The present invention is generally directed to managing a load of one or more transformers in an electricity transporting grid to enable controlled growth of charging plug-in electric vehicles demands beyond a reserved load of supported homes.
Pollution-related concerns, coupled with high gasoline prices, increased political tension with the worlds' largest petroleum suppliers, and increasing government support have lead to increased demand for electric vehicles. It is estimated that 10 to 12 carmakers are ready to launch plug-in models by 2015, and the electric vehicle market is expected to grow to over 2.5 million cars by the same year. Such electric vehicles include, for example, plug-in electric vehicles and plug-in hybrid electric vehicles (collectively, “PEVs”).
Unfortunately, as the number of PEVs on the road continues to increase, the risk of overloading local distribution transformers also increases. As shown in Table 1, below, recharging a single PEV may consume up to three times as much electricity as a typical home. Accordingly, overloading problems may arise when several PEVs in the same neighborhood recharge at the same time, or during the normal summer peak loads.
As shown, a distribution transformer 130 reduces the primary voltage of the electric distribution system to a utilization voltage serving customers in homes and businesses. Generally, a distribution transformer 130 may be a static device constructed with two or more windings used to transfer alternating current electric power by electromagnetic induction from one circuit to another at the same frequency but with different values of voltage and current. Distribution transformers 130 are often deployed in clusters (e.g., 3) to serve a block of homes. For example, a typical 25 kVA distribution transformer 130 serves approximately 10 homes, while a substation transformer 120 can carry 1000 s of kVA.
If one or more homes mapped to a particular distribution transformer 130 adds a particularly large load, such as a PEV, this may increase the risk of overloading the mapped distribution transformer. Further, even if a single distribution transformer 130 could handle the increased load, if a number of the distribution transformers mapped to a substation transformer 120 take on increased loads due to PEVs (or other electricity-requiring apparatuses), the cumulative effect could overload the mapped substation transformer. Accordingly, the load demands of the emerging PEV market are expected to affect the performance of the power grid on multiple levels, including the local level. This is exacerbated by the fact that transformers are typically in varied stages of useful life, with some approaching their capacity loading with the existing growth.
PEVs represent a major addition in load on a transformer. By way of example,
Impacts of overloading transformers in the distribution system may include: phase imbalance, power quality issues, transformer degradation and failure, as well as circuit breaker and fuse blowout as described in Ryan Liu, et al, A Survey of PEV Impacts on Electric Utilities, IEEE PES conference Jan. 17, 2011, which is incorporated herein by reference in its entirety. A presentation by Hawk Asgeirsson, P.E. of DTE Energy titled, DTE Energy DER Technology Adoption DEW analysis of Renewable, PEV & Storage, presented at the Utility/Lab Workshop on PV Technology and Systems Nov. 8-9, 2010 in Tempe Ariz. is incorporated herein by reference and provides additional background and details regarding the PEV charging challenges and limitations that the invention described herein will help to overcome.
One obvious solution that is used and contemplated in the face of increasing load demand is the replacement or upgrading of transformers to meet new and expected demand. However, mass replacements are expensive and could be prohibitively so in the case of expected PEV strain. Further, such replacements/upgrades would be wasteful in many cases, where current transformers were or would have been sufficient to meet demand. Further still, replacement/upgrades may be insufficient to meet booming demand.
Ideally, the ability to monitor and track transformer load could help facilitate targeted replacement. U.S. Pat. No. 6,711,512, which is incorporated herein by reference in its entirety, describes a system for measuring, in real time, a variety of load parameters (e.g., phase voltages, phase currents and temperatures—See Table 2 below) of a pole transformer placed on a distribution line and transferring measurements wirelessly to a central monitoring station. This system requires the addition of a sensor at the transformer. Accordingly, the transformer load data could be used to determine, based on historical load information, where a transformer (or possibly other grid equipment) might need to be upgraded or added to accommodate historical loads. However, this would not mitigate immediate transformer load concerns.
With respect to PEV loads in particular, a contemplated solution for meeting increased demand is to request that home owners notify their utility of every new PEV purchase, so that the utility can (statically) retrofit the available transformer capacity over time in order to plan for peak demands. However this may not always be easy to manage, and does not consider the scenario of charging away from home. Further, load limitations discussed above may be localized to a (static) transformer and may be difficult to manage from an ultimate utility head-end without visibility to the instantaneous/accumulated load per transformer.
