System and method for maintaining balloon integrity within intravascular lithotripsy device with plasma generator

Information

  • Patent Grant
  • 12295654
  • Patent Number
    12,295,654
  • Date Filed
    Tuesday, June 1, 2021
    4 years ago
  • Date Issued
    Tuesday, May 13, 2025
    a month ago
Abstract
A catheter system (100) for treating a treatment site (106) within or adjacent to the vessel wall of a blood vessel (108), or the heart valve, includes an energy source (124), a balloon (104), an energy guide (122A), and a balloon integrity protection system (142). The energy source (124) generates energy. The balloon (104) is positionable substantially adjacent to the treatment site (106). The balloon (104) has a balloon wall (130) that defines a balloon interior (146). The balloon (104) is configured to retain a balloon fluid (132) within the balloon interior (146). The energy guide (122A) is configured to receive energy from the energy source (124) and guide the energy into the balloon interior (146) so that plasma is formed in the balloon fluid (132) within the balloon interior (146). The balloon integrity protection system (142) is operatively coupled to the balloon (104). The balloon integrity protection system (142) is configured to inhibit rupture of the balloon (104) due to the plasma formed in the balloon fluid (132) within the balloon interior (146) during use of the catheter system (100).
Description
BACKGROUND

Vascular lesions within vessels in the body can be associated with an increased risk for major adverse events, such as myocardial infarction, embolism, deep vein thrombosis, stroke, and the like. Severe vascular lesions, such as severely calcified vascular lesions, can be difficult to treat and achieve patency for a physician in a clinical setting.


Vascular lesions may be treated using interventions such as drug therapy, balloon angioplasty, atherectomy, stent placement, vascular graft bypass, to name a few. Such interventions may not always be ideal or may require subsequent treatment to address the lesion.


Intravascular lithotripsy is one method that has been recently used with some success for breaking up vascular lesions within vessels in the body. Intravascular lithotripsy utilizes a combination of pressure waves and bubble dynamics that are generated intravascularly in a fluid-filled balloon catheter. In particular, during a intravascular lithotripsy treatment, a high energy source is used to generate plasma and ultimately pressure waves as well as a rapid bubble expansion within a fluid-filled balloon to crack calcification at a lesion site within the vasculature. The associated rapid bubble formation from the plasma initiation and resulting localized fluid velocity within the balloon transfers mechanical energy through the incompressible fluid to impart a fracture force on the intravascular calcium, which is opposed to the balloon wall. The rapid change in fluid momentum upon hitting the balloon wall is known as hydraulic shock, or water hammer.


The generation of the plasma within the balloon interior can create a risk of rupture of the balloon due to the extremely high temperatures of the plasma. For example, plasma temperature can be greater than 4000° K, which is significantly higher than the melt temperature of traditional balloon materials. One limitation of creating a plasma within an angioplasty balloon, is risk of balloon rupture if the plasma is in close proximity to the balloon material, as the temperature of the plasma generated within the balloon is typically significantly greater than the melt temperature of traditional balloon materials. This is especially true in tortuous anatomy with severely calcified lesions of minimal lumen diameter such that before therapy, the catheter shaft is in very close proximity or touching the vessel wall. Thus, it is desired to develop means to minimize the possibility of balloon rupture due to the high temperatures of the plasma that is generated within the fluid-filled balloon so as to more effectively maintain catheter integrity.


SUMMARY

The present invention is directed toward a catheter system for placement within a blood vessel or a heart valve. The catheter system can be used for treating a treatment site within or adjacent to the vessel wall or the heart valve. In various embodiments, the catheter system includes an energy source, a balloon, an energy guide, and a balloon integrity protection system. The energy source generates energy. The balloon is positionable substantially adjacent to the treatment site. The balloon has a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior. The energy guide is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior. The balloon integrity protection system is operatively coupled to the balloon. The balloon integrity protection system is configured to inhibit rupture of the balloon due to the plasma formed in the balloon fluid within the balloon interior during use of the catheter system.


In some embodiments, the catheter system further includes a plasma generator that is positioned at a guide distal end of the energy guide, the plasma generator being configured to generate the plasma in the balloon fluid within the balloon interior. In some embodiments, the plasma formation causes rapid bubble formation and imparts pressure waves upon the balloon wall adjacent to the treatment site.


In certain embodiments, the energy source generates pulses of energy that are guided along the energy guide into the balloon interior to induce the plasma formation in the balloon fluid within the balloon interior.


In some embodiments, the energy source is a laser source that provides pulses of laser energy. In such embodiments, the energy guide can include an optical fiber.


In certain embodiments, the energy source is a high voltage energy source that provides pulses of high voltage. In such embodiments, the energy guide can include an electrode pair including spaced apart electrodes that extend into the balloon interior; and pulses of high voltage from the energy source can be applied to the electrodes and form an electrical arc across the electrodes.


The present invention is also directed toward a method for treating a treatment site within or adjacent to a vessel wall utilizing the catheter system as described above.


In certain applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and a second balloon that is positioned to substantially completely encircle the balloon, the second balloon including a second balloon wall that is positioned such that a majority of the second balloon wall is positioned spaced apart from the balloon wall.


In some embodiments, the catheter system further includes a cooling fluid that is positioned substantially between the balloon wall and the second balloon wall. In such embodiments, the cooling fluid can be circulated between the balloon wall and the second balloon wall to maintain a balloon temperature of the second balloon wall below a melting temperature of the second balloon. In certain embodiments, the cooling fluid is formed from a mixture of saline and contrast medium. Alternatively, in other embodiments, the cooling fluid is formed from one or more of water, saline, contrast medium, fluorocarbons, perfluorocarbons, and carbon dioxide.


In some applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and a second balloon that is positioned to substantially completely encircle the balloon, the second balloon including a second balloon wall that is positioned such that the second balloon wall is positioned substantially directly adjacent to the balloon wall.


In certain embodiments, the balloon is made from a first material and the second balloon is made from a second material that is different than the first material. In some such embodiments, the first material that is used to form the balloon has a higher melting temperature than the second material that is used to form the second balloon. For example, in such embodiments, the first material that is used to form the balloon can have a melting temperature that is at least approximately 10 degrees Kelvin higher than a second melting temperature of the second material that is used to form the second balloon. Further in such embodiments, the first material can be a silicone-based material.


In various embodiments, the first material that is used to form the balloon has a lower melting temperature than the second material that is used to form the second balloon. For example, in such embodiments, the first material that is used to form the balloon can have a melting temperature that is at least approximately 10 degrees Kelvin lower than a second melting temperature of the second material that is used to form the second balloon. Further, in such embodiments, the second material can be a silicone-based material.


The first material can be an open cell foam material. In some embodiments, at least one void formed within the open cell foam material is filled with an inflation material.


In certain embodiments, the catheter system further includes a third balloon that is positioned to substantially completely encircle the balloon, the third balloon being positioned substantially directly adjacent to the second balloon. In some such embodiments, the balloon is made from a first material, the second balloon is made from a second material, and the third balloon is made from a third material; and wherein at least one of the first material, the second material and the third material is different than the other materials. For example, in one such embodiment, the second material is different than each of the first material and the third material. In particular, in such embodiment, the second material can be configured to one of reflect and absorb light and heat. In certain such alternative embodiments, the second material is formed from one or more of a metallic foil, a carbon foil, and a closed-cell membrane filled with a fluid.


In certain applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and a composite material that is added onto a surface of the balloon.


In some embodiments, the composite material is added onto an inner surface of the balloon.


The catheter system can also include a plasma generator that is positioned at a guide distal end of the energy guide, the plasma generator being configured to generate the plasma in the balloon fluid within the balloon interior. In such embodiment, the composite material can be added onto an inner surface of the balloon near the plasma generator. Additionally, the composite material can be configured to one of reflect and absorb light and heat. In certain such embodiments, the composite material is formed from one or more of a metallic foil, a carbon foil, and a closed-cell membrane filled with a fluid.


In some applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and a braided material layer that is wrapped around a surface of the balloon to provide a braided balloon composite.


In certain embodiments, the braided material layer is wrapped around an outer surface of the balloon. Additionally, in some embodiments, the braided material layer is wrapped around the surface of the balloon to provide increased hoop and axial strength.


In some embodiments, the braided material layer is wrapped around the surface of the balloon in a manner so as to shorten the balloon upon inflation of the balloon. In another such embodiment, the braided material layer is configured to inhibit propagation of tears in the balloon.


In some embodiments, the braided material layer is formed from a high strength fiber such as nitinol, stainless steel, carbon, aramid, rayon, polyester, aromatic polyester (such as Vectran), nylon, natural (silk, wool, cotton and linen) fibers, and/or any other suitable materials.


In certain applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; and an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and wherein the balloon is formed as an electro-spun balloon. In such embodiments, the balloon is formed as an electro-spun balloon to increase a melting temperature of the balloon.


In some applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; and an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and wherein the balloon is formed from electrically conductive balloon material.


In certain applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; and an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and wherein the balloon is formed from thermally conductive balloon material.


In some applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; a catheter shaft that extends into the balloon interior, the balloon being coupled to the catheter shaft, the catheter shaft including a shaft recess; an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior; and a plasma generator that is positioned at a guide distal end of the energy guide, the plasma generator being configured to generate the plasma in the balloon fluid within the balloon interior; and wherein the energy guide is positioned such that the plasma generator is positioned substantially within the shaft recess.


In certain embodiments, the catheter shaft further includes at least one shaft projection that is positioned along the catheter shaft and about the plasma generator. In one such embodiment, the at least one shaft projection is positioned about the shaft recess.


In some embodiments, the catheter system further includes a protection cage that is fitted over the plasma generator. In such embodiments, the protection cage can be formed from one or more of a polymeric material and a metallic material.


In certain embodiments, the catheter system further includes a pair of separator balloons that are positioned about the catheter shaft at either end of the shaft recess. In some such embodiments, the separator balloons are configured to extend substantially completely from the catheter shaft to the balloon wall of the balloon on either side of the plasma generator when the separator balloons are inflated.


In some embodiments, the catheter system further includes one or more raised features that are molded onto a surface of the balloon. For example, in such embodiments, the one or more raised features can be molded onto an inner surface of the balloon. In certain such embodiments, the one or more raised features includes one or more circumferential raised features that extend about a circumference of the balloon. Additionally, or in the alternative, the one or more raised features includes one or more axial raised features that extend axial along the surface of the balloon.


In certain applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a catheter shaft that extends into the blood vessel, the catheter shaft including a shaft recess; an energy guide that is configured to receive energy from the energy source and guide the energy into the blood vessel; and a plasma generator that is positioned at a guide distal end of the energy guide, the plasma generator being configured to generate the plasma in a fluid within the blood vessel; and wherein the energy guide is positioned such that the plasma generator is positioned substantially within the shaft recess.


In some such embodiments, the catheter system further includes a pair of separator balloons that are positioned about the catheter shaft at either end of the shaft recess. Additionally, in such embodiments, the separator balloons can be configured to extend substantially completely from the catheter shaft to the vessel wall of the blood vessel on either side of the plasma generator when the separator balloons are inflated.


In some applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and leak plugging material that is distributed within the balloon interior, the leak plugging material being configured to plug leaks in the balloon if any leaks develop in the balloon during use of the catheter system.


In certain such embodiments, the leak plugging material is provided in the form of beads that are between approximately one μm and 100 μm in diameter. Additionally, in some embodiments, the leak plugging material is non-absorbable. Alternatively, in other embodiments, the leak plugging material is bio-absorbable.


In certain applications, the present invention is directed toward a catheter system for treating a treatment site within or adjacent to a vessel wall or heart valve, the catheter system including an energy source that generates energy; a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior; and an energy guide that is configured to receive energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior; and wherein the balloon is optically opaque.


The present invention is also directed toward a method for treating a treatment site within or adjacent to a vessel wall or heart valve, utilizing any of the catheter systems as described above.


The present invention is also directed toward a method for treating a treatment site within or adjacent to a vessel wall or heart valve, the method including the steps of generating energy with an energy source; positioning a balloon substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior; retaining a balloon fluid within the balloon interior; receiving energy from the energy source with an energy guide; guiding the energy into the balloon interior with the energy guide to form plasma in the balloon fluid within the balloon interior; and operatively coupling a balloon integrity protection system to the balloon, the balloon integrity protection system being configured to inhibit rupture of the balloon due to the plasma formed in the balloon fluid within the balloon interior during use of the catheter system.


This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope herein is defined by the appended claims and their legal equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:



FIG. 1 is a schematic cross-sectional view of an embodiment of a catheter system in accordance with various embodiments herein, the catheter system including a balloon integrity protection system having features of the present invention;



FIG. 2 is a schematic cross-sectional view of a portion of the catheter system including an embodiment of the balloon integrity protection system;



FIG. 3 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 4 is a schematic cross-sectional view of a portion of the catheter system including still another embodiment of the balloon integrity protection system;



FIG. 5 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 6 is a schematic cross-sectional view of a portion of the catheter system including yet another embodiment of the balloon integrity protection system;



FIG. 7 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 8 is a schematic cross-sectional view of a portion of the catheter system including still another embodiment of the balloon integrity protection system;



FIG. 9 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 10 is a schematic cross-sectional view of a portion of the catheter system including yet another embodiment of the balloon integrity protection system;



FIG. 11 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 12 is a schematic cross-sectional view of a portion of the catheter system including still another embodiment of the balloon integrity protection system;



FIG. 13 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 14 is a schematic cross-sectional view of a portion of the catheter system including yet another embodiment of the balloon integrity protection system;



FIG. 15 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system;



FIG. 16 is a schematic cross-sectional view of a portion of the catheter system including still another embodiment of the balloon integrity protection system;



FIG. 17 is a schematic cross-sectional view of a portion of the catheter system including an embodiment of a vessel integrity protection system;



FIG. 18 is a schematic cross-sectional view of a portion of the catheter system including yet another embodiment of the balloon integrity protection system;



FIG. 19 is a schematic cross-sectional view of a portion of the catheter system including another embodiment of the balloon integrity protection system; and



FIG. 20 is a schematic cross-sectional view of a portion of the catheter system including still yet another embodiment of the balloon integrity protection system.





While embodiments of the present invention are susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and are described in detail herein. It is understood, however, that the scope herein is not limited to the particular embodiments described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope herein.


DESCRIPTION

Treatment of vascular lesions (also sometimes referred to herein as “treatment sites”) can reduce major adverse events or death in affected subjects. As referred to herein, a major adverse event is one that can occur anywhere within the body due to the presence of a vascular lesion. Major adverse events can include, but are not limited to, major adverse cardiac events, major adverse events in the peripheral or central vasculature, major adverse events in the brain, major adverse events in the musculature, or major adverse events in any of the internal organs.


The catheter systems and related methods disclosed herein are configured to minimize the possibility of balloon rupture and maintain catheter integrity when performing intravascular lithotripsy with a plasma generator. In various embodiments, the catheter systems and related methods of the present invention utilize a high energy source, e.g., in some embodiments, a light source such as a high energy laser source or another suitable high energy source, which provides energy that is guided by an energy guide, e.g., in some embodiments, a light guide, to create a localized plasma in the balloon fluid that is retained within a balloon interior of an inflatable balloon of the catheter. As such, the energy guide can sometimes be referred to as, or can be said to incorporate a “plasma generator” at or near a guide distal end of the energy guide that is positioned within the balloon interior. The creation of the localized plasma, in turn, induces a high energy bubble inside the balloon interior to create pressure waves to impart pressure onto and induce fractures in a vascular lesion, such as a calcified vascular lesion or a fibrous vascular lesion, at a treatment site within or adjacent to a blood vessel wall within a body of a patient. As used herein, the treatment site can include a vascular lesion such as a calcified vascular lesion or a fibrous vascular lesion, typically found in a blood vessel and/or a heart valve.


As used herein, the terms “intravascular lesion” and “vascular lesion” are used interchangeably unless otherwise noted. As such, the intravascular lesions and/or the vascular lesions are sometimes referred to herein simply as “lesions”.


Those of ordinary skill in the art will realize that the following detailed description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings.


In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application-related and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it is appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.


It is appreciated that the catheter systems disclosed herein can include many different forms. Referring now to FIG. 1, a schematic cross-sectional view is shown of a catheter system 100 in accordance with various embodiments herein. As described herein, the catheter system 100 is suitable for imparting pressure to induce fractures in one or more vascular lesions within or adjacent a vessel wall of a blood vessel. In the embodiment illustrated in FIG. 1, the catheter system 100 can include one or more of a catheter 102, a light guide bundle 122 including one or more light guides 122A, a source manifold 136, a fluid pump 138, a system console 123 including one or more of a light source 124, a power source 125, a system controller 126, and a graphic user interface 127 (a “GUI”), and a handle assembly 128. Additionally, as described in detail herein, the catheter system 100 can further incorporate a balloon integrity protection system 142, which in many embodiments is incorporated into the catheter 102. Alternatively, the catheter system 100 can have more components or fewer components than those specifically illustrated and described in relation to FIG. 1.


The catheter 102 is configured to move to a treatment site 106 within or adjacent to a blood vessel 108 within a body 107 of a patient 109. The treatment site 106 can include one or more vascular lesions such as calcified vascular lesions, for example. Additionally, or in the alternative, the treatment site 106 can include vascular lesions such as fibrous vascular lesions.


The catheter 102 can include a balloon assembly 103 including an inflatable balloon 104 (sometimes referred to herein simply as a “balloon”), a catheter shaft 110 and a guidewire 112. The balloon 104 can be coupled to the catheter shaft 110. The balloon 104 can include a balloon proximal end 104P and a balloon distal end 104D. The catheter shaft 110 can extend from a proximal portion 114 of the catheter system 100 to a distal portion 116 of the catheter system 100. The catheter shaft 110 can include a longitudinal axis 144. The catheter shaft 110 can also include a guidewire lumen 118 which is configured to move over the guidewire 112. As utilized herein, the guidewire lumen 118 is intended to define the structure that provides a conduit through which the guidewire extends. The catheter shaft 110 can further include an inflation lumen (not shown). In some embodiments, the catheter 102 can have a distal end opening 120 and can accommodate and be tracked over the guidewire 112 as the catheter 102 is moved and positioned at or near the treatment site 106.


Importantly, as described in detail in various non-exclusive alternative embodiments herein below, the catheter system 100, the catheter 102 and/or the balloon assembly 103 can further include the balloon integrity protection system 142 that is operatively coupled to the balloon 104, the balloon integrity protection system 142 being configured to inhibit rupture or other damage to the balloon 104 during use of the catheter system 100. More particularly, in various embodiments, such as described in detail herein below, the balloon integrity protection system 142 can be incorporated into the balloon assembly 103 in order to more effectively protect the integrity of the balloon 104.


The catheter shaft 110 of the catheter 102 can be coupled to the one or more light guides 122A of the light guide bundle 122 that are in optical communication with the light source 124. The light guide(s) 122A can be disposed along the catheter shaft 110 and within the balloon 104. In some embodiments, each light guide 122A can be an optical fiber and the light source 124 can be a laser. The light source 124 can be in optical communication with the light guides 122A at the proximal portion 114 of the catheter system 100.


In some embodiments, the catheter shaft 110 can be coupled to multiple light guides 122A such as a first light guide, a second light guide, a third light guide, etc., which can be disposed at any suitable positions about the guidewire lumen 118 and/or the catheter shaft 110. For example, in certain non-exclusive embodiments, two light guides 122A can be spaced apart by approximately 180 degrees about the circumference of the guidewire lumen 118 and/or the catheter shaft 110; three light guides 122A can be spaced apart by approximately 120 degrees about the circumference of the guidewire lumen 118 and/or the catheter shaft 110; or four light guides 122A can be spaced apart by approximately 90 degrees about the circumference of the guidewire lumen 118 and/or the catheter shaft 110. Still alternatively, multiple light guides 122A need not be uniformly spaced apart from one another about the circumference of the guidewire lumen 118 and/or the catheter shaft 110. More particularly, it is further appreciated that the light guides 122A described herein can be disposed uniformly or non-uniformly about the guidewire lumen 118 and/or the catheter shaft 110 to achieve the desired effect in the desired locations.


The balloon 104 can include a balloon wall 130 that defines a balloon interior 146, and can be inflated with a balloon fluid 132 to expand from a deflated configuration suitable for advancing the catheter 102 through a patient's vasculature, to an inflated configuration suitable for anchoring the catheter 102 in position relative to the treatment site 106. Stated in another manner, when the balloon 104 is in the inflated configuration, the balloon wall 130 of the balloon 104 is configured to be positioned substantially adjacent to the treatment site 106, i.e. to the vascular lesion(s). It is appreciated that although FIG. 1 illustrates the balloon wall 130 of the balloon 104 being shown spaced apart from the treatment site 106 of the blood vessel 108, this is done merely for ease of illustration, and the balloon wall 130 of the balloon 104 will typically be substantially directly adjacent to the treatment site 106 when the balloon is in the inflated configuration.


In some embodiments, the light source 124 of the catheter system 100 can be configured to provide sub-millisecond pulses of light from the light source 124, along the light guides 122A, to a location within the balloon interior 146 of the balloon 104, thereby inducing plasma formation in the balloon fluid 132 within the balloon interior 146 of the balloon 104, i.e. via a plasma generator 133 located at a guide distal end 122D of the light guide 122A. The plasma formation causes rapid bubble formation, and imparts pressure waves upon the treatment site 106. Exemplary plasma-induced bubbles are shown as bubbles 134 in FIG. 1.


It is appreciated that although the catheter systems 100 illustrated herein are generally described as including a light source 124 and one or more light guides 122A, the catheter system 100 can alternatively include any suitable energy source and energy guides for purposes of generating the desired plasma in the balloon fluid 132 within the balloon interior 146. For example, in one non-exclusive alternative embodiment, the energy source 124 can be configured to provide high voltage pulses, and each energy guide 122A can include an electrode pair including spaced apart electrodes that extend into the balloon interior 146. In such embodiment, each pulse of high voltage is applied to the electrodes and forms an electrical arc across the electrodes, which, in turn, generates the plasma and forms the pressure waves within the balloon fluid 132 that are utilized to provide the fracture force onto the vascular lesions at the treatment site 106. Still alternatively, the energy source 124 and/or the energy guides 122A can have another suitable design and/or configuration.


