The present invention relates generally to the field of computer security and, more specifically, to systems, methods and computer program products for protecting applications deployed on a host computer from malware using virtualization.
Due to fast proliferation and evolution of malware, such as viruses, worms, Trojans, and other types of computer threats, it becomes harder for computer security specialists to keep track of newly emerging threats even using automated malware detection means. Security concerns are even higher when security of confidential or secret personal or corporate information must be protected. Some types of malware are specifically designed to attack computers and applications deployed thereon in order to collect confidential or secret user and system information. Therefore, security applications, such as antivirus programs and firewalls, must be configured to protect critical system and application objects from unauthorized access.
One mechanism for system protection from malware is “sandboxing”, in which untrusted programs are executed in a secure virtual environment. The execution of a program can be limited to exclude access to the critical areas or processes of the host system or applications deployed thereon. However, known sandboxing techniques have limitations. For example, they may be ineffective when the host system is already infected by the malware. Also, they do not allow filtering of system calls made from the untrusted program based on types of operations other than read/write operations and analysis of requests using different malware detection algorithms. Accordingly, there is need for an improved sandboxing mechanism for protection of a host computer and applications deployed thereon from malware.
Disclosed are systems, methods and computer program products for protecting applications deployed on a host computer from malware using virtualization. In one example embodiment, a malware protection system comprises a kernel-level driver configured to intercept system calls addressed to an object of a protected application. The system further includes an analysis engine configured to determine if there is a security rule associated with one or more of the intercepted system call, the object of the protected application, and the actions allowed on the object of the protected application, wherein the security rule indicates at least whether the system call is allowed to be executed or not allowed to be executed on the host computer. If there is a security rule indicating that the system call is allowed to be executed on the host computer, the analysis engine instructs the host computer to execute the system call. If there is a security rule indicating that the system call is not allowed to be executed on the host computer, the analysis engine instructs the host computer to block execution of the system call. If there is no security rule associated with the system call, the analysis engine instructs a handler of a secure execution environment of the host computer to execute the system call in the secure execution environment using a virtual copy of the object of the protected application.
In one example embodiment, a method for protecting applications deployed on a host computer comprises: intercepting, at the kernel level of the host computer, system calls addressed to an object of a protected application deployed on the host computer; determining if there is a security rule associated with one or more of the intercepted system call, the object of the protected application, and the actions allowed on the object of the protected application, wherein the security rule indicates at least whether the system call is allowed to be executed or not allowed to be executed on the host computer; if there is a security rule indicating that the system call is allowed to be executed on the host computer, executing the system call on the host computer; if there is a security rule indicating that the system call is not allowed to be executed on the host computer, blocking execution of the system call on the host computer; and if there is no security rule associated with the system call, executing the system call in a secure execution environment using a virtual copy of the object of the protected application.
The above simplified summary of example embodiment(s) serves to provide a basic understanding of the invention. This summary is not an extensive overview of all contemplated aspects of the invention, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present one or more embodiments in a simplified form as a prelude to the more detailed description of the invention that follows. To the accomplishment of the foregoing, the one or more embodiments comprise the features described and particularly pointed out in the claims.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more example embodiments of the invention and, together with the detailed description serve to explain their principles and implementations.
Example embodiments of the present invention are described herein in the context of systems, methods and computer program for protecting applications deployed on a host computer from malware using virtualization. Those of ordinary skill in the art will realize that the following description is illustrative only and is not intended to be in any way limiting. Other embodiments will readily suggest themselves to those skilled in the art having the benefit of this disclosure. Reference will now be made in detail to implementations of the example embodiments of the invention as illustrated in the accompanying drawings. The same reference indicators will be used to the extent possible throughout the drawings and the following description to refer to the same or like items.
In one example embodiment, SEE 220 may be implemented as user-mode service 150 that provides virtualization of components of the host computer.
The process of executing system calls by the SEE handler 410 depends on the level of detail with which the host computer is virtualized in the secure execution environment 220. For effective operation without errors, it is preferred, but not required, to create a virtual copy of the file system, the registry, and some OS services.
The virtualization implies that changes that application 100 makes in the host computer are not actually performed. In other words, the original information in the host system (file or registry key) is not changed. Virtualization of a process is understood to be virtualization of its access to the objects of the OS, including its files and registry. Virtualization of an object presupposes the creation of its virtual copy, if this is necessary (access to the real object can also be provided). In one example embodiment, SEE handler 410 determines which software and hardware components need to be virtualized in the SEE 220 and executes the system call using the virtualized components. The real object is returned to the application 100, as a rule, during read operation only. The virtual files may be stored in a special directory, and the registry keys in a special branch of the registry. The other OS objects may be stored in RAM.
In one example embodiment, the protection driver 230 may be also configured to intercepts local procedure calls (LPC). This permits the malware protection system to isolate application 100 by changing the port names.
The previous examples were considered with regard to the interaction of an application with the OS. Such examples reveal the possibility of protecting the OS from malware deployed on the host computer. However, virtualizing all the applications on a computer is an extremely resource-intensive task, and this is not expedient for solving the problem of protection of confidential information from malware. There is a limited set of applications on the computer that store, transmit, and receive information containing confidential data that should be protected. Such information includes personal correspondence, personal data, secret codes, passwords, credit card numbers, and other data. The virtualization of the applications and their interaction with other programs and the OS according to specified rules is a necessary layer of protection under the conditions of a constantly growing risk to the security of information. Therefore, the malware protection system permits applications containing confidential information to be cut off from malware without loss of functionality or reloading.
