Exemplary embodiments described herein generally relate to cooling systems, and in particular, to cooling systems for electronic displays.
Improvements to electronic displays now allow them to be used in outdoor environments for informational, advertising, or entertainment purposes. While displays of the past were primarily designed for operation near room temperature, it is now desirable to have displays which are capable of withstanding large surrounding environmental temperature variations. For example, some displays are capable of operating at temperatures as low as −22 F and as high as 113 F or higher. When surrounding temperatures rise, the cooling of the internal display components can become even more difficult.
Additionally, modern displays have become extremely bright, with some backlights producing 1,000-2,000 nits or more. Sometimes, these illumination levels are necessary because the display is being used outdoors, or in other relatively bright areas where the display illumination must compete with other ambient light. In order to produce this level of brightness, illumination devices (ex. LED, organic LED, light emitting polymer (LEP), organic electro luminescence (OEL), and plasma assemblies) may produce a relatively large amount of heat.
Still further, in some situations radiative heat transfer from the sun through a front display surface can also become a source of heat. In some locations 800-1400 Watts/m2 or more through such a front display surface is common. Furthermore, the market is demanding larger screen sizes for displays. With increased electronic display screen size and corresponding front display surfaces, more heat will be generated and more heat will be transmitted into the displays.
Given the well-known thermodynamic property that cool air falls and hot air rises, it was previously thought that the best way to cool an electronic display was to ingest the cool air which is found near the bottom of the display. Ingesting the warm air near the top of the display as the cooling air did not seem to make thermodynamic sense. While the air near the bottom of the display is sometimes cooler than the air near the top of the display, it was found that this is not always the case. Especially in applications where the display is mounted on a sidewalk or paved environment, heat was found to emanate from the pavement and cause the air near the bottom of the display to have a higher temperature than the air found at the top. Further, the environment near the bottom of the display was found to contain various contaminants such as dirt, dust, water, leaves, and even garbage/waste materials. These contaminants can have an adverse effect on the display if ingested or clogging up the cooling air intake.
Also, when cooling air was used to cool the rear portion of an electronic display (sometimes an LED backlight or LED display) it was found that the area where the cooling air was ingested was maintained at a cooler temperature than the area where the cooling air was exhausted. Temperature variations across an electronic display may be undesirable as they can alter the optical performance of the electronic display. Some components perform differently when subjected to different ambient temperatures. Thus, with temperature variations across an electronic display there can be visible variations in the image generated by the electronic display.
An exemplary electronic display may be placed in thermal communication with a plurality of thermally conductive ribs where the ribs are placed in the path of cooling air. The heat from the electronic display is distributed throughout the ribs and removed by the cooling air. It has been discovered that forcing air through the relatively narrow channels defined by the ribs improves the ability to remove heat from the electronic display.
For example, and not by way of limitation, LED arrays are commonly used as the illumination devices for LCD displays. As mentioned above, it has been found that the optical properties of LEDs (and other illumination devices) can vary depending on temperature. Thus, when an LED is exposed to room temperatures, it may output light with a certain luminance, wavelength, and/or color temperature. However, when the same LED is exposed to high temperatures, the luminance, wavelength, color temperature, and other properties can vary. Thus, when a temperature variation occurs across an LED backlight (some areas are at a higher temperature than others) there can be optical inconsistencies across the backlight which can be visible to the observer. By using the embodiments herein, heat buildup can be evenly distributed across the ribs and removed from the display. This can prevent any potential ‘hot spots’ in the backlight which may become visible to the observer because of a change in optical properties of the illumination devices (sometimes LEDs). OLED assemblies are also known to vary performance when temperatures vary. These types of displays can also be adequately cooled with the embodiments herein.
The ribs may provide an isolated chamber from the rest of the display so that ambient air can be ingested and used to cool the ribs. This is beneficial for situations where the display is being used in an outdoor environment and the ingested air may contain contaminants (pollen, dirt, dust, water, smoke, etc.) that would damage the sensitive electronic components of the display. While an exemplary embodiment could accept some contaminants, it may still be desirable to limit the amount of contaminants that could be ingested into the display. Thus, some embodiments ingest cooling air from the top of the display. The air near the top of the display has been found to occasionally contain less contaminants than the air at the bottom of the display. Still further, in some applications where the display is mounted in a paved location, heat can radiate from the paved surface below and cause the air near the top of the display to actually be cooler than the air near the bottom of the display. In these situations it might make thermodynamic sense to ingest air from the top of the display.