The balloons 104 suitable for use in the catheter systems 100 described in detail herein include those that can be passed through the vasculature of a patient when in the deflated configuration. In some embodiments, the balloons 104 herein are made from silicone. In other embodiments, the balloons 104 herein are made from polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™ material available from Arkema, which has a location at King of Prussia, Pennsylvania, USA, nylon, and the like. In some embodiments, the balloons 104 can include those having diameters ranging from one millimeter (mm) to 25 mm in diameter. In some embodiments, the balloons 104 can include those having diameters ranging from at least 1.5 mm to 14 mm in diameter. In some embodiments, the balloons 104 can include those having diameters ranging from at least one mm to five mm in diameter.


Additionally, in some embodiments, the balloons 104 herein can include those having a length ranging from at least three mm to 300 mm. More particularly, in some embodiments, the balloons 104 herein can include those having a length ranging from at least eight mm to 200 mm. It is appreciated that balloons 104 of greater length can be positioned adjacent to larger treatment sites 106, and, thus, may be usable for imparting pressure onto and inducing fractures in larger vascular lesions or multiple vascular lesions at precise locations within the treatment site 106. It is further appreciated that such longer balloons 104 can also be positioned adjacent to multiple treatment sites 106 at any given time.


Further, the balloons 104 herein can be inflated to inflation pressures of between approximately one atmosphere (atm) and 70 atm. In some embodiments, the balloons 104 herein can be inflated to inflation pressures of from at least 20 atm to 70 atm. In other embodiments, the balloons 104 herein can be inflated to inflation pressures of from at least six atm to 20 atm. In still other embodiments, the balloons 104 herein can be inflated to inflation pressures of from at least three atm to 20 atm. In yet other embodiments, the balloons 104 herein can be inflated to inflation pressures of from at least two atm to ten atm.


Still further, the balloons 104 herein can include those having various shapes, including, but not to be limited to, a conical shape, a square shape, a rectangular shape, a spherical shape, a conical/square shape, a conical/spherical shape, an extended spherical shape, an oval shape, a tapered shape, a bone shape, a stepped diameter shape, an offset shape, or a conical offset shape. In some embodiments, the balloons 104 herein can include a drug eluting coating or a drug eluting stent structure. The drug elution coating or drug eluting stent can include one or more therapeutic agents including anti-inflammatory agents, anti-neoplastic agents, anti-angiogenic agents, and the like.


The balloon fluid 132 can be a liquid or a gas. Exemplary balloon fluids 132 suitable for use herein can include, but are not limited to one or more of water, saline, contrast medium, fluorocarbons, perfluorocarbons, gases, such as carbon dioxide, and the like. In some embodiments, the balloon fluids 132 described can be used as base inflation fluids. In some embodiments, the balloon fluids 132 include a mixture of saline to contrast medium in a volume ratio of 50:50. In other embodiments, the balloon fluids 132 include a mixture of saline to contrast medium in a volume ratio of 25:75. In still other embodiments, the balloon fluids 132 include a mixture of saline to contrast medium in a volume ratio of 75:25. Additionally, the balloon fluids 132 suitable for use herein can be tailored on the basis of composition, viscosity, and the like in order to manipulate the rate of travel of the pressure waves therein. In certain embodiments, the balloon fluids 132 suitable for use herein are biocompatible. A volume of balloon fluid 132 can be tailored by the chosen light source 124 and the type of balloon fluid 132 used.


In some embodiments, the contrast agents used in the contrast media herein can include, but are not to be limited to, iodine-based contrast agents, such as ionic or non-ionic iodine-based contrast agents. Some non-limiting examples of ionic iodine-based contrast agents include diatrizoate, metrizoate, iothalamate, and ioxaglate. Some non-limiting examples of non-ionic iodine-based contrast agents include iopamidol, iohexol, ioxilan, iopromide, iodixanol, and ioversol. In other embodiments, non-iodine based contrast agents can be used. Suitable non-iodine containing contrast agents can include gadolinium (III)-based contrast agents. Suitable fluorocarbon and perfluorocarbon agents can include, but are not to be limited to, agents such as the perfluorocarbon dodecafluoropentane (DDFP, C5F12).


Additionally, the balloon fluids 132 herein can include those that include absorptive agents that can selectively absorb light in the ultraviolet region (e.g., at least ten nanometers (nm) to 400 nm), the visible region (e.g., at least 400 nm to 780 nm), or the near-infrared region (e.g., at least 780 nm to 2.5 μm) of the electromagnetic spectrum. Suitable absorptive agents can include those with absorption maxima along the spectrum from at least ten nm to 2.5 μm. Alternatively, the balloon fluids 132 can include those that include absorptive agents that can selectively absorb light in the mid-infrared region (e.g., at least 2.5 μm to 15 μm), or the far-infrared region (e.g., at least 15 μm to one mm) of the electromagnetic spectrum. In various embodiments, the absorptive agent can be those that have an absorption maximum matched with the emission maximum of the laser used in the catheter system 100. By way of non-limiting examples, various lasers described herein can include neodymium:yttrium-aluminum-garnet (Nd:YAG−emission maximum=1064 nm) lasers, holmium:YAG (Ho:YAG−emission maximum=2.1 μm) lasers, or erbium:YAG (Er:YAG−emission maximum=2.94 μm) lasers. In some embodiments, the absorptive agents used herein can be water soluble. In other embodiments, the absorptive agents used herein are not water soluble. In some embodiments, the absorptive agents used in the balloon fluids 132 herein can be tailored to match the peak emission of the light source 124. Various light sources 124 having emission wavelengths of at least ten nanometers to one millimeter are discussed elsewhere herein.


It is appreciated that the catheter system 100 and/or the light guide bundle 122 disclosed herein can include any number of light guides 122A in optical communication with the light source 124 at the proximal portion 114, and with the balloon fluid 132 within the balloon interior 146 of the balloon 104 at the distal portion 116. For example, in some embodiments, the catheter system 100 and/or the light guide bundle 122 can include from one light guide 122A to five light guides 122A. In other embodiments, the catheter system 100 and/or the light guide bundle 122 can include from five light guides 122A to fifteen light guides 122A. In yet other embodiments, the catheter system 100 and/or the light guide bundle 122 can include from ten light guides 122A to thirty light guides 122A. Alternatively, in still other embodiments, the catheter system 100 and/or the light guide bundle 122 can include greater than thirty light guides 122A.


The light guides 122A herein can include an optical fiber or flexible light pipe. The light guides 122A herein can be thin and flexible and can allow light signals to be sent with very little loss of strength. The light guides 122A herein can include a core surrounded by a cladding about its circumference. In some embodiments, the core can be a cylindrical core or a partially cylindrical core. The core and cladding of the light guides 122A can be formed from one or more materials, including but not limited to one or more types of glass, silica, or one or more polymers. The light guides 122A may also include a protective coating, such as a polymer. It is appreciated that the index of refraction of the core will be greater than the index of refraction of the cladding.


Each light guide 122A can guide light along its length from a proximal portion, i.e. a guide proximal end 122P, to a distal portion, i.e. the guide distal end 122D, having at least one optical window (not shown) that is positioned within the balloon interior 146. The light guides 122A can create a light path as a portion of an optical network including the light source 124. The light path within the optical network allows light to travel from one part of the network to another. Both the optical fiber and the flexible light pipe can provide a light path within the optical networks herein.


Further, the light guides 122A herein can assume many configurations about and/or relative to the catheter shaft 110 of the catheters 102 described herein. In some embodiments, the light guides 122A can run parallel to the longitudinal axis 144 of the catheter shaft 110. In some embodiments, the light guides 122A can be physically coupled to the catheter shaft 110. In other embodiments, the light guides 122A can be disposed along a length of an outer diameter of the catheter shaft 110. In yet other embodiments, the light guides 122A herein can be disposed within one or more light guide lumens within the catheter shaft 110.


Additionally, it is further appreciated that the light guides 122A can be disposed at any suitable positions about the circumference of the guidewire lumen 118 and/or the catheter shaft 110, and the guide distal end 122D of each of the light guides 122A can be disposed at any suitable longitudinal position relative to the length of the balloon 104 and/or relative to the length of the guidewire lumen 118.


Further, the light guides 122A herein can include one or more photoacoustic transducers 154, where each photoacoustic transducer 154 can be in optical communication with the light guide 122A within which it is disposed. In some embodiments, the photoacoustic transducers 154 can be in optical communication with the guide distal end 122D of the light guide 122A. Additionally, in such embodiments, the photoacoustic transducers 154 can have a shape that corresponds with and/or conforms to the guide distal end 122D of the light guide 122A.


The photoacoustic transducer 154 is configured to convert light energy into an acoustic wave at or near the guide distal end 122D of the light guide 122A. It is appreciated that the direction of the acoustic wave can be tailored by changing an angle of the guide distal end 122D of the light guide 122A.


It is further appreciated that the photoacoustic transducers 154 disposed at the guide distal end 122D of the light guide 122A herein can assume the same shape as the guide distal end 122D of the light guide 122A. For example, in certain non-exclusive embodiments, the photoacoustic transducer 154 and/or the guide distal end 122D can have a conical shape, a convex shape, a concave shape, a bulbous shape, a square shape, a stepped shape, a half-circle shape, an ovoid shape, and the like. It is also appreciated that the light guide 122A can further include additional photoacoustic transducers 154 disposed along one or more side surfaces of the length of the light guide 122A.


The light guides 122A described herein can further include one or more diverting features or “diverters” (not shown in FIG. 1) within the light guide 122A that are configured to direct light to exit the light guide 122A toward a side surface e.g., at or near the guide distal end 122D of the light guide 122A, and toward the balloon wall 130. A diverting feature can include any feature of the system herein that diverts light from the light guide 122A away from its axial path toward a side surface of the light guide 122A. Additionally, the light guides 122A can each include one or more light windows disposed along the longitudinal or axial surfaces of each light guide 122A and in optical communication with a diverting feature. Stated in another manner, the diverting features herein can be configured to direct light in the light guide 122A toward a side surface, e.g., at or near the guide distal end 122D, where the side surface is in optical communication with a light window. The light windows can include a portion of the light guide 122A that allows light to exit the light guide 122A from within the light guide 122A, such as a portion of the light guide 122A lacking a cladding material on or about the light guide 122A.


Examples of the diverting features suitable for use herein include a reflecting element, a refracting element, and a fiber diffuser. Additionally, the diverting features suitable for focusing light away from the tip of the light guides 122A herein can include, but are not to be limited to, those having a convex surface, a gradient-index (GRIN) lens, and a mirror focus lens. Upon contact with the diverting feature, the light is diverted within the light guide 122A to the plasma generator 133 and/or the photoacoustic transducer(s) 154 that are in optical communication with a side surface of the light guide 122A. As noted, the plasma generator 133 and/or the photoacoustic transducer(s) 154 then convert light energy into an acoustic pressure wave and bubble that extend away from the side surface of the light guide 122A.


The source manifold 136 can be positioned at or near the proximal portion 114 of the catheter system 100. The source manifold 136 can include one or more proximal end openings that can receive the plurality of light guides 122A of the light guide bundle 122, the guidewire 112, and/or an inflation conduit 140 that is coupled in fluid communication with the fluid pump 138. The catheter system 100 can also include the fluid pump 138 that is configured to inflate the balloon 104 with the balloon fluid 132, i.e. via the inflation conduit 140, as needed.


As noted above, in the embodiment illustrated in FIG. 1, the system console 123 includes one or more of the light source 124, the power source 125, the system controller 126, and the GUI 127. Alternatively, the system console 123 can include more components or fewer components than those specifically illustrated in FIG. 1. For example, in certain non-exclusive alternative embodiments, the system console 123 can be designed without the GUI 127. Still alternatively, one or more of the light source 124, the power source 125, the system controller 126, and the GUI 127 can be provided within the catheter system 100 without the specific need for the system console 123.


Additionally, as shown, the system console 123, and the components included therewith, is operatively coupled to the catheter 102, the light guide bundle 122, and the remainder of the catheter system 100. For example, in some embodiments, as illustrated in FIG. 1, the system console 123 can include a console connection aperture 148 (also sometimes referred to generally as a “socket”) by which the light guide bundle 122 is mechanically coupled to the system console 123. In such embodiments, the light guide bundle 122 can include a guide coupling housing 150 (also sometimes referred to generally as a “ferrule”) that houses a portion, e.g., the guide proximal end 122P, of each of the light guides 122A. The guide coupling housing 150 is configured to fit and be selectively retained within the console connection aperture 148 to provide the desired mechanical coupling between the light guide bundle 122 and the system console 123.


Further, the light guide bundle 122 can also include a guide bundler 152 (or “shell”) that brings each of the individual light guides 122A closer together so that the light guides 122A and/or the light guide bundle 122 can be in a more compact form as it extends with the catheter 102 into the blood vessel 108 during use of the catheter system 100.


As provided herein, the light source 124 can be selectively and/or alternatively coupled in optical communication with each of the light guides 122A, i.e. to the guide proximal end 122P of each of the light guides 122A, in the light guide bundle 122. In particular, the light source 124 is configured to generate light energy in the form of a source beam 124A, e.g., a pulsed source beam, that can be selectively and/or alternatively directed to and received by each of the light guides 122A in the light guide bundle 122 as an individual guide beam 1248. Alternatively, the catheter system 100 can include more than one light source 124. For example, in one non-exclusive alternative embodiment, the catheter system 100 can include a separate light source 124 for each of the light guides 122A in the light guide bundle 122.


The light source 124 can have any suitable design. In certain embodiments, as noted above, the light source 124 can be configured to provide sub-millisecond pulses of light from the light source 124 that are focused onto a small spot in order to couple it into the guide proximal end 122P of the light guide 122A. Such pulses of light energy are then directed along the light guides 122A to a location within the balloon 104, thereby inducing plasma formation in the balloon fluid 132 within the balloon interior 146 of the balloon 104. In particular, the light energy emitted at the guide distal end 122D of the light guide 122A energizes the plasma generator 133 to form the plasma within the balloon fluid 132 within the balloon interior 146. The plasma formation causes rapid bubble formation, and imparts pressure waves upon the treatment site 106. In such embodiments, the sub-millisecond pulses of light from the light source 124 can be delivered to the treatment site 106 at a frequency of between approximately one hertz (Hz) and 5000 Hz. In some embodiments, the sub-millisecond pulses of light from the light source 124 can be delivered to the treatment site 106 at a frequency of between approximately 30 Hz and 1000 Hz. In other embodiments, the sub-millisecond pulses of light from the light source 124 can be delivered to the treatment site 106 at a frequency of between approximately ten Hz and 100 Hz. In yet other embodiments, the sub-millisecond pulses of light from the light source 124 can be delivered to the treatment site 106 at a frequency of between approximately one Hz and 30 Hz. Alternatively, the sub-millisecond pulses of light can be delivered to the treatment site 106 at a frequency that can be greater than 5000 Hz.


It is appreciated that although the light source 124 is typically utilized to provide pulses of light energy, the light source 124 can still be described as providing a single source beam 124A, i.e. a single pulsed source beam.


The light sources 124 suitable for use herein can include various types of light sources including lasers and lamps. Alternatively, as noted above, the light sources 124, as referred to herein, can include any suitable type of energy source.


Suitable lasers can include short pulse lasers on the sub-millisecond timescale. In some embodiments, the light source 124 can include lasers on the nanosecond (ns) timescale. The lasers can also include short pulse lasers on the picosecond (ps), femtosecond (fs), and microsecond (us) timescales. It is appreciated that there are many combinations of laser wavelengths, pulse widths and energy levels that can be employed to achieve plasma in the balloon fluid 132 of the catheters 102 described herein. In various embodiments, the pulse widths can include those falling within a range including from at least ten ns to 2000 ns. In some embodiments, the pulse widths can include those falling within a range including from at least 20 ns to 100 ns. In other embodiments, the pulse widths can include those falling within a range including from at least one ns to 500 ns.


Additionally, exemplary nanosecond lasers can include those within the UV to IR spectrum, spanning wavelengths of about ten nanometers (nm) to one millimeter (mm). In some embodiments, the light sources 124 suitable for use in the catheter systems 100 herein can include those capable of producing light at wavelengths of from at least 750 nm to 2000 nm. In other embodiments, the light sources 124 can include those capable of producing light at wavelengths of from at least 700 nm to 3000 nm. In still other embodiments, the light sources 124 can include those capable of producing light at wavelengths of from at least 100 nm to ten micrometers (μm). Nanosecond lasers can include those having repetition rates of up to 200 kHz. In some embodiments, the laser can include a Q-switched thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In other embodiments, the laser can include a neodymium:yttrium-aluminum-garnet (Nd:YAG) laser, holmium:yttrium-aluminum-garnet (Ho:YAG) laser, erbium:yttrium-aluminum-garnet (Er:YAG) laser, excimer laser, helium-neon laser, carbon dioxide laser, as well as doped, pulsed, fiber lasers.


The catheter systems 100 disclosed herein can generate pressure waves having maximum pressures in the range of at least one megapascal (MPa) to 100 MPa. The maximum pressure generated by a particular catheter system 100 will depend on the light source 124, the absorbing material, the bubble expansion, the propagation medium, the balloon material, and other factors. In some embodiments, the catheter systems 100 herein can generate pressure waves having maximum pressures in the range of at least two MPa to 50 MPa. In other embodiments, the catheter systems 100 herein can generate pressure waves having maximum pressures in the range of at least two MPa to 30 MPa. In yet other embodiments, the catheter systems 100 herein can generate pressure waves having maximum pressures in the range of at least 15 MPa to 25 MPa.


The pressure waves described herein can be imparted upon the treatment site 106 from a distance within a range from at least 0.1 millimeters (mm) to 25 mm extending radially from the light guides 122A when the catheter 102 is placed at the treatment site 106. In some embodiments, the pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least ten mm to 20 mm extending radially from the light guides 122A when the catheter 102 is placed at the treatment site 106. In other embodiments, the pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least one mm to ten mm extending radially from the light guides 122A when the catheter 102 is placed at the treatment site 106. In yet other embodiments, the pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least 1.5 mm to four mm extending radially from the light guides 122A when the catheter 102 is placed at the treatment site 106. In some embodiments, the pressure waves can be imparted upon the treatment site 106 from a range of at least two MPa to 30 MPa at a distance from 0.1 mm to ten mm. In some embodiments, the pressure waves can be imparted upon the treatment site 106 from a range of at least two MPa to 25 MPa at a distance from 0.1 mm to ten mm.


The power source 125 is electrically coupled to and is configured to provide necessary power to each of the light source 124, the system controller 126, the GUI 127, and the handle assembly 128. The power source 125 can have any suitable design for such purposes.


As noted, the system controller 126 is electrically coupled to and receives power from the power source 125. Additionally, the system controller 126 is coupled to and is configured to control operation of each of the light source 124 and the GUI 127. The system controller 126 can include one or more processors or circuits for purposes of controlling the operation of at least the light source 124 and the GUI 127. For example, the system controller 126 can control the light source 124 for generating pulses of light energy as desired, e.g., at any desired firing rate.


Additionally, the system controller 126 can further be configured to control operation of other components of the catheter system 100, e.g., the positioning of the catheter 102 adjacent to the treatment site 106, the inflation of the balloon 104 with the balloon fluid 132, etc. Further, or in the alternative, the catheter system 100 can include one or more additional controllers that can be positioned in any suitable manner for purposes of controlling the various operations of the catheter system 100. For example, in certain embodiments, an additional controller and/or a portion of the system controller 126 can be positioned and/or incorporated within the handle assembly 128.


The GUI 127 is accessible by the user or operator of the catheter system 100. Additionally, the GUI 127 is electrically connected to the system controller 126. With such design, the GUI 127 can be used by the user or operator to ensure that the catheter system 100 is employed as desired to impart pressure onto and induce fractures into the vascular lesions at the treatment site 106. Additionally, the GUI 127 can provide the user or operator with information that can be used before, during and after use of the catheter system 100. In one embodiment, the GUI 127 can provide static visual data and/or information to the user or operator. In addition, or in the alternative, the GUI 127 can provide dynamic visual data and/or information to the user or operator, such as video data or any other data that changes over time, e.g., during use of the catheter system 100. Further, in various embodiments, the GUI 127 can include one or more colors, different sizes, varying brightness, etc., that may act as alerts to the user or operator. Additionally, or in the alternative, the GUI 127 can provide audio data or information to the user or operator. It is appreciated that the specifics of the GUI 127 can vary depending upon the design requirements of the catheter system 100, or the specific needs, specifications and/or desires of the user or operator.


As shown in FIG. 1, the handle assembly 128 can be positioned at or near the proximal portion 114 of the catheter system 100, and/or near the source manifold 136. Additionally, in this embodiment, the handle assembly 128 is coupled to the balloon 104 and is positioned spaced apart from the balloon 104. Alternatively, the handle assembly 128 can be positioned at another suitable location.


The handle assembly 128 is handled and used by the user or operator to operate, position and control the catheter 102. The design and specific features of the handle assembly 128 can vary to suit the design requirements of the catheter system 100. In the embodiment illustrated in FIG. 1, the handle assembly 128 is separate from, but in electrical and/or fluid communication with one or more of the system controller 126, the light source 124, the fluid pump 138, and the GUI 127. In some embodiments, the handle assembly 128 can integrate and/or include at least a portion of the system controller 126 within an interior of the handle assembly 128. For example, as shown, in certain such embodiments, the handle assembly 128 can include circuitry 156 that can form at least a portion of the system controller 126.


In one embodiment, the circuitry 156 can include a printed circuit board having one or more integrated circuits, or any other suitable circuitry. In an alternative embodiment, the circuitry 156 can be omitted, or can be included within the system controller 126, which in various embodiments can be positioned outside of the handle assembly 128, e.g., within the system console 123. It is understood that the handle assembly 128 can include fewer or additional components than those specifically illustrated and described herein.


As noted above, in various embodiments, the balloon integrity protection system 142 can be included with and/or incorporated into the catheter system 100, the catheter 102 and/or the balloon assembly 103 in order to inhibit rupture or other damage to the balloon 104 during use of the catheter system 100 in order to more effectively protect the integrity of the balloon 104. Various embodiments of the balloon integrity protection system 142 are described in greater detail herein below in relation to FIGS. 2-20.



