This invention relates generally to the telephony field, and more specifically to a new and useful system and method for managing conferencing in a distributed communication network.
In recent years, innovations in web application and Voice over Internet Protocol (VOIP) have brought about considerable changes to the capabilities offered through traditional phone and communication services. In some distributed or cloud-based telephony systems, the routing of audio, video, or other media files can be determined or limited by the location and/or availability of the appropriate computing resources. In the case of conference calls, the size of the conference, the quality of the media communication, and capability to support all regions can be limited and can be resource prohibitive. In some cases, conferencing systems are replicated in different regions. But such solutions do not solve inter-regional communication issues, and further creates division in infrastructure, which can complicate maintenance and further improvement. Thus, there is a need in the telephony field to create a new and useful system and method for managing conferencing in a distributed communication network. This invention provides such a new and useful system and method.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The system 100 is preferably applied in a communication platform (e.g., the communicating platform 130 of
In media and signaling protocols, such as SIP, the signaling portion of the communication preferably contributes control directives and a mechanism to communicate various aspects concerning a communication session, and the media portion of the communication is preferably the channel through which media is transferred. The media portion can be particularly susceptible to latency issues caused by the routing path. The signaling route and the media route can diverge in their network topology.
The conference management system 110 preferably functions to control state of the conferencing system 100. As one aspect of the system 100, the system 100 is preferably distributed across multiple regional infrastructure systems. Having a physical system presence in different areas can promote higher quality communications. The management is preferably centralized to a single set of resources, but may alternatively be replicated in other regional instances. As mentioned above, the conference management system 110 preferably includes a conferencing orchestration service 111, a conference state manager 112, and a mixer state manager 113. The communication platform may provide other services that function to establish individual communication sessions, which may be connected in or transitioned to a conferencing state at least partially handled by the system 100. For example a call router (e.g., 131 of
The conferencing orchestration service 111 of the preferred embodiment functions to orchestrate the conferencing service on a signaling level. The conferencing orchestration service 111 preferably maintains a communication session model of the conference. The conference orchestration service preferably maintains the signaling dialog with communication services (e.g., the call router 131 of
Individual nodes in the conferencing orchestration service 111 can additionally include an API that enables the conference state manager 112 to notify the conference orchestration service 111 of state changes. For example, notifications such as “conference starting—please dial in” or “conference ending” or “participant joining/leaving” may be sent through the API. The API is preferably an internal REST API but any suitable API may alternatively be used. The conferencing orchestration service 111 preferably delegates management of conference state to the conference state manager 112. The conference state manager 112 can then direct the conferencing orchestration service 111 to negotiate media with assigned mixers (e.g., mixers of the distributed mixing resources 120).
The conference state manager 112 of the preferred embodiment functions to manage the state of the conferences in a highly available manner. The state of conferences is preferably global across multiple communication platform regions. The conference state may reference conference participants and mixers in different regions. The conference state manager 112 preferably maintains an application model of a conference. The conference state 112 manager preferably stores a data object representation of a conference. The data model of a conference may include a list of participants, duration of the conference, and state of the conference (e.g., waiting for participants, in session, completed, and the like). The conference state manager preferably 112 includes an interface to an Application Program Interface (API) (e.g., the API 132) of the communication platform (e.g., 130), which may be an access point for programmatically inspecting and/or modifying the state of a conference. The conference state manager 112 preferably includes application layer communication interfaces to the API (e.g., 132), the conference orchestration service 111, and the mixer state manager 113. The application layer communication interfaces preferably use HTTP/S, but may alternatively use any suitable application layer protocol. The conference state manager 112 can relay changes in state of a conference to the conference orchestration service 111, which can make suitable changes to the managed media services. The conference state manager 112 additionally utilizes the mixer state manager 113 to setup and determine mixer setup for a given conference. The conference state manager 112 may be fronted by a load balancer.
The mixer state manager 113 of the preferred embodiment functions to monitor and control the set of mixer resources (e.g., mixer resources of the distributed mixing resources 120). The set of mixers may be distributed across multiple regions (e.g., “Region 1”, “Region 2”, and “Region 3” of
The set of mixers (e.g., mixers of the distributing mixing resources 120) of the preferred embodiment functions to provide a set of resources that can merge, bridge, or otherwise combine media streams to allow multiple legs in a communication. There is preferably a plurality of mixer instances in the set of mixers. The set of mixers may additionally be distributed across distinct regional areas. A subset of mixers can exist in a first region (e.g., “Region 1” of
Mixers can preferably be used in isolation for a conference—one mixer facilitates completing mixing for every participant in a conference. Alternatively, mixers may be used in combination to facilitate mixing for all participants. Mixers may be used in series. For example, a first mixer may mix three of the eight participants in a conference, a second mixer may mix another three, and a third may mix two remaining participants. The three mixers are preferably set to be bridged for those partitions so that all eight participants are appropriately mixed. The mixers may be arranged in a hierarchical or network formation. For example, two mixers may mix media streams of participants, and the output media stream from each of these two child mixers can be mixed by a parent mixer. Such mixing architecture can be used to flexibly use the capacity of the mixing resources.
The system (e.g., 100) of the preferred embodiment is preferably operable in at least two regions, which are connectable through the media resources of the system. Various provider services in the regions can facilitate connecting media streams to outside endpoints (e.g., PSTN phones, SIP phones, or IP communication devices). The regions are preferably selected to serve endpoints local to that region. The regions may be separated by globally significant distance. A globally significant distance in this document may be understood to be a transmission distance greater than 2000 miles and more preferably greater than 5000 miles. For example, the first region may be on the West coast of the US and the second region may be on the East coast, separated by a geographic distance greater than 2500 miles. In another example, the first region may be in the United States and the second region may be in Europe, separated by a distance greater than 3500 miles. The first region and the second region are not limited to functioning with such distance ranges and may be separated by a distance less than 2000 miles or exceeding 5000 miles.
A mixer (e.g., a mixer of mixing resources 120) of a preferred embodiment functions to mix or combine at least two sources of synchronous communication. In particular, audio media streams are combined into a single audio stream. A mixer is preferably a service that includes a communication interface and processing capabilities. In one preferred implementation, the communication interface is an SIP interface, which may be used in interfacing with the communication orchestration service 111, other mixers in the same region, mixers in other regions, and/or other communication resources such as recording services, and communication gateways (which may connect to destination endpoints).
The mixer may have a participant input capacity, which limits the number of participants that can be mixed. The mixer preferably includes a number of participant input channels. For example, a mixer may be able to handle up to 500 participants. The number of participant input channels can additionally be distributed across distinct conference sessions, such that one mixer instance can serve multiple conferences. A mixer preferably outputs mixed media, which may be directed to endpoint connections and/or other mixers. A mixer preferably has an identifier such that media can be directed to specific mixers as assigned by the mixer state manager 113. Various other capabilities may be built into a mixer. The mixers may additionally include media mixing capability that allows a manager to listen to a participant leg (i.e., the manager is a silent participant). Additionally, the mixer may include mixing capability to segment portions of audio to subset of participants. For example, one participant may be able to privately converse with one other participant without other participants hearing their conversation.
The system (e.g., 100) can include resources or functionality modules that can provide recording, transcription, text-to-speech services, DTMF input, speaker identification service (e.g., which participant is speaking when), or any suitable media service.
As shown in
The method functions to provide a high quality conferencing service. The method may additionally promote regional accessibility, scalability, and efficiency. The scalability preferably enables the method to facilitate conferences with a large number of participants, spanning multiple mixer instances, as well as supporting multiple distinct conferences. The system efficiency preferably achieves resource usage that can be substantially proportional to the number of participants. The method is preferably implemented by the system (e.g., 100) described above, but may alternatively be implemented by any suitable system.
The method may be applied in a variety of conferencing scenarios. The method preferably accounts for different scaling and allocation scenarios so as to provide high capacity and high quality conferencing. The method can be used in conferencing scenarios such as when the participants are geographically distributed, where the conference is not started until all participants join, where a conference can organically grow without a priori knowledge of the identity or number of participants, and other suitable scenarios.
Block S110, which includes receiving a request for a new conference, functions to receive some directive to create a conference. The request can be part of an asynchronous API request. The request may alternatively be a response to the routing of communication. For example, a communication session may hit a conference orchestration service (e.g., 111 of
Block Silo, preferably includes determining participants of the conference. Participants may be present on an existing or otherwise established communication session. For example, a caller may be transferred into a conference. As another example, a caller may dial in to a phone number or other suitable endpoint, which is mapped to a particular conference. A conference state manager (e.g., 112 of
In addition to determining participants, the method preferably includes determining participant regions. The conferencing infrastructure may be distributed across various regions. Geographic proximity to a region may improve communication quality. The regions associated with a participant may be completed through processing an endpoint. In some cases, endpoints (such as telephone numbers) will include location-overloaded information (e.g., country/area codes). Alternatively, location information may be collected and obtained through any suitable method or source.
Block S120, which includes allocating mixers (e.g., mixers of the distributed mixing resources 120 of
Allocating mixers (block S120) preferably includes processing the information related to the conference and generating a mixer topology. Generating a mixer topology preferably calculates an arrangement/architecture to mixer assignment and bridging so as to obtain high quality communication. The mixer topology preferably characterizes and identifies how the media from participants is mixed to form a conferencing experience. With the mixer resources described above, a participant is preferably mapped to one particular media input channel. The mixer topology can be generated according to some operational goal. Preferably the goal is communication quality. High quality communication is preferably a function of communication latency, which is preferably minimized or reduced. Other properties that may additionally or alternatively be factored into the evaluation function of communication quality can include packet loss, post dial delay (PDD) (i.e., time for carrier to indicate the other side is ringing), monetary cost to the platform provider, monetary price charged to account holder, media quality, and/or any suitable factor. Generating a mixer topology can additionally account for mixer capacity. Additionally, how multiple mixers can be bridged may additionally be determined.
The mixer topology can consider various factors and may include heuristics for particular scenarios. In one variation, block S120 can include grouping participants into mixer input channels according to regional association. More specifically, the orchestration of mixers may be such that the conference achieves local media communication quality. In other words, participants local to other participants experience improved communication quality. For example, if a conference exists by a group of 3 participants in the West coast and 4 in the East coast, then a set of mixers in a Western region handle the first set of participants and a set of mixers in the Eastern region handle locally conferencing the second set of participants. Communication quality may be of lower quality between the participants in the two regions, but conferencing between the local participants may have high quality communication.
In another variation, block S120 can include grouping participants into mixer partitions by participant priority. Participants may be marked by different priority. The priority may be based on who organized the meeting, the role in the conference, or any suitable property. For example, a massive conference may have a host/moderator, a panel (who will contribute to the discussion), and then audience members who may be silent participants but may be allowed to ask questions at times. Mixing topology generation can weigh the priority of participants when calculating conference quality. For example, participants that will primarily be listening may not have a high demand for low latency communication, and so the mixer topology may not optimize for minimizing media latency for these participants.
Block S130, which includes negotiating routing media of the set of communication sessions to the allocated mixers, functions to route media of participants to assigned mixers and start the conferencing session. Negotiation routing media preferably includes various signaling handshaking between involved media resources and the mixer resources. The media is preferably routed according to the mixer topology which can include routing media of participants to assigned mixer input channel and bridging mixed media across mixer instances. As described above, SIP or an alternative media and signaling protocol may be used in directing participant communication sessions from a conference orchestration service 111 to mixers. In particular, the media of the participant communication session is routed to a mixer. Intermediary nodes may be used in the routing to mixer. For example, regional gateway proxy servers may be used when routing media or signaling to outside regions. Within a mixer, the set of participant input channels for a conference are mixed or combined through any suitable processing. The output of the mixing can be bridged to another mixer for further mixing or redirected to a connected endpoint.