When ingesting air from the top, it has been found that as the cooling air travels across the rear portion of the electronic display and accepts heat it increases in temperature. Once the cooling air reaches the bottom of the display, it may have increased in temperature substantially and may no longer provide adequate cooling to the bottom portion of the display. Therefore, some embodiments vary the density of the thermally conductive ribs so that a consistent temperature gradient can be achieved across the electronic display. Because the bottom portion is typically warmer, the ribs may be at a higher density in the bottom portion to account for this variation.
If a backlight is used with the particular display application, a backlight with front and rear sides may be used where the front side contains the illumination devices and the rear side contains a thermally conductive surface for dissipating the heat from the illumination devices. Ideally, there should be a low level of thermal resistance between the front and rear sides of the backlights. An exemplary embodiment that requires a backlight may use a metal core PCB with LEDs on the front side and a metallic surface on the rear side.
The foregoing and other features and advantages will be apparent from the following more detailed description of the particular embodiments of the invention, as illustrated in the accompanying drawings.
A better understanding of the exemplary embodiments will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:
Thus, the embodiment shown ingests air from the top 102 of the display 100 so that the bulk of the contaminants 50 can be avoided. An opening may be located along the top 102 of the display, preferably along the top horizontal surface of the display 100 housing. Another opening may be located along the bottom 101 horizontal surface. Further, the cooling air 20 can sometimes enter the display 100 at a lower temperature at the top 102 than air which is present near the bottom 101 of the display 100. While this may seem counter-intuitive based on the laws of thermodynamics, acceptable results have been observed.
In an exemplary embodiment, the plate 10 would provide a gaseous and contaminant barrier between the side containing the ribs 15 and the opposing side (which may house various electronic assemblies). If the plate 10 provides an adequate barrier, ambient air may be ingested as cooling air 20 and the risk of contaminants entering the side of the plate 10 containing the sensitive electronic components may be reduced or eliminated. In a similar exemplary embodiment, the front plate 55 would also provide a gaseous and contaminant barrier between the side containing the ribs 15 and the opposing side which may be in thermal communication with the electronic display. This figure also provides one example of an inlet aperture 25 which accepts the cooling air 20 and directs it along the ribs 15. The cooling air 20 may not only remove heat from the ribs 15 but may also remove it from the front plate 55 and optionally the rear plate 10.
The ribs 15 shown in this embodiment contain a ‘Z’ cross-section, but this is not required. Other embodiments may contain ribs with I-beam cross-sections, hollow square cross-sections, hollow rectangular cross-section, solid rectangular or solid square cross-sections, ‘T’ cross-sections, a honeycomb cross-section, or any combination or mixture of these.
As noted above, many illumination devices (especially LEDs and OLEDs) may have performance properties which vary depending on temperature. When ‘hot spots’ are present within a backlight or illumination assembly, these hot spots can result in irregularities in the resulting image which might be visible to the end user. Thus, with the embodiments described herein, the heat which may be generated by the backlight assembly can be distributed (somewhat evenly) throughout the various ribs and thermally-conductive surfaces to remove hot spots and cool the backlight and/or electronic display.
In a further exemplary embodiment, the ribs 15 can also be used to cool additional electronic assemblies by placing them in thermal communication with the rear plate 10. Thus, with the ribs 15 in a central location, the ‘front’ would be towards an intended observer of the display while the ‘back’ would be on the opposite side of an intended observer. Therefore, the front side of the ribs 15 would be in thermal communication with some portion of the electronic display assembly and the rear side of the ribs may be in thermal communication with a rear plate 10 (possibly being thermally-conductive). A single path of cooling air can then be used to cool the interior of the display while the various hot spots can distribute heat throughout the ribs and other thermally conductive surfaces to provide the most efficient cooling.
The front plate 55 may be the rear surface of an OLED assembly or the rear surface of an LED backlight assembly for an LCD. A front protective glass 70 is used to protect the electronic display image assembly 80 from damage. Solar loading (radiative heat transfer from the sun through the front protective glass 70) may result in a heat buildup on the electronic display image assembly 80. Thermal communication between the electronic display image assembly 80 and the front plate 55 can provide a means for transferring the solar loading (and any other heat buildup) on the electronic display image assembly 80 to the ribs 15, cooling air 20, and out of the display through the exhaust aperture 65. The front plate 55 can also be the rear surface of any backlight assembly, plasma display assembly, light emitting polymer (LEP) assembly, organic electro luminescence (OEL) assembly, or LED display assembly.
To counteract this phenomenon, in some embodiments the density of the ribs 15 may optionally be higher in the lower portion 600 than in the upper portion 500 to account for the reduction in heat transfer efficiency due to the higher temperature of the cooling air 20. By providing an increased amount of surface area for the cooling air 20 to contact, heat can be removed from the lower portion 600 (where the cooling air is relatively warm) in a similar amount as the heat removed from the upper portion 500 (where the cooling air 20 is relatively cool). This optional technique can help to balance the temperature across the front plate 55 and thus the electronic image assembly 80 to ensure that the image remains consistent across the display.