FIG. 2 is a schematic cross-sectional view of a portion of the catheter system 200 including an embodiment of the balloon integrity protection system 242. As described in detail herein, the design of the catheter system 200 can be varied. In various embodiments, as illustrated in FIG. 2, the catheter system 200 can include a catheter 202 including a catheter shaft 210, a balloon assembly 203 including a balloon 204 having a balloon wall 230 that defines a balloon interior 246, a balloon proximal end 204P, and a balloon distal end 204D, a balloon fluid 232 that is retained substantially within the balloon interior 246, and a guidewire lumen 218 that extends into and runs through the balloon interior 246; and an energy guide 222A including a plasma generator 233 that is included and/or incorporated at a guide distal end 222D of the energy guide 222A. Additionally, as described in detail herein, the catheter system 200, the catheter 202 and/or the balloon assembly 203 can further include the balloon integrity protection system 242 that is operatively coupled to the balloon 204 and that is configured to inhibit rupture or other damage to the balloon 204 or otherwise protect the integrity of the balloon 204 during use of the catheter system 200. Alternatively, in other embodiments, the catheter system 200 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 2 for purposes of clarity, but would likely be included in any embodiment of the catheter system 200.


The catheter 202, including the catheter shaft 210, the balloon 204, and the guidewire lumen 218, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 2.


As above, the balloon 204 is selectively movable between a deflated configuration suitable for advancing the catheter 202 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 202 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 204P can be coupled to the catheter shaft 210, and the balloon distal end 204D can be coupled to the guidewire lumen 218. In other embodiments, the catheter shaft 210 can extend fully through the balloon 204, and the balloon distal end 204D can also be coupled to the catheter shaft 210. In still other embodiments, the balloon distal end 204D can be coupled to another structure of the catheter 202. Additionally, the balloon 204 can be inflated with the balloon fluid 232, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 246 of the balloon 204 via the inflation conduit 140 (illustrated in FIG. 1).


As provided herein, the balloon integrity protection system 242 can have any suitable design for purposes of inhibiting rupture or other damage to the balloon 204 or otherwise protecting the integrity of the balloon 204 during use of the catheter system 200. For example, as shown in the embodiment illustrated in FIG. 2, the balloon integrity protection system 242 can include a second balloon 260, and a cooling fluid 262.


As illustrated in FIG. 2, the second balloon 260 includes a second balloon proximal end 260P that is coupled to the balloon proximal end 204P of the balloon 204, and a second balloon distal end 260D that is coupled to the balloon distal end 204D of the balloon 204. Additionally, as illustrated, the balloon 204 is smaller than the second balloon 260 such that the second balloon 260 substantially completely, if not entirely, encircles the balloon 204. Stated in another manner, in this embodiment, the balloon 204 is positioned substantially, if not completely, within the second balloon 260. Further, for a majority of the second balloon 260, the second balloon 260 includes a second balloon wall 260W that is spaced apart and/or separated from the balloon wall 230 of the balloon 204. The separation between the second wall 260W of the second balloon 260 and the balloon wall 230 of the balloon 204 is intended to provide insulation so that any increased temperature at the balloon wall 230 is not directly transferred to the second balloon wall 260W of the second balloon 260.


Additionally, as shown, the cooling fluid 262 is positioned substantially between the balloon wall 230 of the balloon 204 and the second balloon wall 260W of the second balloon 260. In this embodiment, the cooling fluid 262 is circulated between the balloon wall 230 and the second balloon wall 260W to maintain a balloon temperature, e.g., at the second balloon wall 260W, which is below a melting temperature of the second balloon 260. More particularly, with such design, the second balloon 260 is better protected from any increases in temperature in the event that the balloon 204 may rupture or otherwise become damaged during use of the catheter system 200.


The cooling fluid 262 can be formed from any suitable fluid materials. In certain embodiments, the cooling fluid 262 can be formed from the same or similar materials that are used for the balloon fluid 232. For example, in one non-exclusive embodiment, the cooling fluid 262 is formed from a mixture of saline and contrast medium. Alternatively, in other non-exclusive embodiments, the cooling fluid 262 can be formed from water, saline, contrast medium, fluorocarbons, perfluorocarbons, and/or gases, such as carbon dioxide, and the like. Still alternatively, the cooling fluid 262 can be formed from other suitable materials.



FIG. 3 is a schematic cross-sectional view of a portion of the catheter system 300 including another embodiment of the balloon integrity protection system 342. As with the previous embodiments, as illustrated in FIG. 3, the catheter system 300 can include a catheter 302 including a catheter shaft 310, a balloon assembly 303 including a balloon 304 having a balloon wall 330 that defines a balloon interior 346, a balloon proximal end 304P, and a balloon distal end 304D, a balloon fluid 332 that is retained substantially within the balloon interior 346, and a guidewire lumen 318 that extends into and runs through the balloon interior 346; and an energy guide 322A including a plasma generator 333 that is included and/or incorporated at a guide distal end 322D of the energy guide 322A. Additionally, as with the previous embodiments, the catheter system 300, the catheter 302 and/or the balloon assembly 303 can further include the balloon integrity protection system 342 that is operatively coupled to the balloon 304 and that is configured to inhibit rupture or other damage to the balloon 304 or otherwise protect the integrity of the balloon 304 during use of the catheter system 300. Alternatively, in other embodiments, the catheter system 300 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 3 for purposes of clarity, but would likely be included in any embodiment of the catheter system 300.


The catheter 302, including the catheter shaft 310, the balloon 304, and the guidewire lumen 318, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 3.


As above, the balloon 304 is selectively movable between a deflated configuration suitable for advancing the catheter 302 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 302 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 304P can be coupled to the catheter shaft 310, and the balloon distal end 304D can be coupled to the guidewire lumen 318. In other embodiments, the catheter shaft 310 can extend fully through the balloon 304, and the balloon distal end 304D can also be coupled to the catheter shaft 310. In still other embodiments, the balloon distal end 304D can be coupled to another structure of the catheter 302. Additionally, the balloon 304 can be inflated with the balloon fluid 332, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 346 of the balloon 304 via the inflation conduit 140 (illustrated in FIG. 1).


Further, in this embodiment, the balloon integrity protection system 342 is substantially similar to the embodiment illustrated and described in relation to FIG. 2. In particular, as shown in FIG. 3, the balloon integrity protection system 342 includes a second balloon 360. As shown, the second balloon 360 includes a second balloon proximal end 360P that is coupled to the balloon proximal end 304P of the balloon 304, and a second balloon distal end 360D that is coupled to the balloon distal end 304D of the balloon 304. Additionally, as illustrated, the balloon 304 is smaller than the second balloon 360 such that the second balloon 360 substantially completely, if not entirely, encircles the balloon 304. Stated in another manner, in this embodiment, the balloon 304 is positioned substantially, if not completely, within the second balloon 360. Further, for a majority of the second balloon 360, the second balloon 360 includes a second balloon wall 360W that is spaced apart and/or separated from the balloon wall 330 of the balloon 304. The separation between the second wall 360W of the second balloon 360 and the balloon wall 330 of the balloon 304 is intended to provide insulation so that any increased temperature at the balloon wall 330 is not directly transferred to the second balloon wall 360W of the second balloon 360. Moreover, with the separation between the second balloon wall 360W and the balloon wall 230, the second balloon 360 is better able to maintain pressure in the event that the balloon 204 may rupture or otherwise become damaged during use of the catheter system 300.



FIG. 4 is a schematic cross-sectional view of a portion of the catheter system 400 including still another embodiment of the balloon integrity protection system 442. As with the previous embodiments, as illustrated in FIG. 4, the catheter system 400 can include a catheter 402 including a catheter shaft 410, a balloon assembly 403 including a balloon 404 having a balloon wall 430 that defines a balloon interior 446, a balloon proximal end 404P, and a balloon distal end 404D, a balloon fluid 432 that is retained substantially within the balloon interior 446, and a guidewire lumen 418 that extends into and runs through the balloon interior 446; and an energy guide 422A including a plasma generator 433 that is included and/or incorporated at a guide distal end 422D of the energy guide 422A. Additionally, as with the previous embodiments, the catheter system 400, the catheter 402 and/or the balloon assembly 403 can further include the balloon integrity protection system 442 that is operatively coupled to the balloon 404 and that is configured to inhibit rupture or other damage to the balloon 404 or otherwise protect the integrity of the balloon 404 during use of the catheter system 400. Alternatively, in other embodiments, the catheter system 400 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 4 for purposes of clarity, but would likely be included in any embodiment of the catheter system 400.


The catheter 402, including the catheter shaft 410, the balloon 404, and the guidewire lumen 418, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 4.


As above, the balloon 404 is selectively movable between a deflated configuration suitable for advancing the catheter 402 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 402 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 404P can be coupled to the catheter shaft 410, and the balloon distal end 404D can be coupled to the guidewire lumen 418. In other embodiments, the catheter shaft 410 can extend fully through the balloon 404, and the balloon distal end 404D can also be coupled to the catheter shaft 410. In still other embodiments, the balloon distal end 404D can be coupled to another structure of the catheter 402. Additionally, the balloon 404 can be inflated with the balloon fluid 432, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 446 of the balloon 404 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 442 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 4, the balloon integrity protection system 442 includes a second balloon 460 that substantially completely, if not entirely, encircles the balloon 404 (i.e. with the balloon 404 positioned substantially completely, if not entirely, within the second balloon 460), and is positioned substantially directly adjacent to the balloon 404 such that the balloon assembly 403 comprises a multilayer balloon composite. Additionally, as shown in FIG. 4, the second balloon 460 includes a second balloon proximal end 460P that is coupled to the balloon proximal end 404P of the balloon 404, and a second balloon distal end 460D that is coupled to the balloon distal end 404D of the balloon 404. Further, in contrast to the previous embodiments, in this embodiment, the second balloon 460 includes a second balloon wall 460W that is positioned substantially directly adjacent to the balloon wall 430 of the balloon 404.


In this embodiment, the balloon 404 and the second balloon 460 are formed from different materials from one another. More particularly, in this embodiment, the balloon 404 has a higher melting temperature than the second balloon 460. It is appreciated, however, that the balloon 404 may require the semi-compliance of the second balloon 460 for strength purposes. With such design, the balloon 404 can function to provide desired insulation for the balloon assembly 403, while the second balloon 460 can be utilized to provide pressure containment for the balloon assembly 403.


In one non-exclusive alternative embodiment, the balloon 404 can be formed from a silicone-based material, which has a high melt temperature (e.g., in certain applications around 1700K or similar), and the second balloon 460 can be formed from a more traditional balloon material such as PEBAX™, which has a lower melt temperature (e.g., around 450K or similar). Alternatively, the balloon 404 and/or the second balloon 460 can be formed from other suitable materials, so long as the balloon 404 has a higher melt temperature than the second balloon 460. In certain non-exclusive embodiments, the melt temperature of the balloon 404 can be at least approximately 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 degrees Kelvin higher than the melt temperature of the second balloon 460.



FIG. 5 is a schematic cross-sectional view of a portion of the catheter system 500 including another embodiment of the balloon integrity protection system 542. As with the previous embodiments, as illustrated in FIG. 5, the catheter system 500 can include a catheter 502 including a catheter shaft 510, a balloon assembly 503 including a balloon 504 having a balloon wall 530 that defines a balloon interior 546, a balloon proximal end 504P, and a balloon distal end 504D, a balloon fluid 532 that is retained substantially within the balloon interior 546, and a guidewire lumen 518 that extends into and runs through the balloon interior 546; and an energy guide 522A including a plasma generator 533 that is included and/or incorporated at a guide distal end 522D of the energy guide 522A. Additionally, as with the previous embodiments, the catheter system 500, the catheter 502 and/or the balloon assembly 503 can further include the balloon integrity protection system 542 that is operatively coupled to the balloon 504 and that is configured to inhibit rupture or other damage to the balloon 504 or otherwise protect the integrity of the balloon 504 during use of the catheter system 500. Alternatively, in other embodiments, the catheter system 500 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 5 for purposes of clarity, but would likely be included in any embodiment of the catheter system 500.


The catheter 502, including the catheter shaft 510, the balloon 504, and the guidewire lumen 518, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 5.


As above, the balloon 504 is selectively movable between a deflated configuration suitable for advancing the catheter 502 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 502 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 504P can be coupled to the catheter shaft 510, and the balloon distal end 504D can be coupled to the guidewire lumen 518. In other embodiments, the catheter shaft 510 can extend fully through the balloon 504, and the balloon distal end 504D can also be coupled to the catheter shaft 510. In still other embodiments, the balloon distal end 504D can be coupled to another structure of the catheter 502. Additionally, the balloon 504 can be inflated with the balloon fluid 532, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 546 of the balloon 504 via the inflation conduit 140 (illustrated in FIG. 1).


Further, in this embodiment, the balloon integrity protection system 542 is substantially similar to the embodiment illustrated and described in relation to FIG. 4. In particular, as shown in FIG. 5, the balloon integrity protection system 542 includes a second balloon 560 that substantially completely, if not entirely, encircles the balloon 504 (i.e. with the balloon 504 positioned substantially completely, if not entirely, within the second balloon 560), and is positioned substantially directly adjacent to the balloon 504 such that the balloon assembly 503 comprises a multilayer balloon composite. As shown, the second balloon 560 includes a second balloon proximal end 560P that is coupled to the balloon proximal end 504P of the balloon 504, and a second balloon distal end 560D that is coupled to the balloon distal end 504D of the balloon 504. Additionally, in this embodiment, the second balloon 560 includes a second balloon wall 560W that is positioned substantially directly adjacent to the balloon wall 530 of the balloon 504.


In this embodiment, the balloon 504 and the second balloon 560 are again formed from different materials from one another. However, in this embodiment, the balloon 504 has a lower melting temperature than the second balloon 560. With such design, the balloon 504 is configured to provide the required semi-compliant strength, while the second balloon 560 serves to maintain pressure in the event of the plasma melting or otherwise damaging the balloon 504.


In one non-exclusive alternative embodiment, the balloon 504 can be formed from a more traditional balloon material such as PEBAX™, which has a lower melt temperature (e.g., around 450K or similar), and the second balloon 560 can be formed from a silicone-based material, which has a high melt temperature (e.g., in certain applications around 1700K or similar). Alternatively, the balloon 504 and/or the second balloon 560 can be formed from other suitable materials, so long as the balloon 504 has a lower melt temperature than the second balloon 560. In certain non-exclusive embodiments, the melt temperature of the balloon 504 can be at least approximately 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 degrees Kelvin lower than the melt temperature of the second balloon 560.



FIG. 6 is a schematic cross-sectional view of a portion of the catheter system 600 including yet another embodiment of the balloon integrity protection system 642. As with the previous embodiments, as illustrated in FIG. 6, the catheter system 600 can include a catheter 602 including a catheter shaft 610, a balloon assembly 603 including a balloon 604 having a balloon wall 630 that defines a balloon interior 646, a balloon proximal end 604P, and a balloon distal end 604D, a balloon fluid 632 that is retained substantially within the balloon interior 646, and a guidewire lumen 618 that extends into and runs through the balloon interior 646; and an energy guide 622A including a plasma generator 633 that is included and/or incorporated at a guide distal end 622D of the energy guide 622A. Additionally, as with the previous embodiments, the catheter system 600, the catheter 602 and/or the balloon assembly 603 can further include the balloon integrity protection system 642 that is operatively coupled to the balloon 604 and that is configured to inhibit rupture or other damage to the balloon 604 or otherwise protect the integrity of the balloon 604 during use of the catheter system 600. Alternatively, in other embodiments, the catheter system 600 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 6 for purposes of clarity, but would likely be included in any embodiment of the catheter system 600.


The catheter 602, including the catheter shaft 610, the balloon 604, and the guidewire lumen 618, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 6.


As above, the balloon 604 is selectively movable between a deflated configuration suitable for advancing the catheter 602 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 602 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 604P can be coupled to the catheter shaft 610, and the balloon distal end 604D can be coupled to the guidewire lumen 618. In other embodiments, the catheter shaft 610 can extend fully through the balloon 604, and the balloon distal end 604D can also be coupled to the catheter shaft 610. In still other embodiments, the balloon distal end 604D can be coupled to another structure of the catheter 602. Additionally, the balloon 604 can be inflated with the balloon fluid 632, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 646 of the balloon 604 via the inflation conduit 140 (illustrated in FIG. 1).


Further, in this embodiment, the balloon integrity protection system 642 is somewhat similar to the embodiments illustrated and described in relation to FIGS. 4 and 5. In particular, as shown in FIG. 6, the balloon integrity protection system 642 includes a second balloon 660 that substantially completely, if not entirely, encircles the balloon 604 (i.e. with the balloon 604 positioned substantially completely, if not entirely, within the second balloon 660), and is positioned substantially directly adjacent to the balloon 604 such that the balloon assembly 603 comprises a multilayer balloon composite. As shown, the second balloon 660 includes a second balloon proximal end 660P that is coupled to the balloon proximal end 604P of the balloon 604, and a second balloon distal end 660D that is coupled to the balloon distal end 604D of the balloon 604. Additionally, in this embodiment, the second balloon 660 includes a second balloon wall 660W that is positioned substantially directly adjacent to the balloon wall 630 of the balloon 604.


In this embodiment, the balloon 604 and the second balloon 660 are again formed from different materials from one another. More particularly, in this embodiment, the balloon 604 can be formed from an open cell foam material and the second balloon 660 can be formed from a more traditional balloon material, e.g., PEBAX™. As described in this embodiment, the open cell foam material of the balloon 604 serves to separate the balloon material of the second balloon 660 from the plasma that is being formed within the balloon fluid 632 within the balloon interior 646. Additionally, in one such embodiment, voids that are formed within the open cell foam material of the balloon 604 can be filled with an inflation media that serves as an additional insulation layer between the plasma and the balloon material of the second balloon 660.



FIG. 7 is a schematic cross-sectional view of a portion of the catheter system 700 including another embodiment of the balloon integrity protection system 742. As with the previous embodiments, as illustrated in FIG. 7, the catheter system 700 can include a catheter 702 including a catheter shaft 710, a balloon assembly 703 including a balloon 704 having a balloon wall 730 that defines a balloon interior 746, a balloon proximal end 704P, and a balloon distal end 704D, a balloon fluid 732 that is retained substantially within the balloon interior 746, and a guidewire lumen 718 that extends into and runs through the balloon interior 746; and an energy guide 722A including a plasma generator 733 that is included and/or incorporated at a guide distal end 722D of the energy guide 722A. Additionally, as with the previous embodiments, the catheter system 700, the catheter 702 and/or the balloon assembly 703 can further include the balloon integrity protection system 742 that is operatively coupled to the balloon 704 and that is configured to inhibit rupture or other damage to the balloon 704 or otherwise protect the integrity of the balloon 704 during use of the catheter system 700. Alternatively, in other embodiments, the catheter system 700 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 7 for purposes of clarity, but would likely be included in any embodiment of the catheter system 700.


The catheter 702, including the catheter shaft 710, the balloon 704, and the guidewire lumen 718, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 7.


As above, the balloon 704 is selectively movable between a deflated configuration suitable for advancing the catheter 702 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 702 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 704P can be coupled to the catheter shaft 710, and the balloon distal end 704D can be coupled to the guidewire lumen 718. In other embodiments, the catheter shaft 710 can extend fully through the balloon 704, and the balloon distal end 704D can also be coupled to the catheter shaft 710. In still other embodiments, the balloon distal end 704D can be coupled to another structure of the catheter 702. Additionally, the balloon 704 can be inflated with the balloon fluid 732, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 746 of the balloon 704 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 742 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 7, the balloon integrity protection system 742 includes a second balloon 760 and a third balloon 764 that are positioned substantially directly adjacent to one another to form a multilayer balloon composite. More specifically, the balloon 704 is shown as the inner most balloon, the second balloon 760 is positioned substantially directly adjacent to the balloon 704 and substantially completely, if not entirely, encircles the balloon 704, and the third balloon 764 is the outer most balloon that is positioned substantially directly adjacent to the second balloon 760 and substantially completely, if not entirely, encircles the second balloon 760.


In this embodiment, the balloon 704 and the third balloon 764 can be formed from more traditional balloon materials, e.g., PEBAX™ or another suitable balloon material, and the second balloon 760 can be formed from a non-traditional balloon material. In such embodiment, the non-traditional balloon material of the second balloon 760 (i.e. the middle balloon) can be configured to reflect and/or absorb light and heat that may be generated in the balloon assembly 703. In certain non-exclusive alternative embodiments, the second balloon 760 can be formed from one or more of a metallic foil, a carbon foil, a closed cell membrane filled with gas or liquid, or another suitable material that can reflect/absorb light and heat.



FIG. 8 is a schematic cross-sectional view of a portion of the catheter system 800 including still another embodiment of the balloon integrity protection system 842. As with the previous embodiments, as illustrated in FIG. 8, the catheter system 800 can include a catheter 802 including a catheter shaft 810, a balloon assembly 803 including a balloon 804 having a balloon wall 830 that defines a balloon interior 846, a balloon proximal end 804P, and a balloon distal end 804D, a balloon fluid 832 that is retained substantially within the balloon interior 846, and a guidewire lumen 818 that extends into and runs through the balloon interior 846; and an energy guide 822A including a plasma generator 833 that is included and/or incorporated at a guide distal end 822D of the energy guide 822A. Additionally, as with the previous embodiments, the catheter system 800, the catheter 802 and/or the balloon assembly 803 can further include the balloon integrity protection system 842 that is operatively coupled to the balloon 804 and that is configured to inhibit rupture or other damage to the balloon 804 or otherwise protect the integrity of the balloon 804 during use of the catheter system 800. Alternatively, in other embodiments, the catheter system 800 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 8 for purposes of clarity, but would likely be included in any embodiment of the catheter system 800.


The catheter 802, including the catheter shaft 810, the balloon 804, and the guidewire lumen 818, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 8.