Accordingly, there is a need in the art for systems and methods for stabilizing a power grid to accommodate simultaneous charging of PEVs to prevent uncontrollable load on transformers. The system should be able to handle PEV charging demands that are expected to vary spatially (depending on market penetration, system configuration and socio-economics), and temporally (depending on driving patterns, battery sizes and charging connection types—see Table 1, above). Further, the system should be able to handle PEV charging impacts due to clustering (simultaneous charging at homes located on a single distribution transformer). Further still, there is a need for methods and systems that can accommodate several PEV charging scenarios, including scenarios where a PEV plugs in for an immediate charge; others where, after negotiation, a PEV may charge at a future time (e.g., hours later when rates are more affordable) at a negotiated charging rate; and still others which allow PEVs to roam between charging stations (e.g., occasionally charge away from home) and be billed to the owner's account independent of the charging location.
The present application hereby references and incorporates by reference each of the following United States patent applications in their entirety:
Synchronization Without Creating a Time Discrepancy or Gap in Time,” filed Nov. 21, 2008 (TR0006-US);
Embodiments of the invention provide methods and systems for stabilizing a power grid to accommodate simultaneous charging of PEVs to prevent uncontrollable load on transformers (e.g., distribution transformers and/or substation transformers). In certain embodiments, a system may allow for PEV charging demands that vary both spatially and temporally. The system may prevent damage to an electrical grid due to PEV clustering and/or may accommodate several PEV charging scenarios, including scenarios where: (1) a PEV plugs in for an immediate charge; (2) a PEV charges at a future time at a negotiated charging rate; and (3) a PEV roams between charging stations. The system may allow away-from-home charging to be billed to the PEV owner's account independent of the charging location.
In one aspect of the invention a method for scheduling a charge of a plug-in electric vehicle (PEV) is provided. The method may include receiving, by a load management system, PEV information from a PEV plugged into an electric vehicle supply equipment (EVSE). The method also includes receiving, by the load management system, transformer information from a transformer management system, the transformer information relating to a transformer associated with the EVSE. Once the PEV information and transformer information are received, the load management system may determine charging information based on this information. The charging information may then be provided to the PEV, for example, via the EVSE.
In another aspect of the invention, a system for scheduling a charge of a plug-in electric vehicle (PEV) is provided. The system may include a smart meter network having one or more field nodes, such as but not limited to meters and/or transformer agents. The system may also include a load management system in communication with the smart meter network. A transformer management system may also be included. The transformer management system may be in communication with the load management system, the smart meter network and a distribution transformer. Moreover, an electric vehicle supply equipment (EVSE) may also be in communication with the load meter system and the transformer management system via the smart meter network. The load management system may receive PEV information from a PEV plugged into the EVSE and may also receive transformer information relating to the distribution transformer from the transformer management system. The load management system may then determine charging information based on the PEV information and transformer information and may provide the charging information to the PEV such that it may be charged by the EVSE.
These and other aspects of the invention will be better understood by reading the following detailed description and appended claims.
The following figures are exemplary of the aspects of the embodiments described herein and are intended to be considered in conjunction with the descriptions herein:
a and 3b are exemplary smart grid network schematics for use with and including features of the embodiments described herein; and
The embodiments and examples presented herein describe systems and methods for preventing power transformer and/or electrical system overloads via admission control mechanisms. The systems and methods described herein may prevent a transformer's load from exceeding a predetermined load threshold. Scheduling PEV charging events by considering instantaneous and/or historical load state of an associated transformer may minimize the risk of the transformer exceeding its peak capacity. Moreover, controlled charging may also help minimize accelerated aging of a transformer. It will be appreciated that, although embodiments specifically refer to admission control of PEV charging scenarios, the invention is not necessarily limited as such, and any embodiment may be generalized to one or more electrical devices requiring electrical load.
Referring to
Referring to
As shown, a head end server 305 may be a computing device configured to receive information, such as meter readings from one or more meters in a smart meter system. The head end 305 may be configured to transmit instructions to, for example, the TMS, LMS, MDMS, and/or DSM, as desired or required. The head end 305 may be a central processing system including one or more computing systems (i.e., one or more server computers). Where the head end includes more than one computing system, the computing systems can be connected by one or more networks.
