnetic layer 136 may include multiple magnetic layers. For example, the top ferromagnetic layer 136 may include CoFe layers separated by a NiFe layer. For example, the ferromagnetic layer 136 may consist of at least five and not more than fifteen Angstroms of CoFe, at least two hundred and not more than three hundred Angstroms of NiFe and topped by at least fifteen and not more than twenty five Angstroms of CoFe. However, other thicknesses and other materials may be used. An amorphous magnetic layer such as the CoFeB insertion layer 131 discussed above might also be used in the ferromagnetic layer 136. Use of the thin CoFeB insertion layer 131 within the layer 132 and/or 126 may be desired to improve the thermal stability of the AFC shield 130.
The nonmagnetic layer 136 has a thickness configured to be within an antiferromagnetic coupling peak (in a plot magnetic coupling versus thickness) of the RKKY interaction. In some embodiments, the nonmagnetic layer 136 is within the first antiferromagnetic peak of the RKKY interaction. In other embodiments, the nonmagnetic layer 136 is within the second antiferromagnetic peak of the RKKY interaction. In some cases, the second antiferromagnetic peak of the RKKY interaction is preferred for thermal stability of the shield 130. The nonmagnetic layer 136 includes conductive nonmagnetic material(s) for which the layers 132 and 136 may be antiferromagnetically coupled. For example, the nonmagnetic layer 136 may consist of Ru and may have a thickness of at least three and not more than ten Angstroms.
The AFM layer 138 is used to bias the magnetic moment of the ferromagnetic layer 136. For example, the AFM layer 138 may include IrMn. Thus, the AFM layer 138 may be thick enough to pin the magnetic moment of the ferromagnetic layer 136. In addition, the thickness of the AFM layer 138 may also be set to improve manufacturability of the transducer 110. For example, the AFM layer 138 may also be sufficiently thin that the direction of the moments within the AFM layer 138 (i.e. the direction in which the spins are aligned parallel and antiparallel) may be set at an anneal temperature that is lower than the anneal temperature used for the sensors 112 and 114. For example, in some embodiments, one or more of the anneal(s) used in fabricating the sensor(s) 112 and/or 114 utilizes temperatures in excess of 270 degrees Celsius. Thus, the thickness of the AFM layer 138 may be set such that an anneal of not more than 240 degrees Celsius can be used to set the direction of the moments in the AFM and, therefore, the bias direction for the ferromagnetic layer 136. In some embodiments, anneals of not more than 220 degrees Celsius may be used to set the direction of the moments in the AFM layer 138. The thickness of the AFM layer 138 may thus be set such that fabrication/annealing for the AFC shield 130 does not adversely affect the read sensor(s) 112 and/or 114, so that the anneal for the AFC shield 130 may set the direction at which the layer 136 is magnetically biased and such that the AFC shield 130 is stable during operation of the transducer 110. In some embodiments, the AFM layer 138 has a thickness of not more than one hundred sixty Angstroms. In some such embodiments, the AFM layer 138 has a thickness of not more than one hundred Angstroms.
In the embodiment shown, the second (top) shield 160 is also an AFC shield. The second AFC shield 160 includes multiple magnetic layers 162 and 166 separated by a nonmagnetic layer 164 and magnetically coupled to an AFM layer 168. Although not shown, seed and/or capping layer(s) may be used. The magnetic layers 162 and 166 are antiferromagnetically coupled, typically via the RKKY interaction. The ferromagnetic layers 162 and/or 164 may include multiple sublayers. For example, layer 162 may be analogous to the layer 132, while the layer 166 may be analogous to the layer 136. Thus, the bottom layer 162 may include NiFe layers separated by a thin CoFeB insertion layer 161 and topped by a CoFe layer that may all be in the thickness ranges described above. The top ferromagnetic layer 166 may include CoFe layers separated by a NiFe layer that may be in the thickness ranges discussed above. In other embodiments, other and/or additional materials may be used for the layers 162 and/or 166. The nonmagnetic layer 164 may be analogous to the layer 134. For example, the nonmagnetic layer 164 may have a thickness within the first or second antiferromagnetic peak of the RKKY interaction. The AFM layer 168 may be thick enough to pin the magnetic moment of the ferromagnetic layer 166, thin enough to have the magnetic moment direction set with anneal(s) that do not adversely affect the sensor(s) 112 and 114, thick enough that the top shield 160 is stable during operation and may include IrMn.
In the embodiment shown the first (bottom) shield 120 and the bottom middle shield 150 are monolithic shields. The top middle shield 130 and second (top) shield 160 are AFC shields. It may be desirable for the shields surrounding the sensors 112 and 114 to be configured similarly. For example, if the bottom middle shield 150 were an AFC shield, then the first (bottom) shield 120 may be desired to be an AFC shield. Thus, although the shields 120, 130, 150 and 160 are shown as having a particular structure (monolithic or AFC), in other embodiments, the structure might be different.
During fabrication, the magnetic transducer 110 undergoes various anneals in order to set the magnetization/magnetic bias directions of various magnetic components of the transducer 110.
In operation, current is driven perpendicular-to-plane for the sensors 112 and 114. Thus, current is driven through the sensor 112 between the shields 120 and 130. Similarly, current is driven through the sensor 114 between the shields 150 and 160. Thus, electrical connection is to be made to the shields 120, 130, 150 and 160. However, different currents may be driven through the sensors 112 and 114 because of the presence of the insulator 140. Similarly, the resistances of the sensors 112 and 114 may be separately sensed.
The magnetic read transducer 110 and disk drive 100 may have improved performance and manufacturability. Because multiple sensors 112 and 114 employed, the magnetic transducer 110 may then be used at higher data rates and/or densities in TDMR. The desired magnetic biasing of the sensors 112 and 114 and shields 120, 130, 150 and 160 and the bias structures 111 and 116 may also be accomplished. The presence of the amorphous CoFeB insertion layer 131/161 in the layer 132 and/or 162 may improve the thermal stability of the AFC shield(s) 130 and/or 160. Configuration of the thickness of the nonmagnetic layer 134/164, for example to be in the second antiferromagnetic peak in the RKKY interaction, may also improve thermal stability of the AFC shield(s) 130 and/or 160. Performance and fabrication of the magnetic transducer 110 may, therefore, be improved.
The transducer 110′ includes first shield 120, read sensors 112 and 114, magnetic bias structures 111 and 116, AFC (top) middle shield 130, insulator 140, bottom middle shield 150′ and second shield 160 that are analogous to the first shield 120, read sensors 112 and 114, magnetic bias structures 111 and 116, and AFC (top) middle shield 130, insulator 140, top middle shield 150 and second shield 160 depicted in
In the embodiment shown, the bottom middle shield 150′ is an AFC coupled shield instead of a monolithic shield. Thus, the bottom middle shield 150′ includes multiple magnetic layers 152 and 156 separated by a nonmagnetic layer 154 and magnetically coupled to an AFM layer 158. Although not shown, seed and/or capping layer(s) may be used. The magnetic layers 152 and 156 are antiferromagnetically coupled, typically via an RKKY interaction. The ferromagnetic layers 152 and/or 154 may include multiple sublayers. For example, the bottom layer 152 may include a thin amorphous layer 151, such as a CoFeB insertion layer. In some embodiments, the bottom layer 152 consists of NiFe layers separated by a thin CoFeB insertion layer 151 and topped by a CoFe layer. The top ferromagnetic layer 156 may include CoFe layers separated by a NiFe layer. The thicknesses and layers used may thus be analogous to those used for the AFC shields 130 and 160. However, other thicknesses and other materials may be used. The AFM layer 158 may be thick enough to pin the magnetic moment of the ferromagnetic layer 156, thin enough that the anneal that sets the direction of the magnetic moments for the AFM layer 158 does not adversely affect the sensor 112 and sufficiently thick that the transducer 110′ is stable during operation. For example, the AFM layer 158 may include IrMn.