It should be noted that although the inlet 61 and exhaust 65 apertures are shown in a vertical orientation on the rear wall (opposite the viewable surface) of the display housing, they can also be placed on the sides of the housing. Alternatively, the inlet aperture 61 may be on the top horizontal surface of the display housing while the exhaust aperture 65 is on the bottom horizontal surface of the display housing.
Although some of the figures herein may show displays which are oriented in a portrait fashion, any orientation can be used with the embodiments described herein. Thus, landscape or widescreen orientations can also be used as well as any type of square orientation.
In some embodiments, the display may not be mounted on a paved surface (or some other object/surface that is radiating heat). In these embodiments, it may be desirable to ingest air from the bottom of the display because this air might be cooler than the air at the top of the display. In this type of design, the variation in rib density may still be used to account for the warming of the cooling air as it travels up the display and exhausts out the top. Here, the top of the display will likely be warmer than the bottom and providing a higher density of ribs near the top of the display can help to balance this thermal irregularity to ensure a consistent image production.
The cooling system may run continuously. However, if desired, temperature sensing devices (not shown) may be incorporated within the electronic display to detect when temperatures have reached a predetermined threshold value. In such a case, the various cooling fans may be selectively engaged when the temperature in the display reaches a predetermined value. Predetermined thresholds may be selected and the system may be configured to advantageously keep the display within an acceptable temperature range. Typical thermostat assemblies can be used to accomplish this task. Thermocouples may be used as the temperature sensing devices.
It is to be understood that the spirit and scope of the disclosed embodiments provides for the cooling of many types of displays. By way of example and not by way of limitation, embodiments may be used in conjunction with any of the following: LCD (all types), light emitting diode (LED), organic light emitting diode (OLED), field emitting display (FED), light emitting polymer (LEP), organic electro luminescence (OEL), and plasma displays. Furthermore, embodiments may be used with displays of other types including those not yet discovered. In particular, it is contemplated that the system may be well suited for use with full color, flat panel OLED displays. Exemplary embodiments may also utilize large (55 inches or more) LED backlit, high definition liquid crystal displays (LCD). While the embodiments described herein are well suited for outdoor environments, they may also be appropriate for indoor applications (e.g., factory/industrial environments, spas, locker rooms) where thermal stability of the display may be at risk.
Having shown and described various exemplary embodiments, those skilled in the art will realize that many variations and modifications may be made to affect the described embodiments and still be within the scope of the included claims. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention.
This application is a continuation of U.S. application Ser. No. 14/247,658 filed on Apr. 8, 2014, which is a continuation of U.S. application Ser. No. 12/952,745 filed on Nov. 23, 2010, now U.S. Pat. No. 8,693,185 issued Apr. 8, 2014. U.S. application Ser. No. 12/952,745 is a non-provisional application of U.S. Provisional Application No. 61/321,364 filed Apr. 6, 2010. U.S. application Ser. No. 12/952,745 is also continuation-in-part of U.S. application Ser. No. 12/641,468 filed Dec. 18, 2009, now U.S. Pat. No. 8,654,302 issued Feb. 18, 2014, which is a non-provisional application of U.S. Provisional Application No. 61/138,736 filed Dec. 18, 2008. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/411,925 filed Mar. 26, 2009, now U.S. Pat. No. 8,854,595 issued Oct. 7, 2014, which is a non-provisional application of U.S. Provisional Application No. 61/039,454 filed Mar. 26, 2008. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/556,029 filed Sep. 9, 2009, now U.S. Pat. No. 8,373,841 issued Feb. 12, 2013, which is a non-provisional application of U.S. Provisional Application No. 61/095,615 filed Sep. 9, 2008. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/620,330 filed Nov. 17, 2009, now U.S. Pat. No. 8,274,622 issued Sep. 25, 2012, which is a non-provisional application of U.S. Provisional Application No. 61/115,333 filed Nov. 17, 2008. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/706,652 filed Feb. 16, 2010, now U.S. Pat. No. 8,358,397 issued Jan. 22, 2013, which is a non-provisional application of U.S. Provisional Application No. 61/152,879 filed Feb. 16, 2009. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/630,469 filed December 3, 2009, now U.S. Pat. No. 8,497,972 issued Jul. 30, 2013. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/618,104 filed Nov. 13, 2009, now U.S. Pat. No. 8,310,824 issued Nov. 13, 2012. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/905,704 filed Oct. 15, 2010, now U.S. Pat. No. 8,773,633 issued Jul. 8, 2014, which is a non-provisional application of U.S. Provisional Application No. 61/252,295 filed Oct. 16, 2009. U.S. application Ser. No. 12/952,745 is also a continuation-in-part of U.S. application Ser. No. 12/753,298 filed Apr. 2, 2010, now U.S. Pat. No. 8,351,014 issued Jan. 8, 2013. All aforementioned applications are hereby incorporated by reference in their entirety as if fully cited herein.