As above, the balloon 804 is selectively movable between a deflated configuration suitable for advancing the catheter 802 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 802 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 804P can be coupled to the catheter shaft 810, and the balloon distal end 804D can be coupled to the guidewire lumen 818. In other embodiments, the catheter shaft 810 can extend fully through the balloon 804, and the balloon distal end 804D can also be coupled to the catheter shaft 810. In still other embodiments, the balloon distal end 804D can be coupled to another structure of the catheter 802. Additionally, the balloon 804 can be inflated with the balloon fluid 832, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 846 of the balloon 804 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 842 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 8, the balloon integrity protection system 842 includes composite material 866 that is added onto a surface 804S of the balloon 804, e.g., an inner surface of the balloon 804, only near the plasma generators 833 to provide a selective balloon composite. For example, as shown in FIG. 8, the composite material 866 can be added onto the surface 804S of the balloon 804 as one or more islands or circumferentially about the surface 804S of the balloon 804. With such design, the goal is to maintain the native balloon performance of the balloon 804, e.g., in terms of crossability, trackability, pushability, etc., as close as possible, while still providing a certain measure of insulation to protect the integrity of the balloon 804, i.e. to inhibit rupture or other damage to the balloon 804, during use of the catheter system 800.


The material for the composite material 866 can be varied to suit the specific requirements of the catheter system 800, the balloon assembly 803 and/or the balloon integrity protection system 842. In certain embodiments, the composite material 866 may be formed from a material having a higher melt temperature and/or having the ability to absorb/reflect light and heat substantially better than the native balloon material that is used to form the balloon 804. In certain non-exclusive alternative embodiments, the composite material 866 can be formed from one or more of a metallic foil, a carbon foil, a closed cell membrane filled with gas or liquid, or another suitable material that can reflect/absorb light and heat.


Additionally, it is appreciated that the composite material 866 can be added onto the surface 804S of the balloon 804 using any appropriate methods and/or machinery. For example, one non-exclusive machine capable of such operation is a PLA Giken Extruder, available from PLA Giken Co., Ltd., of Osaka, Japan. Alternatively, the composite material 866 can be added onto the surface 804S of the balloon 804 using another appropriate method or machine.



FIG. 9 is a schematic cross-sectional view of a portion of the catheter system 900 including another embodiment of the balloon integrity protection system 942. As with the previous embodiments, as illustrated in FIG. 9, the catheter system 900 can include a catheter 902 including a catheter shaft 910, a balloon assembly 903 including a balloon 904 having a balloon wall 930 that defines a balloon interior 946, a balloon proximal end 904P, and a balloon distal end 904D, a balloon fluid 932 that is retained substantially within the balloon interior 946, and a guidewire lumen 918 that extends into and runs through the balloon interior 946; and an energy guide 922A including a plasma generator 933 that is included and/or incorporated at a guide distal end 922D of the energy guide 922A. Additionally, as with the previous embodiments, the catheter system 900, the catheter 902 and/or the balloon assembly 903 can further include the balloon integrity protection system 942 that is operatively coupled to the balloon 904 and that is configured to inhibit rupture or other damage to the balloon 904 or otherwise protect the integrity of the balloon 904 during use of the catheter system 900. Alternatively, in other embodiments, the catheter system 900 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 9 for purposes of clarity, but would likely be included in any embodiment of the catheter system 900.


The catheter 902, including the catheter shaft 910, the balloon 904, and the guidewire lumen 918, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 9.


As above, the balloon 904 is selectively movable between a deflated configuration suitable for advancing the catheter 902 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 902 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 904P can be coupled to the catheter shaft 910, and the balloon distal end 904D can be coupled to the guidewire lumen 918. In other embodiments, the catheter shaft 910 can extend fully through the balloon 904, and the balloon distal end 904D can also be coupled to the catheter shaft 910. In still other embodiments, the balloon distal end 904D can be coupled to another structure of the catheter 902. Additionally, the balloon 904 can be inflated with the balloon fluid 932, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 946 of the balloon 904 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 942 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 9, the balloon integrity protection system 942 includes a braided material layer 968, e.g., a high strength fiber, that is wrapped around a surface 904S of the balloon 904, e.g., an outer surface of the balloon 904, to provide a braided balloon composite. For example, in one such embodiment, the balloon 904 can be formed from a traditional balloon material, and the braided material layer 968 can be wrapped around the surface 904S of the balloon 904 in a particular manner so as to effectively provide desired hoop and axial strength. With such design, the balloon assembly 903 is configured to be compliant, but also designed to keep the pressure within the balloon 904.


Additionally, in this embodiment, the braid pattern for the braided material layer 968 can be wrapped in such a manner such that it is specifically configured to shorten the balloon 904 upon inflation of the balloon 904. More particularly, in such embodiment, as the balloon 904 shortens during inflation, the catheter shaft 910 is flexed away from the wall of the blood vessel 108 (illustrated in FIG. 1), thereby protecting the balloon material from the high temperature plasma.


It is appreciated that the braided material layer 968 can be formed from any suitable materials. For example, in certain non-exclusive alternative embodiments, the braided material layer 968 can be formed from one or more of nitinol, stainless steel, carbon, aramid, rayon, polyester, aromatic polyester (such as Vectran), nylon, and natural (silk, wool, cotton and linen) fibers and/or other suitable materials.



FIG. 10 is a schematic cross-sectional view of a portion of the catheter system 1000 including yet another embodiment of the balloon integrity protection system 1042. As with the previous embodiments, as illustrated in FIG. 10, the catheter system 1000 can include a catheter 1002 including a catheter shaft 1010, a balloon assembly 1003 including a balloon 1004 having a balloon wall 1030 that defines a balloon interior 1046, a balloon proximal end 1004P, and a balloon distal end 1004D, a balloon fluid 1032 that is retained substantially within the balloon interior 1046, and a guidewire lumen 1018 that extends into and runs through the balloon interior 1046; and an energy guide 1022A including a plasma generator 1033 that is included and/or incorporated at a guide distal end 1022D of the energy guide 1022A. Additionally, as with the previous embodiments, the catheter system 1000, the catheter 1002 and/or the balloon assembly 1003 can further include the balloon integrity protection system 1042 that is operatively coupled to the balloon 1004 and that is configured to inhibit rupture or other damage to the balloon 1004 or otherwise protect the integrity of the balloon 1004 during use of the catheter system 1000. Alternatively, in other embodiments, the catheter system 1000 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 10 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1000.


The catheter 1002, including the catheter shaft 1010, the balloon 1004, and the guidewire lumen 1018, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 10.


As above, the balloon 1004 is selectively movable between a deflated configuration suitable for advancing the catheter 1002 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1002 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1004P can be coupled to the catheter shaft 1010, and the balloon distal end 1004D can be coupled to the guidewire lumen 1018. In other embodiments, the catheter shaft 1010 can extend fully through the balloon 1004, and the balloon distal end 1004D can also be coupled to the catheter shaft 1010. In still other embodiments, the balloon distal end 1004D can be coupled to another structure of the catheter 1002. Additionally, the balloon 1004 can be inflated with the balloon fluid 1032, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1046 of the balloon 1004 via the inflation conduit 140 (illustrated in FIG. 1).


Further, in this embodiment, the balloon integrity protection system 1042 is somewhat similar to the embodiment illustrated and described in relation to FIG. 9. In particular, as shown in FIG. 10, the balloon integrity protection system 1042 includes a braided material layer 1068, e.g., a high strength fiber, that is wrapped around a surface 1004S of the balloon 1004, e.g., an outer surface of the balloon 1004, to provide a braided balloon composite. In one such embodiment, the balloon 1004 can be formed from a traditional balloon material and the braided material layer 1068 can be formed from a high strength fiber that is wrapped around the surface 1004S of the balloon 1004 in such a manner to provide hoop and axial strength. Additionally, in this embodiment, the braided material layer 1068 can be wrapped around the surface 1004S of the balloon 1004 in a manner so as to allow pinholes, but to still minimize the possibility of balloon rupture. Stated in another manner, the braided material layer 1068 is specifically designed to allow small tears in the balloon 1004, but is wrapped in a manner and/or made from a material to inhibit propagation of the tears in the balloon 1004.


Additionally, in this embodiment, the braided material layer 1068 may further be wrapped in such a manner so as to cause the catheter shaft 1010 to flex away from the wall of the blood vessel 108 (illustrated in FIG. 1) to provide additional clearance between the plasma and the balloon material.


It is appreciated that the braided material layer 1068 can be formed from any suitable materials. For example, in certain non-exclusive alternative embodiments, the braided material layer 1068 can be formed from one or more of nitinol, stainless steel, carbon, aramid, rayon, polyester, aromatic polyester (such as Vectran), nylon, and natural (silk, wool, cotton and linen) fibers and/or other suitable materials.



FIG. 11 is a schematic cross-sectional view of a portion of the catheter system 1100 including another embodiment of the balloon integrity protection system 1142. As with the previous embodiments, as illustrated in FIG. 11, the catheter system 1100 can include a catheter 1102 including a catheter shaft 1110, a balloon assembly 1103 including a balloon 1104 having a balloon wall 1130 that defines a balloon interior 1146, a balloon proximal end 1104P, and a balloon distal end 1104D, a balloon fluid 1132 that is retained substantially within the balloon interior 1146, and a guidewire lumen 1118 that extends into and runs through the balloon interior 1146; and an energy guide 1122A including a plasma generator 1133 that is included and/or incorporated at a guide distal end 1122D of the energy guide 1122A. Additionally, as with the previous embodiments, the catheter system 1100, the catheter 1102 and/or the balloon assembly 1103 can further include the balloon integrity protection system 1142 that is operatively coupled to the balloon 1104 and that is configured to inhibit rupture or other damage to the balloon 1104 or otherwise protect the integrity of the balloon 1104 during use of the catheter system 1100. Alternatively, in other embodiments, the catheter system 1100 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 11 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1100.


The catheter 1102, including the catheter shaft 1110, the balloon 1104, and the guidewire lumen 1118, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 11.


As above, the balloon 1104 is selectively movable between a deflated configuration suitable for advancing the catheter 1102 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1102 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1104P can be coupled to the catheter shaft 1110, and the balloon distal end 1104D can be coupled to the guidewire lumen 1118. In other embodiments, the catheter shaft 1110 can extend fully through the balloon 1104, and the balloon distal end 1104D can also be coupled to the catheter shaft 1110. In still other embodiments, the balloon distal end 1104D can be coupled to another structure of the catheter 1102. Additionally, the balloon 1104 can be inflated with the balloon fluid 1132, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1146 of the balloon 1104 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1142 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 11, the balloon integrity protection system 1142 includes the balloon 1104 being formed as an electro-spun balloon, e.g., as a fine braid variation, through a process of electrospinning. Electrospinning is a fiber production method which uses electric force to draw charged threads of polymer solutions or polymer melts up to fiber diameters in the order of some hundred nanometers. In particular, when a sufficiently high voltage is applied to a liquid droplet, the body of the liquid becomes charged, and electrostatic repulsion counteracts the surface tension and the droplet is stretched; and at a critical point a stream of liquid erupts from the surface.


In such embodiment, it is appreciated that the balloon 1104 can be formed as a gas-tight braided balloon, i.e. with a melt temperature that is significantly higher than the melt temperature for traditional balloon materials. As such, the electro-spun balloon material provides greater temperature protection against plasma than traditional balloon materials. Additionally, it is further appreciated that in different embodiments, the electro-spun balloon material can be used alone or as a composite with traditional balloon materials.



FIG. 12 is a schematic cross-sectional view of a portion of the catheter system 1200 including still another embodiment of the balloon integrity protection system 1242. As with the previous embodiments, as illustrated in FIG. 12, the catheter system 1200 can include a catheter 1202 including a catheter shaft 1210, a balloon assembly 1203 including a balloon 1204 having a balloon wall 1230 that defines a balloon interior 1246, a balloon proximal end 1204P, and a balloon distal end 1204D, a balloon fluid 1232 that is retained substantially within the balloon interior 1246, and a guidewire lumen 1218 that extends into and runs through the balloon interior 1246; and an energy guide 1222A including a plasma generator 1233 that is included and/or incorporated at a guide distal end 1222D of the energy guide 1222A. Additionally, as with the previous embodiments, the catheter system 1200, the catheter 1202 and/or the balloon assembly 1203 can further include the balloon integrity protection system 1242 that is operatively coupled to the balloon 1204 and that is configured to inhibit rupture or other damage to the balloon 1204 or otherwise protect the integrity of the balloon 1204 during use of the catheter system 1200. Alternatively, in other embodiments, the catheter system 1200 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 12 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1200.


The catheter 1202, including the catheter shaft 1210, the balloon 1204, and the guidewire lumen 1218, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 12.


As above, the balloon 1204 is selectively movable between a deflated configuration suitable for advancing the catheter 1202 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1202 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1204P can be coupled to the catheter shaft 1210, and the balloon distal end 1204D can be coupled to the guidewire lumen 1218. In other embodiments, the catheter shaft 1210 can extend fully through the balloon 1204, and the balloon distal end 1204D can also be coupled to the catheter shaft 1210. In still other embodiments, the balloon distal end 1204D can be coupled to another structure of the catheter 1202. Additionally, the balloon 1204 can be inflated with the balloon fluid 1232, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1246 of the balloon 1204 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1242 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 12, the balloon integrity protection system 1242 includes the balloon 1204 being from electrically conductive balloon material. In one non-exclusive alternative embodiment, the balloon 1204 can be formed from PEBAX™ MV-1074. Alternatively, the balloon 1204 can be formed from one or more of PEBAX™ MH-1657, Polyacetylene, polypyrrole, polyindole, polyaniline, poly(p-phenylene vinylene), poly(thiophene), poly(3,4-ethylenedioxythiophene), poly(p-phenylene sulfide) and/or other suitable anti-static materials.


With such design, in the event that an arc plasma contacts the balloon 1204, the material used for the balloon 1204 can function to spread the distribution of charge to thus minimize focused electrocution or electrocautery.



FIG. 13 is a schematic cross-sectional view of a portion of the catheter system 1300 including another embodiment of the balloon integrity protection system 1342. As with the previous embodiments, as illustrated in FIG. 13, the catheter system 1300 can include a catheter 1302 including a catheter shaft 1310, a balloon assembly 1303 including a balloon 1304 having a balloon wall 1330 that defines a balloon interior 1346, a balloon proximal end 1304P, and a balloon distal end 1304D, a balloon fluid 1332 that is retained substantially within the balloon interior 1346, and a guidewire lumen 1318 that extends into and runs through the balloon interior 1346; and an energy guide 1322A including a plasma generator 1333 that is included and/or incorporated at a guide distal end 1322D of the energy guide 1322A. Additionally, as with the previous embodiments, the catheter system 1300, the catheter 1302 and/or the balloon assembly 1303 can further include the balloon integrity protection system 1342 that is operatively coupled to the balloon 1304 and that is configured to inhibit rupture or other damage to the balloon 1304 or otherwise protect the integrity of the balloon 1304 during use of the catheter system 1300. Alternatively, in other embodiments, the catheter system 1300 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 13 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1300.


The catheter 1302, including the catheter shaft 1310, the balloon 1304, and the guidewire lumen 1318, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 13.


As above, the balloon 1304 is selectively movable between a deflated configuration suitable for advancing the catheter 1302 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1302 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1304P can be coupled to the catheter shaft 1310, and the balloon distal end 1304D can be coupled to the guidewire lumen 1318. In other embodiments, the catheter shaft 1310 can extend fully through the balloon 1304, and the balloon distal end 1304D can also be coupled to the catheter shaft 1310. In still other embodiments, the balloon distal end 1304D can be coupled to another structure of the catheter 1302. Additionally, the balloon 1304 can be inflated with the balloon fluid 1332, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1346 of the balloon 1304 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1342 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 13, the balloon integrity protection system 1342 includes the balloon 1304 being from thermally conductive balloon material. In such embodiment, the balloon material may have a melt temperature that is similar to the melt temperature of traditional balloon materials, but with greatly enhanced thermal conductivity. With such design, the enhanced thermal conductivity of the balloon material would allow for heat dissipation at such high rates that the balloon material stays below the melt temperature of the balloon material when in contact with plasma, thereby inhibiting holes from forming in the balloon material.


It is appreciated that the balloon 1304 can be formed from any suitable thermally conductive balloon materials. For example, in certain non-exclusive alternative embodiments, the balloon 1304 can be formed from one or more of graphite, aluminum nitride and/or boron nitride mixed with polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™, nylon and/or other suitable thermally conductive balloon materials.



FIG. 14 is a schematic cross-sectional view of a portion of the catheter system 1400 including yet another embodiment of the balloon integrity protection system 1442. As illustrated in FIG. 14, the catheter system 1400 can include a catheter 1402 including a catheter shaft 1410, a balloon assembly 1403 including a balloon 1404 having a balloon wall 1430 that defines a balloon interior 1446, a balloon proximal end 1404P, and a balloon distal end 1404D, and a balloon fluid 1432 that is retained substantially within the balloon interior 1446; and an energy guide 1422A including a plasma generator 1433 that is included and/or incorporated at a guide distal end 1422D of the energy guide 1422A. A guidewire lumen that would also likely be included in the catheter 1402 is not illustrated in FIG. 14. Additionally, as with the previous embodiments, the catheter system 1400, the catheter 1402 and/or the balloon assembly 1403 can further include the balloon integrity protection system 1442 that is operatively coupled to the balloon 1404 and that is configured to inhibit rupture or other damage to the balloon 1404 or otherwise protect the integrity of the balloon 1404 during use of the catheter system 1400. Alternatively, in other embodiments, the catheter system 1400 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 14 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1400.


The catheter 1402, including the catheter shaft 1410, the balloon 1404, and the guidewire lumen, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 14.


As above, the balloon 1404 is selectively movable between a deflated configuration suitable for advancing the catheter 1402 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1402 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1404P can be coupled to the catheter shaft 1410, and the balloon distal end 1404D can also be coupled to the catheter shaft 1410. In other embodiments, the balloon distal end 1404D can be coupled to the guidewire lumen or another structure of the catheter 1402. Additionally, the balloon 1404 can be inflated with the balloon fluid 1432, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1446 of the balloon 1404 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1442 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 14, the balloon integrity protection system 1442 includes modifications to the catheter shaft 1410 that are configured to better enable the plasma and/or the plasma generators 1433 to be maintained separated from the balloon 1404. More specifically, as illustrated in FIG. 14, the catheter shaft 1410 can include one or more of a shaft recess 1470 and at least one shaft projection 1472 (two shaft projections 1472 are illustrated in FIG. 14) such that the plasma generator 1433 can be positioned in a recessed manner relative to the balloon 1404.


In this embodiment, the shaft recess 1470 entails removing material from the catheter shaft 1410 and positioning the light guide 1422A such that the plasma generator 1433 is positioned substantially within the shaft recess 1470. With such design, the plasma generator 1433, and thus the plasma that is generated in the balloon fluid 1432 within the balloon interior 1446, is maintained a greater distance separated from the balloon 1404.


Additionally, as shown, the at least one shaft projection 1472 can be positioned along the catheter shaft 1410 and about the plasma generator 1433, e.g., about the shaft recess 1470, to better separate the plasma generator 1433, and thus the plasma that is generated in the balloon fluid 1432 within the balloon interior 1446, from at least certain portions of the balloon 1404.


It is appreciated that with an increased separation between the plasma generator 1433, and thus the plasma, from the balloon 1404, the balloon 1404 will be less susceptible to potential rupture or other damage due to the heat generated by the formation of the plasma in the balloon fluid 1432.



FIG. 15 is a schematic cross-sectional view of a portion of the catheter system 1500 including another embodiment of the balloon integrity protection system 1542. As illustrated in FIG. 15, the catheter system 1500 can include a catheter 1502 including a catheter shaft 1510, a balloon assembly 1503 including a balloon 1504 having a balloon wall 1530 that defines a balloon interior 1546, a balloon proximal end 1504P, and a balloon distal end 1504D, and a balloon fluid 1532 that is retained substantially within the balloon interior 1546; and at least one energy guide 1522A (two energy guides 1522A are illustrated in FIG. 15) including a plasma generator 1533 that is included and/or incorporated at a guide distal end 1522D of the energy guide 1522A. A guidewire lumen that would also likely be included in the catheter 1502 is not illustrated in FIG. 15. Additionally, as with the previous embodiments, the catheter system 1500, the catheter 1502 and/or the balloon assembly 1503 can further include the balloon integrity protection system 1542 that is operatively coupled to the balloon 1504 and that is configured to inhibit rupture or other damage to the balloon 1504 or otherwise protect the integrity of the balloon 1504 during use of the catheter system 1500. Alternatively, in other embodiments, the catheter system 1500 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 15 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1500.


The catheter 1502, including the catheter shaft 1510, the balloon 1504, and the guidewire lumen, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 15.


As above, the balloon 1504 is selectively movable between a deflated configuration suitable for advancing the catheter 1502 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1502 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1504P can be coupled to the catheter shaft 1510, and the balloon distal end 1504D can also be coupled to the catheter shaft 1510. In other embodiments, the balloon distal end 1504D can be coupled to the guidewire lumen or another structure of the catheter 1502. Additionally, the balloon 1504 can be inflated with the balloon fluid 1532, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1546 of the balloon 1504 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1542 is somewhat different than in the previous embodiments. In particular, similar to the embodiment illustrated in FIG. 14, the balloon integrity protection system 1542 shown in FIG. 15 includes a shaft recess 1570 that is formed into the catheter shaft 1510, e.g., about a circumference of the catheter shaft 1510. With such design, the energy guides 1522A can be positioned within the shaft recess 1570 so that the energy guides 1522A are positioned with a greater separation distance relative to the balloon 1504.


Additionally, as also shown in FIG. 15, this embodiment of the balloon integrity protection system 1542 further includes a protection cage 1574 that is positioned about and/or fitted over the plasma generators 1533 to provide further separation between the plasma and the balloon 1504. The protection cage 1574 may serve to provide a recess and/or to further shift the catheter shaft 1510 away from the balloon 1504.


The protection cage 1574 can be formed from any suitable materials. For example, in certain non-exclusive alternative embodiments, the protection cage 1574 can be formed from one or more of a polymeric material, a metallic material (e.g., nitinol), or other suitable materials.


As with the previous embodiment, it is appreciated that with an increased separation between the plasma generator 1533, and thus the plasma, from the balloon 1504, the balloon 1504 will be less susceptible to potential rupture or other damage due to the heat generated by the formation of the plasma in the balloon fluid 1532.