The nonmagnetic layer 156 has a thickness configured to be within an antiferromagnetic coupling peak (in a plot magnetic coupling versus thickness) of the RKKY interaction. In some embodiments, the nonmagnetic layer 156 is within the first antiferromagnetic peak of the RKKY interaction. In other embodiments, the nonmagnetic layer 156 is within the second antiferromagnetic peak of the RKKY interaction. In some cases, the second antiferromagnetic peak of the RKKY interaction is preferred. The nonmagnetic layer 156 includes conductive nonmagnetic material(s) for which the layers 152 and 156 may be antiferromagnetically coupled. For example, the nonmagnetic layer 156 may consist of Ru and may have a thickness of at least three and not more than ten Angstroms. In the embodiment shown, the AFC shield 150′ is a bottom middle shield and different from the first (bottom) shield 120, which is monolithic. In some embodiments, however, the shields 120 and 150′ are desired to match. Thus, the first shield 120 might also be an AFC shield. The AFC shields 130, 150′ and 160 are biased, annealed and configured in an analogous manner to the AFC shields 130 and 160 discussed above.
The magnetic read transducer 110′ and disk drive 100′ shares the benefits of the transducer 110 and disk drive 100. Thus, the transducer 110′ may have improved performance and manufacturability.
The transducer 110″ includes first shield 120, read sensors 112 and 114, magnetic bias structures 111 and 116, AFC (top) middle shield 130, insulator 140, bottom middle shield 150′ and second shield 160 that are analogous to the first shield 120, read sensors 112 and 114, magnetic bias structures 111 and 116, and AFC (top) middle shield 130, insulator 140, top middle shield 150 and second shield 160 depicted in
In the embodiment shown in
The magnetic read transducer 110″ and disk drive 100″ shares the benefits of the transducer 110/110′ and disk drive 100/100′. Thus, the transducer 110″ may have improved performance and manufacturability.
The transducer 110′″ includes first shield 120′, read sensors 112, 114 and 118, magnetic bias structures 111, 116 and 117, top middle shields 130 and 170, insulators 140 and 180, bottom middle shields 150 and 190′ and second shield 160 that are analogous to the first shield 120, read sensors 112, 114 and 118, magnetic bias structures 111, 116 and 117, and top middle shields 130 and 170, insulators 140 and 180, top middle shields 150/150′ and 190 and second shield 160 depicted in
In the embodiment shown in
The magnetic read transducer 110′″ and disk drive 100′″ shares the benefits of the transducer 110/110′/110″ and disk drive 100/100′/100″. Thus, the transducer 110′″ may have improved performance and manufacturability.
The first shield 120 is provided, via step 202. Step 202 typically includes depositing (e.g. plating) a large high permeability layer. In alternate embodiments, in which the shield 120 is an AFC shield, step 202 includes depositing multiple ferromagnetic layers interleaved with and sandwiching at least one nonmagnetic layer and depositing an AFM layer adjoining one of the ferromagnetic layers. The layer may also be planarized.
The first read sensor 112 is provided, via step 204. Step 204 may include full-film depositing an AFM layer, a pinned layer, a nonmagnetic spacer (e.g. tunneling barrier) layer and a free layer 113. The read sensor 112 may also be defined in step 204. Step 204 may define the read sensor 112 in the cross track and/or the stripe height direction. The stripe height direction is perpendicular to the ABS. The magnetic bias structures 111 for the read sensor 112 may also be fabricated as part of step 204. Step 204 may also include annealing the portion of the transducer that has been fabricated. The anneal may be used to set the direction of magnetization of portions of read sensor stack and/or for other purposes. For example, the anneal may be in a magnetic field that is in the direction in which the read sensor is desired to be biased. In some embodiments, this direction is perpendicular to the ABS. This anneal may also be at a high temperature compared with the anneal(s) for the shield(s) 120, 130, 150 and/or 160. In some embodiments, the temperature for the anneal of the read sensor 112 is at least 250 degrees Celsius. The temperature may be at least 270 degrees Celsius in some cases.
The top middle shield 130 is provided, via step 206. Thus, step 206 generally includes providing an AFC shield. The ferromagnetic layers 132 and 136 and the nonmagnetic layer 134 are deposited to the desired thicknesses in step 206. As part of depositing the layer 132 and/or 136, an amorphous magnetic layer such as the CoFeB insertion layer 131 may also be deposited. Step 206 also includes depositing the antiferromagnetic layer 138 to the desired thickness.
An insulating layer 140 and an additional, bottom middle shield 150 may also be provided, via step 208. In some embodiments, the step 208 of providing the bottom middle shield 150 includes depositing a monolithic shield. In other embodiments, step 208 may include providing an AFC coupled shield. In such embodiments, this portion of step 208 is analogous to step 206.
The second read sensor 114 is provided, via step 210. Step 210 may include full-film depositing an AFM layer, a pinned layer, a nonmagnetic spacer (e.g. tunneling barrier) layer and a free layer 115. The read sensor 114 may also be defined in the cross track and/or the stripe height direction. The magnetic bias structures 116 for the read sensor 114 may also be fabricated as part of step 210. Step 210 may also include annealing the portion of the transducer that has been fabricated to set the direction of magnetization of portions of read sensor stack and/or for other purposes. For example, the anneal performed in step 210 may be analogous to the anneal for step 204.
Step 206, 208 and 210 may optionally be repeated a desired number of times, via step 212. Thus, a transducer, such as the transducer 110″ and/or 110′″ having more than two read sensors may be fabricated.
The second shield 160 is provided, via step 214. Step 214 may include providing an AFC shield. Thus, step 214 may be performed in an analogous manner to step 206. The ferromagnetic layers 162 and 166 and the nonmagnetic layer 164 are deposited to the desired thicknesses in step 214. As part of depositing the layer 162 and/or 166, an amorphous magnetic layer such as the CoFeB insertion layer 161 may also be deposited. Step 214 also includes depositing the antiferromagnetic layer 168 to the desired thickness.
At least one anneal is performed for the shield(s), via 216. Thus, the shields 120, 130, 150 and 160 as well as read sensors 112 and 114 are annealed in a magnetic field in step 216. The anneal performed in step 216 is at temperature(s) and magnetic field(s) that are sufficiently high to set the direction of the AFM layers' 138 and 168 moments and, therefore, the directions of magnetization for the layers 132, 136, 162 and 166. The temperature(s) of the anneal are also sufficiently low that the read sensors 112 and 114 are not adversely affected.
The anneal performed in step 216 is in a magnetic field at an angle from the location/plane which will form the ABS after lapping (“ABS location”). This angle is selected based on a thickness and a desired AFC shield bias direction for the AFM layer 138 and/or 168. The angle of the magnetic field is also selected such that the ADC shield(s) 130 and 160 are biased in the desired AFC shield bias direction after the anneal has been completed. In some embodiments, the angle between the magnetic field direction and the ABS location is at least zero degrees and not more than fifty-five degrees. In some cases, this angle is not more than forty-five degrees from the ABS location. Although the magnetic field angle is selected in part based on the desired AFC shield bias direction, the angle may be in a direction that is different from the desired AFC shield bias direction. It is the combination of the thickness of the AFM layer(s) 138 and/or 168, the pre-anneal magnetic state of the AFM layer(s) 138 and/or 168 and the angle the magnetic field makes with the ABS location that allows the resulting shields 130 and 160 to be magnetically biased in the desired AFC shield bias direction.
For example, in some embodiments, the desired AFC shield bias direction may be nominally thirty-five degrees from the ABS location. The pre-anneal state of the AFC shield 130 and/or 160 may be magnetically biased perpendicular to the ABS location because of the anneals of the sensors 112 and 114. This magnetic state may be due to the anneal of the sensor(s) in steps 204, 210 and, optionally, 212. The angle of the magnetic field during the anneal of step 216 may be at zero degrees for some thicknesses of the AFM layers 138 and 168. For such thicknesses of the AFM layer(s) 138/168 and given the magnetic state of the AFM layer 138/168 after the anneal(s) in steps 210 and 212, an anneal of the transducer 110 in a magnetic field at zero degrees from the ABS location results in the AFC shield(s) 130/160 being biased at nominally thirty-five degrees from the ABS location. Thus, the magnetic field angle for the anneal in step 216 is based on the thickness of the AFM layer 138/168 and may differ from the desired bias angle for the magnetic moments of the AFC shield(s) 130/160. Note that for some thicknesses of the AFM layer 138/168, however, the magnetic field angle may match the desired bias angle.