The PEV 340 is plugged into the EVSE 330 to receive power via the EVSE from a distribution transformer 335. The EVSE may be located at a PEV owner's home, or may be located at a dedicated charging station (e.g., a gas station). In order to receive power, the PEV may attempt to communicate with a scheduling application within an LMS 315, e.g., via a smart meter network, or via the internet. As discussed in detail below, a PEV charging scheduling program may determine the time and duration during which the PEV will be charged. PEV charging scheduling may take into consideration overall load objectives, dynamic or static consumer energy usage, as well as additional local transformer load states and other parameters that describe how well the transformer would be able to carry the intended load (See Table 2 above).
In one embodiment, a TMS 310 may be responsible for monitoring and/or tracking transformer information of one or more distribution transformers 335. The TMS 310 may provide such transformer information to, for example, an LMS 315, and the LMS may interact with a PEV (e.g., via EVSE 330) to negotiate charging schedules, charging events, as well as billing/settlements.
The TMS may be provisioned with transformer information for each monitored transformer. Such transformer information may comprise, for example, vender/model ID, type of transformer, design capacity, maximum/minimum input voltage parameters, maximum/minimum output voltage parameters, power capacity, duty, frequency range, voltage class, cooling type, magnetic form, constant-potential transformer descriptor, three phase winding configuration, system characteristics (e.g., ungrounded, solidly grounded, high or low resistance grounded, etc.), and efficiency (e.g., excitation, impedance & total losses, resistance, reactance & impedance drop, regulation). Additional information about a transformers condition (e.g., its health) could also be included in this assessment where this information is available, e.g., where the transformer has a health monitoring device. (See Table 2 above).
The transformer information will typically include charge point location information relating to each of the charge point locations serviced by the transformer. The TMS may use this information to track the load of each transformer based on its knowledge of PEV charging events local to the transformers.
In certain embodiments, the TMS may monitor current and/or scheduled charging events at each charge point. For example, the TMS may query the LMS to discover charging schedules and may update a master list or schedule of charging events based on received information. Using the information received from the LMS, and the stored transformer information, the TMS may calculate transformer utilization and/or remaining capacity for a given transformer. Such information (e.g., remaining capacity at a given time, or the number of kW that can be accommodated at a certain time/duration) may be passed on to the LMS upon request, or at predetermined intervals such that the LMS may continue to schedule charging events at optimized times.
In one embodiment, the LMS may query the TMS in order to decide whether, or how, a requested charge event can be supported. For example, when a transformer is close to its design capacity at the targeted charge time, the LMS may propose a different time, charge rate, or deny a request altogether.
The TMS may learn about transformer load states in different ways. For example, each time the LMS schedules a new charging event, this information may be made available (e.g., via a push or periodic pull) to the TMS, which keeps track of the current and expected future load and the utilization of each transformer (i.e., via a calendar). In this example, information may also be provided when PEV charging starts and/or ends.
This embodiment describes centralized logic at the LMS for collecting and processing transformer information. Although the TMS and LMS are shown separately, the systems can be integrated. As another example, distributed agents (e.g., embedded in smart meter network nodes—discussed below) can be used to learn about individual PEV charging situations via a smart meter network, and may communicate this information to a centralized TMS, which deduces each transformer load state accordingly. The LMS could alternatively communicate directly with the agents instead of the centralized TMS.
The DSM application 325 may interact with devices in/around the home (including the PEV while charging) in order to achieve energy savings based on a set of message interactions (i.e., price, load control signals, and/or text messages). In certain embodiments, the DSM application 325 may provide consumers with information relating to price of energy at a particular time. In other embodiments, the DSM application 325 may automatically control energy using devices at a user's place of residence or business.