FIG. 16 is a schematic cross-sectional view of a portion of the catheter system 1600 including still another embodiment of the balloon integrity protection system 1642. As illustrated in FIG. 16, the catheter system 1600 can include a catheter 1602 including a catheter shaft 1610, a balloon assembly 1603 including a balloon 1604 having a balloon wall 1630 that defines a balloon interior 1646, a balloon proximal end 1604P, and a balloon distal end 1604D, and a balloon fluid 1632 that is retained substantially within the balloon interior 1646; and at least one energy guide 1622A (two energy guides 1622A are illustrated in FIG. 16) including a plasma generator 1633 that is included and/or incorporated at a guide distal end 1622D of the energy guide 1622A. A guidewire lumen that would also likely be included in the catheter 1602 is not illustrated in FIG. 16. Additionally, as with the previous embodiments, the catheter system 1600, the catheter 1602 and/or the balloon assembly 1603 can further include the balloon integrity protection system 1642 that is operatively coupled to the balloon 1604 and that is configured to inhibit rupture or other damage to the balloon 1604 or otherwise protect the integrity of the balloon 1604 during use of the catheter system 1600. Alternatively, in other embodiments, the catheter system 1600 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 16 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1600.


The catheter 1602, including the catheter shaft 1610, the balloon 1604, and the guidewire lumen, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 16.


As above, the balloon 1604 is selectively movable between a deflated configuration suitable for advancing the catheter 1602 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1602 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1604P can be coupled to the catheter shaft 1610, and the balloon distal end 1604D can also be coupled to the catheter shaft 1610. In other embodiments, the balloon distal end 1604D can be coupled to the guidewire lumen or another structure of the catheter 1602. Additionally, the balloon 1604 can be inflated with the balloon fluid 1632, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1646 of the balloon 1604 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1642 is somewhat different than in the previous embodiments. In particular, similar to the embodiments illustrated in FIGS. 14 and 15, the balloon integrity protection system 1642 shown in FIG. 16 includes a shaft recess 1670 that is formed into the catheter shaft 1610, e.g., about a circumference of the catheter shaft 1610. With such design, the energy guides 1622A can be positioned within the shaft recess 1670 so that the energy guides 1622A are positioned with a greater separation distance relative to the balloon 1604.


Additionally, in the embodiment illustrated in FIG. 16, the balloon integrity protection system 1642 further includes a pair of small, high-pressure separator balloons 1676 that, as shown, can be positioned about the catheter shaft 1610 at either end of the shaft recess 1670. The separator balloons 1676 are configured to, when inflated, extend substantially completely from the catheter shaft 1610 to the balloon wall 1630 of the balloon 1604, e.g., a traditional angioplasty balloon, on either side of the plasma generator 1633. With such design, the plasma that is generated in the balloon fluid 1632 within the balloon interior 1646 will be effectively restrained within the area between the separator balloons 1676. As such, the separator balloons 1676 effectively provide a recess for the plasma. Further, the separator balloons 1676 may additionally serve to shift the catheter shaft 1610 away from the wall of the blood vessel 108 (illustrated in FIG. 1) and hence away from the balloon 1604.


As noted herein, any additional separation between the plasma and the balloon 1604 can result in the balloon 1604 being less susceptible to potential rupture or other damage due to the heat generated by the formation of the plasma in the balloon fluid 1632.



FIG. 17 is a schematic cross-sectional view of a portion of the catheter system 1700 including an embodiment of a vessel integrity protection system 1778. As illustrated in FIG. 17, the catheter system 1700 is somewhat similar to the embodiment illustrated in FIG. 16. However, in this embodiment, the catheter system 1700 does not include the balloon, and the catheter system 1700 is simply positioned within the blood vessel 108 without the traditional angioplasty balloon. More particularly, as shown in this embodiment, the catheter system 1700 can include a catheter 1702 including a catheter shaft 1710; and at least one energy guide 1722A (two energy guides 1722A are illustrated in FIG. 17) including a plasma generator 1733 that is included and/or incorporated at a guide distal end 1722D of the energy guide 1722A. A guidewire lumen that would also likely be included in the catheter 1702 is not illustrated in FIG. 17. Additionally, the catheter system 1700 and/or the catheter 1702 can further include the vessel integrity protection system 1778 that is configured protect the integrity of the blood vessel 108 during use of the catheter system 1700. Alternatively, in other embodiments, the catheter system 1700 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 17 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1700.


The catheter 1702, including the catheter shaft 1710, and the guidewire lumen, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 17.


Additionally, the balloon fluid 1732, e.g., from the fluid pump 138 (illustrated in FIG. 1), can be directed into the blood vessel via the inflation conduit 140 (illustrated in FIG. 1).


As illustrated in this embodiment, the vessel integrity protection system 1778 is substantially similar to the balloon integrity protection system 1642 illustrated and described in relation to FIG. 16. For example, as shown in FIG. 17, the vessel integrity protection system 1778 includes a shaft recess 1770 and a pair of small, high-pressure separator balloons 1776. Alternatively, the vessel integrity protection system 1778 can include more components or fewer components than those specifically illustrated in FIG. 17.


As shown, the shaft recess 1770 is again formed into the catheter shaft 1710, e.g., about a circumference of the catheter shaft 1710. With such design, the energy guides 1722A can be positioned within the shaft recess 1770 so that the energy guides 1722A are positioned with a greater separation distance relative to the blood vessel 108.


Additionally, in this embodiment, the separator balloons 1776 are again positioned about the catheter shaft 1710 at either end of the shaft recess 1770. The separator balloons 1776 are configured to, when inflated, extend substantially completely from the catheter shaft 1710 to the wall of the blood vessel 108 on either side of the plasma generator 1733. With such design, the plasma that is generated in the balloon fluid 1732 will be effectively restrained within the area between the separator balloons 1776. As such, the separator balloons 1776 effectively provide a recess for the plasma and further provide a seal against the wall of the blood vessel 108 creating a volume to perform intravascular lithotripsy. Thus, the plasma and the resulting pressure waves can be more restricted to be directed toward intravascular lesions to be treated.


Further, the separator balloons 1776 may additionally serve to shift the catheter shaft 1710 away from the wall of the blood vessel 108. It is appreciated that any additional separation between the plasma and the wall of the blood vessel 108 will help protect the blood vessel 108 from being potentially damaged by the plasma.



FIG. 18 is a schematic cross-sectional view of a portion of the catheter system 1800 including yet another embodiment of the balloon integrity protection system 1842. As illustrated in FIG. 18, the catheter system 1800 can include a catheter 1802 including a catheter shaft 1810, a balloon assembly 1803 including a balloon 1804 having a balloon wall 1830 that defines a balloon interior 1846, a balloon proximal end 1804P, and a balloon distal end 1804D, and a balloon fluid 1832 that is retained substantially within the balloon interior 1846; and at least one energy guide 1822A (two energy guides 1822A are illustrated in FIG. 18) including a plasma generator 1833 that is included and/or incorporated at a guide distal end 1822D of the energy guide 1822A. A guidewire lumen that would also likely be included in the catheter 1802 is not illustrated in FIG. 18. Additionally, as with the previous embodiments, the catheter system 1800, the catheter 1802 and/or the balloon assembly 1803 can further include the balloon integrity protection system 1842 that is operatively coupled to the balloon 1804 and that is configured to inhibit rupture or other damage to the balloon 1804 or otherwise protect the integrity of the balloon 1804 during use of the catheter system 1800. Alternatively, in other embodiments, the catheter system 1800 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 18 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1800.


The catheter 1802, including the catheter shaft 1810, the balloon 1804, and the guidewire lumen, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 18.


As above, the balloon 1804 is selectively movable between a deflated configuration suitable for advancing the catheter 1802 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1802 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1804P can be coupled to the catheter shaft 1810, and the balloon distal end 1804D can also be coupled to the catheter shaft 1810. In other embodiments, the balloon distal end 1804D can be coupled to the guidewire lumen or another structure of the catheter 1802. Additionally, the balloon 1804 can be inflated with the balloon fluid 1832, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1846 of the balloon 1804 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1842 is somewhat different than in the previous embodiments. In particular, similar to the embodiments illustrated in FIGS. 14-16, the balloon integrity protection system 1842 shown in FIG. 18 includes a shaft recess 1870 that is formed into the catheter shaft 1810, e.g., about a circumference of the catheter shaft 1810. With such design, the energy guides 1822A can be positioned within the shaft recess 1870 so that the energy guides 1822A are positioned with a greater separation distance relative to the balloon 1804.


Additionally, in the embodiment illustrated in FIG. 18, the balloon integrity protection system 1842 further includes one or more raised features 1880 that can formed and/or molded onto a surface 1804S of the balloon 1804, e.g., an inner surface of the balloon 1804. More particularly, the one or more raised features 1880 can be provided in the form of ribs (circumferential raised features) and/or splines (axial raised features) that are formed and/or molded onto the surface 1804S of the balloon 1804. In certain embodiments, the raised features 1880 can be aligned, at least generally, with the plasma generators 1833 in order to provide maximum separation between the balloon wall 1830 and the plasma that is generated in the balloon fluid 1832 within the balloon interior 1846.


The material for the raised features 1880 can be varied to suit the specific requirements of the catheter system 1800, the balloon assembly 1803 and/or the balloon integrity protection system 1842. For example, in certain non-exclusive alternative embodiments, the raised features 1880 can be formed from standard balloon materials such as polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™ or nylon. Still alternatively, the raised features 1880 can be formed from one or more of Nitinol, stainless steel, carbon, aramid, rayon, polyester, nylon, and natural (silk, wool, cotton and linen) fibers, Polyacetylene, polypyrrole, polyindole, polyaniline, poly(p-phenylene vinylene), poly(thiophene), poly(3,4-ethylenedioxythiophene), poly(p-phenylene sulfide), or other suitable materials.


As noted herein, any additional separation between the plasma and the balloon 1804 can result in the balloon 1804 being less susceptible to potential rupture or other damage due to the heat generated by the formation of the plasma in the balloon fluid 1832.



FIG. 19 is a schematic cross-sectional view of a portion of the catheter system 1900 including another embodiment of the balloon integrity protection system 1942. As with the previous embodiments, as illustrated in FIG. 19, the catheter system 1900 can include a catheter 1902 including a catheter shaft 1910, a balloon assembly 1903 including a balloon 1904 having a balloon wall 1930 that defines a balloon interior 1946, a balloon proximal end 1904P, and a balloon distal end 1904D, a balloon fluid 1932 that is retained substantially within the balloon interior 1946, and a guidewire lumen 1918 that extends into and runs through the balloon interior 1946; and an energy guide 1922A including a plasma generator 1933 that is included and/or incorporated at a guide distal end 1922D of the energy guide 1922A. Additionally, as with the previous embodiments, the catheter system 1900, the catheter 1902 and/or the balloon assembly 1903 can further include the balloon integrity protection system 1942 that is operatively coupled to the balloon 1904 and that is configured to inhibit rupture or other damage to the balloon 1904 or otherwise protect the integrity of the balloon 1904 during use of the catheter system 1900. Alternatively, in other embodiments, the catheter system 1900 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 19 for purposes of clarity, but would likely be included in any embodiment of the catheter system 1900.


The catheter 1902, including the catheter shaft 1910, the balloon 1904, and the guidewire lumen 1918, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 19.


As above, the balloon 1904 is selectively movable between a deflated configuration suitable for advancing the catheter 1902 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 1902 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 1904P can be coupled to the catheter shaft 1910, and the balloon distal end 1904D can be coupled to the guidewire lumen 1918. In other embodiments, the catheter shaft 1910 can extend fully through the balloon 1904, and the balloon distal end 1904D can also be coupled to the catheter shaft 1910. In still other embodiments, the balloon distal end 1904D can be coupled to another structure of the catheter 1902. Additionally, the balloon 1904 can be inflated with the balloon fluid 1932, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 1946 of the balloon 1904 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 1942 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 19, the balloon integrity protection system 1942 includes leak plugging material 1982 (also sometimes referred to as “self-healing material”) that can be distributed within the balloon interior 1946 in addition to the balloon fluid 1932. For example, in certain embodiments, during catheter assembly, the balloon 1904 can be loaded with an assortment of leak plugging material 1982 in the form of “corks” or beads that during in-vivo inflation with the balloon fluid 1932 disperse within the balloon 1904.


During use of the catheter system 1900, if the plasma melts a hole in the balloon wall 1930, the leak plugging material 1982 will migrate through the hole to plug the leak in order to inhibit propagation of the holes and/or rupture of the balloon 1904. It is appreciated that the leak plugging material 1982 can be formed to be any suitable size in order to effectively plug any holes that may develop in the balloon wall 1930 during use of the catheter system 1900. For example, in certain embodiments, the leak plugging material 1982 can be provided in the form of “corks” or beads that are between approximately one μm and 100 μm in diameter. More particularly, in some such embodiments, the leak plugging material 1982 can be provided in the form of “corks” or beads that are approximately 1 μm, 2 μm, 5 μm, 7 μm, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, or 100 μm in diameter. Alternatively, the leak plugging material 1982 can be provided in the form of “corks” or beads that are greater than 100 μm or less than one μm in diameter.


Additionally, the leak plugging material 1982 can be formed from any suitable materials. For example, in alternative embodiments, the leak plugging material 1982 can be non-absorbable or bio-absorbable. It is appreciated that bio-absorbable material has the advantage that such leak plugging material 1982 smaller than the hole size that escape the balloon 1904 before being plugged will metabolize within the microvascular before causing blockage that could lead to ischemia. Further, in certain non-exclusive alternative embodiments, the leak plugging material 1982 can be formed from gelatin, collagen, fibrin, polylactic acid, polyglycolic acid, poly(lactic-co-glycolic) acid, and polycaprolactone or other suitable materials used in closure devices.



FIG. 20 is a schematic cross-sectional view of a portion of the catheter system 2000 including still yet another embodiment of the balloon integrity protection system 2042. As with the previous embodiments, as illustrated in FIG. 20, the catheter system 2000 can include a catheter 2002 including a catheter shaft 2010, a balloon assembly 2003 including a balloon 2004 having a balloon wall 2030 that defines a balloon interior 2046, a balloon proximal end 2004P, and a balloon distal end 2004D, a balloon fluid 2032 that is retained substantially within the balloon interior 2046, and a guidewire lumen 2018 that extends into and runs through the balloon interior 2046; and an energy guide 2022A including a plasma generator 2033 that is included and/or incorporated at a guide distal end 2022D of the energy guide 2022A. Additionally, as with the previous embodiments, the catheter system 2000, the catheter 2002 and/or the balloon assembly 2003 can further include the balloon integrity protection system 2042 that is operatively coupled to the balloon 2004 and that is configured to inhibit rupture or other damage to the balloon 2004 or otherwise protect the integrity of the balloon 2004 during use of the catheter system 2000. Alternatively, in other embodiments, the catheter system 2000 can include more components or fewer components than what is specifically illustrated and described herein. For example, certain components that were illustrated in FIG. 1, e.g., the guidewire 112, the light source 124, the power source 125, the system controller 126, the GUI 127, the handle assembly 128, the source manifold 136 and the fluid pump 138, are not specifically illustrated in FIG. 20 for purposes of clarity, but would likely be included in any embodiment of the catheter system 2000.


The catheter 2002, including the catheter shaft 2010, the balloon 2004, and the guidewire lumen 2018, is generally similar in design and operation to what has been described in detail herein above. Thus, such components will not be described in detail again in relation to the embodiment shown in FIG. 20.


As above, the balloon 2004 is selectively movable between a deflated configuration suitable for advancing the catheter 2002 through a patient's vasculature, and an inflated configuration suitable for anchoring the catheter 2002 in position relative to the treatment site 106 (illustrated in FIG. 1). In some embodiments, the balloon proximal end 2004P can be coupled to the catheter shaft 2010, and the balloon distal end 2004D can be coupled to the guidewire lumen 2018. In other embodiments, the catheter shaft 2010 can extend fully through the balloon 2004, and the balloon distal end 2004D can also be coupled to the catheter shaft 2010. In still other embodiments, the balloon distal end 2004D can be coupled to another structure of the catheter 2002. Additionally, the balloon 2004 can be inflated with the balloon fluid 2032, e.g., from the fluid pump 138 (illustrated in FIG. 1), that is directed into the balloon interior 2046 of the balloon 2004 via the inflation conduit 140 (illustrated in FIG. 1).


However, in this embodiment, the balloon integrity protection system 2042 is somewhat different than in the previous embodiments. In particular, as shown in FIG. 20, the balloon integrity protection system 2042 includes the balloon 2004 being optically opaque, i.e. to the wavelength of light energy from the light source 124 (illustrated in FIG. 1). With such design, any potential stray light, e.g., potential stray laser light, within the balloon interior 2046 is inhibited from being able escape from the balloon interior 2046 for purposes of protecting the user or patient from any vascular damage that may otherwise occur due to the presence of such stray light.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content and/or context clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content or context clearly dictates otherwise.


It should also be noted that, as used in this specification and the appended claims, the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration. The phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.


The headings used herein are provided for consistency with suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not be viewed to limit or characterize the invention(s) set out in any claims that may issue from this disclosure. As an example, a description of a technology in the “Background” is not an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” or “Abstract” to be considered as a characterization of the invention(s) set forth in issued claims.


The embodiments described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the present detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices. As such, aspects have been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope herein.


It is understood that although a number of different embodiments of the catheter systems have been illustrated and described herein, one or more features of any one embodiment can be combined with one or more features of one or more of the other embodiments, provided that such combination satisfies the intent of the present invention.


While a number of exemplary aspects and embodiments of the catheter systems have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope, and no limitations are intended to the details of construction or design herein shown.

Claims
  • 1. A catheter system for treating a treatment site within or adjacent to a vessel wall of a blood vessel, or a heart valve, the catheter system comprising: an energy source that generates energy;a catheter shaft that extends into the blood vessel, the catheter shaft including a shaft recess;an energy guide that is configured to receive energy from the energy source and guide the energy into the blood vessel; anda plasma generator that is positioned at a guide distal end of the energy guide, the plasma generator being configured to generate the plasma in a fluid within the blood vessel; andwherein the energy guide is positioned such that the plasma generator is positioned substantially within the shaft recess.
  • 2. The catheter system of claim 1 further including a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior.
  • 3. The catheter system of claim 2 further comprising a pair of separator balloons that are positioned about the catheter shaft at either end of the shaft recess.
  • 4. The catheter system of claim 2 wherein the plasma formation causes rapid bubble formation and imparts pressure waves upon the balloon wall adjacent to the treatment site.
  • 5. The catheter system of claim 2 wherein the energy source is a laser source that provides pulses of laser energy, and the energy guide includes an optical fiber.
  • 6. The catheter system of claim 2 wherein the energy source is a high voltage energy source that provides pulses of high voltage.
  • 7. The catheter system of claim 2 wherein a composite material is positioned on a surface of the balloon.
  • 8. The catheter system of claim 2 wherein the balloon is formed from thermally conductive balloon material.
  • 9. The catheter system of claim 2 wherein the balloon is optically opaque.
  • 10. The catheter system of claim 2 further comprising a balloon integrity protection system that is operatively coupled to the balloon, the balloon integrity protection system being configured to inhibit rupture of the balloon due to the plasma formed in the balloon fluid within the balloon interior during use of the catheter system.
  • 11. A catheter system for treating a treatment site within or adjacent to a vessel wall or a heart valve, the catheter system comprising: an energy source that generates pulses of energy;a balloon that is positionable substantially adjacent to the treatment site, the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior;a catheter shaft that extends into the balloon interior, the balloon being coupled to the catheter shaft, the catheter shaft including a shaft recess;an energy guide that is configured to receive the energy from the energy source and guide the energy into the balloon interior so that plasma is formed in the balloon fluid within the balloon interior;a plasma generator that is positioned at a guide distal end of the energy guide, the plasma generator being configured to generate the plasma, the energy guide being positioned so that the plasma generator is positioned substantially within the shaft recess; anda balloon integrity protection system that is operatively coupled to the balloon, the balloon integrity protection system being configured to inhibit temperature-induced rupture of the balloon due to the plasma formed in the balloon fluid within the balloon interior during use of the catheter system.
  • 12. The catheter system of claim 11 wherein the plasma formation causes rapid bubble formation and imparts pressure waves upon the balloon wall adjacent to the treatment site.
  • 13. The catheter system of claim 11 wherein the energy source is a laser source that provides pulses of laser energy.
  • 14. The catheter system of claim 13 wherein the energy guide includes an optical fiber.
  • 15. The catheter system of claim 11 wherein the energy source is a high voltage energy source that provides pulses of high voltage.
  • 16. The catheter system of claim 15 wherein the energy guide includes an electrode pair including spaced apart electrodes that extend into the balloon interior; and wherein pulses of high voltage from the energy source are applied to the electrodes and form an electrical arc across the electrodes.
  • 17. The catheter system of claim 11 wherein the balloon integrity protection system includes a second balloon that is positioned to substantially encircle the balloon, the second balloon including a second balloon wall that is positioned such that a majority of the second balloon wall is positioned spaced apart from the balloon wall.
  • 18. The catheter system of claim 11 wherein the balloon integrity protection system includes a second balloon that is positioned to substantially encircle the balloon, the second balloon including a second balloon wall that is positioned such that the second balloon wall is positioned substantially directly adjacent to the balloon wall.
  • 19. The catheter system of claim 11 wherein the balloon integrity protection system includes a composite material that is positioned on a surface of the balloon.
  • 20. The catheter system of claim 11 wherein the balloon integrity protection system includes a braided material layer that is wrapped around a surface of the balloon to provide a braided balloon composite.
  • 21. The catheter system of claim 11 wherein the balloon is formed as an electro-spun balloon.
  • 22. The catheter system of claim 11 wherein the balloon is formed from electrically conductive balloon material.
  • 23. The catheter system of claim 11 wherein the balloon is formed from thermally conductive balloon material.
  • 24. The catheter system of claim 11 wherein the balloon integrity protection system includes a leak plugging material that is distributed within the balloon interior, the leak plugging material being configured to plug leaks in the balloon that may develop during use of the catheter system.
  • 25. The catheter system of claim 11 wherein the balloon integrity protection system includes the balloon being optically opaque.
  • 26. The catheter system of claim 11 wherein the balloon includes a drug-eluting coating.
RELATED APPLICATION

This application claims priority on U.S. Provisional Application Ser. No. 63/033,929, filed on Jun. 3, 2020. To the extent permitted, the contents of U.S. Provisional Application Ser. No. 63/033,929 are incorporated in their entirety herein by reference.