Using the method 200, the magnetic read transducer 110 and disk drive 100 may be provided. The transducers 110′, 110″ and/or 110′″ may also be manufactured using the method 200. Because of the manner in which the anneals and other steps of the method 200 are performed, the desired geometry and magnetic properties of the transducers 110, 110′, 110″ and/or 110′″ may be attained. The benefits of the transducers 110, 110′, 110″ and/or 110′″ may thus be achieved.
The first shield 120 is provided, via step 222. Step 222 typically includes depositing (e.g. plating) a large high permeability layer. The layer may also be planarized. In some embodiments, step 222 includes annealing the portion of the transducer 110 that has been fabricated. The anneal is at an elevated temperature and in a magnetic field. The magnetic field is in a direction from the ABS location. However, in other embodiments, particularly if the first shield 120 is monolithic, this anneal might be omitted.
The first read sensor 112 is provided, via step 224. Step 224 may be analogous to step 204. Thus, step 224 may include depositing the layers for the sensor 112 and annealing the portion of the transducer 110 that has been fabricated (including the sensor 112). The anneal may be used to set the direction of magnetization of portions of read sensor stack and/or for other purposes. The anneal may be in a magnetic field that is in the direction in which the read sensor is desired to be biased, for example perpendicular to the ABS. This anneal may also be at a high temperature compared with the anneal(s) for the shield(s) 120, 130, 150 and/or 160. In some embodiments, the temperature for the anneal of the read sensor 112 is at least 250 degrees Celsius. The temperature may be at least 270 degrees Celsius in some cases. The magnetic bias structures 111 for the read sensor 112 may also be fabricated as part of step 224
The top middle shield 130 is provided, via step 226. Thus, step 226 includes providing an AFC shield. Step 226 is, therefore, analogous to step 206. In addition, at least one AFC shield anneal is also performed as part of step 226. Thus, the portion of the transducer 110 that has been formed is annealed in a magnetic field. The magnetic field is in a direction at an AFC shield anneal angle from the ABS location. This AFC shield anneal angle is at least zero degrees and not more than fifty-five degrees from the ABS location. In some embodiments, the magnetic field is at an angle of nominally forty-five degrees from the ABS location. The anneal performed in step 226 is at temperature(s) and magnetic field(s) that are sufficiently high to set the direction of the AFM layer 138 spins and, therefore, the directions of magnetization for the layers 132 and 136. The temperature(s) of the anneal are also sufficiently low that the read sensor 112 is not adversely affected.
An insulating layer 140 and an additional, bottom middle shield 150 may also be provided, via step 228. In some embodiments, the step 228 of providing the bottom middle shield 150 includes depositing a monolithic shield. In other embodiments, step 228 may include providing an AFC coupled shield. In such embodiments, this portion of step 228 is analogous to step 226. An anneal may optionally be performed for the bottom middle shield 150.
The second read sensor 114 is provided, via step 230. Step 230 may be analogous to step 210. The magnetic bias structures 116 for the read sensor 114 may also be fabricated as part of step 230. Step 230 may also include annealing the portion of the transducer that has been fabricated to set the direction of magnetization of portions of read sensor stack and/or for other purposes. For example, the anneal performed in step 230 may be analogous to the anneal for step 224.
Step 226, 228 and 230 may optionally be repeated a desired number of times, via step 232. Thus, a transducer, such as the transducer 110″ and/or 110′″ having more than two read sensors may be fabricated.
The second shield 160 is provided, via step 234. Step 234 may include providing an AFC shield. Thus, step 234 may be performed in an analogous manner to step 226. Step 234 also includes performing at least one anneal. Thus, the shields 120, 130, 150 and 160 as well as read sensors 112 and 114 are annealed in a magnetic field in step 234. The anneal performed in step 234 is at temperature(s) and magnetic field(s) that are sufficiently high to set the direction of the AFM layers' 138 and 168 moments and, therefore, the directions of magnetization for the layers 132, 136, 162 and 166. The temperature(s) of the anneal are also sufficiently low that the read sensors 112 and 114 are not adversely affected.
Like step 216 of the method 200, however, the anneal in step 234 is in a magnetic field at an angle from the ABS location. This angle is selected based on a thickness and a desired AFC shield bias direction for the AFM layer 138 and/or 168. In some embodiments, this angle is at least zero degrees and not more than fifty-five degrees from the ABS location. In some embodiments, this angle is not more than forty-five degrees from the ABS location. The angle may be in a direction that is different from the desired AFC shield bias direction. Thus, the magnetic field angle for the anneal in step 234 is based on the thickness of the AFM layer 138/168 and may differ from the desired bias angle for the magnetic moments of the AFC shield(s) 130/160. Note that for some thicknesses of the AFM layer 138/168, however, the magnetic field angle may match the desired bias angle.
Using the method 220, the magnetic read transducer 110 and disk drive 100 may be provided. The transducers 110′, 110″ and/or 110′″ may also be manufactured using the method 220. Because of the manner in which the anneals and other steps of the method 220 are performed, the desired geometry and magnetic properties of the transducers 110, 110′, 110″ and/or 110′″ may be attained. The benefits of the transducers 110, 110′, 110″ and/or 110′″ may thus be achieved.
Referring to
The ferromagnetic layer 132 is provided, via step 252. In some embodiments, step 252 includes depositing an amorphous magnetic insertion layer within the ferromagnetic layer 132. For example, the CoFeB insertion layer 131 may be provided as part of step 252. The ferromagnetic layer 132 may also include other magnetic layers. For example, a NiFe/CoFeB/NiFe/CoFe layer may be deposited for the magnetic layer 132 in step 252.
The nonmagnetic layer 134 is provided, via step 254. Step 254 may include depositing a nonmagnetic material, such as Ru, to a thickness corresponding to the first or second antiferromagnetic coupling peak in the RKKY interaction. In some embodiments, the second antiferromagnetic coupling peak is selected.
The ferromagnetic layer 136 is provided, via step 256. In some embodiments, step 256 includes depositing an amorphous magnetic insertion layer within the ferromagnetic layer 136. The ferromagnetic layer 136 may also include other magnetic layers. For example, a CoFe/NiFe/CoFe layer may be deposited for the magnetic layer 136 in step 256.
If more than two ferromagnetic layers are desired in the AFC shield, then steps 254 and 256 are optionally repeated a desired number of times. The antiferromagnetic layer 138 is deposited to the desired thickness, via step 260. Using the method 250, the desired configuration of the AFC shield(s) 130, 150′, 160, 170 and/or 190 may be achieved. The benefits of the transducer(s) 110, 110′, 110″, and/or 110′″ may be attained.
The first shield 120 is provided, via step 272. Step 222 typically includes depositing (e.g. plating) a large high permeability layer. The layer may also be planarized. In some embodiments, step 272 may optionally include annealing the portion of the transducer 110 that has been fabricated. The anneal is at an elevated temperature and in a magnetic field. The magnetic field is in a direction at least zero degrees and not more than fifty-five degrees from the ABS location. However, in other embodiments, this anneal might be omitted.
The first read sensor 112 is provided, via step 274. Step 274 may be analogous to steps 204 and 224. Thus, step 274 may include depositing the layers for the sensor 112 and annealing the portion of the transducer 110 that has been fabricated (including the sensor 112). The anneal may be used to set the direction of magnetization of portions of read sensor stack and/or for other purposes. The anneal may be in a magnetic field that is in the direction in which the read sensor is desired to be biased, for example perpendicular to the ABS. This anneal may also be at a high temperature compared with the anneal(s) for the shield(s) 120, 130, 150 and/or 160. In some embodiments, the temperature for the anneal of the read sensor 112 is at least 250 degrees Celsius. The temperature may be at least 270 degrees Celsius in some cases. The magnetic bias structures 111 for the read sensor 112 may also be fabricated as part of step 274
The top middle shield 130 is provided, via step 276. Thus, step 276 includes providing an AFC shield. Step 276 is, therefore, analogous to steps 206 and 226.