Number | Name | Date | Kind |
---|---|---|---|
4093355 | Kaplit et al. | Jun 1978 | A |
4593978 | Mourey et al. | Jun 1986 | A |
4634225 | Haim et al. | Jan 1987 | A |
4748765 | Martin | Jun 1988 | A |
4763993 | Vogeley et al. | Aug 1988 | A |
4921041 | Akachi | May 1990 | A |
4952783 | Aufderheide et al. | Aug 1990 | A |
4952925 | Haastert | Aug 1990 | A |
5029982 | Nash | Jul 1991 | A |
5043979 | Sakurai et al. | Aug 1991 | A |
5088806 | McCartney et al. | Feb 1992 | A |
5247374 | Terada | Sep 1993 | A |
5282114 | Stone | Jan 1994 | A |
5293930 | Pitasi | Mar 1994 | A |
5432526 | Hyatt | Jul 1995 | A |
5535816 | Ishida | Jul 1996 | A |
5559614 | Urbish et al. | Sep 1996 | A |
5621614 | O'Neill | Apr 1997 | A |
5657641 | Cunningham et al. | Aug 1997 | A |
5748269 | Harris et al. | May 1998 | A |
5765743 | Sakiura et al. | Jun 1998 | A |
5767489 | Ferrier | Jun 1998 | A |
5808418 | Pitman et al. | Sep 1998 | A |
5818010 | McCann | Oct 1998 | A |
5818694 | Daikoku et al. | Oct 1998 | A |
5835179 | Yamanaka | Nov 1998 | A |
5864465 | Liu | Jan 1999 | A |
5869818 | Kim | Feb 1999 | A |
5869919 | Sato et al. | Feb 1999 | A |
5903433 | Gudmundsson | May 1999 | A |
5991153 | Heady | Nov 1999 | A |
6003015 | Kang et al. | Dec 1999 | A |
6007205 | Fujimori | Dec 1999 | A |
6089751 | Conover et al. | Jul 2000 | A |
6104451 | Matsuoka et al. | Aug 2000 | A |
6157432 | Helbing | Dec 2000 | A |
6181070 | Dunn et al. | Jan 2001 | B1 |
6191839 | Briley et al. | Feb 2001 | B1 |
6198222 | Chang | Mar 2001 | B1 |
6211934 | Habing et al. | Apr 2001 | B1 |
6215655 | Heady et al. | Apr 2001 | B1 |
6351381 | Bilski et al. | Feb 2002 | B1 |
6392727 | Larson et al. | May 2002 | B1 |
6417900 | Shin et al. | Jul 2002 | B1 |
6428198 | Saccomanno et al. | Aug 2002 | B1 |
6473150 | Takushima et al. | Oct 2002 | B1 |
6476883 | Salimes et al. | Nov 2002 | B1 |
6493440 | Gromatsky et al. | Dec 2002 | B2 |
6504713 | Pandolfi et al. | Jan 2003 | B1 |
6535266 | Nemeth et al. | Mar 2003 | B1 |
6628355 | Takahara | Sep 2003 | B1 |
6701143 | Dukach et al. | Mar 2004 | B1 |
6714410 | Wellhofer | Mar 2004 | B2 |
6727468 | Nemeth | Apr 2004 | B1 |
6742583 | Tikka | Jun 2004 | B2 |
6812851 | Dukach et al. | Nov 2004 | B1 |
6825828 | Burke et al. | Nov 2004 | B2 |
6839104 | Taniguchi et al. | Jan 2005 | B2 |
6850209 | Mankins et al. | Feb 2005 | B2 |
6885412 | Ohnishi et al. | Apr 2005 | B2 |
6886942 | Okada et al. | May 2005 | B2 |
6891135 | Pala et al. | May 2005 | B2 |
6909486 | Wang et al. | Jun 2005 | B2 |
6943768 | Cavanaugh et al. | Sep 2005 | B2 |
6961108 | Wang et al. | Nov 2005 | B2 |
7015470 | Faytlin et al. | Mar 2006 | B2 |
7059757 | Shimizu | Jun 2006 | B2 |
7083285 | Hsu et al. | Aug 2006 | B2 |
7157838 | Thielemans et al. | Jan 2007 | B2 |
7161803 | Heady | Jan 2007 | B1 |
7190587 | Kim et al. | Mar 2007 | B2 |
7209349 | Chien et al. | Apr 2007 | B2 |
7212403 | Rockenfell | May 2007 | B2 |
7259964 | Yamamura et al. | Aug 2007 | B2 |
7269023 | Nagano | Sep 2007 | B2 |
7284874 | Jeong et al. | Oct 2007 | B2 |
7452121 | Cho et al. | Nov 2008 | B2 |
7457113 | Kumhyr et al. | Nov 2008 | B2 |
7480140 | Nara et al. | Jan 2009 | B2 |
7535543 | Dewa et al. | May 2009 | B2 |
7591508 | Chang | Sep 2009 | B2 |