US Referenced Citations (650)
Number Name Date Kind
4649924 Taccardi Mar 1987 A
4699147 Chilson et al. Oct 1987 A
4799479 Spears Jan 1989 A
4850351 Herman Jul 1989 A
4913142 Kittrell et al. Apr 1990 A
4932954 Wondrazek et al. Jun 1990 A
4955895 Suglyama Sep 1990 A
4960108 Reichel et al. Oct 1990 A
4994059 Kosa et al. Feb 1991 A
4998930 Lundahl Mar 1991 A
5034010 Kittrell et al. Jul 1991 A
5041121 Wondrazek et al. Aug 1991 A
5082343 Coult et al. Jan 1992 A
5093877 Aita et al. Mar 1992 A
5104391 Ingle Apr 1992 A
5104392 Kittrell et al. Apr 1992 A
5109452 Selvin et al. Apr 1992 A
5116227 Levy May 1992 A
5126165 Akihama et al. Jun 1992 A
5152768 Bhatta Oct 1992 A
5173049 Levy Dec 1992 A
5176674 Hofmann Jan 1993 A
5181921 Makita Jan 1993 A
5200838 Nudelman Apr 1993 A
5290277 Vercimak et al. Mar 1994 A
5324282 Dodick Jun 1994 A
5328472 Steinke et al. Jul 1994 A
5336184 Teirstein Aug 1994 A
5372138 Crowley Dec 1994 A
5387225 Euteneur Feb 1995 A
5400428 Grace Mar 1995 A
5410797 Steinke et al. May 1995 A
5422926 Smith Jun 1995 A
5454809 Janssen Oct 1995 A
5456680 Taylor Oct 1995 A
5474537 Solar Dec 1995 A
5509917 Cecchetti Apr 1996 A
5540679 Fram Jul 1996 A
5562657 Griffin Oct 1996 A
5598494 Behrmann et al. Jan 1997 A
5609606 O'Boyle Mar 1997 A
5611807 O'Boyle Mar 1997 A
5661829 Zheng Aug 1997 A
5697377 Wittkamph Dec 1997 A
5718241 Ben-Haim et al. Feb 1998 A
5729583 Tang Mar 1998 A
5764843 Macken et al. Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5860974 Abele Jan 1999 A
5891135 Jackson et al. Apr 1999 A
5906611 Dodick et al. May 1999 A
5944697 Benett et al. Aug 1999 A
6015404 Altshuler Jan 2000 A
6080119 Schwarze et al. Jun 2000 A
6123923 Unger Sep 2000 A
6139510 Palermo Oct 2000 A
6186963 Schwarze et al. Feb 2001 B1
6203537 Adrian Mar 2001 B1
6210404 Shadduck Apr 2001 B1
6339470 Papademetriou et al. Jan 2002 B1
6356575 Fukumoto Mar 2002 B1
6368318 Visuri et al. Apr 2002 B1
6423055 Farr Jul 2002 B1
6500174 Maguire et al. Dec 2002 B1
6514203 Bukshpan Feb 2003 B2
6514249 Maguire Feb 2003 B1
6524251 Rabiner et al. Mar 2003 B2
6538739 Visuri et al. Mar 2003 B1
6548010 Stivland et al. Apr 2003 B1
6560387 Hehlen et al. May 2003 B1
6607502 Maguire et al. Aug 2003 B1
6631220 Liang et al. Oct 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6666834 Restle et al. Dec 2003 B2
6702781 Reifart et al. Mar 2004 B1
6773447 Laguna Aug 2004 B2
6824554 Jang Nov 2004 B1
6849994 White et al. Feb 2005 B1
6890317 Gerdts et al. May 2005 B2
6947785 Beatty et al. Sep 2005 B1
6966890 Coyle et al. Nov 2005 B2
6978168 Beatty et al. Dec 2005 B2
6990370 Beatty et al. Jan 2006 B1
7273470 Wantink Sep 2007 B2
7309324 Hayes et al. Dec 2007 B2
7367967 Eidenschink May 2008 B2
7470240 Schultheiss et al. Dec 2008 B2
7539231 Honea et al. May 2009 B1
7569032 Naimark et al. Aug 2009 B2
7599588 Eberle et al. Oct 2009 B2
7641646 Kennedy, II Jan 2010 B2
7713260 Lessard May 2010 B2
7758572 Weber Jul 2010 B2
7762984 Kumoyama et al. Jul 2010 B2
7810395 Zhou Oct 2010 B2
7850685 Kunis et al. Dec 2010 B2
7867178 Simnacher Jan 2011 B2
7909797 Kennedy, II et al. Mar 2011 B2
7967781 Simpson et al. Jun 2011 B2
7972299 Carter Jul 2011 B2
7985189 Ogden et al. Jul 2011 B1
8021328 Lee Sep 2011 B2
8029473 Carter Oct 2011 B2
8043256 Hansen Oct 2011 B2
8088121 Nishide Jan 2012 B2
8162859 Schultheiss et al. Apr 2012 B2
8166825 Zhou May 2012 B2
8192368 Woodruff Jun 2012 B2
8267886 Ewing Sep 2012 B2
8292913 Warnack Oct 2012 B2
8328820 Diamant Dec 2012 B2
8364235 Kordis et al. Jan 2013 B2
8382738 Simpson et al. Feb 2013 B2
8414527 Mallaby Apr 2013 B2
8419613 Saadat Apr 2013 B2
8439890 Beyar May 2013 B2
8556813 Cashman et al. Oct 2013 B2
8574247 Adams et al. Nov 2013 B2
8657814 Werneth Feb 2014 B2
8709075 Adams et al. Apr 2014 B2
8728091 Hakala et al. May 2014 B2
8734424 Watanabe May 2014 B2
8747416 Hakala Jun 2014 B2
8784362 Boutilette Jul 2014 B2
8834510 Wilson et al. Sep 2014 B2
8888788 Hakala et al. Nov 2014 B2
8956371 Hawkins Feb 2015 B2
8956374 Hawkins et al. Feb 2015 B2
8986339 Warnack Mar 2015 B2
8992817 Stamberg Mar 2015 B2
9005216 Hakala et al. Apr 2015 B2
9011462 Adams et al. Apr 2015 B2
9011463 Adams et al. Apr 2015 B2
9011511 Gregorich Apr 2015 B2
9044618 Hawkins et al. Jun 2015 B2
9044619 Hawkins et al. Jun 2015 B2
9072534 Adams et al. Jul 2015 B2
9089669 Haslinger et al. Jul 2015 B2
9131949 Coleman et al. Sep 2015 B2
9138249 Adams et al. Sep 2015 B2
9138260 Miller et al. Sep 2015 B2
9180280 Hawkins Nov 2015 B2
9220521 Hawkins et al. Dec 2015 B2
9237984 Hawkins et al. Jan 2016 B2
9289132 Ghaffari et al. Mar 2016 B2
9289224 Adams et al. Mar 2016 B2
9320530 Grace Apr 2016 B2
9333000 Hakala et al. May 2016 B2
9339632 Eidenschink et al. May 2016 B2
9364645 Erikawa Jun 2016 B2
9375223 Wallace Jun 2016 B2
9421025 Hawkins et al. Aug 2016 B2
9433428 Hakala et al. Sep 2016 B2
9433745 Cully Sep 2016 B2
9504809 Bo Nov 2016 B2
9510887 Burnett Dec 2016 B2
9522012 Adams Dec 2016 B2
9554815 Adams et al. Jan 2017 B2
9555267 Ein-gal Jan 2017 B2
9566209 Katragadda et al. Feb 2017 B2
9579114 Mantell et al. Feb 2017 B2
9585684 Nita et al. Mar 2017 B2
9592328 Jeevanandam Mar 2017 B2
9629567 Porath et al. Apr 2017 B2
9642673 Adams May 2017 B2
9662069 De Graff et al. May 2017 B2
9687166 Subramaniam Jun 2017 B2
9730715 Adams Aug 2017 B2
9737361 Magana Aug 2017 B2
9764142 Imran Sep 2017 B2
9782570 Hirszowicz Oct 2017 B2
9814476 Adams et al. Nov 2017 B2
9833348 Jordan et al. Dec 2017 B2
9839764 Chouinard Dec 2017 B2
9861377 Mantell et al. Jan 2018 B2
9867629 Hawkins et al. Jan 2018 B2
9878135 Holzapfel et al. Jan 2018 B2
9894756 Weinkam et al. Feb 2018 B2
9901704 Appling Feb 2018 B2
9955946 Miller et al. May 2018 B2
9974963 Imran May 2018 B2
9974970 Nuta et al. May 2018 B2
9993292 Adams et al. Jun 2018 B2
10039561 Adams et al. Aug 2018 B2
10086175 Torres et al. Oct 2018 B2
10124153 Feig Nov 2018 B2
10136829 Deno et al. Nov 2018 B2
10149690 Hawkins et al. Dec 2018 B2
10159505 Hakala et al. Dec 2018 B2
10194994 Deno et al. Feb 2019 B2
10201387 Grace et al. Feb 2019 B2
10206698 Hakala et al. Feb 2019 B2
10226265 Ku et al. Mar 2019 B2
10245410 Aggerholm Apr 2019 B2
10357264 Kat-Kuoy Jul 2019 B2
10405923 Yu et al. Sep 2019 B2
10406031 Thyzel Sep 2019 B2
10406318 Williams Sep 2019 B2
10420569 Adams Sep 2019 B2
10439791 Kalhan Oct 2019 B2
10441300 Hawkins Oct 2019 B2
10449339 Wilson et al. Oct 2019 B2
10463430 Dick Nov 2019 B2
10478202 Adams et al. Nov 2019 B2
10517620 Adams Dec 2019 B2
10517621 Hakala et al. Dec 2019 B1
10537287 Braido et al. Jan 2020 B2
10555744 Nguyen et al. Feb 2020 B2
10561428 Eggert et al. Feb 2020 B2
10583277 Rundquist Mar 2020 B2
10589073 Mallaby Mar 2020 B2
10617850 Tal Apr 2020 B2
10646240 Betelia et al. May 2020 B2
10668245 Kanae Jun 2020 B2
10682178 Adams et al. Jun 2020 B2
10695531 Suzuki Jun 2020 B2
10702293 Adams et al. Jul 2020 B2
10709462 Nguyen et al. Jul 2020 B2
10709872 Alvarez et al. Jul 2020 B2
10758255 Adams Sep 2020 B2
10797684 Benz et al. Oct 2020 B1
10799688 Calhoun Oct 2020 B2
10842567 Grace et al. Nov 2020 B2
10850075 Tarunaga Dec 2020 B2
10857329 Davies Dec 2020 B2
10933225 Campbell Mar 2021 B2
10959743 Adams et al. Mar 2021 B2
10966737 Nguyen Apr 2021 B2
10967156 Gulachenski Apr 2021 B2
10973538 Hakala et al. Apr 2021 B2
10980987 Tarunaga Apr 2021 B2
11000299 Hawkins et al. May 2021 B2
11020135 Hawkins Jun 2021 B1
11026707 Ku et al. Jun 2021 B2
11058492 Grace et al. Jul 2021 B2
11076874 Hakala et al. Aug 2021 B2
11116939 Jamous et al. Sep 2021 B2
11141131 Stigall Oct 2021 B2
11207493 Suzuki et al. Dec 2021 B2
11213661 Spindler Jan 2022 B2
11229772 Nita Jan 2022 B2
11229776 Kugler et al. Jan 2022 B2
11246659 Grace et al. Feb 2022 B2
11253681 Williams Feb 2022 B2
11484327 Anderson et al. Nov 2022 B2
11633200 Anderson et al. Apr 2023 B2
11779363 Vo Oct 2023 B2
11826530 Suzuki Nov 2023 B2
11911054 Singla Feb 2024 B2
11911056 Anderson et al. Feb 2024 B2
11918285 Sun et al. Mar 2024 B2
11944331 Anderson et al. Apr 2024 B2
20010016761 Rudie Aug 2001 A1
20010049464 Ganz Dec 2001 A1
20010051784 Brisken Dec 2001 A1
20020045811 Kittrell et al. Apr 2002 A1
20020052621 Fried et al. May 2002 A1
20020065512 Fjield et al. May 2002 A1
20020082553 Duchamp Jun 2002 A1
20020183620 Tearney Dec 2002 A1
20020183729 Farr et al. Dec 2002 A1
20020188204 McNamara et al. Dec 2002 A1
20030009157 Levine et al. Jan 2003 A1
20030050632 Fjield et al. Mar 2003 A1
20030065316 Levine et al. Apr 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030125719 Furnish Jul 2003 A1
20030144654 Hilal Jul 2003 A1
20030176873 Chernenko et al. Sep 2003 A1
20040002677 Gentsler Jan 2004 A1
20040024349 Flock et al. Feb 2004 A1
20040073251 Weber Apr 2004 A1
20040097996 Rabiner May 2004 A1
20040133254 Sterzer et al. Jul 2004 A1
20040162508 Uebelacker Aug 2004 A1
20040210278 Boll Oct 2004 A1
20040243119 Lane et al. Dec 2004 A1
20040249401 Rabiner Dec 2004 A1
20040254570 Hadsjicostis Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050021013 Visuri Jan 2005 A1
20050080396 Rontal Apr 2005 A1
20050113722 Schultheiss May 2005 A1
20050171437 Carberry Aug 2005 A1
20050171527 Bhola Aug 2005 A1
20050251131 Lesh Nov 2005 A1
20050259319 Brooker Nov 2005 A1
20050273014 Gianchandani et al. Dec 2005 A1
20050277839 Alderman et al. Dec 2005 A1
20060033241 Schewe et al. Feb 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060098921 Benaron et al. May 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060200039 Brockway et al. Sep 2006 A1
20060221528 Li et al. Oct 2006 A1
20060241524 Lee et al. Oct 2006 A1
20060241572 Zhou Oct 2006 A1
20060241733 Zhang et al. Oct 2006 A1
20060270976 Savage et al. Nov 2006 A1
20070027524 Johnson Feb 2007 A1
20070043340 Thyzel Feb 2007 A1
20070060990 Satake Mar 2007 A1
20070088380 Hirszowicz et al. Apr 2007 A1
20070118057 Ein-gal May 2007 A1
20070142819 El-Nounou et al. Jun 2007 A1
20070142821 Hennessy et al. Jun 2007 A1
20070179496 Swoyer Aug 2007 A1
20070239082 Schultheiss et al. Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070264353 Myntti et al. Nov 2007 A1
20070270897 Skerven Nov 2007 A1
20070280311 Hofmann Dec 2007 A1
20070299392 Beyar et al. Dec 2007 A1
20080033519 Burwell Feb 2008 A1
20080081950 Koenig et al. Apr 2008 A1
20080086118 Lai Apr 2008 A1
20080095714 Castella et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080108867 Zhou May 2008 A1
20080114341 Thyzel May 2008 A1
20080132810 Scoseria et al. Jun 2008 A1
20080175539 Brown Jul 2008 A1
20080195088 Farr et al. Aug 2008 A1
20080214891 Slenker et al. Sep 2008 A1
20080221550 Lee Sep 2008 A1
20080281157 Miyagi et al. Nov 2008 A1
20080296152 Voss Dec 2008 A1
20080319356 Cain et al. Dec 2008 A1
20090036803 Warlick et al. Feb 2009 A1
20090043300 Reitmajer et al. Feb 2009 A1
20090054881 Krespi Feb 2009 A1
20090097806 Viellerobe et al. Apr 2009 A1
20090125007 Splinter May 2009 A1
20090131921 Kurtz et al. May 2009 A1
20090192495 Ostrovsky et al. Jul 2009 A1
20090240242 Neuberger Sep 2009 A1
20090247945 Levit Oct 2009 A1
20090281531 Rizoiu Nov 2009 A1
20090292296 Pansky Nov 2009 A1
20090296751 Kewitsch et al. Dec 2009 A1
20090299327 Tilson et al. Dec 2009 A1
20090306533 Rousche Dec 2009 A1
20090312768 Hawkins et al. Dec 2009 A1
20100016862 Hawkins et al. Jan 2010 A1
20100036294 Mantell Feb 2010 A1
20100063491 Verhagen Mar 2010 A1
20100094209 Drasler et al. Apr 2010 A1
20100114020 Hawkins et al. May 2010 A1
20100114065 Hawkins et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100160838 Krespi Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100168572 Sliwa Jul 2010 A1
20100168836 Kassab Jul 2010 A1
20100168862 Edie et al. Jul 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100191089 Stebler et al. Jul 2010 A1
20100198114 Novak et al. Aug 2010 A1
20100199773 Zhou Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100234875 Allex et al. Sep 2010 A1
20100256535 Novak et al. Oct 2010 A1
20100265733 O'Leary Oct 2010 A1
20100316333 Luther Dec 2010 A1
20110034832 Cioanta et al. Feb 2011 A1
20110059415 Kasenbacher Mar 2011 A1
20110082452 Melsky Apr 2011 A1
20110082534 Wallace Apr 2011 A1
20110118634 Golan May 2011 A1
20110144502 Zhou et al. Jun 2011 A1
20110184244 Kagaya et al. Jul 2011 A1
20110208185 Diamant et al. Aug 2011 A1
20110213349 Brown Sep 2011 A1
20110245740 Novak et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110275990 Besser et al. Nov 2011 A1
20110306956 Islam Dec 2011 A1
20120064141 Andreacchi et al. Mar 2012 A1
20120071715 Beyar et al. Mar 2012 A1
20120071867 Ryan Mar 2012 A1
20120071889 Mantell et al. Mar 2012 A1
20120089132 Dick et al. Apr 2012 A1
20120095335 Sverdlik et al. Apr 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120116289 Hawkins et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123331 Satake May 2012 A1
20120123399 Belikov May 2012 A1
20120143131 Tun Jun 2012 A1
20120157892 Reitmajer et al. Jun 2012 A1
20120197245 Burnett Aug 2012 A1
20120203255 Hawkins et al. Aug 2012 A1
20120221013 Hawkins et al. Aug 2012 A1
20120232409 Stahmann Sep 2012 A1
20120296367 Grovender et al. Nov 2012 A1
20120323211 Ogle Dec 2012 A1
20120330293 Arai Dec 2012 A1
20130030431 Adams Jan 2013 A1
20130030447 Adams Jan 2013 A1
20130041355 Heeren et al. Feb 2013 A1
20130046207 Capelli Feb 2013 A1
20130046293 Arai et al. Feb 2013 A1
20130053762 Rontal et al. Feb 2013 A1
20130110003 Surti May 2013 A1
20130116714 Adams et al. May 2013 A1
20130165764 Scheuermann Jun 2013 A1
20130190803 Angel et al. Jul 2013 A1
20130197614 Gustus Aug 2013 A1
20130218054 Sverdlik et al. Aug 2013 A1
20130226131 Bacino et al. Aug 2013 A1
20130253466 Campbell Sep 2013 A1
20130274726 Takayama Oct 2013 A1
20130345617 Wallace Dec 2013 A1
20140005576 Adams Jan 2014 A1
20140005706 Gelfand et al. Jan 2014 A1
20140012186 Thyzel Jan 2014 A1
20140039002 Adams et al. Jan 2014 A1
20140039358 Zhou et al. Feb 2014 A1
20140039513 Hakala Feb 2014 A1
20140046229 Hawkins et al. Feb 2014 A1
20140046353 Adams Feb 2014 A1
20140052146 Curtis et al. Feb 2014 A1
20140052147 Hakala et al. Feb 2014 A1
20140058294 Gross et al. Feb 2014 A1
20140074111 Hakala Mar 2014 A1
20140114198 Samada et al. Apr 2014 A1
20140153087 Hutchings et al. Jun 2014 A1
20140155990 Nyuli Jun 2014 A1
20140180069 Millett Jun 2014 A1
20140180126 Millett Jun 2014 A1
20140180134 Hoseit Jun 2014 A1
20140188094 Islam Jul 2014 A1
20140228829 Schmitt Aug 2014 A1
20140257144 Capelli et al. Sep 2014 A1
20140257148 Jie Sep 2014 A1
20140276573 Miesel Sep 2014 A1
20140288570 Adams Sep 2014 A1
20140309536 Douk et al. Oct 2014 A1
20140336632 Toth Nov 2014 A1
20140336637 Agrawal Nov 2014 A1
20140357997 Hartmann Dec 2014 A1
20150003900 Ullrich et al. Jan 2015 A1
20150005576 Diodone et al. Jan 2015 A1
20150039002 Hawkins Feb 2015 A1
20150057648 Swift et al. Feb 2015 A1
20150073430 Hakala et al. Mar 2015 A1
20150080875 Kasprzyk et al. Mar 2015 A1
20150100048 Hiereth et al. Apr 2015 A1
20150105715 Pikus et al. Apr 2015 A1
20150119870 Rudie Apr 2015 A1
20150126990 Sharma May 2015 A1
20150141764 Harks et al. May 2015 A1
20150250542 Islam Sep 2015 A1
20150276689 Watanabe Oct 2015 A1
20150313732 Fulton, III Nov 2015 A1
20150320432 Adams Nov 2015 A1
20150342678 Deladurantaye et al. Dec 2015 A1
20150359432 Ehrenreich Dec 2015 A1
20150359557 Shimokawa Dec 2015 A1
20160008016 Cioanta et al. Jan 2016 A1
20160016016 Taylor et al. Jan 2016 A1
20160018602 Govari et al. Jan 2016 A1
20160022294 Cioanta et al. Jan 2016 A1
20160038087 Hunter Feb 2016 A1
20160095610 Lipowski et al. Apr 2016 A1
20160135828 Hawkins et al. May 2016 A1
20160135891 Feldman May 2016 A1
20160143522 Ransbury May 2016 A1
20160151639 Scharf et al. Jun 2016 A1
20160183819 Burnett Jun 2016 A1
20160183957 Hakala et al. Jun 2016 A1
20160184020 Kowalewski et al. Jun 2016 A1
20160184022 Grace et al. Jun 2016 A1
20160184023 Grace et al. Jun 2016 A1
20160184526 Beyar Jun 2016 A1
20160184570 Grace et al. Jun 2016 A1
20160228187 Gross Aug 2016 A1
20160262784 Grace et al. Sep 2016 A1
20160270806 Wallace Sep 2016 A1
20160302762 Stigall et al. Oct 2016 A1
20160234534 Hawkins et al. Nov 2016 A1
20160324564 Gerlach et al. Nov 2016 A1
20160331389 Hakala et al. Nov 2016 A1
20160367274 Wallace Dec 2016 A1
20160367275 Wallace Dec 2016 A1
20170049463 Popovic et al. Feb 2017 A1
20170056035 Adams Mar 2017 A1
20170056087 Buckley Mar 2017 A1
20170086867 Adams Mar 2017 A1
20170119469 Shimizu et al. May 2017 A1
20170119470 Diamant et al. May 2017 A1
20170135709 Nguyen et al. May 2017 A1
20170151421 Asher Jun 2017 A1
20170192242 Laycock Jul 2017 A1
20170209050 Fengler et al. Jul 2017 A1
20170265942 Grace et al. Sep 2017 A1
20170303946 Ku et al. Oct 2017 A1
20170311965 Adams Nov 2017 A1
20180008348 Grace et al. Jan 2018 A1
20180042661 Long Feb 2018 A1
20180042677 Yu et al. Feb 2018 A1
20180045897 Chia Feb 2018 A1
20180049877 Venkatasubramanian Feb 2018 A1
20180085174 Radtke et al. Mar 2018 A1
20180092763 Dagan et al. Apr 2018 A1
20180095287 Jeng et al. Apr 2018 A1
20180098779 Betelia et al. Apr 2018 A1
20180152568 Kat-kuoy Jun 2018 A1
20180214677 Tarunaga Aug 2018 A1
20180238675 Wan Aug 2018 A1
20180256250 Adams et al. Sep 2018 A1
20180280005 Parmentier Oct 2018 A1
20180303501 Hawkins Oct 2018 A1
20180303503 Eggert et al. Oct 2018 A1
20180303504 Eggert et al. Oct 2018 A1
20180304053 Eggert et al. Oct 2018 A1
20180323571 Brown et al. Nov 2018 A1
20180333043 Teriluc Nov 2018 A1
20180360482 Nguyen Dec 2018 A1
20190029702 De Cicco Jan 2019 A1
20190029703 Wasdyke et al. Jan 2019 A1
20190069916 Hawkins et al. Mar 2019 A1
20190072378 Hane et al. Mar 2019 A1
20190097380 Luft et al. Mar 2019 A1
20190099588 Ramanath et al. Apr 2019 A1
20190104933 Stern Apr 2019 A1
20190117242 Lawinger Apr 2019 A1
20190150960 Nguyen et al. May 2019 A1
20190150961 Tozzi May 2019 A1
20190167349 Shamay Jun 2019 A1
20190175111 Genereux et al. Jun 2019 A1
20190175300 Horn et al. Jun 2019 A1
20190175372 Boyden et al. Jun 2019 A1
20190175407 Bacher Jun 2019 A1
20190209368 Park et al. Jul 2019 A1
20190232066 Lim et al. Aug 2019 A1
20190247680 Mayer Aug 2019 A1
20190262594 Ogata et al. Aug 2019 A1
20190265419 Tayebati Aug 2019 A1
20190282249 Tran et al. Sep 2019 A1
20190282250 Tran et al. Sep 2019 A1
20190321100 Masotti et al. Oct 2019 A1
20190321101 Massoti et al. Oct 2019 A1
20190328259 Deno et al. Oct 2019 A1
20190365400 Adams Dec 2019 A1
20190380589 Lloret Dec 2019 A1
20190388002 Bozsak et al. Dec 2019 A1
20190388110 Nguyen et al. Dec 2019 A1
20190388133 Sharma Dec 2019 A1