An insulating layer 140 and an additional, bottom middle shield 150 are provided, via step 278. In some embodiments, the step 228 of providing the bottom middle shield 150 includes depositing a monolithic shield. An anneal may optionally be performed for the bottom middle shield 150. However, in the embodiment shown, no anneal is performed.
The second read sensor 114 is provided, via step 280. Step 280 may be analogous to steps 210 and 230. The magnetic bias structures 116 for the read sensor 114 may also be fabricated as part of step 280. Step 280 may also include annealing the portion of the transducer that has been fabricated to set the direction of magnetization of portions of read sensor stack and/or for other purposes. For example, the anneal performed in step 280 may be analogous to the anneal for step 274.
Steps 276, 278 and 280 may optionally be repeated a desired number of times, via step 282. In this embodiment, each step 276, 278 and 280 is repeated once. Thus, an additional AFC shield 170, an additional insulator 180 and a monolithic bottom shield 190′ are provided.
The second (top) shield 160 is provided, via step 284. Thus, step 284 may be performed in an analogous manner to step 276. Step 284 also include performing at least one anneal. Thus, the shields 120, 130, 150, 170, 190 and 160 as well as read sensors 112, 114 and 118 are annealed in a magnetic field in step 284. However, the angle of the magnetic field in step 284 may differ from that in steps 276 and 282. The anneal performed in step 232 is at temperature(s) and magnetic field(s) that are sufficiently high to set the direction of the AFM layers' 138, 178 and 168 moments. The temperature(s) of the anneal are also sufficiently low that the read sensors 112 and 114 are not adversely affected. In this embodiment, the magnetic field direction during the anneal in step 284 is not more than forty-five degrees from the ABS location. In some embodiments, the magnetic field is parallel to the ABS (e.g. in the cross-track direction).
Using the method 270, the desired biasing for the AFC shields 130, 170, and 160 may be achieved. The benefits of the transducers 110, 110′, 110″ and/or 110′″ may thus be realized.
Number | Name | Date | Kind |
---|---|---|---|
6016290 | Chen et al. | Jan 2000 | A |
6018441 | Wu et al. | Jan 2000 | A |
6025978 | Hoshi et al. | Feb 2000 | A |
6025988 | Yan | Feb 2000 | A |
6032353 | Hiner et al. | Mar 2000 | A |
6033532 | Minami | Mar 2000 | A |
6034851 | Zarouri et al. | Mar 2000 | A |
6043959 | Crue et al. | Mar 2000 | A |
6046885 | Aimonetti et al. | Apr 2000 | A |
6049650 | Jerman et al. | Apr 2000 | A |
6055138 | Shi | Apr 2000 | A |
6058094 | Davis et al. | May 2000 | A |
6073338 | Liu et al. | Jun 2000 | A |
6078479 | Nepela et al. | Jun 2000 | A |
6081499 | Berger et al. | Jun 2000 | A |
6094803 | Carlson et al. | Aug 2000 | A |
6099362 | Viches et al. | Aug 2000 | A |
6103073 | Thayamballi | Aug 2000 | A |
6108166 | Lederman | Aug 2000 | A |
6118629 | Huai et al. | Sep 2000 | A |
6118638 | Knapp et al. | Sep 2000 | A |
6125018 | Takagishi et al. | Sep 2000 | A |
6130779 | Carlson et al. | Oct 2000 | A |
6134089 | Barr et al. | Oct 2000 | A |
6136166 | Shen et al. | Oct 2000 | A |
6137661 | Shi et al. | Oct 2000 | A |
6137662 | Huai et al. | Oct 2000 | A |
6160684 | Heist et al. | Dec 2000 | A |
6163426 | Nepela et al. | Dec 2000 | A |
6166891 | Lederman et al. | Dec 2000 | A |
6173486 | Hsiao et al. | Jan 2001 | B1 |
6175476 | Huai et al. | Jan 2001 | B1 |
6178066 | Barr | Jan 2001 | B1 |
6178070 | Hong et al. | Jan 2001 | B1 |
6178150 | Davis | Jan 2001 | B1 |
6181485 | He | Jan 2001 | B1 |
6181525 | Carlson | Jan 2001 | B1 |
6185051 | Chen et al. | Feb 2001 | B1 |
6185077 | Tong et al. | Feb 2001 | B1 |
6185081 | Simion et al. | Feb 2001 | B1 |
6188549 | Wiitala | Feb 2001 | B1 |
6190764 | Shi et al. | Feb 2001 | B1 |
6193584 | Rudy et al. | Feb 2001 | B1 |
6195229 | Shen et al. | Feb 2001 | B1 |
6198608 | Hong et al. | Mar 2001 | B1 |
6198609 | Barr et al. | Mar 2001 | B1 |
6201673 | Rottmayer et al. | Mar 2001 | B1 |
6204998 | Katz | Mar 2001 | B1 |
6204999 | Crue et al. | Mar 2001 | B1 |
6212153 | Chen et al. | Apr 2001 | B1 |
6215625 | Carlson | Apr 2001 | B1 |
6219205 | Yuan et al. | Apr 2001 | B1 |
6221218 | Shi et al. | Apr 2001 | B1 |
6222707 | Huai et al. | Apr 2001 | B1 |
6229782 | Wang et al. | May 2001 | B1 |
6230959 | Heist et al. | May 2001 | B1 |
6233116 | Chen et al. | May 2001 | B1 |
6233125 | Knapp et al. | May 2001 | B1 |
6237215 | Hunsaker et al. | May 2001 | B1 |
6252743 | Bozorgi | Jun 2001 | B1 |
6255721 | Roberts | Jul 2001 | B1 |
6258468 | Mahvan et al. | Jul 2001 | B1 |
6266216 | Hikami et al. | Jul 2001 | B1 |
6271604 | Frank, Jr. et al. | Aug 2001 | B1 |
6275354 | Huai et al. | Aug 2001 | B1 |
6277505 | Shi et al. | Aug 2001 | B1 |
6282056 | Feng et al. | Aug 2001 | B1 |
6296955 | Hossain et al. | Oct 2001 | B1 |
6297955 | Frank, Jr. et al. | Oct 2001 | B1 |
6304414 | Crue, Jr. et al. | Oct 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6310746 | Hawwa et al. | Oct 2001 | B1 |
6310750 | Hawwa et al. | Oct 2001 | B1 |
6317290 | Wang et al. | Nov 2001 | B1 |
6317297 | Tong et al. | Nov 2001 | B1 |
6322911 | Fukagawa et al. | Nov 2001 | B1 |
6330136 | Wang et al. | Dec 2001 | B1 |
6330137 | Knapp et al. | Dec 2001 | B1 |
6333830 | Rose et al. | Dec 2001 | B2 |
6340533 | Ueno et al. | Jan 2002 | B1 |