Negotiating the routing of media preferably establishes various mixer scenarios. In a first variation, the participants may be serviced by a single mixer. A single mixer may be used when all participants have relatively close proximity to the mixer, and a mixer has capacity to handle the number of participants.
In other instances, multiple mixers may be used. In one use-case, a single mixer may not have capacity for a conference, and so the participants are distributed across multiple mixers as shown in
In yet another instance, mixers may be used in a hierarchical mixing. In hierarchical mixing a mixer mixes output channels of at least two mixers as shown in
Once negotiated, a conference session can take place, and participants can communicate as a group. Various features may additionally be supported during a conference.
A conference is preferably exposed as an accessible API resource, and as such, the conference can preferably be manipulated through various directives. The state of the conference can be queried. Information such as conference status (e.g., waiting, started, ended), participant count, participant identification, conference duration, an event log of the conference (e.g., when people joined/left, who spoken when, etc.), and other suitable pieces of information can be supplied in an API response. Additionally the conference may be augmented. API calls directed at a particular conference may add or remove participants, mute participants, set up individually directed media control, split a conference into multiple conferences, join a conference with another conference, end the conference, and/or make any suitable change.
A method can additionally include individually directing the media flow of one or more participants. With individual media control in addition to the group mixing, participants may be able to listen in on a second participant. As an exemplary use case, a manager may want the capability to listen in on a participant's leg of the conference. As another variation, a participant may want the capability to transfer media to only a subset of participants. For example, during a conference, a first participant may want to say something to a second participant without the other participants hearing what is said. As another example, the first participant may want to say something to a larger subset of participants (e.g., two or more people) without the rest hearing.
Event callbacks can additionally be configured for the conference. An event callback is preferably a mapping between an event and a designated callback destination such as an URI or other resource that is accessed when the event is detected. A callback destination may also be a pre-established application session using web-sockets or some other similar mechanism. In particular, a speaker callback, may be triggered when a speaker changes in the conference. For example, an application that setup the conference may set a speaker callback URI. When a speaker changes in the conference, an HTTP messages is sent to the speaker callback URI. The message preferably identifies the new speaker and optionally the time of the change and the last speaker. Another callback may be for communication input. In telephony conferences, participants may be able to provide input through DTMF input. An input callback will preferably hit the input callback resource with information about input (e.g., who entered what key when). Other callbacks can include when the conference starts, when the conference ends, when there is a change in the participants (e.g., a new one joins or leaves), or any suitable event.
The method can additionally include transitioning mixer topology, which functions to adapt negotiated mixer topology according to new conditions. Participants can join and leave during a conference, and as such the preferred mixer topology can change. The transition can be in response to any number of triggers. In one variation, the mixer topology may be re-evaluated and possibly transitioned each time there is a change in participants. This may provide high quality communication throughout a conference. In another variation, the conference may be re-evaluated periodically, which may avoid overhead of frequent transitions but allow communication to be eventually transitioned to a preferred state. In another variation, the transitioning may be re-evaluated and initiated in response to a trigger. For example, a user input may signal that the communication quality is lacking, and should be refreshed to improve quality. Other variations may include variations more directed at changes in regional mixing, or the number of participant changes, total number of participants, and other factors.
The method described above was directed towards a single conference instance, but the system and method is preferably used in situations where multiple conferences are facilitated simultaneously. More preferably, the method is used to service the conferencing features of a multi-tenant communication platform. The selection of mixers additionally considers the usage of mixers across multiple mixers.
As shown in
In some implementations, the conference management system 610 is similar to the conference management system 110 of
In some implementations each mixer (e.g., 621a-d, 622a-d, 623a-d) is a mixer system. In some implementations each mixer system is a server device (e.g., a server device similar to the server device of
In some implementations, the conference management system 610 is included in a server device (e.g., the server device of
In some implementations, the conference management system 610 is a distributed system that includes a plurality of server devices. In some implementations, the conference management system 610 includes at least one mixer (e.g., at least one of the mixers 621a-d, 622a-d, 623a-d). In some implementations, the conference management system 610 includes mixers of at least one region (e.g., mixers of at least one of “Region 1”, “Region 2”, and “Region 3) of
In some implementations, each of the regions of the distributed mixing resources 620 (e.g., “Region 1”, “Region 2”, and “Region 3) are communicatively coupled via media resources of the system 600. In some implementations, various provider services in the regions facilitate coupling media streams to outside endpoints (e.g., PSTN phones, SIP phones, or IP communication devices). In some implementations, the regions are selected to serve endpoints local to that region. In some implementations, the regions are separated by a globally significant distance. In some implementations, a globally significant distance is a transmission distance greater than 2000 miles. In some implementations, a globally significant distance is a transmission distance greater than 5000 miles. In some implementations, for example, a first region may be on the West coast of the US (e.g., California, USA) and a second region may be on the East coast (e.g., Virginia, USA), separated by a geographic distance greater than 2500 miles. In some implementations, for example, a first region may be in the United States (e.g., Virginia, USA) and a second region may be in Europe (e.g., London, England), separated by a distance greater than 3500 miles. In some implementations, the first region and the second region are not limited to functioning with such distance ranges and may be separated by a distance less than 2000 miles or exceeding 5000 miles.
In some implementations, the conference orchestration service 611, the conference state manager 612, the mixer state manager 613, and the conference database 614 are included in a single server device (e.g., the server device of
In the embodiment of
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
In some implementations, the communication protocol of at least one of the interfaces 651 and 657 is SIP (Session Initiation Protocol). In some implementations, the application layer interface of at least one of the interfaces 652, 653, 654, 655, and 656 is an HTTP interface.
In some implementations, the conference database 614 includes conference state 661. In some implementations, the conference state manager includes the conference state (e.g., 661). In some implementations, the conference state 661 includes conference state for each conference of the system 600. In some implementations, the conference state for a conference is generated during reception of a request for a new conference. In some implementations, conference state for a conference indicates at least each participant of the conference. In some implementations, conference state for a conference indicates at least an endpoint identifier (e.g., a telephone number) for each participant of the conference.
In some implementations, the mixer state manager 613 includes mixer state 662. In some implementations, the mixer state 661 includes mixer state for each mixer of the distributed mixer resources 620 (e.g., the mixers 62a-d, 622a-d, 623a-d) of the system 600. In some implementations, the mixer state for a conference is managed by the mixer state manager 613 during operation of each mixer of the distributed mixer resources 620. In some implementations, mixer state for a mixer indicates at least a status of each channel of the mixer. In some implementations, the status indicates whether the respective channel is in use or not in use. In some implementations, the status indicates that the channel is not in use in a case where the channel is not in use, and indicates at least one of participant identifier and a conference identifier in a case where the channel is assigned to a participant of a conference. In some implementations, a participant identifier is an endpoint identifier (e.g., a telephone number).
In some implementations, the conference orchestration service 611 includes mixer topologies 663. In some implementations, the mixer topologies 663 includes a mixer topology for each conference for which at least one mixer is allocated. In some implementations, each mixer topology specifies an assignment of each participant of a respective conference to at least one input channel of a mixer. In some implementations, each assignment of a mixer topology indicates an endpoint identifier (e.g., a telephone number) and a corresponding mixer channel identifier (e.g., a mixer ID and a corresponding mixer channel ID). In some implementations, a mixer topology for a conference identifies a mixer output to be provided to the conference orchestration service 611. For example, in a case of a mixer topology that includes more than one mixer, the mixer topology indicates the mixer whose output is provided to the conference orchestration service as the output of the mixer topology.
The exemplary mixer state 662 of
In some implementations, the conference state manager 612 is constructed to maintain conference state (e.g., conference state 661) of each conference, and to notify the conference orchestration service 611 of conference state changes via the application layer communication interfaces 654 and 652.
The method 1000 of
In some implementations, the generated mixer topology is stored by the mixer state manager. In some implementations, the generated mixer topology is stored at the mixer state manager. In some implementations, the generated mixer topology is stored at a storage medium (e.g., 1205 of
In some implementations, the system 600 performs the processes S1010-S1030. In some implementations, the conference orchestration service 611 (of
In some implementations, the process S1010 is similar to the process S110 of
4.1 Receiving a Request for a New Conference
In some implementations, the process S1010 functions to control the system 600 to receive a request for a new conference via at least one of an application layer interface (e.g., 653) of the conferencing system and a signaling protocol communication interface (e.g., 651) of the conference orchestration service (e.g., 611). In some implementations, the communication interface 651 of the conference orchestration service 611 receives a request for a new conference from a call router (e.g., the call router 631 of the communication platform 630). In some implementations, the interface 651 is a SIP interface and the request for a new conference is a SIP request. In some implementations, the application layer interface 653 of the conference state manager 612 receives a request for a new conference via an API request (e.g., of the API 632 of the communication platform 630). In some implementations, the interface 653 is an HTTP interface. In some implementations, the interface 653 is REST application program interface (API).
In some implementations, the process S1010 includes determining participants of the conference, as described above for Silo of
In some implementations participants include at least one of: a participant transferred from an established communication session (e.g., a communication session of the communication platform 630) into the conference; a participant that establishes a communication session (e.g., a communication session of the communication platform 630) with an endpoint that is mapped to the conference (e.g., a conference of the conference system 600); and a participant specified by an API request received by the application programming interface (e.g., 653) of the conferencing system 600.
In some implementations, determining participants of the conference includes determining participant regions, as described above for Silo of
4.1.1 Application Layer Requests
In some implementations, responsive to the request for the new conference, the conference orchestration service 611 provides an application layer request (e.g., an HTTP request) to the conference state manager 612 (process S1011 of
In some implementations, responsive to the application layer request of the process S1011, the conference state manager 612 determines participants of the conference, as described above. In some implementations, responsive to the application layer request of the process S1011, the conference state manager 612 determines participant regions of the participants of the conference, as described above.
In some implementations, responsive to the application layer request of the process S1011, the conference state manager 612 generates conference state for the conference (e.g., the conference state of
In some implementations, the conference state includes the determined participants and the determined participant regions of the participants for the conference.
In some implementations, responsive to the application layer request of the process S1011, the conference state manager 612 provides an application layer request (e.g., an HTTP request) to the mixer state manager (process S1012 of
In some implementations, responsive to the application layer request of the process S1012, the mixer state manager 613 allocates the mixers of the conference (process S1020).
4.2 Allocating Mixers
In some implementations, the process S1020 functions to control the system 600 to allocate mixers (e.g., the mixers 621a-d, 622a-d, and 623a-d) of the conference (e.g., a conference of the conference states 711, 712 and 713), the mixers being mixers of the set of distributed mixers (e.g., 620 of
In some implementations the mixer state manager 613 allocates each determined participant to a single mixer. In some implementations, the mixer state manager 613 allocates the determined participants to multiple mixers to provide increased participant capacity for a conference (e.g., as shown in the mixer topology of
In some implementations, responsive to the application layer request of the process S1012, the mixer state manager 613 allocates the mixers of the conference (process S1020).
