The present invention relates to navigational systems and more particularly, relates to a system and method for maintaining antenna pointing accuracy on a moving ground vehicle during periods of GPS outage.
Utilizing a GPS navigational system for moving vehicles or people is well known. Under normal operation, a GPS aided inertial navigation unit (INU) is used to accurately determine vehicle attitude. The vehicle has a phased array antenna whose beam is steered to remain pointed at a communication satellite whose position in the sky is known.
Pointing must be maintained to within a few degrees of accuracy as the ground vehicle traverses an uneven terrain. This level of accuracy is achievable using a low cost GPS aided INU so long as it is properly calibrated at the start and the GPS signal is maintained.
During periods of GPS outage, attitude accuracy degrades with time due to variations that occur in gyro drifts and accelerometer biases. After a few moments of outage, it is possible to loose the ability to maintain track on the satellite. Even after the GPS is restored, a recalibration of the INU may be required to reacquire the satellite. This entails performing maneuvers that involve rotating the INU, which may not be operationally acceptable or possible.
Accordingly, what is needed is a system and method to maintain proper antenna pointing accuracy during periods when the GPS signal is unavailable or not strong enough to be tracked by an inertial navigation unit.
These and other features and advantages of the present invention will be better understood by reading the following detailed description, taken together with the drawings wherein:
The approach described herein in accordance with the present invention relies on the fact that during normal operation, it is possible to obtain a measurement of the antenna's signal to noise (S/N) ratio. Consider the 3 dimension surface illustrated in
If the antenna beam axis is driven in a coning motion about the blue axis depicted in
If, for example, ε=0, then the S/N ratio will be constant as the beam is rotated if the dependence of S/N is symmetrical about the beam axis. If on the other hand ε>0. then the S/N ratio will fluctuate in a manner that depends on ψ and the shape of the surface, as represented by the black line shown in
For illustrative purposes, the surface in
z=exp{x*s+y*y} (Equation 1)
For this surface
Note that the S/N ratio passes through a maximum and a minimum for each complete rotation ψ. This shows that we can obtain both amplitude and phase information concerning the antenna pointing error. The phase is obtained by detecting the angle ψ where the S/N ratio passes through a minimum, and the magnitude is obtained from the difference between the maximum and the minimum S/N ratio measured over one cycle of rotation. The preferred embodiment of the magnitude measure would be
M=(S/Nmax−S/Nmin)/(S/Nmax) (Equation 2)
Note that in Eq. (2) the difference between the maximum and minimum S/N ratio is normalized by the maximum S/N ratio. This helps to remove the dependence that this measure has on the peak value of the S/N ratio, which for example can vary with the angle that the satellite makes with the local horizontal plane and other geometry related factors that effect antenna performance.
The magnitude and phase information derived from the process described above can be used to move the nominal axis of the beam (blue line in
Accordingly, the present invention provides a novel and non-obvious system and method for maintaining antenna pointing accuracy during periods of GPS outage.
Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the allowed claims and their legally equivalents.
This application is related to and claims the benefit of U.S. provisional patent application 60/950,365 filed Jul. 18, 2007 entitled “Concept for maintaining antenna pointing accuracy during period of GPS outage” incorporated fully herein by reference.
Number | Date | Country | |
---|---|---|---|
60950365 | Jul 2007 | US |