6349014 | Crue, Jr. et al. | Feb 2002 | B1 |
6351355 | Min et al. | Feb 2002 | B1 |
6353318 | Sin et al. | Mar 2002 | B1 |
6353511 | Shi et al. | Mar 2002 | B1 |
6356412 | Levi et al. | Mar 2002 | B1 |
6359779 | Frank, Jr. et al. | Mar 2002 | B1 |
6369983 | Hong | Apr 2002 | B1 |
6376964 | Young et al. | Apr 2002 | B1 |
6377535 | Chen et al. | Apr 2002 | B1 |
6381095 | Sin et al. | Apr 2002 | B1 |
6381105 | Huai et al. | Apr 2002 | B1 |
6389499 | Frank, Jr. et al. | May 2002 | B1 |
6392850 | Tong et al. | May 2002 | B1 |
6396660 | Jensen et al. | May 2002 | B1 |
6399179 | Hanrahan et al. | Jun 2002 | B1 |
6400526 | Crue, Jr. et al. | Jun 2002 | B2 |
6404600 | Hawwa et al. | Jun 2002 | B1 |
6404601 | Rottmayer et al. | Jun 2002 | B1 |
6404706 | Stovall et al. | Jun 2002 | B1 |
6410170 | Chen et al. | Jun 2002 | B1 |
6411522 | Frank, Jr. et al. | Jun 2002 | B1 |
6417998 | Crue, Jr. et al. | Jul 2002 | B1 |
6417999 | Knapp et al. | Jul 2002 | B1 |
6418000 | Gibbons et al. | Jul 2002 | B1 |
6418048 | Sin et al. | Jul 2002 | B1 |
6421211 | Hawwa et al. | Jul 2002 | B1 |
6421212 | Gibbons et al. | Jul 2002 | B1 |
6424505 | Lam et al. | Jul 2002 | B1 |
6424507 | Lederman et al. | Jul 2002 | B1 |
6430009 | Komaki et al. | Aug 2002 | B1 |
6430806 | Chen et al. | Aug 2002 | B1 |
6433965 | Gopinathan et al. | Aug 2002 | B1 |
6433968 | Shi et al. | Aug 2002 | B1 |
6433970 | Knapp et al. | Aug 2002 | B1 |
6437945 | Hawwa et al. | Aug 2002 | B1 |
6445536 | Rudy et al. | Sep 2002 | B1 |
6445542 | Levi et al. | Sep 2002 | B1 |
6445553 | Barr et al. | Sep 2002 | B2 |
6445554 | Dong et al. | Sep 2002 | B1 |
6447935 | Zhang et al. | Sep 2002 | B1 |
6448765 | Chen et al. | Sep 2002 | B1 |
6451514 | Iitsuka | Sep 2002 | B1 |
6452742 | Crue et al. | Sep 2002 | B1 |
6452765 | Mahvan et al. | Sep 2002 | B1 |
6456465 | Louis et al. | Sep 2002 | B1 |
6459552 | Liu et al. | Oct 2002 | B1 |
6462920 | Karimi | Oct 2002 | B1 |
6466401 | Hong et al. | Oct 2002 | B1 |
6466402 | Crue, Jr. et al. | Oct 2002 | B1 |
6466404 | Crue, Jr. et al. | Oct 2002 | B1 |
6468436 | Shi et al. | Oct 2002 | B1 |
6469877 | Knapp et al. | Oct 2002 | B1 |
6477019 | Matono et al. | Nov 2002 | B2 |
6479096 | Shi et al. | Nov 2002 | B1 |
6483662 | Thomas et al. | Nov 2002 | B1 |
6487040 | Hsiao et al. | Nov 2002 | B1 |
6487056 | Gibbons et al. | Nov 2002 | B1 |
6490125 | Barr | Dec 2002 | B1 |
6496330 | Crue, Jr. et al. | Dec 2002 | B1 |
6496334 | Pang et al. | Dec 2002 | B1 |
6504676 | Hiner et al. | Jan 2003 | B1 |
6512657 | Heist et al. | Jan 2003 | B2 |
6512659 | Hawwa et al. | Jan 2003 | B1 |
6512661 | Louis | Jan 2003 | B1 |
6512690 | Qi et al. | Jan 2003 | B1 |
6515573 | Dong et al. | Feb 2003 | B1 |
6515791 | Hawwa et al. | Feb 2003 | B1 |
6532823 | Knapp et al. | Mar 2003 | B1 |
6535363 | Hosomi et al. | Mar 2003 | B1 |
6552874 | Chen et al. | Apr 2003 | B1 |
6552928 | Qi et al. | Apr 2003 | B1 |
6577470 | Rumpler | Jun 2003 | B1 |
6583961 | Levi et al. | Jun 2003 | B2 |
6583968 | Scura et al. | Jun 2003 | B1 |
6597548 | Yamanaka et al. | Jul 2003 | B1 |
6611398 | Rumpler et al. | Aug 2003 | B1 |
6618223 | Chen et al. | Sep 2003 | B1 |
6629357 | Akoh | Oct 2003 | B1 |
6633464 | Lai et al. | Oct 2003 | B2 |
6636394 | Fukagawa et al. | Oct 2003 | B1 |
6639291 | Sin et al. | Oct 2003 | B1 |
6650503 | Chen et al. | Nov 2003 | B1 |
6650506 | Risse | Nov 2003 | B1 |
6654195 | Frank, Jr. et al. | Nov 2003 | B1 |
6657816 | Barr et al. | Dec 2003 | B1 |
6661621 | Iitsuka | Dec 2003 | B1 |
6661625 | Sin et al. | Dec 2003 | B1 |
6674610 | Thomas et al. | Jan 2004 | B1 |
6680863 | Shi et al. | Jan 2004 | B1 |
6683763 | Hiner et al. | Jan 2004 | B1 |
6687098 | Huai | Feb 2004 | B1 |
6687178 | Qi et al. | Feb 2004 | B1 |
6687977 | Knapp et al. | Feb 2004 | B2 |
6691226 | Frank, Jr. et al. | Feb 2004 | B1 |
6697294 | Qi et al. | Feb 2004 | B1 |
6700738 | Sin et al. | Mar 2004 | B1 |
6700759 | Knapp et al. | Mar 2004 | B1 |
6704158 | Hawwa et al. | Mar 2004 | B2 |
6707083 | Hiner et al. | Mar 2004 | B1 |
6713801 | Sin et al. | Mar 2004 | B1 |
6721138 | Chen et al. | Apr 2004 | B1 |
6721149 | Shi et al. | Apr 2004 | B1 |
6721203 | Qi et al. | Apr 2004 | B1 |
6724569 | Chen et al. | Apr 2004 | B1 |
6724572 | Stoev et al. | Apr 2004 | B1 |
6729015 | Matono et al. | May 2004 | B2 |
6735850 | Gibbons et al. | May 2004 | B1 |
6737281 | Dang et al. | May 2004 | B1 |
6744608 | Sin et al. | Jun 2004 | B1 |
6747301 | Hiner et al. | Jun 2004 | B1 |
6751055 | Alfoqaha et al. | Jun 2004 | B1 |
6754048 | Li et al. | Jun 2004 | B2 |
6754049 | Seagle et al. | Jun 2004 | B1 |
6756071 | Shi et al. | Jun 2004 | B1 |
6757140 | Hawwa | Jun 2004 | B1 |
6760196 | Niu et al. | Jul 2004 | B1 |
6762910 | Knapp et al. | Jul 2004 | B1 |
6765756 | Hong et al. | Jul 2004 | B1 |
6775902 | Huai et al. | Aug 2004 | B1 |
6778358 | Jiang et al. | Aug 2004 | B1 |
6781927 | Heanuc et al. | Aug 2004 | B1 |
6785955 | Chen et al. | Sep 2004 | B1 |
6791793 | Chen et al. | Sep 2004 | B1 |
6791807 | Hikami et al. | Sep 2004 | B1 |
6798616 | Seagle et al. | Sep 2004 | B1 |
6798625 | Ueno et al. | Sep 2004 | B1 |
6801408 | Chen et al. | Oct 2004 | B1 |
6801411 | Lederman et al. | Oct 2004 | B1 |
6803615 | Sin et al. | Oct 2004 | B1 |
6806035 | Atireklapvarodom et al. | Oct 2004 | B1 |
6807030 | Hawwa et al. | Oct 2004 | B1 |
6807332 | Hawwa | Oct 2004 | B1 |
6809899 | Chen et al. | Oct 2004 | B1 |
6816345 | Knapp et al. | Nov 2004 | B1 |