In some implementations, the mixer state manager 613 assigns each determined participant to at least one input channel based on a participant region determined for the participant.
In some implementations, the application layer request of the process S1012 specifies the determined participants. In some implementations, the application layer request of the process S1012 specifies participant regions of the determined participants. In some implementations, the mixer state manager 613 determines participant regions of the determined participants, as described above.
In some implementations, the mixer state manager 613 assigns each determined participant to at least one input channel of at least one mixer system based on the mixer state 662.
In some implementations, the mixer state manager 613 assigns each determined participant to at least one free input channel of at least one mixer system, and the mixer state manager 613 determines whether a mixer input channels is free based on the mixer state 662. In some implementations, the mixer state manager 613 updates the mixer state 662 after assignment of participants to input channels, to indicated that assigned channels are in use.
As an example, responsive to an application layer request provided by the conference state manager 612 for the conference corresponding to the conference state 711 (of
In some implementations, the mixer state 662 indicates regions of each mixer (e.g., as shown in
As an example, responsive to an application layer request provided by the conference state manager 612 for the conference corresponding to the conference state 712 (of
As an example, responsive to an application layer request provided by the conference state manager 612 for the conference corresponding to the conference state 713 (of
In some implementations, the mixer state manager 613 allocates mixers as described above for S120 of
In some implementations, the mixer state manager 613 stores the generated mixer topology.
In some implementations, the mixer state manager 613 provides the generated mixer topology (e.g., one of the topologies 910, 920, and 930 of
In some implementations, responsive to the mixer topology provided by the mixer state manager 613, the conference state manager 612 provides the mixer topology to the conference orchestration service manager 611 (process S1022). In some implementations, the conference state manager 612 provides the mixer topology to the conference orchestration service manager 611 via at least one of an application layer response and an application layer request. In some implementations, the conference state manager 612 provides the mixer topology to the conference orchestration service manager 611 uses the application layer interface 654 to provide the mixer topology to the application layer interface 652 of the conference orchestration service 611. In some implementations, the conference orchestration service 611 stores the topology (e.g., as one of the mixer topologies 663).
In some implementations, responsive to the mixer topology (e.g., received provided at the process S1022), the conference orchestration service 611 negotiates media across the allocated mixers (process S1030).
4.2.1 Bridging Mixers
In some implementations, the mixer bridging of two mixers is performed by the mixer state manager 613. In some implementations, the bridging of two mixers is performed by the mixer state manager 613 during generation of the mixer topology (e.g., 910, 920, 930), and the mixer state manager 613 bridges two mixers by instructing a main mixer (e.g., a mixer whose output is provided to an input of a child mixer) to dial in to a child mixer.
In some implementations, the mixer state manager 613 instructs the main mixer to dial in to the child mixer by providing an application layer request (e.g., an HTTP REST call) to the main mixer, the application layer request specifying the mixer identifier of the child mixer and the channel identifier of the channel to receive the output of the main mixer. In some implementations, responsive to the application layer request received by the main mixer, the main mixer dials into the child mixer and bridges the output of the main mixer to the input channel identified by the channel identifier by: providing the child mixer with a SIP INVITE message that specifies the main mixer in a SIP “From” header, specifies a mixer identifier of the child mixer as a parameter to the SIP INVITE message, and specifies the channel identifier of the channel in a custom SIP header (e.g., a SIP X-Header).
In some implementations, the mixer state manager 613 instructs the main mixer to dial in to the child mixer by providing an communication protocol interface request (e.g., a request provided by the communication protocol interface 657) (e.g., a SIP message) to the main mixer, the communication protocol interface request (e.g., SIP message) specifying the mixer identifier of the child mixer and the channel identifier of the channel to receive the output of the main mixer. In some implementations, responsive to the communication protocol interface request (e.g., SIP message) received by the main mixer, the main mixer dials into the child mixer and bridges the output of the main mixer to the input channel identified by the channel identifier by: providing the child mixer with a SIP INVITE message that specifies the main mixer in a SIP “From” header, specifies a mixer identifier of the child mixer as a parameter to the SIP INVITE message, and specifies the channel identifier of the channel in a custom SIP header (e.g., a SIP X-Header).
In some implementations, the bridging of two mixers, as described above, is performed by the conference orchestration service 611.
4.3 Negotiating Media
In some implementations, the process S1030 functions to control the system 600 to negotiate media across the allocated mixers (e.g., the mixer systems allocated at the process S1020). In some implementations, negotiating media across the allocated mixers includes routing media of each determined participant to the respective assigned mixer input channel. In some implementations, negotiating media across the allocated mixers includes starting the conference. In some implementations, the routing is performed by the conference orchestration service 611 in accordance with a signaling protocol.
In some implementations, the conference orchestration service 611 negotiates the media across the allocated mixers by routing media of each conference participant (e.g., participant media received from the call router 631 via the communication protocol interface 651) to a respective mixer input channel. In some implementations, the conference orchestration service 611 determines a mixer input channel for a conference participant based on the mixer topology generated by the mixer state manager 613 for the conference (e.g., a mixer topology of the topologies 663). In some implementations, the conference orchestration service 611 uses the communication protocol interface 651 to receive participant media from the communication platform 630 (e.g., from the call router 631). In some implementations, participant media is media of a communication session of the communication platform 630. In some implementations, the conference orchestration service 611 uses the communication protocol interface 651 to provide media of each participant of the conference to a respective mixer channel. In some implementations, the communication protocol interface 651 is a SIP interface, the conference orchestration service 611 uses the communication protocol interface 651 to receive participant media, and the conference orchestration service 611 uses the communication protocol interface 651 to provide media of each participant of the conference to a respective mixer channel.
In some implementations, negotiating the media across the allocated mixers includes the conference orchestration service 6n using the communication protocol interface 651 to perform signaling handshaking between media resources of the conference (e.g., participant media resources of the conference) and mixers allocated to the conference (as indicated by the mixer topology of the conference). In some implementations, the signaling handshaking is performed in accordance with SIP. In some implementations, the conference orchestration service 6n establishes the mixer topology by sending each mixer of the topology a SIP INVITE message that specifies at least a corresponding mixer identifier and a channel identifier assigned to the corresponding participant as indicated by the mixer topology (e.g., a topology of the mixer topologies 663). In some implementations, the conference orchestration service 6n establishes the mixer topology by sending each mixer of the topology a SIP INVITE message that specifies at least a corresponding conference participant, mixer identifier and a channel identifier assigned to the corresponding participant as indicated by the mixer topology (e.g., a topology of the mixer topologies 663).
In some implementations, the conference orchestration service 611 establishes the mixer topology by: determining conference participants (as described above); for each participant, determining the assigned mixer and channel as indicated by the mixer topology (e.g., one of the topologies 663) for the conference; for each participant, providing a SIP INVITE message to the assigned mixer. In some implementations, the SIP INVITE message specifies the conference participant in a SIP “From” header, specifies a mixer identifier of the mixer (as identified by the mixer topology) as a parameter to the SIP INVITE request, and specifies a channel identifier of the channel (as identified by the mixer topology) in a custom SIP header (e.g., a SIP X-Header).
As an example, for the conference 1 of the mixer topology 910 of
The method 1100 of
In some implementations, the generated mixer topology is stored by the mixer state manager. In some implementations, the generated mixer topology is stored at the mixer state manager. In some implementations, the generated mixer topology is stored at a storage medium (e.g., 1205 of
In some implementations, the system 600 performs the processes S1110-S1130. In some implementations, the conference orchestration service 611 (of
In some implementations, the process S110 is similar to the process S1010 of
In some implementations, the mixer state manager manages mixer state information for each mixer of the set of distributed mixers, and the mixer state information specifies a regional association of at least one mixer of the set of distributed mixers.
In some implementations, for each mixer managed by the mixer state manager, the mixer state information indicates a state for each input channel of the mixer. The mixer state manager assigns each determined participant to at least one free input channel of a plurality of mixers of the set of distributed mixers, and each free input channel is identified by the mixer state information.
In some implementations, the conference state is managed by the conference state manager, the conference state manger provides the conference state to the mixer state manager via the application layer request provided by the conference state manager, and the mixer state manager generates the mixer topology by using the conference state.
In some implementations, the mixer state manager determines the participant regions for each determined participant by using the conference state provided by the conference state manager. The mixer state manager determines regions for each mixer by using the mixer state managed by the mixer state manager. For at least one determined participant, the mixer state manager determines a mixer located in a region that matches the participant region of the determined participant, and the mixer state manager assigns the determined participant to an input channel of the mixer located in the matching region.
In some implementations, the mixer state manager assigns each determined participant to at least one input channel based on respective participant priority values.
The bus 1201 interfaces with the processors 1201A-1201N, the main memory (e.g., a random access memory (RAM)) 1222, a read only memory (ROM) 1204, a processor-readable storage medium 1205, a display device 1207, a user input device 1208, and a network device 1211.
The processors 1201A-1201N may take many forms, such as ARM processors, X86 processors, and the like.
In some implementations, the system (e.g., 600) includes at least one of a central processing unit (processor) and a multi-processor unit (MPU).
The processors 1201A-1201N and the main memory 1222 form a processing unit 1299. In some embodiments, the processing unit includes one or more processors communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, the processing unit includes one or more of a conference management system, a conference orchestration service, a conference state manager, a mixer state manager, and a conference database, and mixing resources.
The network adapter device 1211 provides one or more wired or wireless interfaces for exchanging data and commands between the system (e.g., 600) and other devices, such as a mixer, and a communication platform (e.g., 630). Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.
Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory 1222 (of the processing unit 1299) from the processor-readable storage medium 1205, the ROM 1204 or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors 1201A-1201N (of the processing unit 1299) via the bus 1201, and then executed by at least one of processors 1201A-1201N. Data used by the software programs are also stored in the memory 1222, and such data is accessed by at least one of processors 1201A-1201N during execution of the machine-executable instructions of the software programs. The processor-readable storage medium 1205 is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like. The processor-readable storage medium 1205 includes machine-executable instructions (and related data) for an operating system 1212, software programs 1213, device drivers 1214, mixing resources 1215, and the conference management system 610. The machine-executable instructions (and related data) for the mixing resources 1215 include machine-executable instructions (and related data) for one or more mixers (e.g., a mixer of the distributed mixing resources 620 of
In some implementations, the conference management system 610 is implemented as a server device that is separate from server devices of the mixing resources.
The bus 1301 interfaces with the processors 1301A-1301N, the main memory (e.g., a random access memory (RAM)) 1322, a read only memory (ROM) 1304, a processor-readable storage medium 1305, a display device 1307, a user input device 1308, and a network device 1311.
The processors 1301A-1301N may take many forms, such as ARM processors, X86 processors, and the like.
In some implementations, the server device includes at least one of a central processing unit (processor) and a multi-processor unit (MPU).
The processors 1301A-1301N and the main memory 1322 form a processing unit 1399. In some embodiments, the processing unit includes one or more processors communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, the processing unit includes one or more mixers.
The network adapter device 1311 provides one or more wired or wireless interfaces for exchanging data and commands between the server device and other devices, such as a server device of a conference management system (e.g., 610). Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.
Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory 1322 (of the processing unit 1399) from the processor-readable storage medium 1305, the ROM 1304 or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors 131A-131N (of the processing unit 1399) via the bus 1301, and then executed by at least one of processors 1301A-1301N. Data used by the software programs are also stored in the memory 1322, and such data is accessed by at least one of processors 1301A-1301N during execution of the machine-executable instructions of the software programs. The processor-readable storage medium 1305 is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like. The processor-readable storage medium 1305 includes machine-executable instructions (and related data) for an operating system 1312, software programs 1313, device drivers 1314, and the mixers 621a-d.
The system and methods of the preferred embodiments and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the media and signaling components of a conferencing system. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/375,397, filed 12 Dec. 2016, which is a continuation of U.S. patent application Ser. No. 14/964,266, filed 9 Dec. 2015, which is a continuation of U.S. patent application Ser. No. 14/791,759, filed 6 Jul. 2015, which claims the benefit of U.S. Provisional Application Ser. No. 62/021,641, filed on 7 Jul. 2014, all of which are incorporated in their entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
5274700 | Gechter et al. | Dec 1993 | A |
5283819 | Glick et al. | Feb 1994 | A |
5526416 | Dezonno et al. | Jun 1996 | A |
5581608 | Jreij et al. | Dec 1996 | A |
5598457 | Foladare et al. | Jan 1997 | A |
5867495 | Elliott et al. | Feb 1999 | A |
5934181 | Adamczewski | Aug 1999 | A |
5978465 | Corduroy et al. | Nov 1999 | A |
6026440 | Shrader et al. | Feb 2000 | A |
6034946 | Roginsky et al. | Mar 2000 | A |
6094681 | Shaffer et al. | Jul 2000 | A |
6138143 | Gigliotti et al. | Oct 2000 | A |
6185565 | Meubus et al. | Feb 2001 | B1 |
6192123 | Grunsted et al. | Feb 2001 | B1 |
6206564 | Adamczewski | Mar 2001 | B1 |
6223287 | Douglas et al. | Apr 2001 | B1 |
6232979 | Shochet | May 2001 | B1 |
6269336 | Ladd et al. | Jul 2001 | B1 |
6317137 | Rosasco | Nov 2001 | B1 |
6363065 | Thornton et al. | Mar 2002 | B1 |
6373836 | Deryugin et al. | Apr 2002 | B1 |
6425012 | Trovato et al. | Jul 2002 | B1 |
6426995 | Kim et al. | Jul 2002 | B1 |
6430175 | Echols et al. | Aug 2002 | B1 |
6434528 | Sanders | Aug 2002 | B1 |
6445694 | Swartz | Sep 2002 | B1 |
6445776 | Shank et al. | Sep 2002 | B1 |
6459913 | Cloutier | Oct 2002 | B2 |
6463414 | Su et al. | Oct 2002 | B1 |
6493558 | Bernhart et al. | Dec 2002 | B1 |
6496500 | Nance et al. | Dec 2002 | B2 |
6501739 | Cohen | Dec 2002 | B1 |
6501832 | Saylor et al. | Dec 2002 | B1 |
6507875 | Mellen-Garnett et al. | Jan 2003 | B1 |
6571245 | Huang et al. | May 2003 | B2 |
6574216 | Farris et al. | Jun 2003 | B1 |
6577721 | Vainio et al. | Jun 2003 | B1 |
6600736 | Ball et al. | Jul 2003 | B1 |
6606596 | Zirngibl et al. | Aug 2003 | B1 |
6614783 | Sonesh et al. | Sep 2003 | B1 |
6625258 | Ram et al. | Sep 2003 | B1 |
6625576 | Kochanski et al. | Sep 2003 | B2 |
6636504 | Albers et al. | Oct 2003 | B1 |
6662231 | Drosset et al. | Dec 2003 | B1 |
6704785 | Koo et al. | Mar 2004 | B1 |
6707889 | Saylor et al. | Mar 2004 | B1 |
6711129 | Bauer et al. | Mar 2004 | B1 |
6711249 | Weissman et al. | Mar 2004 | B2 |
6738738 | Henton | May 2004 | B2 |
6757365 | Bogard | Jun 2004 | B1 |
6765997 | Zirngibl et al. | Jul 2004 | B1 |
6768788 | Langseth et al. | Jul 2004 | B1 |
6778653 | Kallas et al. | Aug 2004 | B1 |
6785266 | Swartz | Aug 2004 | B2 |
6788768 | Saylor et al. | Sep 2004 | B1 |
6792086 | Saylor et al. | Sep 2004 | B1 |
6792093 | Barak et al. | Sep 2004 | B2 |
6798867 | Zirngibl et al. | Sep 2004 | B1 |
6807529 | Johnson et al. | Oct 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6819667 | Brusilovsky et al. | Nov 2004 | B1 |
6820260 | Flockhart et al. | Nov 2004 | B1 |
6829334 | Zirngibl et al. | Dec 2004 | B1 |
6831966 | Tegan et al. | Dec 2004 | B1 |
6834265 | Balasuriya | Dec 2004 | B2 |
6836537 | Zirngibl et al. | Dec 2004 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6850603 | Eberle et al. | Feb 2005 | B1 |
6870830 | Schuster et al. | Mar 2005 | B1 |
6873952 | Bailey et al. | Mar 2005 | B1 |
6874084 | Dobner et al. | Mar 2005 | B1 |
6885737 | Gao et al. | Apr 2005 | B1 |
6888929 | Saylor et al. | May 2005 | B1 |
6895084 | Saylor et al. | May 2005 | B1 |
6898567 | Balasuriya | May 2005 | B2 |
6912581 | Johnson et al. | Jun 2005 | B2 |
6922411 | Taylor | Jul 2005 | B1 |
6928469 | Duursma et al. | Aug 2005 | B1 |
6931405 | El-Shimi et al. | Aug 2005 | B2 |
6937699 | Schuster et al. | Aug 2005 | B1 |
6940953 | Eberle et al. | Sep 2005 | B1 |
6941268 | Porter et al. | Sep 2005 | B2 |
6947417 | Laursen et al. | Sep 2005 | B2 |
6947988 | Saleh et al. | Sep 2005 | B1 |
6961330 | Cattan et al. | Nov 2005 | B1 |
6964012 | Zirngibl et al. | Nov 2005 | B1 |
6970915 | Partovi et al. | Nov 2005 | B1 |
6977992 | Zirngibl et al. | Dec 2005 | B2 |
6981041 | Araujo et al. | Dec 2005 | B2 |
6985862 | Strom et al. | Jan 2006 | B2 |
6999576 | Sacra | Feb 2006 | B2 |
7003464 | Ferrans et al. | Feb 2006 | B2 |
7006606 | Cohen et al. | Feb 2006 | B1 |
7010586 | Allavarpu et al. | Mar 2006 | B1 |
7020685 | Chen et al. | Mar 2006 | B1 |
7039165 | Saylor et al. | May 2006 | B1 |
7058042 | Bontempi et al. | Jun 2006 | B2 |
7058168 | Knappe | Jun 2006 | B1 |
7058181 | Wright et al. | Jun 2006 | B2 |
7062709 | Cheung | Jun 2006 | B2 |
7065637 | Nanja | Jun 2006 | B1 |
7076037 | Gonen et al. | Jul 2006 | B1 |
7076428 | Anastasakos et al. | Jul 2006 | B2 |
7089310 | Ellerman et al. | Aug 2006 | B1 |
7099442 | Da Palma et al. | Aug 2006 | B2 |
7103003 | Brueckheimer et al. | Sep 2006 | B2 |
7103171 | Annadata et al. | Sep 2006 | B1 |
7106844 | Holland | Sep 2006 | B1 |
7111163 | Haney | Sep 2006 | B1 |
7136932 | Schneider | Nov 2006 | B1 |
7140004 | Kunins et al. | Nov 2006 | B1 |
7143039 | Stifelman et al. | Nov 2006 | B1 |
7197331 | Anastasakos et al. | Mar 2007 | B2 |
7197461 | Eberle et al. | Mar 2007 | B1 |
7197462 | Takagi et al. | Mar 2007 | B2 |
7197544 | Wang et al. | Mar 2007 | B2 |
D540074 | Peters | Apr 2007 | S |
7225232 | Elberse | May 2007 | B2 |
7227849 | Rasanen | Jun 2007 | B1 |
7245611 | Narasimhan et al. | Jul 2007 | B2 |
7260208 | Cavalcanti | Aug 2007 | B2 |
7266181 | Zirngibl et al. | Sep 2007 | B1 |
7269557 | Bailey et al. | Sep 2007 | B1 |
7272212 | Eberle et al. | Sep 2007 | B2 |
7272564 | Phillips et al. | Sep 2007 | B2 |
7277851 | Henton | Oct 2007 | B1 |
7283515 | Fowler | Oct 2007 | B2 |
7283519 | Girard | Oct 2007 | B2 |
7286521 | Jackson et al. | Oct 2007 | B1 |
7287248 | Adeeb | Oct 2007 | B1 |
7289453 | Riedel et al. | Oct 2007 | B2 |
7296739 | Mo et al. | Nov 2007 | B1 |
7298732 | Cho | Nov 2007 | B2 |
7298834 | Homeier et al. | Nov 2007 | B1 |
7308085 | Weissman | Dec 2007 | B2 |
7308408 | Stifelman et al. | Dec 2007 | B1 |
7324633 | Gao et al. | Jan 2008 | B2 |
7324942 | Mahowald et al. | Jan 2008 | B1 |
7328263 | Sadjadi | Feb 2008 | B1 |
7330463 | Bradd et al. | Feb 2008 | B1 |
7330890 | Partovi et al. | Feb 2008 | B1 |
7340040 | Saylor et al. | Mar 2008 | B1 |
7349714 | Lee et al. | Mar 2008 | B2 |
7369865 | Gabriel et al. | May 2008 | B2 |
7370329 | Kumar et al. | May 2008 | B2 |
7373660 | Guichard et al. | May 2008 | B1 |
7376223 | Taylor et al. | May 2008 | B2 |
7376586 | Partovi et al. | May 2008 | B1 |
7376733 | Connelly et al. | May 2008 | B2 |
7376740 | Porter et al. | May 2008 | B1 |
7412525 | Cafarella et al. | Aug 2008 | B2 |
7418090 | Reding et al. | Aug 2008 | B2 |
7428302 | Zirngibl et al. | Sep 2008 | B2 |
7440898 | Eberle et al. | Oct 2008 | B1 |
7447299 | Partovi et al. | Nov 2008 | B1 |
7454459 | Kapoor et al. | Nov 2008 | B1 |
7457249 | Baldwin et al. | Nov 2008 | B2 |
7457397 | Saylor et al. | Nov 2008 | B1 |
7473872 | Takimoto | Jan 2009 | B2 |
7486780 | Zirngibl et al. | Feb 2009 | B2 |
7496054 | Taylor | Feb 2009 | B2 |
7496188 | Saha et al. | Feb 2009 | B2 |