7602469 | Shin | Oct 2009 | B2 |
D608775 | Leung | Jan 2010 | S |
7667964 | Kang et al. | Feb 2010 | B2 |
7682047 | Hsu et al. | Mar 2010 | B2 |
7752858 | Johnson et al. | Jul 2010 | B2 |
7753567 | Kang et al. | Jul 2010 | B2 |
7762707 | Kim et al. | Jul 2010 | B2 |
7800706 | Kim et al. | Sep 2010 | B2 |
7813124 | Karppanen | Oct 2010 | B2 |
7903416 | Chou | Mar 2011 | B2 |
7995342 | Nakamichi et al. | Aug 2011 | B2 |
8004648 | Dunn | Aug 2011 | B2 |
8035968 | Kwon et al. | Oct 2011 | B2 |
8081465 | Nishiura | Dec 2011 | B2 |
8102173 | Merrow | Jan 2012 | B2 |
8142027 | Sakai | Mar 2012 | B2 |
8208115 | Dunn | Jun 2012 | B2 |
8223311 | Kim et al. | Jul 2012 | B2 |
8241573 | Banerjee et al. | Aug 2012 | B2 |
8248784 | Nakamichi et al. | Aug 2012 | B2 |
8254121 | Lee et al. | Aug 2012 | B2 |
8269916 | Ohkawa | Sep 2012 | B2 |
8270163 | Nakamichi et al. | Sep 2012 | B2 |
8274622 | Dunn | Sep 2012 | B2 |
8274789 | Nakamichi et al. | Sep 2012 | B2 |
8300203 | Nakamichi et al. | Oct 2012 | B2 |
8320119 | Isoshima et al. | Nov 2012 | B2 |
8351014 | Dunn | Jan 2013 | B2 |
8358397 | Dunn | Jan 2013 | B2 |
8369083 | Dunn et al. | Feb 2013 | B2 |
8373841 | Dunn | Feb 2013 | B2 |
8379182 | Dunn | Feb 2013 | B2 |
8400608 | Takahashi et al. | Mar 2013 | B2 |
8472174 | Idems et al. | Jun 2013 | B2 |
8472191 | Yamamoto et al. | Jun 2013 | B2 |
8482695 | Dunn | Jul 2013 | B2 |
8497972 | Dunn et al. | Jul 2013 | B2 |
8590602 | Fernandez | Nov 2013 | B2 |
8649170 | Dunn et al. | Feb 2014 | B2 |
8649176 | Okada et al. | Feb 2014 | B2 |
8654302 | Dunn et al. | Feb 2014 | B2 |
8678603 | Zhang | Mar 2014 | B2 |
8693185 | Dunn et al. | Apr 2014 | B2 |
8700226 | Schuch et al. | Apr 2014 | B2 |
8711321 | Dunn et al. | Apr 2014 | B2 |
8749749 | Hubbard | Jun 2014 | B2 |
8755021 | Hubbard | Jun 2014 | B2 |
8758144 | Williams et al. | Jun 2014 | B2 |
8760613 | Dunn | Jun 2014 | B2 |
8767165 | Dunn | Jul 2014 | B2 |
8773633 | Dunn et al. | Jul 2014 | B2 |
8804091 | Dunn et al. | Aug 2014 | B2 |
8823916 | Hubbard et al. | Sep 2014 | B2 |
8854572 | Dunn | Oct 2014 | B2 |
8854595 | Dunn | Oct 2014 | B2 |
8879042 | Dunn | Nov 2014 | B2 |
8988647 | Hubbard | Mar 2015 | B2 |
9030641 | Dunn | May 2015 | B2 |
9089079 | Dunn | Jul 2015 | B2 |
9119325 | Dunn et al. | Aug 2015 | B2 |
9119330 | Hubbard et al. | Aug 2015 | B2 |
9173322 | Dunn | Oct 2015 | B2 |
9173325 | Dunn | Oct 2015 | B2 |
9282676 | Diaz | Mar 2016 | B1 |
9285108 | Dunn et al. | Mar 2016 | B2 |
9313917 | Dunn et al. | Apr 2016 | B2 |
9370127 | Dunn | Jun 2016 | B2 |
9448569 | Schuch et al. | Sep 2016 | B2 |
9451060 | Bowers et al. | Sep 2016 | B1 |
9451733 | Dunn et al. | Sep 2016 | B2 |
9456525 | Yoon et al. | Sep 2016 | B2 |
9470924 | Dunn et al. | Oct 2016 | B2 |
9500896 | Dunn et al. | Nov 2016 | B2 |
9516485 | Bowers et al. | Dec 2016 | B1 |
9549490 | Hubbard | Jan 2017 | B2 |
9594271 | Dunn | Mar 2017 | B2 |
9613548 | DeMars | Apr 2017 | B2 |
9622392 | Bowers et al. | Apr 2017 | B1 |
9629287 | Dunn | Apr 2017 | B2 |
9648790 | Dunn et al. | May 2017 | B2 |
9655289 | Dunn et al. | May 2017 | B2 |
9723765 | DeMars | Aug 2017 | B2 |
9894800 | Dunn | Feb 2018 | B2 |
20010001459 | Savant et al. | May 2001 | A1 |
20010019454 | Tadic-Galeb et al. | Sep 2001 | A1 |