6828897 | Nepela | Dec 2004 | B1 |
6829160 | Qi et al. | Dec 2004 | B1 |
6829819 | Crue, Jr. et al. | Dec 2004 | B1 |
6833979 | Knapp et al. | Dec 2004 | B1 |
6834010 | Qi et al. | Dec 2004 | B1 |
6859343 | Alfoqaha et al. | Feb 2005 | B1 |
6859997 | Tong et al. | Mar 2005 | B1 |
6861937 | Feng et al. | Mar 2005 | B1 |
6870712 | Chen et al. | Mar 2005 | B2 |
6873494 | Chen et al. | Mar 2005 | B2 |
6873547 | Shi et al. | Mar 2005 | B1 |
6879464 | Sun et al. | Apr 2005 | B2 |
6888184 | Shi et al. | May 2005 | B1 |
6888704 | Diao et al. | May 2005 | B1 |
6891702 | Tang | May 2005 | B1 |
6894871 | Alfoqaha et al. | May 2005 | B2 |
6894877 | Crue, Jr. et al. | May 2005 | B1 |
6906894 | Chen et al. | Jun 2005 | B2 |
6909578 | Missell et al. | Jun 2005 | B1 |
6912106 | Chen et al. | Jun 2005 | B1 |
6934113 | Chen | Aug 2005 | B1 |
6934129 | Zhang et al. | Aug 2005 | B1 |
6940688 | Jiang et al. | Sep 2005 | B2 |
6942824 | Li | Sep 2005 | B1 |
6943993 | Chang et al. | Sep 2005 | B2 |
6944938 | Crue, Jr. et al. | Sep 2005 | B1 |
6947258 | Li | Sep 2005 | B1 |
6950266 | McCaslin et al. | Sep 2005 | B1 |
6954332 | Hong et al. | Oct 2005 | B1 |
6958885 | Chen et al. | Oct 2005 | B1 |
6961221 | Niu et al. | Nov 2005 | B1 |
6969989 | Mei | Nov 2005 | B1 |
6975486 | Chen et al. | Dec 2005 | B2 |
6987643 | Seagle | Jan 2006 | B1 |
6989962 | Dong et al. | Jan 2006 | B1 |
6989972 | Stoev et al. | Jan 2006 | B1 |
7006327 | Krounbi et al. | Feb 2006 | B2 |
7007372 | Chen et al. | Mar 2006 | B1 |
7012832 | Sin et al. | Mar 2006 | B1 |
7023658 | Knapp et al. | Apr 2006 | B1 |
7026063 | Ueno et al. | Apr 2006 | B2 |
7027268 | Zhu et al. | Apr 2006 | B1 |
7027274 | Sin et al. | Apr 2006 | B1 |
7035046 | Young et al. | Apr 2006 | B1 |
7041985 | Wang et al. | May 2006 | B1 |
7046490 | Ueno et al. | May 2006 | B1 |
7054113 | Seagle et al. | May 2006 | B1 |
7057857 | Niu et al. | Jun 2006 | B1 |
7059868 | Yan | Jun 2006 | B1 |
7092195 | Liu et al. | Aug 2006 | B1 |
7110289 | Sin et al. | Sep 2006 | B1 |
7111382 | Knapp et al. | Sep 2006 | B1 |
7113366 | Wang et al. | Sep 2006 | B1 |
7114241 | Kubota et al. | Oct 2006 | B2 |
7116517 | He et al. | Oct 2006 | B1 |
7124654 | Davies et al. | Oct 2006 | B1 |
7126788 | Liu et al. | Oct 2006 | B1 |
7126790 | Liu et al. | Oct 2006 | B1 |
7131346 | Buttar et al. | Nov 2006 | B1 |
7133253 | Seagle et al. | Nov 2006 | B1 |
7134185 | Knapp et al. | Nov 2006 | B1 |
7154715 | Yamanaka et al. | Dec 2006 | B2 |
7170725 | Zhou et al. | Jan 2007 | B1 |
7177117 | Jiang et al. | Feb 2007 | B1 |
7193815 | Stoev et al. | Mar 2007 | B1 |
7196880 | Anderson et al. | Mar 2007 | B1 |
7199974 | Alfoqaha | Apr 2007 | B1 |
7199975 | Pan | Apr 2007 | B1 |
7211339 | Seagle et al. | May 2007 | B1 |
7212384 | Stoev et al. | May 2007 | B1 |
7238292 | He et al. | Jul 2007 | B1 |
7239478 | Sin et al. | Jul 2007 | B1 |
7248431 | Liu et al. | Jul 2007 | B1 |
7248433 | Stoev et al. | Jul 2007 | B1 |
7248449 | Seagle | Jul 2007 | B1 |
7280325 | Pan | Oct 2007 | B1 |
7283327 | Liu et al. | Oct 2007 | B1 |
7284316 | Huai et al. | Oct 2007 | B1 |
7286329 | Chen et al. | Oct 2007 | B1 |
7289303 | Sin et al. | Oct 2007 | B1 |
7292409 | Stoev et al. | Nov 2007 | B1 |
7296339 | Yang et al. | Nov 2007 | B1 |
7307814 | Seagle et al. | Dec 2007 | B1 |
7307818 | Park et al. | Dec 2007 | B1 |
7310204 | Stoev et al. | Dec 2007 | B1 |
7318947 | Park et al. | Jan 2008 | B1 |
7333295 | Medina et al. | Feb 2008 | B1 |
7337530 | Stoev et al. | Mar 2008 | B1 |
7342752 | Zhang et al. | Mar 2008 | B1 |
7349170 | Rudman et al. | Mar 2008 | B1 |
7349179 | He et al. | Mar 2008 | B1 |
7354664 | Jiang et al. | Apr 2008 | B1 |
7363697 | Dunn et al. | Apr 2008 | B1 |
7371152 | Newman | May 2008 | B1 |
7372665 | Stoev et al. | May 2008 | B1 |
7375926 | Stoev et al. | May 2008 | B1 |
7379269 | Krounbi et al. | May 2008 | B1 |
7386933 | Krounbi et al. | Jun 2008 | B1 |
7389577 | Shang et al. | Jun 2008 | B1 |
7417832 | Erickson et al. | Aug 2008 | B1 |
7419891 | Chen et al. | Sep 2008 | B1 |
7428124 | Song et al. | Sep 2008 | B1 |
7430098 | Song et al. | Sep 2008 | B1 |
7436620 | Kang et al. | Oct 2008 | B1 |
7436638 | Pan | Oct 2008 | B1 |
7440220 | Kang et al. | Oct 2008 | B1 |
7443632 | Stoev et al. | Oct 2008 | B1 |
7444740 | Chung et al. | Nov 2008 | B1 |
7493688 | Wang et al. | Feb 2009 | B1 |
7508627 | Zhang et al. | Mar 2009 | B1 |
7522377 | Jiang et al. | Apr 2009 | B1 |
7522379 | Krounbi et al. | Apr 2009 | B1 |
7522382 | Pan | Apr 2009 | B1 |
7542246 | Song et al. | Jun 2009 | B1 |
7551406 | Thomas et al. | Jun 2009 | B1 |
7552523 | He et al. | Jun 2009 | B1 |
7554767 | Hu et al. | Jun 2009 | B1 |
7583466 | Kermiche et al. | Sep 2009 | B2 |
7595967 | Moon et al. | Sep 2009 | B1 |
7606007 | Gill | Oct 2009 | B2 |
7639457 | Chen et al. | Dec 2009 | B1 |
7660080 | Liu et al. | Feb 2010 | B1 |
7672080 | Tang et al. | Mar 2010 | B1 |
7672086 | Jiang | Mar 2010 | B1 |
7684160 | Erickson et al. | Mar 2010 | B1 |
7688546 | Bai et al. | Mar 2010 | B1 |
7691434 | Zhang et al. | Apr 2010 | B1 |
7695761 | Shen et al. | Apr 2010 | B1 |
7719795 | Hu et al. | May 2010 | B2 |
7726009 | Liu et al. | Jun 2010 | B1 |
7729086 | Song et al. | Jun 2010 | B1 |
7729087 | Stoev et al. | Jun 2010 | B1 |
7736823 | Wang et al. | Jun 2010 | B1 |
7785666 | Sun et al. | Aug 2010 | B1 |
7796356 | Fowler et al. | Sep 2010 | B1 |
7800858 | Bajikar et al. | Sep 2010 | B1 |
7819979 | Chen et al. | Oct 2010 | B1 |