7496651 | Joshi | Feb 2009 | B1 |
7500249 | Kampe et al. | Mar 2009 | B2 |
7505951 | Thompson et al. | Mar 2009 | B2 |
7519359 | Chiarulli et al. | Apr 2009 | B2 |
7522711 | Stein et al. | Apr 2009 | B1 |
7536454 | Balasuriya | May 2009 | B2 |
7542761 | Sarkar | Jun 2009 | B2 |
7552054 | Stifelman et al. | Jun 2009 | B1 |
7571226 | Partovi et al. | Aug 2009 | B1 |
7606868 | Le et al. | Oct 2009 | B1 |
7613287 | Stifelman et al. | Nov 2009 | B1 |
7623648 | Oppenheim et al. | Nov 2009 | B1 |
7630900 | Strom | Dec 2009 | B1 |
7631310 | Henzinger | Dec 2009 | B1 |
7644000 | Strom | Jan 2010 | B1 |
7657433 | Chang | Feb 2010 | B1 |
7657434 | Thompson et al. | Feb 2010 | B2 |
7668157 | Weintraub et al. | Feb 2010 | B2 |
7672275 | Yajnik et al. | Mar 2010 | B2 |
7672295 | Andhare et al. | Mar 2010 | B1 |
7675857 | Chesson | Mar 2010 | B1 |
7676221 | Roundtree et al. | Mar 2010 | B2 |
7685280 | Berry et al. | Mar 2010 | B2 |
7685298 | Day et al. | Mar 2010 | B2 |
7715547 | Ibbotson et al. | May 2010 | B2 |
7716293 | Kasuga et al. | May 2010 | B2 |
7742499 | Erskine et al. | Jun 2010 | B1 |
7779065 | Gupta et al. | Aug 2010 | B2 |
7809125 | Brunson et al. | Oct 2010 | B2 |
7809791 | Schwartz et al. | Oct 2010 | B2 |
7875836 | Imura et al. | Jan 2011 | B2 |
7882253 | Pardo-Castellote et al. | Feb 2011 | B2 |
7920866 | Bosch et al. | Apr 2011 | B2 |
7926099 | Chakravarty et al. | Apr 2011 | B1 |
7929562 | Petrovykh | Apr 2011 | B2 |
7929684 | Hostetler | Apr 2011 | B2 |
7936867 | Hill et al. | May 2011 | B1 |
7949111 | Harlow et al. | May 2011 | B2 |
7962644 | Ezerzer et al. | Jun 2011 | B1 |
7979555 | Rothstein et al. | Jul 2011 | B2 |
7992120 | Wang et al. | Aug 2011 | B1 |
8023425 | Raleigh | Sep 2011 | B2 |
8024785 | Andress et al. | Sep 2011 | B2 |
8045689 | Provenzale et al. | Oct 2011 | B2 |
8046378 | Zhuge et al. | Oct 2011 | B1 |
8046823 | Begen et al. | Oct 2011 | B1 |
8069096 | Ballaro et al. | Nov 2011 | B1 |
8078483 | Hirose et al. | Dec 2011 | B1 |
8081744 | Sylvain | Dec 2011 | B2 |
8081958 | Soderstrom et al. | Dec 2011 | B2 |
8103725 | Gupta et al. | Jan 2012 | B2 |
8126128 | Hicks, III et al. | Feb 2012 | B1 |
8126129 | Mcguire | Feb 2012 | B1 |
8130750 | Hester | Mar 2012 | B2 |
8130917 | Helbling et al. | Mar 2012 | B2 |
8139730 | Da Palma et al. | Mar 2012 | B2 |
8145212 | Lopresti et al. | Mar 2012 | B2 |
8149716 | Ramanathan et al. | Apr 2012 | B2 |
8150918 | Edelman et al. | Apr 2012 | B1 |
8156213 | Deng et al. | Apr 2012 | B1 |
8165116 | Ku et al. | Apr 2012 | B2 |
8166185 | Samuel et al. | Apr 2012 | B2 |
8175007 | Jain et al. | May 2012 | B2 |
8185619 | Maiocco et al. | May 2012 | B1 |
8196133 | Kakumani et al. | Jun 2012 | B2 |
8214868 | Hamilton et al. | Jul 2012 | B2 |
8218457 | Malhotra et al. | Jul 2012 | B2 |
8233611 | Zettner | Jul 2012 | B1 |
8238533 | Blackwell et al. | Aug 2012 | B2 |
8243889 | Taylor et al. | Aug 2012 | B2 |
8249552 | Gailloux et al. | Aug 2012 | B1 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8295272 | Boni et al. | Oct 2012 | B2 |
8301117 | Keast et al. | Oct 2012 | B2 |
8306021 | Lawson et al. | Nov 2012 | B2 |
8315198 | Corneille et al. | Nov 2012 | B2 |
8315369 | Lawson et al. | Nov 2012 | B2 |
8315620 | Williamson et al. | Nov 2012 | B1 |
8319816 | Swanson et al. | Nov 2012 | B1 |
8326805 | Arous et al. | Dec 2012 | B1 |
8335852 | Hokimoto | Dec 2012 | B2 |
8346630 | Mckeown | Jan 2013 | B1 |
8355394 | Taylor et al. | Jan 2013 | B2 |
8411669 | Chen et al. | Apr 2013 | B2 |
8413247 | Hudis et al. | Apr 2013 | B2 |
8417817 | Jacobs | Apr 2013 | B1 |
8429827 | Wetzel | Apr 2013 | B1 |
8438315 | Tao et al. | May 2013 | B1 |
8462670 | Chien | Jun 2013 | B2 |
8467502 | Sureka et al. | Jun 2013 | B2 |
8477926 | Jasper et al. | Jul 2013 | B2 |
8503639 | Reding et al. | Aug 2013 | B2 |
8503650 | Reding et al. | Aug 2013 | B2 |
8504818 | Rao et al. | Aug 2013 | B2 |
8509068 | Begall et al. | Aug 2013 | B2 |
8532686 | Schmidt et al. | Sep 2013 | B2 |
8533857 | Tuchman et al. | Sep 2013 | B2 |
8542805 | Agranovsky et al. | Sep 2013 | B2 |
8543665 | Ansari et al. | Sep 2013 | B2 |
8547962 | Ramachandran et al. | Oct 2013 | B2 |
8549047 | Beechuk et al. | Oct 2013 | B2 |
8565117 | Hilt et al. | Oct 2013 | B2 |
8572391 | Golan et al. | Oct 2013 | B2 |
8576712 | Sabat et al. | Nov 2013 | B2 |
8577803 | Chatterjee et al. | Nov 2013 | B2 |
8582450 | Robesky | Nov 2013 | B1 |
8582737 | Lawson et al. | Nov 2013 | B2 |
8594626 | Woodson et al. | Nov 2013 | B1 |
8601136 | Fahlgren et al. | Dec 2013 | B1 |
8611338 | Lawson et al. | Dec 2013 | B2 |
8613102 | Nath | Dec 2013 | B2 |
8621598 | Lai et al. | Dec 2013 | B2 |
8649268 | Lawson et al. | Feb 2014 | B2 |
8656452 | Li et al. | Feb 2014 | B2 |
8667056 | Proulx et al. | Mar 2014 | B1 |
8675493 | Buddhikot et al. | Mar 2014 | B2 |
8688147 | Nguyen et al. | Apr 2014 | B2 |
8695077 | Gerhard et al. | Apr 2014 | B1 |
8713693 | Shanabrook et al. | Apr 2014 | B2 |
8728656 | Takahashi et al. | May 2014 | B2 |
8751801 | Harris et al. | Jun 2014 | B2 |
8755376 | Lawson et al. | Jun 2014 | B2 |
8767925 | Sureka et al. | Jul 2014 | B2 |
8781975 | Bennett et al. | Jul 2014 | B2 |
8797920 | Parreira | Aug 2014 | B2 |
8806024 | Toba Francis et al. | Aug 2014 | B1 |
8819133 | Wang | Aug 2014 | B2 |
8825746 | Ravichandran et al. | Sep 2014 | B2 |
8837465 | Lawson et al. | Sep 2014 | B2 |
8838707 | Lawson et al. | Sep 2014 | B2 |
8843596 | Goel et al. | Sep 2014 | B2 |
8855271 | Brock et al. | Oct 2014 | B2 |
8861510 | Fritz | Oct 2014 | B1 |
8879547 | Maes | Nov 2014 | B2 |
8903938 | Vermeulen et al. | Dec 2014 | B2 |
8918848 | Sharma et al. | Dec 2014 | B2 |
8924489 | Bleau et al. | Dec 2014 | B2 |
8938053 | Cooke et al. | Jan 2015 | B2 |
8948356 | Nowack et al. | Feb 2015 | B2 |
8954591 | Ganesan et al. | Feb 2015 | B2 |
8964726 | Lawson et al. | Feb 2015 | B2 |
8990610 | Bostick et al. | Mar 2015 | B2 |
9014664 | Kim et al. | Apr 2015 | B2 |
9015702 | Bhat | Apr 2015 | B2 |
9031223 | Smith et al. | May 2015 | B2 |
9071677 | Aggarwal et al. | Jun 2015 | B2 |
9137127 | Nowack et al. | Sep 2015 | B2 |
9141682 | Adoc, Jr. et al. | Sep 2015 | B1 |
9158775 | Tomkins | Oct 2015 | B1 |
9161296 | Parsons et al. | Oct 2015 | B2 |
9177007 | Winters et al. | Nov 2015 | B2 |
9204281 | Ramprasad et al. | Dec 2015 | B2 |
9210275 | Lawson et al. | Dec 2015 | B2 |
9246694 | Fahlgren et al. | Jan 2016 | B1 |
9306982 | Lawson et al. | Apr 2016 | B2 |
9307094 | Nowack et al. | Apr 2016 | B2 |
9325624 | Malatack et al. | Apr 2016 | B2 |
9338190 | Eng et al. | May 2016 | B2 |
9344573 | Wolthuis et al. | May 2016 | B2 |
9356916 | Kravitz et al. | May 2016 | B2 |
9378337 | Kuhr | Jun 2016 | B2 |
9398622 | Lawson et al. | Jul 2016 | B2 |
9456008 | Lawson et al. | Sep 2016 | B2 |
9456339 | Hildner et al. | Sep 2016 | B1 |
9460169 | Hinton et al. | Oct 2016 | B2 |
9553900 | Fahlgren et al. | Jan 2017 | B2 |
9596274 | Lawson et al. | Mar 2017 | B2 |
9628624 | Wolthuis et al. | Apr 2017 | B2 |
9632875 | Raichstein et al. | Apr 2017 | B2 |
9634995 | Binder | Apr 2017 | B2 |
10757200 | Fahlgren et al. | Aug 2020 | B2 |
20010016491 | Imura et al. | Aug 2001 | A1 |
20010038624 | Greenberg et al. | Nov 2001 | A1 |
20010043684 | Guedalia et al. | Nov 2001 | A1 |
20010051996 | Cooper et al. | Dec 2001 | A1 |
20020006124 | Jimenez et al. | Jan 2002 | A1 |
20020006125 | Josse et al. | Jan 2002 | A1 |
20020006193 | Rodenbusch et al. | Jan 2002 | A1 |
20020025819 | Cetusic et al. | Feb 2002 | A1 |
20020057777 | Saito et al. | May 2002 | A1 |
20020064267 | Martin et al. | May 2002 | A1 |
20020067823 | Walker et al. | Jun 2002 | A1 |
20020077833 | Arons et al. | Jun 2002 | A1 |
20020098831 | Castell | Jul 2002 | A1 |
20020126813 | Partovi et al. | Sep 2002 | A1 |
20020133587 | Ensel et al. | Sep 2002 | A1 |
20020136391 | Armstrong et al. | Sep 2002 | A1 |
20020165957 | Devoe et al. | Nov 2002 | A1 |
20020167936 | Goodman | Nov 2002 | A1 |
20020176378 | Hamilton et al. | Nov 2002 | A1 |
20020184361 | Eden | Dec 2002 | A1 |
20020198941 | Gavrilescu et al. | Dec 2002 | A1 |
20030006137 | Wei et al. | Jan 2003 | A1 |
20030012356 | Zino et al. | Jan 2003 | A1 |
