The present invention relates to cables, and more particularly to a system and method for managing a cable in a server system.
Cables are well known and are used to connect multiple components such as server nodes in a server system. The cables are often identical, and the number of cables can vary. For example, in some server systems, there may be as few as 3 identical cables or as many as 12 identical cables, depending on the server system configuration.
As can be seen in
The conventional method for locating cable connections is to trace each cable by hand from point to point, which can be tedious and error prone. For example, if a cable needs replacing as may be indicated by a service processor, the user is required to locate the indicated port via a small label. After locating one end of the cable, the other end needs to be located typically by tracing the cable by hand. This can be troublesome especially if the cables are difficult to access (e.g. out of reach or in a rack). Furthermore, the cable may be in a bundle of cables that are tie wrapped or beneath a raised floor.
Accordingly, what is needed is a more efficient system and method for managing a cable in a server system. The system and method should be simple, cost effective, and capable of being easily adapted to existing technology. The present invention addresses such a need.
A system and method for managing a cable in a server system are disclosed. The system includes a first paddle card coupled to a first end of the cable and a first light emitting diode (LED) coupled to the first paddle card. The first LED turns on to facilitate a user in locating the first end of the cable. The system also includes a second paddle card coupled to a second end of the cable and a second LED coupled to the second paddle card. The second LED turns to facilitate the user in locating the second end of the cable. As a result, the ends of the cable can be conveniently and reliably located in a server system having multiple identical cables.
The present invention relates to cables, and more particularly to a system and method for managing a cable in a server system. The following description is presented to enable one of ordinary skill in the art to make and use the invention, and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown, but is to be accorded the widest scope consistent with the principles and features described herein.
A system and method in accordance with the present invention for managing a cable in a server system are disclosed. The system includes paddle cards that are coupled to each end of the cable. Each paddle card is coupled to a light emitting diode (LED) that lights up so that the ends of the cable can be visually located among a multitude of cables. In another embodiment of the present invention, the LEDs coupled to each paddle card light up when both ends of the cable have been connected so that it can be easily and visually determined if both ends of the cable are connected. As a result, a cable can be conveniently and reliably located and the cable connections can be easily verified in a server system having multiple identical cables. To more particularly describe the features of the present invention, refer now to the following description in conjunction with the accompanying figures.
Although the present invention disclosed herein is described in the context of server systems, the present invention may apply to other types of systems, and still remain within the spirit and scope of the present invention.
According the present invention, an LED circuit 120 is coupled to the paddle card 110. The LED circuit 120 includes a voltage pin 122, a resister 124, an LED 126, a diode 127, and a ground pin 128. Similarly, an LED circuit 130 is coupled to the paddle card 112. The LED circuit 130 includes a voltage pin 132, a resistor 134, an LED 136, a diode 137, and a ground pin 138. In a specific embodiment, the voltage at the voltage pins 122 and 132 is 3.3V. However, the voltage at the voltage pins 122 and 132 may vary and the specific voltage will depend on the specific application.
In accordance with the present invention, the LEDs 126 and 136 are connected across the cable 102 such that both LEDs 126 and 136 can be turned on even if one end of the cable 102 (i.e. one of the paddle cards 110 or 112) is not plugged in to the server system. For example, if the paddle card 110 is plugged into the server system and the paddle card 112 is not, both of the LEDs 124 and 134 will still turn on. The LEDs could be turned on via a service processor. The circuit could be connected to an inter integrated circuit (12C) device on the server, which would allow the service processor to turn the LEDs on and off. I2C devices, which are well known, adhere to an I2C protocol. I2C devices operate with an I2C bus, which is an inter IC serial 2 wire bus that provides the communications link between some integrated circuits in a system. Alternatively, the LEDs could be turned on as soon as the cable is connected to the server. In this case the LED circuit would be connected directly to Vcc and Ground on the system board.
According the present invention, an LED circuit 320 is coupled to the paddle card 310. The LED circuit 320 includes a ground pin 322, a resister 324, and an LED 326. An LED circuit 330 is coupled to the paddle card 312. The LED circuit 330 includes a voltage pin 332 and an LED 136. As shown in
In operation, the LEDs coupled to each paddle card light up when both ends of the cable have been connected so that it can be easily and visually determined if both ends of the cable are connected.
According to the system and method disclosed herein, the present invention provides numerous benefits. For example, it visually identifies a cable in an environment where multiple cables of the same type are used and allows the user to determine if a cable is connected at both ends. As a result, configuration and serviceability of a server system is improved due to the ease of determining where cables are connected, particularly in server systems with multiple identical cables.
A system and method in accordance with the present invention for locating a cable in a server system has been disclosed. The system includes paddle cards that are coupled to each end of the cable. Each paddle card is coupled to an LED that lights up so that the ends of the cable can be visually located among a multitude of cables. In another embodiment of the present invention, the LEDs coupled to each paddle card light up when both ends of the cable have been connected so that it can be easily and visually determined if both ends of the cable are connected. As a result, a cable can be conveniently and reliably located and the cable connections can be easily verified in a server system having multiple identical cables.
The present invention has been described in accordance with the embodiments shown. One of ordinary skill in the art will readily recognize that there could be variations to the embodiments, and that any variations would be within the spirit and scope of the present invention. For example, although the paddle cards 110 and 112 shown in
Number | Name | Date | Kind |
---|---|---|---|
4074187 | Miller et al. | Feb 1978 | A |
4326162 | Hankey | Apr 1982 | A |
4384249 | Medina | May 1983 | A |
4445086 | Bulatao | Apr 1984 | A |
4471293 | Schnack | Sep 1984 | A |
4890102 | Oliver | Dec 1989 | A |
4978317 | Pocrass | Dec 1990 | A |
5027074 | Haferstat | Jun 1991 | A |
5081627 | Yu | Jan 1992 | A |
5168237 | Fieau et al. | Dec 1992 | A |
5198664 | Fayfield | Mar 1993 | A |
5249183 | Wong et al. | Sep 1993 | A |
5428671 | Dykes et al. | Jun 1995 | A |
5577023 | Marum et al. | Nov 1996 | A |
5601451 | Driones et al. | Feb 1997 | A |
5741152 | Boutros | Apr 1998 | A |
5764043 | Czosnowski et al. | Jun 1998 | A |
5847557 | Fincher et al. | Dec 1998 | A |
6099349 | Boutros | Aug 2000 | A |
6102741 | Boutros et al. | Aug 2000 | A |
6577243 | Dannenmann et al. | Jun 2003 | B1 |
7038135 | Chan et al. | May 2006 | B1 |
Number | Date | Country |
---|---|---|
WO02052583 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060228090 A1 | Oct 2006 | US |