7829264 | Wang et al. | Nov 2010 | B1 |
7846643 | Sun et al. | Dec 2010 | B1 |
7855854 | Hu et al. | Dec 2010 | B2 |
7869160 | Pan et al. | Jan 2011 | B1 |
7872824 | Macchioni et al. | Jan 2011 | B1 |
7872833 | Hu et al. | Jan 2011 | B2 |
7910267 | Zeng et al. | Mar 2011 | B1 |
7911735 | Sin et al. | Mar 2011 | B1 |
7911737 | Jiang et al. | Mar 2011 | B1 |
7916426 | Hu et al. | Mar 2011 | B2 |
7918013 | Dunn et al. | Apr 2011 | B1 |
7968219 | Jiang et al. | Jun 2011 | B1 |
7982989 | Shi et al. | Jul 2011 | B1 |
8008912 | Shang | Aug 2011 | B1 |
8012804 | Wang et al. | Sep 2011 | B1 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8018677 | Chung et al. | Sep 2011 | B1 |
8018678 | Zhang et al. | Sep 2011 | B1 |
8024748 | Moravec et al. | Sep 2011 | B1 |
8072705 | Wang et al. | Dec 2011 | B1 |
8074345 | Anguelouch et al. | Dec 2011 | B1 |
8077418 | Hu et al. | Dec 2011 | B1 |
8077434 | Shen et al. | Dec 2011 | B1 |
8077435 | Liu et al. | Dec 2011 | B1 |
8077557 | Hu et al. | Dec 2011 | B1 |
8079135 | Shen et al. | Dec 2011 | B1 |
8081403 | Chen et al. | Dec 2011 | B1 |
8091210 | Sasaki et al. | Jan 2012 | B1 |
8097846 | Anguelouch et al. | Jan 2012 | B1 |
8104166 | Zhang et al. | Jan 2012 | B1 |
8116043 | Leng et al. | Feb 2012 | B2 |
8116171 | Lee | Feb 2012 | B1 |
8125856 | Li et al. | Feb 2012 | B1 |
8134794 | Wang | Mar 2012 | B1 |
8136224 | Sun et al. | Mar 2012 | B1 |
8136225 | Zhang et al. | Mar 2012 | B1 |
8136805 | Lee | Mar 2012 | B1 |
8141235 | Zhang | Mar 2012 | B1 |
8146236 | Luo et al. | Apr 2012 | B1 |
8149536 | Yang et al. | Apr 2012 | B1 |
8151441 | Rudy et al. | Apr 2012 | B1 |
8163185 | Sun et al. | Apr 2012 | B1 |
8164760 | Willis | Apr 2012 | B2 |
8164855 | Gibbons et al. | Apr 2012 | B1 |
8164864 | Kaiser et al. | Apr 2012 | B2 |
8165709 | Rudy | Apr 2012 | B1 |
8166631 | Tran et al. | May 2012 | B1 |
8166632 | Zhang et al. | May 2012 | B1 |
8169473 | Yu et al. | May 2012 | B1 |
8171618 | Wang et al. | May 2012 | B1 |
8179636 | Bai et al. | May 2012 | B1 |
8191237 | Luo et al. | Jun 2012 | B1 |
8194365 | Leng et al. | Jun 2012 | B1 |
8194366 | Li et al. | Jun 2012 | B1 |
8196285 | Zhang et al. | Jun 2012 | B1 |
8200054 | Li et al. | Jun 2012 | B1 |
8203800 | Li et al. | Jun 2012 | B2 |
8208350 | Hu et al. | Jun 2012 | B1 |
8220140 | Wang et al. | Jul 2012 | B1 |
8222599 | Chien | Jul 2012 | B1 |
8225488 | Zhang et al. | Jul 2012 | B1 |
8227023 | Liu et al. | Jul 2012 | B1 |
8228633 | Tran et al. | Jul 2012 | B1 |
8231796 | Li et al. | Jul 2012 | B1 |
8233248 | Li et al. | Jul 2012 | B1 |
8248896 | Yuan et al. | Aug 2012 | B1 |
8254060 | Shi et al. | Aug 2012 | B1 |
8257597 | Guan et al. | Sep 2012 | B1 |
8259410 | Bai et al. | Sep 2012 | B1 |
8259539 | Hu et al. | Sep 2012 | B1 |
8262918 | Li et al. | Sep 2012 | B1 |
8262919 | Luo et al. | Sep 2012 | B1 |
8264797 | Emley | Sep 2012 | B2 |
8264798 | Guan et al. | Sep 2012 | B1 |
8270126 | Roy et al. | Sep 2012 | B1 |
8276258 | Tran et al. | Oct 2012 | B1 |
8277669 | Chen et al. | Oct 2012 | B1 |
8279719 | Hu et al. | Oct 2012 | B1 |
8284517 | Sun et al. | Oct 2012 | B1 |
8288204 | Wang et al. | Oct 2012 | B1 |
8289821 | Huber | Oct 2012 | B1 |
8291743 | Shi et al. | Oct 2012 | B1 |
8307539 | Rudy et al. | Nov 2012 | B1 |
8307540 | Tran et al. | Nov 2012 | B1 |
8308921 | Hiner et al. | Nov 2012 | B1 |
8310785 | Zhang et al. | Nov 2012 | B1 |
8310901 | Batra et al. | Nov 2012 | B1 |
8315019 | Mao et al. | Nov 2012 | B1 |
8316527 | Hong et al. | Nov 2012 | B2 |
8320076 | Shen et al. | Nov 2012 | B1 |
8320077 | Tang et al. | Nov 2012 | B1 |
8320219 | Wolf et al. | Nov 2012 | B1 |
8320220 | Yuan et al. | Nov 2012 | B1 |
8320722 | Yuan et al. | Nov 2012 | B1 |
8322022 | Yi et al. | Dec 2012 | B1 |
8322023 | Zeng et al. | Dec 2012 | B1 |
8325569 | Shi et al. | Dec 2012 | B1 |
8333008 | Sin et al. | Dec 2012 | B1 |
8334093 | Zhang et al. | Dec 2012 | B2 |
8336194 | Yuan et al. | Dec 2012 | B2 |
8339738 | Tran et al. | Dec 2012 | B1 |
8341826 | Jiang et al. | Jan 2013 | B1 |
8343319 | Li et al. | Jan 2013 | B1 |
8343364 | Gao et al. | Jan 2013 | B1 |
8349195 | Si et al. | Jan 2013 | B1 |
8351307 | Wolf et al. | Jan 2013 | B1 |
8357244 | Zhao et al. | Jan 2013 | B1 |
8373945 | Luo et al. | Feb 2013 | B1 |
8375564 | Luo et al. | Feb 2013 | B1 |
8375565 | Hu et al. | Feb 2013 | B2 |
8381391 | Park et al. | Feb 2013 | B2 |
8385157 | Champion et al. | Feb 2013 | B1 |
8385158 | Hu et al. | Feb 2013 | B1 |
8394280 | Wan et al. | Mar 2013 | B1 |
8400731 | Li et al. | Mar 2013 | B1 |
8404128 | Zhang et al. | Mar 2013 | B1 |
8404129 | Luo et al. | Mar 2013 | B1 |
8405930 | Li et al. | Mar 2013 | B1 |
8409453 | Jiang et al. | Apr 2013 | B1 |
8413317 | Wan et al. | Apr 2013 | B1 |
8416540 | Li et al. | Apr 2013 | B1 |
8419953 | Su et al. | Apr 2013 | B1 |
8419954 | Chen et al. | Apr 2013 | B1 |
8422176 | Leng et al. | Apr 2013 | B1 |
8422342 | Lee | Apr 2013 | B1 |
8422841 | Shi et al. | Apr 2013 | B1 |
8424192 | Yang et al. | Apr 2013 | B1 |
8437106 | Yanagisawa et al. | May 2013 | B2 |
8441756 | Sun et al. | May 2013 | B1 |
8443510 | Shi et al. | May 2013 | B1 |
8444866 | Guan et al. | May 2013 | B1 |
8449948 | Medina et al. | May 2013 | B2 |
8451556 | Wang et al. | May 2013 | B1 |
8451563 | Zhang et al. | May 2013 | B1 |
8454846 | Zhou et al. | Jun 2013 | B1 |
8455119 | Jiang et al. | Jun 2013 | B1 |
8456961 | Wang et al. | Jun 2013 | B1 |
8456963 | Hu et al. | Jun 2013 | B1 |