20030014665 | Anderson et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030023672 | Vaysman | Jan 2003 | A1 |
20030026426 | Wright et al. | Feb 2003 | A1 |
20030046366 | Pardikar et al. | Mar 2003 | A1 |
20030051037 | Sundaram et al. | Mar 2003 | A1 |
20030058884 | Kallner et al. | Mar 2003 | A1 |
20030059020 | Meyerson et al. | Mar 2003 | A1 |
20030060188 | Gidron et al. | Mar 2003 | A1 |
20030061317 | Brown et al. | Mar 2003 | A1 |
20030061404 | Atwal et al. | Mar 2003 | A1 |
20030088421 | Maes et al. | May 2003 | A1 |
20030097330 | Hillmer et al. | May 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030097639 | Niyogi et al. | May 2003 | A1 |
20030103620 | Brown et al. | Jun 2003 | A1 |
20030123640 | Roelle et al. | Jul 2003 | A1 |
20030149721 | Alfonso-nogueiro et al. | Aug 2003 | A1 |
20030162506 | Toshimitsu et al. | Aug 2003 | A1 |
20030195950 | Huang et al. | Oct 2003 | A1 |
20030195990 | Greenblat et al. | Oct 2003 | A1 |
20030196076 | Zabarski et al. | Oct 2003 | A1 |
20030204616 | Billhartz et al. | Oct 2003 | A1 |
20030211842 | Kempf et al. | Nov 2003 | A1 |
20030231647 | Petrovykh | Dec 2003 | A1 |
20030233276 | Pearlman et al. | Dec 2003 | A1 |
20040008635 | Nelson et al. | Jan 2004 | A1 |
20040011690 | Marfino et al. | Jan 2004 | A1 |
20040044953 | Watkins et al. | Mar 2004 | A1 |
20040052349 | Creamer et al. | Mar 2004 | A1 |
20040071275 | Bowater et al. | Apr 2004 | A1 |
20040101122 | Da Palma et al. | May 2004 | A1 |
20040102182 | Reith et al. | May 2004 | A1 |
20040117788 | Karaoguz et al. | Jun 2004 | A1 |
20040136324 | Steinberg et al. | Jul 2004 | A1 |
20040165569 | Sweatman et al. | Aug 2004 | A1 |
20040172482 | Weissman et al. | Sep 2004 | A1 |
20040199572 | Hunt et al. | Oct 2004 | A1 |
20040205101 | Radhakrishnan | Oct 2004 | A1 |
20040205689 | Ellens et al. | Oct 2004 | A1 |
20040213400 | Golitsin et al. | Oct 2004 | A1 |
20040216058 | Chavers et al. | Oct 2004 | A1 |
20040218748 | Fisher | Nov 2004 | A1 |
20040228469 | Andrews et al. | Nov 2004 | A1 |
20040236696 | Aoki et al. | Nov 2004 | A1 |
20040240649 | Goel | Dec 2004 | A1 |
20050005109 | Castaldi et al. | Jan 2005 | A1 |
20050005200 | Matenda et al. | Jan 2005 | A1 |
20050010483 | Ling | Jan 2005 | A1 |
20050015505 | Kruis et al. | Jan 2005 | A1 |
20050021626 | Prajapat et al. | Jan 2005 | A1 |
20050025303 | Hostetler | Feb 2005 | A1 |
20050038772 | Colrain | Feb 2005 | A1 |
20050043952 | Sharma et al. | Feb 2005 | A1 |
20050047579 | Salame | Mar 2005 | A1 |
20050060411 | Coulombe et al. | Mar 2005 | A1 |
20050083907 | Fishler | Apr 2005 | A1 |
20050091336 | Dehamer et al. | Apr 2005 | A1 |
20050091572 | Gavrilescu et al. | Apr 2005 | A1 |
20050108770 | Karaoguz et al. | May 2005 | A1 |
20050125251 | Berger et al. | Jun 2005 | A1 |
20050125739 | Thompson et al. | Jun 2005 | A1 |
20050128961 | Miloslavsky et al. | Jun 2005 | A1 |
20050135578 | Ress et al. | Jun 2005 | A1 |
20050141500 | Bhandari et al. | Jun 2005 | A1 |
20050147088 | Bao et al. | Jul 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050181835 | Lau et al. | Aug 2005 | A1 |
20050198292 | Duursma et al. | Sep 2005 | A1 |
20050228680 | Malik | Oct 2005 | A1 |
20050238153 | Chevalier | Oct 2005 | A1 |
20050240659 | Taylor | Oct 2005 | A1 |
20050243977 | Creamer et al. | Nov 2005 | A1 |
20050246176 | Creamer et al. | Nov 2005 | A1 |
20050286498 | Rand et al. | Dec 2005 | A1 |
20050289222 | Sahim | Dec 2005 | A1 |
20060008065 | Longman et al. | Jan 2006 | A1 |
20060008073 | Yoshizawa et al. | Jan 2006 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060015467 | Morken et al. | Jan 2006 | A1 |
20060021004 | Moran et al. | Jan 2006 | A1 |
20060023676 | Whitmore et al. | Feb 2006 | A1 |
20060047666 | Bedi et al. | Mar 2006 | A1 |
20060067506 | Flockhart et al. | Mar 2006 | A1 |
20060080415 | Tu | Apr 2006 | A1 |
20060098624 | Morgan et al. | May 2006 | A1 |
20060129638 | Deakin | Jun 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060146735 | Shaffer | Jul 2006 | A1 |
20060146792 | Ramachandran et al. | Jul 2006 | A1 |
20060146802 | Baldwin et al. | Jul 2006 | A1 |
20060168334 | Potti et al. | Jul 2006 | A1 |
20060181608 | Knappe | Aug 2006 | A1 |
20060203979 | Jennings | Sep 2006 | A1 |
20060209695 | Archer, Jr. et al. | Sep 2006 | A1 |
20060212865 | Vincent et al. | Sep 2006 | A1 |
20060215824 | Mitby et al. | Sep 2006 | A1 |
20060217823 | Hussey | Sep 2006 | A1 |
20060217978 | Mitby et al. | Sep 2006 | A1 |
20060222166 | Ramakrishna et al. | Oct 2006 | A1 |
20060256816 | Yarlagadda et al. | Nov 2006 | A1 |
20060262915 | Marascio et al. | Nov 2006 | A1 |
20060270386 | Yu et al. | Nov 2006 | A1 |
20060285489 | Francisco et al. | Dec 2006 | A1 |
20070002744 | Mewhinney et al. | Jan 2007 | A1 |
20070036143 | Alt et al. | Feb 2007 | A1 |
20070038499 | Margulies et al. | Feb 2007 | A1 |
20070043681 | Morgan et al. | Feb 2007 | A1 |
20070050306 | McQueen | Mar 2007 | A1 |
20070064672 | Raghav et al. | Mar 2007 | A1 |
20070070906 | Thakur | Mar 2007 | A1 |
20070070980 | Phelps et al. | Mar 2007 | A1 |
20070071223 | Lee et al. | Mar 2007 | A1 |
20070074174 | Thornton | Mar 2007 | A1 |
20070088836 | Tai et al. | Apr 2007 | A1 |
20070091907 | Seshadri et al. | Apr 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070116191 | Bermudez et al. | May 2007 | A1 |
20070121651 | Casey et al. | May 2007 | A1 |
20070127691 | Lert | Jun 2007 | A1 |
20070127703 | Siminoff | Jun 2007 | A1 |
20070130260 | Weintraub et al. | Jun 2007 | A1 |
20070133771 | Stifelman et al. | Jun 2007 | A1 |
20070147351 | Dietrich et al. | Jun 2007 | A1 |
20070149166 | Turcotte et al. | Jun 2007 | A1 |
20070153711 | Dykas et al. | Jul 2007 | A1 |
20070153712 | Fry et al. | Jul 2007 | A1 |
20070167170 | Fitchett et al. | Jul 2007 | A1 |
20070192629 | Saito | Aug 2007 | A1 |
20070201448 | Baird et al. | Aug 2007 | A1 |
20070208862 | Fox et al. | Sep 2007 | A1 |
20070232284 | Mason et al. | Oct 2007 | A1 |
20070239761 | Baio et al. | Oct 2007 | A1 |
20070242626 | Altberg et al. | Oct 2007 | A1 |
20070255828 | Paradise | Nov 2007 | A1 |
20070265073 | Novi et al. | Nov 2007 | A1 |
20070286180 | Marquette et al. | Dec 2007 | A1 |
20070291734 | Bhatia et al. | Dec 2007 | A1 |
20070291905 | Halliday et al. | Dec 2007 | A1 |
20070293200 | Roundtree et al. | Dec 2007 | A1 |
20070295803 | Levine et al. | Dec 2007 | A1 |
20080005275 | Overton et al. | Jan 2008 | A1 |
20080025320 | Bangalore et al. | Jan 2008 | A1 |
20080037715 | Prozeniuk et al. | Feb 2008 | A1 |
20080037746 | Dufrene et al. | Feb 2008 | A1 |
20080040484 | Yardley | Feb 2008 | A1 |
20080049617 | Grice et al. | Feb 2008 | A1 |
20080052395 | Wright et al. | Feb 2008 | A1 |
20080091843 | Kulkarni | Apr 2008 | A1 |
20080101571 | Harlow et al. | May 2008 | A1 |
20080104348 | Kabzinski et al. | May 2008 | A1 |
20080120702 | Hokimoto | May 2008 | A1 |
20080123559 | Haviv et al. | May 2008 | A1 |
20080134049 | Gupta et al. | Jun 2008 | A1 |
20080139166 | Agarwal et al. | Jun 2008 | A1 |
20080146268 | Gandhi et al. | Jun 2008 | A1 |
20080152101 | Griggs | Jun 2008 | A1 |
20080154601 | Stifelman et al. | Jun 2008 | A1 |
20080155029 | Helbling et al. | Jun 2008 | A1 |
20080162482 | Ahern et al. | Jul 2008 | A1 |
20080165708 | Moore et al. | Jul 2008 | A1 |
20080172404 | Cohen | Jul 2008 | A1 |
20080177883 | Hanai et al. | Jul 2008 | A1 |
20080192736 | Jabri et al. | Aug 2008 | A1 |
20080201426 | Darcie | Aug 2008 | A1 |
20080209050 | Li | Aug 2008 | A1 |
20080212945 | Khedouri et al. | Sep 2008 | A1 |
20080222656 | Lyman | Sep 2008 | A1 |
20080229421 | Hudis et al. | Sep 2008 | A1 |
20080232574 | Baluja et al. | Sep 2008 | A1 |
20080235230 | Maes | Sep 2008 | A1 |
20080256224 | Kaji et al. | Oct 2008 | A1 |
20080275741 | Loeffen | Nov 2008 | A1 |
20080307436 | Hamilton | Dec 2008 | A1 |
20080310599 | Purnadi et al. | Dec 2008 | A1 |
20080313318 | Vermeulen et al. | Dec 2008 | A1 |
20080316931 | Qiu et al. | Dec 2008 | A1 |
20080317222 | Griggs et al. | Dec 2008 | A1 |
20080317232 | Couse et al. | Dec 2008 | A1 |
20080317233 | Rey et al. | Dec 2008 | A1 |
20090046838 | Andreasson | Feb 2009 | A1 |
20090052437 | Taylor et al. | Feb 2009 | A1 |