20020009978 | Dukach et al. | Jan 2002 | A1 |
20020033919 | Sanelle et al. | Mar 2002 | A1 |
20020065046 | Mankins et al. | May 2002 | A1 |
20020084891 | Mankins et al. | Jul 2002 | A1 |
20020101553 | Enomoto et al. | Aug 2002 | A1 |
20020126248 | Yoshia | Sep 2002 | A1 |
20020148600 | Bosch et al. | Oct 2002 | A1 |
20020149714 | Anderson et al. | Oct 2002 | A1 |
20020154255 | Gromatzky et al. | Oct 2002 | A1 |
20020164944 | Haglid | Nov 2002 | A1 |
20020164962 | Mankins et al. | Nov 2002 | A1 |
20020167637 | Burke et al. | Nov 2002 | A1 |
20030007109 | Park | Jan 2003 | A1 |
20030020884 | Okada et al. | Jan 2003 | A1 |
20030043091 | Takeuchi et al. | Mar 2003 | A1 |
20030104210 | Azumi et al. | Jun 2003 | A1 |
20030128511 | Nagashima et al. | Jul 2003 | A1 |
20030214785 | Perazzo | Nov 2003 | A1 |
20040012722 | Alvarez | Jan 2004 | A1 |
20040035558 | Todd et al. | Feb 2004 | A1 |
20040036834 | Ohnishi et al. | Feb 2004 | A1 |
20040042174 | Tomioka | Mar 2004 | A1 |
20040103570 | Ruttenberg | Jun 2004 | A1 |
20040105159 | Saccomanno et al. | Jun 2004 | A1 |
20040165139 | Anderson et al. | Aug 2004 | A1 |
20040223299 | Ghosh | Nov 2004 | A1 |
20050012039 | Faytlin et al. | Jan 2005 | A1 |
20050012722 | Chon | Jan 2005 | A1 |
20050062373 | Kim et al. | Mar 2005 | A1 |
20050073632 | Dunn et al. | Apr 2005 | A1 |
20050073639 | Pan | Apr 2005 | A1 |
20050127796 | Olesen et al. | Jun 2005 | A1 |
20050134525 | Tanghe et al. | Jun 2005 | A1 |
20050134526 | Willem et al. | Jun 2005 | A1 |
20050213950 | Yoshimura | Sep 2005 | A1 |
20050229630 | Richter et al. | Oct 2005 | A1 |
20050237714 | Ebermann | Oct 2005 | A1 |
20050276053 | Nortrup et al. | Dec 2005 | A1 |
20050286131 | Saxena et al. | Dec 2005 | A1 |
20060012958 | Tomioka et al. | Jan 2006 | A1 |
20060018093 | Lai et al. | Jan 2006 | A1 |
20060034051 | Wang et al. | Feb 2006 | A1 |
20060056994 | Van Lear et al. | Mar 2006 | A1 |
20060082271 | Lee | Apr 2006 | A1 |
20060092348 | Park | May 2006 | A1 |
20060125998 | Dewa et al. | Jun 2006 | A1 |
20060132699 | Cho | Jun 2006 | A1 |
20060177587 | Ishizuka | Aug 2006 | A1 |
20060199514 | Kimura | Sep 2006 | A1 |
20060209266 | Utsunomiya | Sep 2006 | A1 |
20060260790 | Theno et al. | Nov 2006 | A1 |
20060262079 | Seong et al. | Nov 2006 | A1 |
20060266499 | Choi et al. | Nov 2006 | A1 |
20060283579 | Ghosh et al. | Dec 2006 | A1 |
20070019419 | Hafuka et al. | Jan 2007 | A1 |
20070030879 | Hatta | Feb 2007 | A1 |
20070047239 | Kang et al. | Mar 2007 | A1 |
20070065091 | Hinata et al. | Mar 2007 | A1 |
20070076431 | Atarashi et al. | Apr 2007 | A1 |
20070081344 | Cappaert et al. | Apr 2007 | A1 |
20070103863 | Kim | May 2007 | A1 |
20070103866 | Park | May 2007 | A1 |
20070115686 | Tyberghien | May 2007 | A1 |
20070139929 | Yoo et al. | Jun 2007 | A1 |
20070140671 | Yoshimura | Jun 2007 | A1 |
20070151274 | Roche et al. | Jul 2007 | A1 |
20070151664 | Shin | Jul 2007 | A1 |
20070171353 | Hong | Jul 2007 | A1 |
20070206158 | Kinoshita et al. | Sep 2007 | A1 |
20070211205 | Shibata | Sep 2007 | A1 |
20070212211 | Chiyoda et al. | Sep 2007 | A1 |
20070217221 | Lee et al. | Sep 2007 | A1 |
20070237636 | Hsu | Oct 2007 | A1 |
20070267174 | Kim | Nov 2007 | A1 |