8456964 | Yuan et al. | Jun 2013 | B1 |
8456966 | Shi et al. | Jun 2013 | B1 |
8456967 | Mallary | Jun 2013 | B1 |
8458892 | Si et al. | Jun 2013 | B2 |
8462467 | Yanagisawa et al. | Jun 2013 | B2 |
8462592 | Wolf et al. | Jun 2013 | B1 |
8468682 | Zhang | Jun 2013 | B1 |
8472288 | Wolf et al. | Jun 2013 | B1 |
8480911 | Osugi et al. | Jul 2013 | B1 |
8486285 | Zhou et al. | Jul 2013 | B2 |
8486286 | Gao et al. | Jul 2013 | B1 |
8488272 | Tran et al. | Jul 2013 | B1 |
8491801 | Tanner et al. | Jul 2013 | B1 |
8491802 | Gao et al. | Jul 2013 | B1 |
8493693 | Zheng et al. | Jul 2013 | B1 |
8493695 | Kaiser et al. | Jul 2013 | B1 |
8495813 | Hu et al. | Jul 2013 | B1 |
8498084 | Leng et al. | Jul 2013 | B1 |
8506828 | Osugi et al. | Aug 2013 | B1 |
8514517 | Batra et al. | Aug 2013 | B1 |
8514525 | Childress et al. | Aug 2013 | B2 |
8518279 | Wang et al. | Aug 2013 | B1 |
8518832 | Yang et al. | Aug 2013 | B1 |
8520336 | Liu et al. | Aug 2013 | B1 |
8520337 | Liu et al. | Aug 2013 | B1 |
8524068 | Medina et al. | Sep 2013 | B2 |
8526275 | Yuan et al. | Sep 2013 | B1 |
8531801 | Xiao et al. | Sep 2013 | B1 |
8532450 | Wang et al. | Sep 2013 | B1 |
8533937 | Wang et al. | Sep 2013 | B1 |
8537494 | Pan et al. | Sep 2013 | B1 |
8537495 | Luo et al. | Sep 2013 | B1 |
8537502 | Park et al. | Sep 2013 | B1 |
8545999 | Leng et al. | Oct 2013 | B1 |
8547659 | Bai et al. | Oct 2013 | B1 |
8547667 | Roy et al. | Oct 2013 | B1 |
8547730 | Shen et al. | Oct 2013 | B1 |
8555486 | Medina et al. | Oct 2013 | B1 |
8559141 | Pakala et al. | Oct 2013 | B1 |
8563146 | Zhang et al. | Oct 2013 | B1 |
8565049 | Tanner et al. | Oct 2013 | B1 |
8576517 | Tran et al. | Nov 2013 | B1 |
8578594 | Jiang et al. | Nov 2013 | B2 |
8582238 | Liu et al. | Nov 2013 | B1 |
8582241 | Yu et al. | Nov 2013 | B1 |
8582253 | Zheng et al. | Nov 2013 | B1 |
8588039 | Shi et al. | Nov 2013 | B1 |
8593914 | Wang et al. | Nov 2013 | B2 |
8597528 | Roy et al. | Dec 2013 | B1 |
8599520 | Liu et al. | Dec 2013 | B1 |
8599657 | Lee | Dec 2013 | B1 |
8603593 | Roy et al. | Dec 2013 | B1 |
8607438 | Gao et al. | Dec 2013 | B1 |
8607439 | Wang et al. | Dec 2013 | B1 |
8611035 | Bajikar et al. | Dec 2013 | B1 |
8611054 | Shang et al. | Dec 2013 | B1 |
8611055 | Pakala et al. | Dec 2013 | B1 |
8614864 | Hong et al. | Dec 2013 | B1 |
8619512 | Yuan et al. | Dec 2013 | B1 |
8625233 | Ji et al. | Jan 2014 | B1 |
8625941 | Shi et al. | Jan 2014 | B1 |
8628672 | Si et al. | Jan 2014 | B1 |
8630068 | Mauri et al. | Jan 2014 | B1 |
8630069 | Okawa et al. | Jan 2014 | B1 |
8634280 | Wang et al. | Jan 2014 | B1 |
8638529 | Leng et al. | Jan 2014 | B1 |
8643980 | Fowler et al. | Feb 2014 | B1 |
8649123 | Zhang et al. | Feb 2014 | B1 |
8665561 | Knutson et al. | Mar 2014 | B1 |
8670211 | Sun et al. | Mar 2014 | B1 |
8670213 | Zeng et al. | Mar 2014 | B1 |
8670214 | Knutson et al. | Mar 2014 | B1 |
8670294 | Shi et al. | Mar 2014 | B1 |
8670295 | Hu et al. | Mar 2014 | B1 |
8675318 | Ho et al. | Mar 2014 | B1 |
8675455 | Krichevsky et al. | Mar 2014 | B1 |
8681594 | Shi et al. | Mar 2014 | B1 |
8689430 | Chen et al. | Apr 2014 | B1 |
8693141 | Elliott et al. | Apr 2014 | B1 |
8703397 | Zeng et al. | Apr 2014 | B1 |
8705205 | Li et al. | Apr 2014 | B1 |
8711517 | Erden et al. | Apr 2014 | B2 |
8711518 | Zeng et al. | Apr 2014 | B1 |
8711528 | Xiao et al. | Apr 2014 | B1 |
8717709 | Shi et al. | May 2014 | B1 |
8720044 | Tran et al. | May 2014 | B1 |
8721902 | Wang et al. | May 2014 | B1 |
8724259 | Liu et al. | May 2014 | B1 |
8749790 | Tanner et al. | Jun 2014 | B1 |
8749920 | Knutson et al. | Jun 2014 | B1 |
8753903 | Tanner et al. | Jun 2014 | B1 |
8760807 | Zhang et al. | Jun 2014 | B1 |
8760818 | Diao et al. | Jun 2014 | B1 |
8760819 | Liu et al. | Jun 2014 | B1 |
8760822 | Li et al. | Jun 2014 | B1 |
8760823 | Chen et al. | Jun 2014 | B1 |
8763235 | Wang et al. | Jul 2014 | B1 |
8780498 | Jiang et al. | Jul 2014 | B1 |
8780505 | Xiao | Jul 2014 | B1 |
8786983 | Liu et al. | Jul 2014 | B1 |
8786987 | Edelman et al. | Jul 2014 | B2 |
8790524 | Luo et al. | Jul 2014 | B1 |
8790527 | Luo et al. | Jul 2014 | B1 |
8792208 | Liu et al. | Jul 2014 | B1 |
8792312 | Wang et al. | Jul 2014 | B1 |
8793866 | Zhang et al. | Aug 2014 | B1 |
8797680 | Luo et al. | Aug 2014 | B1 |
8797684 | Tran et al. | Aug 2014 | B1 |
8797686 | Bai et al. | Aug 2014 | B1 |
8797692 | Guo et al. | Aug 2014 | B1 |
8813324 | Emley et al. | Aug 2014 | B2 |
8824106 | Garfunkel et al. | Sep 2014 | B1 |
8873204 | Gao | Oct 2014 | B1 |
8891207 | Li et al. | Nov 2014 | B1 |
8908333 | Rudy et al. | Dec 2014 | B1 |
9042059 | Katine | May 2015 | B1 |
20070195467 | Gill | Aug 2007 | A1 |
20100079917 | Miyauchi et al. | Apr 2010 | A1 |
20100290157 | Zhang et al. | Nov 2010 | A1 |
20110086240 | Xiang et al. | Apr 2011 | A1 |
20120111826 | Chen et al. | May 2012 | A1 |
20120216378 | Emley et al. | Aug 2012 | A1 |
20120237878 | Zeng et al. | Sep 2012 | A1 |
20120298621 | Gao | Nov 2012 | A1 |
20130216702 | Kaiser et al. | Aug 2013 | A1 |
20130216863 | Li et al. | Aug 2013 | A1 |
20130257421 | Shang et al. | Oct 2013 | A1 |
20130286502 | Erden et al. | Oct 2013 | A1 |
20130286511 | Edelman et al. | Oct 2013 | A1 |
20140055884 | Edelman et al. | Feb 2014 | A1 |
20140154529 | Yang et al. | Jun 2014 | A1 |
20140175050 | Zhang et al. | Jun 2014 | A1 |
Entry |
---|
Shaoping Li, et al., U.S. Appl. No. 14/557,941, filed Dec. 2, 2014, 27 pages. |