20090052641 | Taylor et al. | Feb 2009 | A1 |
20090059894 | Jackson et al. | Mar 2009 | A1 |
20090063502 | Coimbatore et al. | Mar 2009 | A1 |
20090074159 | Goldfarb et al. | Mar 2009 | A1 |
20090075684 | Cheng et al. | Mar 2009 | A1 |
20090083155 | Tudor et al. | Mar 2009 | A1 |
20090089165 | Sweeney | Apr 2009 | A1 |
20090089352 | Davis et al. | Apr 2009 | A1 |
20090089699 | Saha et al. | Apr 2009 | A1 |
20090093250 | Jackson et al. | Apr 2009 | A1 |
20090125608 | Werth et al. | May 2009 | A1 |
20090129573 | Gavan et al. | May 2009 | A1 |
20090136011 | Goel | May 2009 | A1 |
20090170496 | Bourque | Jul 2009 | A1 |
20090171659 | Pearce et al. | Jul 2009 | A1 |
20090171669 | Engelsma et al. | Jul 2009 | A1 |
20090171752 | Galvin et al. | Jul 2009 | A1 |
20090182896 | Patterson et al. | Jul 2009 | A1 |
20090193433 | Maes | Jul 2009 | A1 |
20090216835 | Jain et al. | Aug 2009 | A1 |
20090216935 | Flick | Aug 2009 | A1 |
20090217293 | Wolber et al. | Aug 2009 | A1 |
20090220057 | Waters | Sep 2009 | A1 |
20090221310 | Chen et al. | Sep 2009 | A1 |
20090222341 | Belwadi et al. | Sep 2009 | A1 |
20090225748 | Taylor | Sep 2009 | A1 |
20090225763 | Forsberg et al. | Sep 2009 | A1 |
20090228868 | Drukman et al. | Sep 2009 | A1 |
20090232289 | Drucker et al. | Sep 2009 | A1 |
20090234965 | Viveganandhan et al. | Sep 2009 | A1 |
20090235349 | Lai et al. | Sep 2009 | A1 |
20090241135 | Wong et al. | Sep 2009 | A1 |
20090252159 | Lawson et al. | Oct 2009 | A1 |
20090276771 | Nickolov et al. | Nov 2009 | A1 |
20090288012 | Hertel et al. | Nov 2009 | A1 |
20090288165 | Qiu et al. | Nov 2009 | A1 |
20090300194 | Ogasawara | Dec 2009 | A1 |
20090316687 | Kruppa | Dec 2009 | A1 |
20090318112 | Vasten | Dec 2009 | A1 |
20100027531 | Kurashima | Feb 2010 | A1 |
20100037204 | Lin et al. | Feb 2010 | A1 |
20100054142 | Moiso et al. | Mar 2010 | A1 |
20100070424 | Monk | Mar 2010 | A1 |
20100071053 | Ansari et al. | Mar 2010 | A1 |
20100082513 | Liu | Apr 2010 | A1 |
20100087215 | Gu et al. | Apr 2010 | A1 |
20100088187 | Courtney et al. | Apr 2010 | A1 |
20100088698 | Krishnamurthy | Apr 2010 | A1 |
20100094758 | Chamberlain et al. | Apr 2010 | A1 |
20100103845 | Ulupinar et al. | Apr 2010 | A1 |
20100107222 | Glasser | Apr 2010 | A1 |
20100115041 | Hawkins et al. | May 2010 | A1 |
20100138501 | Clinton et al. | Jun 2010 | A1 |
20100142516 | Lawson et al. | Jun 2010 | A1 |
20100150139 | Lawson et al. | Jun 2010 | A1 |
20100167689 | Sepehri-Nik et al. | Jul 2010 | A1 |
20100184408 | Vendrow et al. | Jul 2010 | A1 |
20100188979 | Thubert et al. | Jul 2010 | A1 |
20100191915 | Spencer | Jul 2010 | A1 |
20100208881 | Kawamura | Aug 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20100217982 | Brown et al. | Aug 2010 | A1 |
20100232594 | Lawson et al. | Sep 2010 | A1 |
20100235539 | Carter et al. | Sep 2010 | A1 |
20100250946 | Korte et al. | Sep 2010 | A1 |
20100251329 | Wei | Sep 2010 | A1 |
20100251340 | Martin et al. | Sep 2010 | A1 |
20100265825 | Blair et al. | Oct 2010 | A1 |
20100281108 | Cohen | Nov 2010 | A1 |
20100291910 | Sanding et al. | Nov 2010 | A1 |
20100312919 | Lee et al. | Dec 2010 | A1 |
20100332852 | Vembu et al. | Dec 2010 | A1 |
20110026516 | Roberts et al. | Feb 2011 | A1 |
20110029882 | Jaisinghani | Feb 2011 | A1 |
20110029981 | Jaisinghani | Feb 2011 | A1 |
20110053555 | Cai et al. | Mar 2011 | A1 |
20110078278 | Cui et al. | Mar 2011 | A1 |
20110081008 | Lawson et al. | Apr 2011 | A1 |
20110083069 | Paul et al. | Apr 2011 | A1 |
20110083179 | Lawson et al. | Apr 2011 | A1 |
20110093516 | Geng et al. | Apr 2011 | A1 |
20110096673 | Stevenson et al. | Apr 2011 | A1 |
20110110366 | Moore et al. | May 2011 | A1 |
20110131293 | Mori | Jun 2011 | A1 |
20110143714 | Keast et al. | Jun 2011 | A1 |
20110145049 | Hertel et al. | Jun 2011 | A1 |
20110149810 | Koren | Jun 2011 | A1 |
20110149950 | Petit-Huguenin et al. | Jun 2011 | A1 |
20110151884 | Zhao | Jun 2011 | A1 |
20110167172 | Roach et al. | Jul 2011 | A1 |
20110170505 | Rajasekar et al. | Jul 2011 | A1 |
20110176537 | Lawson et al. | Jul 2011 | A1 |
20110179126 | Wetherell et al. | Jul 2011 | A1 |
20110211679 | Mezhibovsky et al. | Sep 2011 | A1 |
20110251921 | Kassaei et al. | Oct 2011 | A1 |
20110253693 | Lyons et al. | Oct 2011 | A1 |
20110255675 | Jasper et al. | Oct 2011 | A1 |
20110258432 | Rao et al. | Oct 2011 | A1 |
20110261804 | Antoine et al. | Oct 2011 | A1 |
20110265168 | Lucovsky et al. | Oct 2011 | A1 |
20110265172 | Sharma | Oct 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110274111 | Narasappa et al. | Nov 2011 | A1 |
20110276892 | Jensen-Horne et al. | Nov 2011 | A1 |
20110276951 | Jain | Nov 2011 | A1 |
20110280390 | Lawson et al. | Nov 2011 | A1 |
20110283259 | Lawson et al. | Nov 2011 | A1 |
20110289126 | Aikas et al. | Nov 2011 | A1 |
20110289162 | Furlong et al. | Nov 2011 | A1 |
20110299672 | Chiu et al. | Dec 2011 | A1 |
20110310902 | Xu | Dec 2011 | A1 |
20110313950 | Nuggehalli et al. | Dec 2011 | A1 |
20110320449 | Gudlavenkatasiva | Dec 2011 | A1 |
20110320550 | Lawson et al. | Dec 2011 | A1 |
20120000903 | Baarman et al. | Jan 2012 | A1 |
20120011274 | Moreman | Jan 2012 | A1 |
20120017222 | May | Jan 2012 | A1 |
20120023531 | Meuninck et al. | Jan 2012 | A1 |
20120023544 | Li et al. | Jan 2012 | A1 |
20120027228 | Rijken et al. | Feb 2012 | A1 |
20120028602 | Lisi et al. | Feb 2012 | A1 |
20120036574 | Heithcock et al. | Feb 2012 | A1 |
20120039202 | Song | Feb 2012 | A1 |
20120059709 | Lieberman et al. | Mar 2012 | A1 |
20120079066 | Li et al. | Mar 2012 | A1 |
20120083266 | Vanswol et al. | Apr 2012 | A1 |
20120089572 | Raichstein et al. | Apr 2012 | A1 |
20120094637 | Jeyaseelan et al. | Apr 2012 | A1 |
20120101952 | Raleigh et al. | Apr 2012 | A1 |
20120110564 | Ran et al. | May 2012 | A1 |
20120114112 | Rauschenberger et al. | May 2012 | A1 |
20120149404 | Beattie et al. | Jun 2012 | A1 |
20120166488 | Kaushik et al. | Jun 2012 | A1 |
20120170726 | Schwartz | Jul 2012 | A1 |
20120173610 | Bleau et al. | Jul 2012 | A1 |
20120174095 | Natchadalingam et al. | Jul 2012 | A1 |
20120179907 | Byrd et al. | Jul 2012 | A1 |
20120180021 | Byrd et al. | Jul 2012 | A1 |
20120180029 | Hill et al. | Jul 2012 | A1 |
20120198004 | Watte | Aug 2012 | A1 |
20120201238 | Lawson et al. | Aug 2012 | A1 |
20120208495 | Lawson et al. | Aug 2012 | A1 |
20120221603 | Kothule et al. | Aug 2012 | A1 |
20120226579 | Ha et al. | Sep 2012 | A1 |
20120239757 | Firstenberg et al. | Sep 2012 | A1 |
20120240226 | Li | Sep 2012 | A1 |
20120246273 | Bornstein et al. | Sep 2012 | A1 |
20120254828 | Aiylam et al. | Oct 2012 | A1 |
20120281536 | Gell et al. | Nov 2012 | A1 |
20120288082 | Segall | Nov 2012 | A1 |
20120290706 | Lin et al. | Nov 2012 | A1 |
20120304245 | Lawson et al. | Nov 2012 | A1 |
20120304275 | Ji et al. | Nov 2012 | A1 |
20120316809 | Egolf et al. | Dec 2012 | A1 |
20120321058 | Eng et al. | Dec 2012 | A1 |
20120321070 | Smith et al. | Dec 2012 | A1 |
20130029629 | Lindholm et al. | Jan 2013 | A1 |
20130031158 | Salsburg | Jan 2013 | A1 |
20130036476 | Roever et al. | Feb 2013 | A1 |
20130047232 | Tuchman et al. | Feb 2013 | A1 |
20130054684 | Brazier et al. | Feb 2013 | A1 |
20130058262 | Parreira | Mar 2013 | A1 |
20130067232 | Cheung et al. | Mar 2013 | A1 |
20130067448 | Sannidhanam et al. | Mar 2013 | A1 |
20130097298 | Ting et al. | Apr 2013 | A1 |
20130110658 | Lyman | May 2013 | A1 |
20130132573 | Lindblom | May 2013 | A1 |
20130139148 | Berg et al. | May 2013 | A1 |
20130156024 | Burg | Jun 2013 | A1 |
20130166580 | Maharajh et al. | Jun 2013 | A1 |
20130179942 | Caplis et al. | Jul 2013 | A1 |
20130201909 | Bosch et al. | Aug 2013 | A1 |
20130204786 | Mattes et al. | Aug 2013 | A1 |
20130212603 | Cooke et al. | Aug 2013 | A1 |
20130244632 | Spence et al. | Sep 2013 | A1 |
20130267173 | Ling | Oct 2013 | A1 |
20130268676 | Martins et al. | Oct 2013 | A1 |
20130325934 | Fausak et al. | Dec 2013 | A1 |
20130328997 | Desai | Dec 2013 | A1 |
20130336472 | Fahlgren et al. | Dec 2013 | A1 |
20140025503 | Meyer et al. | Jan 2014 | A1 |
20140058806 | Guenette et al. | Feb 2014 | A1 |
20140064467 | Lawson et al. | Mar 2014 | A1 |