20080055534 | Kawano | Mar 2008 | A1 |
20080076342 | Bryant et al. | Mar 2008 | A1 |
20080099193 | Aksamit et al. | May 2008 | A1 |
20080148609 | Ogoreve | Jun 2008 | A1 |
20080209934 | Richards | Sep 2008 | A1 |
20080218446 | Yamanaka | Sep 2008 | A1 |
20080236005 | Isayev et al. | Oct 2008 | A1 |
20080267790 | Gaudet et al. | Oct 2008 | A1 |
20080283234 | Sagi et al. | Nov 2008 | A1 |
20080285290 | Ohashi et al. | Nov 2008 | A1 |
20090009047 | Yanagawa et al. | Jan 2009 | A1 |
20090009729 | Sakai | Jan 2009 | A1 |
20090059518 | Kakikawa | Mar 2009 | A1 |
20090065007 | Wilkinson | Mar 2009 | A1 |
20090086430 | Kang et al. | Apr 2009 | A1 |
20090120629 | Ashe | May 2009 | A1 |
20090122218 | Oh et al. | May 2009 | A1 |
20090126906 | Dunn | May 2009 | A1 |
20090126907 | Dunn | May 2009 | A1 |
20090126914 | Dunn | May 2009 | A1 |
20090135365 | Dunn | May 2009 | A1 |
20090147170 | Oh et al. | Jun 2009 | A1 |
20090154096 | Iyengar | Jun 2009 | A1 |
20090174626 | Isoshima et al. | Jul 2009 | A1 |
20090231807 | Bouissier | Sep 2009 | A1 |
20090244472 | Dunn | Oct 2009 | A1 |
20090279240 | Karppanen | Nov 2009 | A1 |
20090302727 | Vincent | Dec 2009 | A1 |
20090306820 | Simmons et al. | Dec 2009 | A1 |
20090323275 | Rehmann | Dec 2009 | A1 |
20100060861 | Medin | Mar 2010 | A1 |
20100079949 | Nakamichi et al. | Apr 2010 | A1 |
20110019363 | Vahlsing | Jan 2011 | A1 |
20110085301 | Dunn | Apr 2011 | A1 |
20110085302 | Nakamichi et al. | Apr 2011 | A1 |
20110116000 | Dunn | May 2011 | A1 |
20110122162 | Sato et al. | May 2011 | A1 |
20120014063 | Weiss | Jan 2012 | A1 |
20120188481 | Kang et al. | Jul 2012 | A1 |
20150366101 | Dunn | Dec 2015 | A1 |
20160041423 | Dunn | Feb 2016 | A1 |
20160195254 | Dunn | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
0N2702363 | May 2005 | CN |
2702363 | May 2005 | CN |
1408476 | Apr 2004 | EP |
1647766 | Apr 2006 | EP |
1762892 | Mar 2007 | EP |
1951020 | Jul 2008 | EP |
2402205 | Dec 2004 | GB |
402062015 | Mar 1990 | JP |
402307080 | Dec 1990 | JP |
3153212 | Jul 1991 | JP |
H062337 | Jan 1994 | JP |
6082745 | Mar 1994 | JP |
8115788 | May 1996 | JP |
8194437 | Jul 1996 | JP |
H8305301 | Nov 1996 | JP |
8339034 | Dec 1996 | JP |
H09246766 | Sep 1997 | JP |
11160727 | Jun 1999 | JP |
H11296094 | Oct 1999 | JP |
2001209126 | Aug 2001 | JP |
2002158475 | May 2002 | JP |
2004053749 | Feb 2004 | JP |
2004286940 | Oct 2004 | JP |
2005017556 | Jan 2005 | JP |
2000131682 | May 2005 | JP |
2005134849 | May 2005 | JP |
2005265922 | Sep 2005 | JP |
2006513577 | Apr 2006 | JP |
2007322718 | May 2006 | JP |
2006148047 | Jun 2006 | JP |
2006163217 | Jun 2006 | JP |
2007003638 | Jan 2007 | JP |
09307257 | Nov 2007 | JP |
2007293105 | Nov 2007 | JP |
2008010361 | Jan 2008 | JP |
2008292743 | Dec 2008 | JP |
2010024624 | Feb 2010 | JP |
2010-102227 | May 2010 | JP |
20100282109 | Dec 2010 | JP |
2011-75819 | Apr 2011 | JP |
2012-133254 | Jul 2012 | JP |
20000000118 | Jan 2000 | KR |
20000047899 | Jul 2000 | KR |
200366674 | Nov 2004 | KR |
20050033986 | Apr 2005 | KR |
200401354 | Nov 2005 | KR |
20060016469 | Feb 2006 | KR |
100666961 | Jan 2007 | KR |
1020070070675 | Apr 2007 | KR |
1020070048294 | Aug 2007 | KR |
WO2005079129 | Aug 2005 | WO |