20190388151 Bhawalkar Dec 2019 A1
20200000484 Hawkins Jan 2020 A1
20200008856 Harmouche Jan 2020 A1
20200022754 Cottone Jan 2020 A1
20200038087 Harmouche Feb 2020 A1
20200046429 Tschida et al. Feb 2020 A1
20200046949 Chisena et al. Feb 2020 A1
20200054352 Brouillette et al. Feb 2020 A1
20200060814 Murphy Feb 2020 A1
20200061931 Brown et al. Feb 2020 A1
20200069371 Brown et al. Mar 2020 A1
20200085458 Nguyen et al. Mar 2020 A1
20200085459 Adams Mar 2020 A1
20200101269 Hayes Apr 2020 A1
20200107960 Bacher Apr 2020 A1
20200108236 Salazar et al. Apr 2020 A1
20200129195 McGowan et al. Apr 2020 A1
20200129741 Kawwas Apr 2020 A1
20200155812 Zhang et al. May 2020 A1
20200197019 Harper Jun 2020 A1
20200205890 Harlev Jul 2020 A1
20200246032 Betelia et al. Aug 2020 A1
20200289202 Miyagawa et al. Sep 2020 A1
20200297366 Nguyen et al. Sep 2020 A1
20200337717 Walzman Oct 2020 A1
20200383724 Adams et al. Dec 2020 A1
20200397230 Massimini et al. Dec 2020 A1
20200397453 McGowan Dec 2020 A1
20200398033 McGowan et al. Dec 2020 A1
20200405333 Massimini et al. Dec 2020 A1
20200405391 Massimini Dec 2020 A1
20200406009 Massimini et al. Dec 2020 A1
20200406010 Massimini et al. Dec 2020 A1
20210038237 Adams Feb 2021 A1
20210085347 Phan et al. Mar 2021 A1
20210085348 Nguyen Mar 2021 A1
20210085383 Vo et al. Mar 2021 A1
20210116302 Jean-Ruel Apr 2021 A1
20210128241 Schultheis May 2021 A1
20210137598 Cook May 2021 A1
20210153939 Cook May 2021 A1
20210177442 Girdhar et al. Jun 2021 A1
20210177445 Nguyen Jun 2021 A1
20210186613 Cook Jun 2021 A1
20210212765 Verhagen Jul 2021 A1
20210220052 Cook Jul 2021 A1
20210220053 Cook Jul 2021 A1
20210244473 Cook et al. Aug 2021 A1
20210267685 Schultheis Sep 2021 A1
20210275247 Schultheis Sep 2021 A1
20210275249 Massimini Sep 2021 A1
20210282792 Adams et al. Sep 2021 A1
20210290259 Hakala et al. Sep 2021 A1
20210290286 Cook Sep 2021 A1
20210290305 Cook Sep 2021 A1
20210298603 Feldman Sep 2021 A1
20210307828 Schultheis Oct 2021 A1
20210330384 Cook Oct 2021 A1
20210338258 Hawkins et al. Nov 2021 A1
20210353359 Cook Nov 2021 A1
20210369348 Cook Dec 2021 A1
20210378743 Massimini et al. Dec 2021 A1
20210378744 Fanier et al. Dec 2021 A1
20210386479 Massimini et al. Dec 2021 A1
20220000505 Hauser Jan 2022 A1
20220000506 Hauser Jan 2022 A1
20220000507 Hauser Jan 2022 A1
20220000508 Schmitt et al. Jan 2022 A1
20220000509 Laser et al. Jan 2022 A1
20220000551 Govari et al. Jan 2022 A1
20220008130 Massimini et al. Jan 2022 A1
20220008693 Humbert et al. Jan 2022 A1
20220015785 Hakala et al. Jan 2022 A1
20220021190 Pecquois Jan 2022 A1
20220022902 Spano Jan 2022 A1
20220022912 Efremkin Jan 2022 A1
20220023528 Long et al. Jan 2022 A1
20220071704 Le Mar 2022 A1
20220168594 Mayer Jun 2022 A1
20220183738 Flores et al. Jun 2022 A1
20220218402 Schultheis Jul 2022 A1
20220249165 Cook Aug 2022 A1
20220273324 Schultheis Sep 2022 A1
20220287732 Anderson et al. Sep 2022 A1
20220313293 Singh Oct 2022 A1
20220338890 Anderson et al. Oct 2022 A1
20220354578 Cook Nov 2022 A1
20220387106 Cook Dec 2022 A1
20230013920 Massimini Jan 2023 A1
20230248376 Anderson et al. Aug 2023 A1
20230310073 Adams et al. Oct 2023 A1
20230414234 Anderson et al. Dec 2023 A1
20240058060 Cook Feb 2024 A1
20240065712 Schultheis Feb 2024 A1
20240122648 Cook Apr 2024 A1
20240189543 Salinas Jun 2024 A1
20240216062 Cook Jul 2024 A1
20240277410 Cook Aug 2024 A1
20240285296 Vo Aug 2024 A1
20240382258 Schultheis Nov 2024 A1
Foreign Referenced Citations (199)
Number Date Country
2017205323 Jan 2022 AU
2019452180 Jan 2022 AU
2022227829 Sep 2022 AU
2229806 Mar 1997 CA
2281519 Aug 1998 CA
2983655 Oct 2016 CA
3209797 Sep 2022 CA
102057422 May 2011 CN
109223100 Jan 2019 CN
110638501 Jan 2020 CN
110638501 Jan 2020 CN
106794043 Mar 2020 CN
11399346 Jan 2022 CN
107411805 Jan 2022 CN
107899126 Jan 2022 CN
109475378 Jan 2022 CN
113876388 Jan 2022 CN
113877044 Jan 2022 CN
113907838 Jan 2022 CN
113951972 Jan 2022 CN
113951973 Jan 2022 CN
113974765 Jan 2022 CN
113974826 Jan 2022 CN
215384399 Jan 2022 CN
215386905 Jan 2022 CN
215458400 Jan 2022 CN
215458401 Jan 2022 CN
215505065 Jan 2022 CN
215534803 Jan 2022 CN
215537694 Jan 2022 CN
215584286 Jan 2022 CN
215606068 Jan 2022 CN
215651393 Jan 2022 CN
215651394 Jan 2022 CN
215651484 Jan 2022 CN
215653328 Jan 2022 CN
114053552 Feb 2022 CN
115175625 Oct 2022 CN
3038445 May 1982 DE
3836337 Apr 1990 DE
3913027 Oct 1990 DE
69431758 Jan 2003 DE
10230626 Jan 2004 DE
202008016760 Mar 2009 DE
102007046902 Apr 2009 DE
102008034702 Jan 2010 DE
102009007129 Aug 2010 DE
202010009899 Nov 2010 DE
102013201928 Aug 2014 DE
102020117713 Jan 2022 DE
0119296 Sep 1984 EP
0261831 Jun 1992 EP
0261831 Jun 1992 EP
558297 Sep 1993 EP
0571306 Nov 1993 EP
1179993 Feb 2002 EP
1946712 Jul 2008 EP
1946712 Jul 2008 EP
1453566 Sep 2008 EP
2157569 Feb 2010 EP
2879595 Jun 2015 EP
2879595 Jun 2015 EP
2944264 Jun 2015 EP
3226795 Oct 2017 EP
3266487 Jan 2018 EP
3318204 May 2018 EP
2879607 Feb 2019 EP
3461438 Apr 2019 EP
3473195 Apr 2019 EP
3643260 Apr 2020 EP
3076881 Jan 2022 EP
3932342 Jan 2022 EP
3936140 Jan 2022 EP
3960099 Mar 2022 EP
4051154 Sep 2022 EP
4129213 Feb 2023 EP
4277537 Nov 2023 EP
4297669 Jan 2024 EP
3182931 Jun 2024 EP
3950036 Aug 2024 EP
1082397 Sep 1967 GB
S62-275446 Nov 1987 JP
S62275446 Nov 1987 JP
1996089511 Apr 1996 JP
H09117407 May 1997 JP
2004519296 Jul 2004 JP
2008506447 Mar 2008 JP
2008083273 Apr 2008 JP
2009519777 May 2009 JP
2009213589 Sep 2009 JP
2011524203 Sep 2011 JP
4805208 Nov 2011 JP
4808620 Nov 2011 JP
2014123147 Jul 2014 JP
2015217215 Dec 2015 JP
2018538077 Dec 2018 JP
2024511710 Mar 2024 JP
20050098932 Oct 2005 KR
20080040111 May 2008 KR
20160090877 Aug 2016 KR
20180054041 May 2018 KR
WO9007904 Jul 1990 WO
WO9105332 Apr 1991 WO
9203095 Mar 1992 WO
WO9208515 May 1992 WO
WO9524867 Sep 1995 WO
9902095 Jan 1999 WO
1999002095 Jan 1999 WO
9920189 Apr 1999 WO
1999020189 Apr 1999 WO
WO200067648 Nov 2000 WO
WO2000067648 Nov 2000 WO
WO0103599 Jan 2001 WO
WO0103599 Jan 2001 WO
20060006169 Jan 2006 WO
WO2006006169 Jan 2006 WO
WO2009121017 Oct 2009 WO
WO2009149321 Dec 2009 WO
WO2009152352 Dec 2009 WO
2010042653 Apr 2010 WO
WO2011094379 Aug 2011 WO
20110126580 Oct 2011 WO
WO2011126580 Oct 2011 WO
WO2012025833 Mar 2012 WO
WO2012042619 Apr 2012 WO
WO20120052924 Apr 2012 WO
WO2012058156 May 2012 WO
WO2012099974 Jul 2012 WO
WO20120120495 Sep 2012 WO
WO2013119662 Aug 2013 WO
20130169807 Nov 2013 WO
WO2013169807 Nov 2013 WO
WO2014022436 Feb 2014 WO
WO2014025397 Feb 2014 WO
WO20140022867 Feb 2014 WO
WO2014138582 Sep 2014 WO
WO2015056662 Apr 2015 WO
WO2015097251 Jul 2015 WO
20150177790 Nov 2015 WO
WO2016014999 Jan 2016 WO
WO2016089683 Jun 2016 WO
WO2016090175 Jun 2016 WO
WO2016098670 Jun 2016 WO
WO2016109739 Jul 2016 WO
WO2016143556 Sep 2016 WO
WO2016151595 Sep 2016 WO
WO2017004432 Jan 2017 WO
WO20170192869 Nov 2017 WO
20180022641 Feb 2018 WO
WO2018022593 Feb 2018 WO
WO2018083666 May 2018 WO
20180175322 Sep 2018 WO
WO2018175322 Sep 2018 WO
WO2018191013 Oct 2018 WO
WO2019200201 Oct 2019 WO
WO2019215869 Nov 2019 WO
WO2019222843 Nov 2019 WO
WO2020056031 Mar 2020 WO
WO20200086361 Apr 2020 WO
WO2020089876 May 2020 WO
WO2020157648 Aug 2020 WO
WO2020256898 Dec 2020 WO
WO2020256898 Dec 2020 WO
WO2020256949 Dec 2020 WO
WO2020256949 Dec 2020 WO
WO2020263469 Dec 2020 WO
WO2020263685 Dec 2020 WO
WO2020263687 Dec 2020 WO
WO2020263688 Dec 2020 WO
WO2020263689 Dec 2020 WO
WO2021061451 Apr 2021 WO
WO2021067563 Apr 2021 WO
WO2021086571 May 2021 WO
WO2021096922 May 2021 WO
WO2021101766 May 2021 WO
WO2021101766 May 2021 WO
WO2021126762 Jun 2021 WO
WO2021162855 Aug 2021 WO
WO2021173417 Sep 2021 WO
WO2021183367 Sep 2021 WO
WO2021183401 Sep 2021 WO
WO2021188233 Sep 2021 WO
WO2021202248 Oct 2021 WO
WO2021231178 Nov 2021 WO
WO2021247685 Dec 2021 WO
WO2021257425 Dec 2021 WO
WO2022007490 Jan 2022 WO
WO2022008440 Jan 2022 WO
WO2022010767 Jan 2022 WO
WO2022055784 Mar 2022 WO
WO2022125525 Jun 2022 WO
WO2022154954 Jul 2022 WO
WO2022173719 Aug 2022 WO
WO2022183075 Sep 2022 WO
WO2022187058 Sep 2022 WO
WO2022216488 Oct 2022 WO
WO2022240674 Nov 2022 WO
WO2022260932 Dec 2022 WO
WO2023107334 Jun 2023 WO
Non-Patent Literature Citations (200)
Entry
International Search Report and Written Opinion dated Jun. 28, 2022, in PCT Application Serial No. PCT/US2022/015577.
International Search Report and Written Opinion dated Jun. 27, 2022, in PCT Application Serial No. PCT/US2022/022460.
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing. Oct. 2015. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany. Dec. 2, 2021. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Meng et al., “Accurate Recovery Of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421). May 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Jiang et al., “Multielectrode Catheter For Substrate Mapping For Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368). Poster for conference in San Francisco, May 8-11, 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
Sacher et al., “Comparison Of Manual Vs Automatic Annotation To Identify Abnormal Substrate For Scar Related VT Ablation.” Liryc Institute, Bordeaux University Hospital, France (ID 1336). Poster for conference in San Francisco, May 8-11, 2019. (This reference was cited in a prior Information Disclosure Statement. However, the relevant date was missing. The date has now been added.).
International Search Report and Written Opinion, issued by the EP/ISA, in PCT/US2021/048819, dated Jan. 14, 2022.
International Search Report and Written Opinion dated Aug. 20, 2021 in PCT Application Serial No. PCT/US2021/031130.
International Search Report and Written Opinion, PCT Application Serial No. PCT/US2022/047751 issued Feb. 10, 2023, by the European Patent Office.
International Search Report and Written Opinion dated Aug. 25, 2022 in PCT Application Serial No. PCT US/2022/028035.
International Search Report and Written Opinion dated Sep. 15, 2022 in PCT Application Serial No. PCT US/2022/032045.
International Search Report and Written Opinion, issued by the European Patent Office for PCT/2021/XXX, dated Sep. 30, 2021.
International Search Report and Written Opinion dated Nov. 8, 2022 in PCT Application Serial No. PCT US/2022/039678.
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/062170.
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/065073.
Partial Search Report and Provisional Opinion dated May 3, 2022 in PCT Application No. PCT/ US2022/015577.
International Search Report and Written Opinion dated May 13, 2022 in PCT Application Serial No. PCT/US2022/017562.
Vogel, A., et al. “Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina”, Investigative Ophthalmology & Visual Science, Jun. 1994, pp. 3032-3044, vol. 35, No. 7, Association for Research in Vision and Ophthalmology.
Jones, H. M., et al. “Pulsed dielectric breakdown of pressurized water and salt solutions”, Journal of Applied Physics, Jun. 1998, pp. 795-805, vol. 77, No. 2, American Institute of Physics.
Kozulin, I., et al. “The dynamic of the water explosive vaporization on the flat microheater”, Journal of Physics: Conference Series, 2018, pp. 1-4, IOP Publishing, Russia.
Cross, F., “Laser Angioplasty”, Vascular Medicine Review, 1992, pp. 21-30, Edward Arnold.
Doukas, A. G., et al. “Laser-generated stress waves and their effects on the cell membrane”, IEEE Journal of Selected Topics in Quantum Electronics, 1999, pp. 997-1003, vol. 5, Issue 4, IEEE.
Noack, J., et al. “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density”, IEEE Journal of Quantum Electronics, 1999, pp. 1156-1167, vol. 35, No. 8, IEEE.
Pratsos, A., “The use of Laser for the treatment of coronary artery disease”, Bryn Mawr Hospital, 2010.
Li, Xian-Dong, et al. “Influence of deposited energy on shock wave induced by underwater pulsed current discharge”, Physics of Plasmas, 2016, vol. 23, American Institute of Physics.
Logunov, S., et al. “Light diffusing optical fiber illumination”, Renewable Energy and the Environment Congress, 2013, Corning, NY, USA.
Maxwell, A. D., et al. “Cavitation clouds created by shock scattering from bubbles during histotripsy”, Acoustical Society of America, 2011, pp. 1888-1898, vol. 130, No. 4, Acoustical Society of America.
McAteer, James A., et al. “Ultracal-30 Gypsum Artificial Stones For Research On The Mechinisms Of Stone Breakage In Shock Wave Lithotripsy”, 2005, pp. 429-434, Springer-Verlag.
Vogel, A., et al. “Mechanisms of Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses”, Lasers in Surgery and Medicine, 1994, pp. 32-43, vol. 15, Wiley-Liss Inc., Lubeck, Germany.
Vogel, A., et al. “Mechanisms of Pulsed Laser Ablation of Biological Tissues”, Chemical Reviews, 2003, pp. 577-644, vol. 103, No. 2, American Chemical Society.
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland.
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland.
Mayo, Michael E., “Interaction of Laser Radiation with Urinary Calculi”, Cranfield University Defense and Security, PhD Thesis, 2009, Cranfield University.
Vogel, A., et al. “Minimization of Cavitation Effects in Pulsed Laser Ablation Illustrated on Laser Angioplasty”, Applied Physics, 1996, pp. 173-182, vol. 62, Springer-Verlag.
Mirshekari, G., et al. “Microscale Shock Tube”, Journal of Microelectromechanical Systems, 2012, pp. 739-747, vol. 21, No. 3, IEEE.
“Polymicro Sculpted Silica Fiber Tips”, Molex, 2013, Molex.
Zhou, J., et al. “Optical Fiber Tips and Their Applications”, Polymicro Technologies A Subsidiary of Molex, Nov. 2007.
Liang, Xiao-Xuan, et al. “Multi-Rate-Equation modeling of the energy spectrum of laser-induced conduction band electrons in water”, Optics Express, 2019, vol. 27, No. 4, Optical Society of America.
Nachabe, R., et al. “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods”, Journal of Biomedical Optics, 2011, vol. 16(8), SPIE.
Naugol'nykh, K. A., et al. “Spark Discharges in Water”, Academy of Sciences USSR Institute of Acoustics, 1971, Nauka Publishing Co., Moscow, USSR.
Van Leeuwen, Ton G., et al. “Noncontact Tissue Ablation by Holmium: YSGG Laser Pulses in Blood”, Lasers in Surgery and Medicine, 1991, vol. 11, pp. 26-34, Wiley-Liss Inc.
Nyame, Yaw A., et al. “Kidney Stone Models for In Vitro Lithotripsy Research: A Comprehensive Review”, Journal of Endourology, Oct. 2015, pp. 1106-1109, vol. 29, No. 10, Mary Ann Liebert Inc., Cleveland, USA.
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing.
Zheng, W., “Optical Lenses Manufactured on Fiber Ends”, IEEE, 2015, Splicer Engineering, Duncan SC USA.
Dwyer, P. J., et al. “Optically integrating balloon device for photodynamic therapy”, Lasers in Surgery and Medicine, 2000, pp. 58-66, vol. 26, Issue 1, Wiley-Liss Inc., Boston MA USA.
“The New Optiguide DCYL700 Fiber Optic Diffuser Series”, Optiguide Fiber Optic Spec Sheet, Pinnacle Biologics, 2014, Pinnacle Biologics, Illinois, USA.
Van Leeuwen, Ton G., et al. “Origin of arterial wall dissections induced by pulsed excimer and mid-infared laser ablation in the pig”, JACC, 1992, pp. 1610-1618, vol. 19, No. 7, American College of Cardiology.
Oshita, D., et al. “Characteristic of Cavitation Bubbles and Shock Waves Generated by Pulsed Electric Discharges with Different Voltages”, IEEE, 2012, pp. 102-105, Kumamoto, Japan.
Karsch, Karl R., et al. “Percutaneous Coronary Excimer Laser Angioplasty in Patients With Stable and Unstable Angina Pectoris”, Circulation, 1990, pp. 1849-1859, vol. 81, No. 6, American Heart Association, Dallas TX, USA.
Murray, A., et al. “Peripheral laser angioplasty with pulsed dye laser and ball tipped optical fibres”, The Lancet, 1989, pp. 1471-1474, vol. 2, Issue 8678-8679.
Mohammadzadeh, M., et al. “Photoacoustic Shock Wave Emission and Cavitation from Structured Optical Fiber Tips”, Applied Physics Letters, 2016, vol. 108, American Institute of Physics Publishing LLC.
Doukas, A. G., et al. “Physical characteristics and biological effects of laser-induced stress waves”, Ultrasound in Medicine and Biology, 1996, pp. 151-164, vol. 22, Issue 2, World Federation for Ultrasound in Medicine and Biology, USA.
Doukas, A. G., et al. “Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient”, Ultrasound in Medicine and Biology, 1995, pp. 961-967, vol. 21, Issue 7, Elsevier Science Ltd., USA.
Piedrahita, Francisco S., “Experimental Research Work On A Sub-Millimeter Spark-Gap For Sub Nanosecond Gas Breakdown”, Thesis for Universidad Nacional De Colombia, 2012, Bogota, Colombia.
Vogel, A., et al. “Plasma Formation in Water by Picosecond and Nanosecond Nd: YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance”, IEEE Journal of Selected Topics in Quantum Electronics, 1996, pp. 847-859, vol. 2, No. 4, IEEE.
Park, Hee K., et al. “Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface”, Journal of Applied Physics, 1996, pp. 4072-4081, vol. 80, No. 7, American Institute of Physics.
Cummings, Joseph P., et al. “Q-Switched laser ablation of tissue: plume dynamics and the effect of tissue mechanical properties”, SPIE, Laser-Tissue Interaction III, 1992, pp. 242-253, vol. 1646.
Lee, Seung H., et al. “Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications”, Optics Express, 2015, vol. 23, No. 16, Optical Society of America.
Hui, C., et al. “Research on sound fields generated by laser-induced liquid breakdown”, Optica Applicata, 2010, pp. 898-907, vol. XL, No. 4, Xi'an, China.
Riel, Louis-Philippe, et al. “Characterization of Calcified Plaques Retrieved From Occluded Arteries and Comparison with Potential Artificial Analogues”, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, pp. 1-11, ASME, Canada.
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, 1996, pp. 3465-3475, vol. 99, No. 6, Acoustical Society of America.
Rocha, R., et al. “Fluorescence and Reflectance Spectroscopy for Identification of Atherosclerosis in Human Carotid Arteries Using Principal Components Analysis”, Photomedicine and Lsser Surgery, 2008, pp. 329-335, vol. 26, No. 4, Mary Ann Liebert Inc.
Scepanovic, Obrad R., et al. “Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque”, Journal of Biomedical Optics, 2011, pp. 1-10, vol. 16, No. 1, SPIE.
Serruys, P. W., et al. “Shaking and Breaking Calcified Plaque Lithoplasty, a Breakthrough in Interventional Armamentarium?”, JACC: Cardiovascular Imaging, 2017, pp. 907-911, vol. 10, No. 8, Elsevier.