20140072115 | Makagon et al. | Mar 2014 | A1 |
20140073291 | Hildner et al. | Mar 2014 | A1 |
20140095627 | Romagnino | Apr 2014 | A1 |
20140101058 | Castel et al. | Apr 2014 | A1 |
20140105372 | Nowack et al. | Apr 2014 | A1 |
20140106704 | Cooke et al. | Apr 2014 | A1 |
20140122600 | Kim et al. | May 2014 | A1 |
20140123187 | Reisman | May 2014 | A1 |
20140126715 | Lum et al. | May 2014 | A1 |
20140129363 | Lorah et al. | May 2014 | A1 |
20140153565 | Lawson et al. | Jun 2014 | A1 |
20140185490 | Holm et al. | Jul 2014 | A1 |
20140219478 | Takahashi | Aug 2014 | A1 |
20140254600 | Shibata et al. | Sep 2014 | A1 |
20140258481 | Lundell | Sep 2014 | A1 |
20140269333 | Boerjesson | Sep 2014 | A1 |
20140274086 | Boerjesson et al. | Sep 2014 | A1 |
20140282473 | Saraf et al. | Sep 2014 | A1 |
20140289391 | Balaji et al. | Sep 2014 | A1 |
20140304054 | Orun et al. | Oct 2014 | A1 |
20140355600 | Lawson et al. | Dec 2014 | A1 |
20140372508 | Fausak et al. | Dec 2014 | A1 |
20140372509 | Fausak et al. | Dec 2014 | A1 |
20140372510 | Fausak et al. | Dec 2014 | A1 |
20140373098 | Fausak et al. | Dec 2014 | A1 |
20140379670 | Kuhr | Dec 2014 | A1 |
20150004932 | Kim et al. | Jan 2015 | A1 |
20150004933 | Kim et al. | Jan 2015 | A1 |
20150023251 | Giakoumelis et al. | Jan 2015 | A1 |
20150026477 | Malatack et al. | Jan 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150081918 | Nowack et al. | Mar 2015 | A1 |
20150082378 | Collison | Mar 2015 | A1 |
20150100634 | He et al. | Apr 2015 | A1 |
20150119050 | Liao et al. | Apr 2015 | A1 |
20150181631 | Lee et al. | Jun 2015 | A1 |
20150236905 | Bellan et al. | Aug 2015 | A1 |
20150281294 | Nur et al. | Oct 2015 | A1 |
20150321101 | Rosedale | Nov 2015 | A1 |
20150325226 | Rosedale | Nov 2015 | A1 |
20150365480 | Soto et al. | Dec 2015 | A1 |
20150370788 | Bareket et al. | Dec 2015 | A1 |
20150379574 | Pattan | Dec 2015 | A1 |
20160006574 | Fahlgren | Jan 2016 | A1 |
20160011758 | Dornbush et al. | Jan 2016 | A1 |
20160077693 | Meyer et al. | Mar 2016 | A1 |
20160088028 | Fahlgren et al. | Mar 2016 | A1 |
20160112475 | Lawson et al. | Apr 2016 | A1 |
20160112521 | Lawson et al. | Apr 2016 | A1 |
20160119291 | Zollinger et al. | Apr 2016 | A1 |
20160127254 | Kumar et al. | May 2016 | A1 |
20160149956 | Birnbaum et al. | May 2016 | A1 |
20160162172 | Rathod | Jun 2016 | A1 |
20160205519 | Patel et al. | Jul 2016 | A1 |
20160226937 | Patel et al. | Aug 2016 | A1 |
20160226979 | Lancaster et al. | Aug 2016 | A1 |
20160239770 | Batabyal et al. | Aug 2016 | A1 |
20170093992 | Fahlgren et al. | Mar 2017 | A1 |
20170339283 | Chaudhary et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1684587 | Mar 1971 | DE |
0282126 | Sep 1988 | EP |
1464418 | Oct 2004 | EP |
1522922 | Apr 2005 | EP |
1770586 | Apr 2007 | EP |
2053869 | Apr 2009 | EP |
2134107 | Sep 1999 | ES |
10294788 | Nov 1998 | JP |
2004166000 | Jun 2004 | JP |
2004220118 | Aug 2004 | JP |
2006319914 | Nov 2006 | JP |
WO-9732448 | Sep 1997 | WO |
WO-2002087804 | Nov 2002 | WO |
WO-2006037492 | Apr 2006 | WO |
WO-2009018489 | Feb 2009 | WO |
WO-2009124223 | Oct 2009 | WO |
WO-2010037064 | Apr 2010 | WO |
WO-2010040010 | Apr 2010 | WO |
WO-2010101935 | Sep 2010 | WO |
WO-2011091085 | Jul 2011 | WO |
Entry |
---|
U.S. Appl. No. 14/791,759 U.S. Pat. No. 9,246,694, filed Jul. 6, 2015, System and Method for Managing Conferencing in a Distributed Communication Network. |
U.S. Appl. No. 14/964,266 U.S. Pat. No. 9,553,900, filed Dec. 9, 2015, System and Method for Managing Conferencing in a Distributed Communication Network. |
U.S. Appl. No. 15/375,397, filed Dec. 12, 2016, System and Method for Managing Conferencing in a Distributed Communication Network. |
“Aepona's API Monetization Platform Wins Best of 4G Awards for Mobile Cloud Enabler”, 4G World 2012 Conference & Expo, [Online]. [Accessed Nov. 5, 2015]. Retrieved from the Internet: <URL: https://www.realwire.com/releases/%20Aeponas-API-Monetization>, (Oct. 30, 2012), 4 pgs. |
“U.S. Appl. No. 14/791,759, Corrected Notice of Allowance mailed Oct. 21, 2015”, 2 pgs. |
“U.S. Appl. No. 14/791,759, Notice of Allowance mailed Sep. 15, 2015”, 8 pgs. |
“U.S. Appl. No. 14/964,266, Notice of Allowance mailed Sep. 12, 2016”, 15 pgs. |
“U.S. Appl. No. 15/375,397, Corrected Notice of Allowability mailed Jul. 6, 2020”, 2 pgs. |
“U.S. Appl. No. 15/375,397, Corrected Notice of Allowance mailed Jun. 15, 2020”, 3 pgs. |
“U.S. Appl. No. 15/375,397, Examiner Interview Summary mailed Feb. 21, 2019”, 3 pgs. |
“U.S. Appl. No. 15/375,397, Examiner Interview Summary mailed Oct. 20, 2017”, 3 pgs. |
“U.S. Appl. No. 15/375,397, Final Office Action mailed Jan. 29, 2018”, 23 pgs. |
“U.S. Appl. No. 15/375,397, Final Office Action mailed Apr. 24, 2019”, 19 pgs. |
“U.S. Appl. No. 15/375,397, Non Final Office Action mailed Feb. 4, 2020”, 21 pgs. |
“U.S. Appl. No. 15/375,397, Non Final Office Action mailed Jul. 28, 2017”, 19 pgs. |
“U.S. Appl. No. 15/375,397, Non Final Office Action mailed Oct. 31, 2018”, 29 pgs. |
“U.S. Appl. No. 15/375,397, Notice of Allowance mailed Apr. 20, 2020”, 7 pgs. |
“U.S. Appl. No. 15/375,397, Response filed Apr. 1, 2020 to Non Final Office Action mailed Feb. 4, 2020”, 13 pgs. |
“U.S. Appl. No. 15/375,397, Response filed Apr. 30, 2018 to Final Office Action mailed Jan. 29, 2018”, 10 pgs. |
“U.S. Appl. No. 15/375,397, Response filed Oct. 18, 17 to Non Final Office Action mailed Jul. 28, 2017”, 11 pgs. |
“U.S. Appl. No. 15/375,397, Response filed Mar. 21, 2019 to Non Final Office Action mailed Oct. 31, 2018”, 18 pgs. |
“U.S. Appl. No. 15/375,397, Response filed Jul. 24, 2019 to Final Office Action mailed Apr. 24, 2019”, 13 pgs. |
“Archive Microsoft Office 365 Email I Retain Unified Archiving”, GWAVA, Inc., Montreal, Canada, [Online] Retrieved from the Internet: <URL: http://www.gwava.com/Retain/Retain for_Office_365.php>, (2015), 4 pgs. |
“Complaint for Patent Infringement”, Telinit Technologies, LLC v. Twilio Inc 2:12-cv-663, (Oct. 12, 2012), 17 pgs. |
“Ethernet to Token Ring Bridge”, Black Box Corporation, [Online] Retrieved from the Internet: <URL: http://blackboxcanada.com/resource/files/productdetails/17044.pdf>, (Oct. 1999), 2 pgs. |
“Twilio Cloud Communications—APIs for Voice, VoIP, and Text Messaging”, Twilio, [Online] Retrieved from the Internet: <URL: http://www.twilio.com/docs/api/rest/call-feedback>, (Jun. 24, 2015), 8 pgs. |
Abu-Lebdeh, et al., “A 3GPP Evolved Packet Core-Based Architecture for QoS-Enabled Mobile Video Surveillance Applications”, 2012 Third International Conference on the Network of the Future {NOF), (Nov. 21-23, 2012), 1-6. |
Barakovic, Sabina, et al., “Survey and Challenges of QoE Management Issues in Wireless Networks”, Hindawi Publishing Corporation, (2012), 1-29. |
Berners-Lee, T., “RFC 3986: Uniform Resource Identifier (URI): Generic Syntax”, The Internet Society, [Online]. Retrieved from the Internet: <URL: http://tools.ietf.org/html/rfc3986>, (Jan. 2005), 57 pgs. |
Kim, Hwa-Jong, et al., “In-Service Feedback QoE Framework”, 2010 Third International Conference on Communication Theory. Reliability and Quality of Service, (2010), 135-138. |
Matos, et al., “Quality of Experience-based Routing in Multi-Service Wireless Mesh Networks”, Realizing Advanced Video Optimized Wireless Networks. IEEE, (2012), 7060-7065. |
Mu, Mu, et al., “Quality Evaluation in Peer-to-Peer IPTV Services”, Data Traffic and Monitoring Analysis, LNCS 7754, 302-319, (2013), 18 pgs. |
Subramanya, et al., “Digital Signatures”, IEEE Potentials, (Mar./Apr. 2006), 5-8. |
Tran, et al., “User to User adaptive routing based on QoE”, ICNS 2011: The Seventh International Conference on Networking and Services, (2011), 170-177. |
“U.S. Appl. No. 15/375,397, Corrected Notice of Allowability mailed Jul. 28, 2020”, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20200351360 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62021641 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15375397 | Dec 2016 | US |
Child | 16934372 | US | |
Parent | 14964266 | Dec 2015 | US |
Child | 15375397 | US | |
Parent | 14791759 | Jul 2015 | US |
Child | 14964266 | US |