Since malware protection system in accordance with one example embodiment of the invention uses virtualization of the components and objects of the host computer and applications deployed thereon, the protection of the host computer from infections due to vulnerabilities and errors in the applications may be organized based of the following principles: (1) limiting access to protected objects, such as objects containing confidential data of the user; (2) protecting the host computer against changes: creating and making available copies of the object of the application launched in the secure execution environment in an attempt to modify objects on the host computer; and (3) protecting critical processes and services launched in the host computer from access on the part of an application launched in a secure execution environment, with the purpose of excluding leaks of malicious processes into the host computer.
In this case, the malware protection system is configured to analyze and filter in the secure execution environment system calls from applications to the objects (e.g., memory areas, files, processes, threads of execution) of the host computer and other applications deployed thereon. In addition, the malware protection system may analyze and filter system calls from the objects of the host computer to the applications executed in the secure execution environment.
In addition, the malware protection system provides the following advantages: protecting host computer against penetration of malware during application's access to the Internet; cleaning temporary files, visit logs, and other data that store the history of application's operation; protecting user data processed by the application being protected from unauthorized access of processes from the host computer; securing launch of programs from the applications being protected by automatically launching these programs in the secure execution environment.
In one example embodiment, the analysis engine 210 is an expert system of security rules 720 which analyzes the intercepted system call (e.g., the type of system call), the object of the system call, the statistics of system calls from the malware 710, the attributes and behavior of the malware 710 and other information to determine if the system call should be performed or blocked by the malware protection system. One example of security rules is the exclusion of access depending on the object type, designated in the example below with angular brackets:
System memory 20 may include a read-only memory (ROM) 21 and random access memory (RAM) 23. Memory 20 may be implemented as in DRAM (dynamic RAM), EPROM, EEPROM, Flash or other type of memory architecture. ROM 21 stores a basic input/output system 22 (BIOS), containing the basic routines that help to transfer information between the components of computer system 5, such as during start-up. RAM 23 stores operating system 24 (OS), such as Windows® XP Professional or other type of operating system, that is responsible for management and coordination of processes and allocation and sharing of hardware resources in computer system 5. System memory 20 also stores applications and programs 25, such as services 306. System memory 20 also stores various runtime data 26 used by programs 25 as well as various databases of information about known malicious and safe objects.
Computer system 5 may further include hard disk drive(s) 30, such as SATA magnetic hard disk drive (HDD), and optical disk drive(s) 35 for reading from or writing to a removable optical disk, such as a CD-ROM, DVD-ROM or other optical media. Drives 30 and 35 and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, databases, applications and program modules/subroutines that implement algorithms and methods disclosed herein. Although the exemplary computer system 5 employs magnetic and optical disks, it should be appreciated by those skilled in the art that other types of computer readable media that can store data accessible by a computer system 5, such as magnetic cassettes, flash memory cards, digital video disks, RAMs, ROMs, EPROMs and other types of memory may also be used in alternative embodiments of the computer system.
Computer system 5 further includes a plurality of serial ports 40, such as Universal Serial Bus (USB), for connecting data input device(s) 75, such as keyboard, mouse, touch pad and other. Serial ports 40 may be also be used to connect data output device(s) 80, such as printer, scanner and other, as well as other peripheral device(s) 85, such as external data storage devices and the like. System 5 may also include graphics card 45, such as nVidia® GeForce® GT 240M or other video card, for interfacing with a monitor 60 or other video reproduction device. System 5 may also include an audio card 50 for reproducing sound via internal or external speakers 65. In addition, system 5 may include network card(s) 55, such as Ethernet, WiFi, GSM, Bluetooth or other wired, wireless, or cellular network interface for connecting computer system 5 to network 70, such as the Internet.
In various embodiments, the algorithms and methods described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable medium. Computer-readable medium includes both computer storage and communication medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable medium can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection may be termed a computer-readable medium. For example, if software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
In the interest of clarity, not all of the routine features of the embodiments are shown and described herein. It will be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, and that these specific goals will vary from one implementation to another and from one developer to another. It will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Furthermore, it is to be understood that the phraseology or terminology used herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled in the art in light of the teachings and guidance presented herein, in combination with the knowledge of the skilled in the relevant art(s). Moreover, it is not intended for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such.
The various embodiments disclosed herein encompass present and future known equivalents to the known components referred to herein by way of illustration. Moreover, while embodiments and applications have been shown and described, it would be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5956710 | Yarom | Sep 1999 | A |
6775780 | Muttik | Aug 2004 | B1 |
7213153 | Hollander et al. | May 2007 | B2 |
7376971 | Pastorelli et al. | May 2008 | B2 |
7398389 | Teal et al. | Jul 2008 | B2 |
7478237 | Costea et al. | Jan 2009 | B2 |
7487548 | Conover | Feb 2009 | B1 |
7490356 | Lieblich et al. | Feb 2009 | B2 |
7530106 | Zaitsev et al. | May 2009 | B1 |
7591015 | Cargille et al. | Sep 2009 | B2 |
7614084 | Monastyrsky et al. | Nov 2009 | B2 |
7644271 | Cherepov et al. | Jan 2010 | B1 |
7765410 | Costea et al. | Jul 2010 | B2 |
7765595 | Focke et al. | Jul 2010 | B2 |
7996682 | Schutz et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
20040006706 | Erlingsson | Jan 2004 | A1 |
20040255160 | Stamos et al. | Dec 2004 | A1 |
20070016914 | Yeap | Jan 2007 | A1 |
20090300307 | Carbone et al. | Dec 2009 | A1 |
20100024036 | Morozov et al. | Jan 2010 | A1 |
20100031360 | Seshadri et al. | Feb 2010 | A1 |
20100192224 | Ferri et al. | Jul 2010 | A1 |
20100211663 | Barboy et al. | Aug 2010 | A1 |
20100318992 | Kushwaha et al. | Dec 2010 | A1 |