Vogel, A., et al. “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water”, The Journal of the Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, Acoustical Society of America.
Vogel, A., et al. “Shock-Wave Energy and Acoustic Energy Dissipation After Laser-induced Breakdown”, SPIE, 1998, pp. 180-189, vol. 3254, SPIE.
International Preliminary Report on Patentability dated Sep. 15, 2020 in PCT Application Serial No. PCT/US2019/022009.
International Search Report and Written Opinion dated Sep. 14, 2020 in PCT Application Serial No. PCT/US2020/038523.
International Search Report and Written Opinion dated Oct. 2, 2020 in PCT Application Serial No. PCT/US2020/036107.
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany.
International Search Report and Written Opinion dated Jan. 29, 2020 in PCT Application Serial No. PCT/US2020/059961.
International Search Report and Written Opinion dated Jan. 20, 2020 in PCT Application Serial No. PCT/US2020/054792.
Partial Search Report and Provisional Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960.
Shariat, Mohammad H., et al. “Localization of the ectopic spiral electrical source using intracardiac electrograms during atrial fibrillation.” 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015.
Nademanee, Koonlawee, et al. “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate.” Journal of the American College of Cardiology 43.11 (2004): 2044-2053.
Calkins, Hugh. “Three dimensional mapping of atrial fibrillation: techniques and necessity.” Journal of interventional cardiac electrophysiology 13.1 (2005): 53-59.
Shariat, Mohammad Hassan. Processing the intracardiac electrogram for atrial fibrillation ablation. Diss. Queen's University (Canada), 2016.
Meng et al., “Accurate Recovery Of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421).
Jiang et al., “Multielectrode Catheter For Substrate Mapping For Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368).
Sacher et al., “Comparison Of Manual Vs Automatic Annotation To Identify Abnormal Substrate For Scar Related VT Ablation.” Liryc Institute, Bordeaux University Hospital, France (ID 1336).
Oriel Instruments, “Introduction to Beam Splitters for Optical Research Applications”, Apr. 2014, pp. 1-9, https://www.azoptics.com/Article.aspx?ArticaID=871.
International Search Report and Written Opinion dated Apr. 12, 2021 in PCT Application Serial No. PCT/US2020/059960.
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2020/064846.
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2021/013944.
International Search Report and Written Opinion dated May 25, 2021 in PCT Application Serial No. PCT/US2021/017604.
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/018522.
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/015204.
International Search Report and Written Opinion dated Jun. 17, 2021 in PCT Application Serial No. PCT/US2021/020934.
International Search Report and Written Opinion dated Jul. 13, 2021 in PCT Application Serial No. PCT/US2021/024216.
International Search Report and Written Opinion dated Jun. 22, 2021 in PCT Application Serial No. PCT/US2021/020937.
International Search Report and Written Opinion dated Jun. 24, 2021 in PCT Application Serial No. PCT/US2021/021272.
Stelzle, F., et al. “Diffuse Reflectance Spectroscopy for Optical Soft Tissue Differentiation as Remote Feedback Control for Tissue-Specific Laser Surgery”, Lasers in Surgery and Medicine, 2010, pp. 319-325, vol. 42, Wiley-Liss Inc.
Stelzle, F., et al. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery, Sensors, 2013, pp. 13717-13731, vol. 13, Basel, Switzerland.
Tagawa, Y., et al. “Structure of laser-induced shock wave in water”, Japan Society for the Promotion of Science, 2016.
Shen, Y., et al. “Theoretical and experimental studies of directivity of sound field generated by pulsed laser induced breakdown in liquid water”, SPIE, 2013, pp. 8796141-8796148, vol. 8796, SPIE.
Preisack, M., et al. “Ultrafast imaging of tissue ablation by a XeCl excimer laser in saline”, Lasers in Surgery and Medicine, 1992, pp. 520-527, vol. 12, Wiley-Liss Inc.
Versluis, M., et al. “How Snapping Shrimp Snap: Through Cavitating Bubbles”, Science Mag, 2000, pp. 2114-2117, vol. 289, American Association for the Advancement of Science, Washington DC, USA.
Yan, D., et al. “Study of the Electrical Characteristics, Shock-Wave Pressure Characteristics, and Attenuation Law Based on Pulse Discharge in Water”, Shock and Vibration, 2016, pp. 1-11, vol. 2016, Article ID 6412309, Hindawi Publishing Corporation.
Zhang, Q., et al. “Improved Instruments and Methods for the Photographic Study of Spark-Induced Cavitation Bubbles”, Water, 2018, pp. 1-12, vol. 10, No. 1683.
“Damage threshold of fiber facets”, NKT Photonics, 2012, pp. 1-4, Denmark.
Smith, A., et al. “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm”, Applied Optics, 2008, pp. 4812-4832, vol. 47, No. 26, Optical Society of America.
Smith, A., et al. “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3 Doped Fused Silica”, SPIE, 2007, pp. 6453171-64531712, vol. 6453, SPIE.
Sun, X., et al. “Laser Induced Damage to Large Core Optical Fiber by High Peak Power Laser”, Specialty Photonics Division, 2010.
Smith, A., et al. “Nanosecond laser-induced breakdown in pure and Yb3 doped fused silica”, SPIE, 2007, vol. 6403, SPIE.
Smith, A., et al. “Optical Damage Limits to Pulse Energy From Fibers”, IEEE Journal of Selected Topics in Quantum Electronics, 2009, pp. 153-158, vol. 15, No. 1, IEEE.
Reichel, E., et al. “A Special Irrigation Liquid to Increase the Reliability of Laser-Induced Shockwave Lithotripsy”, Lasers in Surgery and Medicine, 1992, pp. 204-209, vol. 12, Wiley-Liss Inc., Graz, Austria.
Reichel, E., et al. “Bifunctional irrigation liquid as an ideal energy converter for laser lithotripsy with nanosecond laser pulses”, SPIE Lasers in Urology, Laparoscopy, and General Surgery, 1991, pp. 129-133, vol. 1421, SPIE.
Reichel, E., et al. “Laser-induced Shock Wave Lithotripsy with a Regenerative Energy Converter”, Lasers in Medical Science, 1992, pp. 423-425, vol. 7, Bailliere Tindall.
Hardy, L., et al. “Cavitation Bubble Dynamics during Thulium Fiber Laser Lithotripsy”, SPIE BiOS, 2016, vol. 9689, SPIE.
Deckelbaum, L., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, vol. 14, Wiley-Liss Inc., Conneticuit, USA.
Shangguan, H., et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and On Submerged Targets”, Diagnostic and Therapeutic Cardiovascular Interventions VII, SPIE, 1997, pp. 783-791, vol. 2869, SPIE.
Van Leeuwen, T., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine, 1996, pp. 381-390, vol. 18, Wiley-Liss Inc., The Netherlands.
Vogel, A., et al. “Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water”, The Journal of Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, The Acoustical Society of America.
Varghese, B., et al. “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America.
Linz, N., et al. “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state”, Physical Review, 2015, pp. 134114.1-1341141.10, vol. 91, American Physical Society.
International Search Report and Written Opinion dated Jun. 27, 2018, in PCT Application Serial No. PCT/US2018/027121.
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027801.
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027784.
European Search Report, for European Patent Application No. 18185152, mailed Dec. 13, 2018.
International Search Report and Written Opinion dated May 22, 2019, in PCT Application Serial No. PCT/US2019/022009.
International Search Report and Written Opinion dated May 29, 2019, in PCT Application Serial No. PCT/US2019/022016.
International Search Report and Written Opinion dated Jun. 22, 2018, in Application Serial No. NL2019807, issued by the European Patent Office.
Noimark, Sacha, et al., “Carbon-Nanotube-PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging”, Advanced Functional Materials, 2016, pp. 8390-8396, vol. 26, Wiley-Liss Inc.
Chen, Sung-Liang, “Review of Laser-Generated Ultrasound Transmitters and their Applications to All-Optical Ultrasound Transducers and Imaging”, Appl. Sci. 2017, 7, 25.
Colchester, R., et al. “Laser-Generated ultrasound with optica fibres using functionalised carbon nanotube composite coatings”, Appl. Phys. Lett., 2014, vol. 104, 173504, American Institute of Physics.
Poduval, R., et al. “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite”, Appl. Phys. Lett., 2017, vol. 110, 223701, American Institute of Physics.
Tian, J., et al. “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings”, Optics Express, Mar. 2013, pp. 6109-6114, vol. 21, No. 5, Optical Society of America.
Kim, J., et al. “Optical Fiber Laser-Generated-Focused-Ultrasound Transducers for Intravascular Therapies”, IEEE, 2017.
Kang, H., et al. “Enhanced photocoagulation with catheter-based diffusing optical device”, Journal of Biomedical Optics, 2012, vol. 17, Issue 11, 118001, SPIE.
International Search Report and Written Opinion dated Jan. 3, 2020, in PCT Application Serial No. PCT/US2019/056579.
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 18185152.8, mailed Jan. 16, 2019.
European Search Report, for European Patent Application No. 18185152.8, mailed Dec. 20, 2018.
International Search Report and Written Opinion dated Jul. 29, 2020 in PCT Application Serial No. PCT/US2020/034005.
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038517.
International Search Report and Written Opinion dated Sep. 9, 2020 in PCT Application Serial No. PCT/US2020/038530.
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038521.
International Search Report and Written Opinion dated Sep. 7, 2020 in PCT Application Serial No. PCT/US2020/034642.
Shen, Yajie et al. “High-peak-power and narrow-linewidth Q-switched Ho: YAG laser in-band pumped at 1931 nm.” Applied Physics Express 13.5 (2020): 052006. (Year 2020).
PathFinder Digital, “Free Space Optics vs. Fiber Optics”, 2023.
International Search Report and Written Opinion, issued in Application Serial No. PCT/US2023/016152, dated Jul. 12, 2023.
AccuCoat, “Beamsplitter: Divide, combine & conquer”; 2023.
Lin et al., “Photoacoustic imaging”, Science Direct; 2021.
Zhou et al., “Photoacoustic Imaging with fiber optic technology: A review”, Science Direct; 2020.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2022/053775, dated Apr. 21, 2023.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/011497, dated Apr. 28, 2023.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/012599, dated May 19, 2023.
“Custom Medical Skived Tubing”, Duke Extrusion, 2025. https://www.dukeextrusion.com/tubing-options/skived-tubing.
Davletshin, Yevgeniy R., “A Computational Analysis of Nanoparticle-Mediated Optical Breakdown”, A dissertation presented to Ryerson University in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in the Program of Physics, Toronto, Ontario, CA 2017.
Vogel, A., et al. “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries”, Journal Acoustical Society of America, 1988, pp. 719-731, vol. 84.
Asshauer, T., et al. “Acoustic transient generation by holmium-laser-induced cavitation bubbles”, Journal of Applied Physics, Nov. 1, 1994, pp. 5007-5013, vol. 76, No. 9, American Institute of Physics.
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, Splicer Engineering AFL, Duncan, SC USA.
Ali, Ziad A., et al. “Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions”, JACC: Cardiovascular Imaging, 2017, pp. 897-906, vol. 109, No. 8, Elsevier.
Ali, Ziad A., et al. “Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification” 2018, European Society of Cardiology.
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—full article”, Journal of Biophotonics, 2014, pp. 103-109, vol. 7, No. 1-2.
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—proof” Journal of Biophotonics 7, 2014, No. 1-2.
Bian, D. C., et al. “Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water”, Hindawi Advances in Materials Science and Engineering, Jan. 2018, 12 pages, vol. 2018, Article ID 8025708.
Bian, D. C., et al. “Study on Breakdown Delay Characteristics Based on High-voltage Pulse Discharge in Water with Hydrostatic Pressure”, Journal of Power Technologies 97(2), 2017, pp. 89-102.
Doukas, A. G., et al. “Biological effects of laser induced shock waves: Structural and functional cell damage in vitro”, Ultrasound in Medicine and Biology, 1993, pp. 137-146, vol. 19, Issue 2, Pergamon Press, USA.
Brodmann, Marianne et al. “Safety and Performance of Lithoplasty for Treatment of Calcified Peripheral Artery Lesions”, JACC, 2017, vol. 70, No. 7.
Brouillette, M., “Shock Waves at Microscales”, 2003, pp. 3-12, Springer-Verlag.
Mirshekari, G., et al. “Shock Waves in Microchannels”, 2013, pp. 259-283, vol. 724, Cambridge University Press.
“Bubble Dynamics and Shock Waves”, Springer, 2013, Springer-Verlag, Berlin Heildelberg.
Hardy, Luke A., et al. “Cavitation Bubble Dynamics During Thulium Fiber Laser Lithotripsy”, SPIE, Feb. 29, 2016, vol. 9689, San Francisco, California, USA.
Claverie, A., et al. “Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge”, Review of Scientific Instruments, 2014, American Institute of Physics.
Blackmon, Richard L., et al. “Comparison of holmium: YAG and thulium fiber laser lithotripsy ablation thresholds, ablation rates, and retropulsion effects”, Journal of Biomedical Optics, 2011, vol. 16(7), SPIE.
Debasis, P., et al. “Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations”, Applied Optics, Aug. 10, 2016, vol. 55, No. 23, Optical Society of America.
Cook, Jason R., et al. “Tissue mimicking phantoms for photoacoustic and ultrasonic imaging”, Biomedical Optics Express, 2011, vol. 2, No. 11, Optical Society of America.
Deckelbaum, Lawrence I., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, Wiley-Liss Inc.
Costanzo, F., “Underwater Explosion Phenomena and Shock Physics”, Research Gate, 2011.
Mizeret, J. C., et al. “Cylindrical fiber optic light diffuser for medical applications”, Lasers in Surgery and Medicine, 1996, pp. 159-167, vol. 19, Issue 2, Wiley-Liss Inc., Lausanne, Switzerland.
De Silva, K., et al. “A Calcific, Undilatable Stenosis Lithoplasty, a New Tool in the Box?”, JACC: Cardiovascular Interventions, 2017, vol. 10, No. 3, Elsevier.
Vesselov, L., et al. “Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers”, Applied Optics, 2005, pp. 2754-2758, vol. 44, Issue 14, Optical Society of America.
Hutchens, Thomas C., et al. “Detachable fiber optic tips for use in thulium fiber laser lithotripsy”, Journal of Biomedical Optics, Mar. 2013, vol. 18(3), SPIE.
Kostanski, Kris L., et al. “Development of Novel Tunable Light Scattering Coating Materials for Fiber Optic Diffusers In Photodynamic Cancer Therapy”, Journal of Applied Polymer Science, 2009, pp. 1516-1523, vol. 112, Wiley InterScience.
Kristiansen, M., et al. “High Voltage Water Breakdown Studies”, DoD, 1998, Alexandria, VA, USA.
Dwyer, J. R., et al. “A study of X-ray emission from laboratory sparks in air at atmospheric pressure”, Journal of Geophysical Research, 2008, vol. 113, American Geophysical Union.
Jansen, Duco E., et al. “Effect of Pulse Duration on Bubble Formation and Laser-Induced Pressure Waves During Holmium Laser Ablation”, Lasers in Surgery and Medicine 18, 1996, pp. 278-293, Wiley-Liss Inc., Austin, TX, USA.
Shangguan, HanQun et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and On Submerged Targets”, SPIE, 1997, pp. 783-791, vol. 2869.
Varghese, B., et al. “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation”, SPIE, Mar. 9, 2016, vol. 9740, SPIE, San Francisco, USA.
Varghese, B., et al. “Effects of polarization and apodization on laser induced optical breakdown threshold”, Optics Express, Jul. 29, 2013, vol. 21, No. 15, Optical Society of America.
Bonito, Valentina, “Effects of polarization, plasma and thermal initiation pathway on irradiance threshold of laser Induced optical breakdown”, Philips Research, 2013, The Netherlands.
Vogel, A. et al. “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales”, Applied Physics B 68, 1999, pp. 271-280, Springer-Verlag.
Kang, Hyun W., et al. “Enhanced photocoagulation with catheter based diffusing optical device”, Journal of Biomedical Optics, Nov. 2012, vol. 17(11), SPIE.
Esch, E., et al. “A Simple Method For Fabricating Artificial Kidney Stones Of Different Physical Properties”, National Institute of Health Public Access Author Manuscript, Aug. 2010.
Isner, Jeffrey M., et al. “Excimer Laser Atherectomy”, Circulation, Jun. 1990, vol. 81, No. 6, American Heart Association, Dallas, TX, USA.
Israel, Douglas H., et al. “Excimer Laser-Facilitated Balloon Angioplasty of a Nondilateable Lesion”, JACC, Oct. 1991, vol. 18, No. 4, American College of Cardiology, New York, USA.
Van Leeuwen, Ton G., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine 18, 1996, pp. 381-390, Wiley-Liss Inc., Utrecht, The Netherlands.
Nguyen, H., et al. “Fabrication of multipoint side-firing optical fiber by laser micro-ablation”, Optics Letters, May 1, 2017, vol. 42, No. 9, Optical Society of America.
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, IEEE, Duncan, SC, USA.
Whitesides, George M., et al. “Fluidic Optics”, 2006, vol. 6329, SPIE, Cambridge, MA, USA.
Forero, M., et al. “Coronary lithoplasty: a novel treatment for stent underexpansion”, Cardiovascular Flashlight, 2018, European Society of Cardiology.
Ghanate, A. D., et al. “Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario”, Journal of Biomedical Optics, Feb. 2011, pp. 1-9, vol. 16(2), SPIE.
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, Jun. 1996, pp. 3465-3474, Acoustical Society of America, Austin, TX, USA.
Blackmon, Richard L., et al. “Holmium: YAG Versus Thulium Fiber Laser Lithotripsy”, Lasers in Surgery and Medicine, 2010, pp. 232-236, Wiley-Liss Inc.
Varghese, B., “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America.
Noack, J., “Influence of pulse duration on mechanical effects after laser-induced breakdown in water”, Journal of Applied Physics, 1998, pp. 7488-EOA, vol. 83, American Institute of Physics.
Van Leeuwen, Ton G., et al. “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit”, Circulation, Apr. 1993, vol. 87, No. 4, American Heart Association, Dallas, TX, USA.
Related Publications (1)
Number Date Country
20210378743 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
63033929 Jun 2020 US