WO2007116116 | Oct 2007 | WO |
WO2008050660 | May 2008 | WO |
WO2009065125 | May 2009 | WO |
WO2009065125 | May 2009 | WO |
WO2009135308 | Nov 2009 | WO |
WO2010007821 | Feb 2010 | WO |
Entry |
---|
Civiq Smartscapes, LLC V. Manufacturing Resources International, Inc., Memorandum Opinion re claim construction, Sep. 27, 2018, 16 pages. |
Civiq Smartscapes, LLC V. Manufacturing Resources International, Inc., Claim Construction order, Oct. 3, 2018, 2 pages. |
Anandan, Munismay, Progress of LED backlights for LCDs, 2008, 24 pages. |
Itsenclosures, Product Catalog, 2009, 48 pages. |
Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages. |
Sunbritetv, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page. |
Sunbritetv, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages. |
Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page. |
Mentley, David E., State of Flat-Panel Display Technology and Future Trends, Proceedings of the IEEE, Apr. 2002, vol. 90, No. 4, pp. 453-459. |
Civiq Smartscapes LLC. V Manufacturing Resources International, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,854,572 including Declaration of Greg Blonder in Support of Petition, Curriculum Vitae of Greg Blonder and Prosecution History of U.S. Pat. No. 8,854,572, Petition filed Mar. 14, 2018, 427 pages. |
Civiq, Invalidity Contentions, Jan. 24, 2018, 51 pages. |
Civiq, Invalidity Claim Chart, Appendix I, Mar. 22, 2018, 4 pages. |
Civiq, Invalidity Claim Charts, Appendix A-Appendix D, Jan. 24, 2018, 51 pages. |
Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages. |
Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages. |
Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages. |
Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages. |
Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages. |
Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages. |
Yeh, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages. |
Civiq, Invalidity Claim Charts, Appendix F to H, Mar. 22, 2018, 18 pages. |
Yung, Using Metal Core Printed Circuit Board as a Solution for Thermal Management article, 2007, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20170188490 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61321364 | Apr 2010 | US | |
61138736 | Dec 2008 | US | |
61039454 | Mar 2008 | US | |
61095615 | Sep 2008 | US | |
61115333 | Nov 2008 | US | |
61152879 | Feb 2009 | US | |
61252295 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14247658 | Apr 2014 | US |
Child | 15456117 | US | |
Parent | 12952745 | Nov 2010 | US |
Child | 14247658 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12641468 | Dec 2009 | US |
Child | 12952745 | US | |
Parent | 12411925 | Mar 2009 | US |
Child | 12952745 | Nov 2010 | US |
Parent | 12556029 | Sep 2009 | US |
Child | 12952745 | Nov 2010 | US |
Parent | 12620330 | Nov 2009 | US |
Child | 12952745 | Nov 2010 | US |
Parent | 12706652 | Feb 2010 | US |
Child | 12952745 | Nov 2010 | US |
Parent | 12630469 | Dec 2009 | US |
Child | 12952745 | Nov 2010 | US |
Parent | 12618104 | Nov 2009 | US |
Child | 12630469 | US | |
Parent | 12905704 | Oct 2010 | US |
Child | 12618104 | US | |
Parent | 12753298 | Apr 2010 | US |
Child | 12952745 | Nov 2010 | US |