The MDMS 320 may be in communication with the head end server 305 and may be employed for long term data storage and management for the vast quantities of data that may be delivered from meters (
Referring to
A field node 345 in the form of a mesh gate may be in communication with any number of meters, and may aggregate information from such meters to be transmitted to a head-end sever over a wide area network (WAN). A WAN may be a communication medium capable of transmitting digital information, for example, the Internet, a cellular network, a private network, a phone line configured to carry a dial-up connection, or any other network. Descriptions of exemplary mesh networks, including electric meters, can be found in commonly owned U.S. patent application Ser. No. 12/275,252 titled, “Method and System for Creating and Managing Association and Balancing of a Mesh Device in a Mesh Network,” filed Nov. 21, 2008, which is incorporated herein by reference in its entirety.
In certain embodiments, field nodes 345 may be embedded with software and/or hardware based transformer agents (TA) 350 for collecting transformer data and passing it to the LMS and/or TMS. Accordingly, the TAs 350 may communicate with the TMS or may communicate directly with the LMS. In one embodiment, the TMS 310 and/or LMS 315 may be configured to receive information, such as meter readings, from a plurality of TAs 350. The TMS and/or LMS may also be configured to transmit instructions to the TAs. Such TA's may be manufactured or retrofitted with communications modules in order to host agents.
Active TAs 350 associated with a transformer 335 can also be used for real time or near real time system monitoring functions (i.e., network management) that add to the visibility of a smart grid's state. Additionally, load history may be used to predict transformer life expectations for asset management purposes
In one embodiment, the TAs 350 may “snoop” on communications between a PEV 340 and the LMS 315 to inform the TMS 310 of selected relevant messages. In this case the TMS may need to derive the essential transformer information, filter out duplicate messages, and fill the gaps where needed to construct a charging schedule.
Alternatively, TAs 350 may serve as proxies to the LMS. In this case the PEVs may communicate directly with their regional proxies to determine capacity (regardless of the account status of the requester). Each proxy can locally assess the associated transformers capacity (through its admission control functions) and may decide whether a charging request is feasible, before forwarding it to the LMS. The proxy LMS thus makes local decision (e.g., given known information, whether the transformer can carry the charging request) and the centralized LMS may make global decisions (e.g., whether the charge is acceptable versus regional conditions and user account status).
In either scenario, no changes to the (passive) distribution transformers are required to allow monitoring of their load state, as transformer information is derived from other points in the network. However, whenever transformers are capable of providing their own load and/or health status as discussed herein, this transformer information may also be integrated into the system.
In one embodiment, the TAs 350 may be able to schedule events locally and autonomously (including when there is a communications failure upstream, eliminating a single point of failure problem). In some cases the LMS may comprise or consist essentially of any number of distributed TAs.
When TAs 350 are embedded in a mesh gate of a smart meter network, they may not always have visibility to the same set of charging locations or transformers if the network topology changes (e.g., nodes may re-associate with a different mesh gate and communication may not be possible). This situation requires an additional level of coordination (e.g., via the TMS) to make sure that required data is available at the different agents in order to avoid any gaps. Such coordination may be provided by exemplary systems.
In addition to facilitating the load distribution and negotiations described above with respect to PEV charge scheduling, aggregated transformer load information may be employed in a variety of applications. For example, such information may be used to recommend other charging locations that may be better suited for charging at a specific time, either derived in real time or via statistical trending. Such information may be passed through the smart grid network through the EVSE and to the PEV.
As another example, such information may be used in location-based applications and/or social networks to make recommendations and/or offer incentives to defer charging. Similarly, such information may be used to guide PEVs to other less loaded charging locations (e.g., follow a GPS-guided directions on a map for discounted charging nearby). These implementations may be programmed into the PEV itself or may be presented to a user in the form of a smart phone or GPS application.
In a separate embodiment, communications can occur out of band (i.e., not via the smart meter network), wherein PEVs can report their charging status via a separate network and this data is aggregated in a third party application. Such data may then be used by the LMS (e.g., through web services or manually).
Referring to
Upon receiving PEV information and an energy request, the LMS queries the TMS for transformer information, and determines charging information, such as but not limited to an optimal charging start time, charging end time, and/or charging duration based on the transformer information. The charging information may be sent to the TMS such that the transformer information may be updated.
Once the charging information is determined, it may be sent to the PEV and charging may occur according to the charging information. Upon completion of the charge, the energy sum may be determined and propagated through the system to the LMS and/or the TMS. Finally, the transformer information may be updated, and the PEV may be billed accordingly.
The embodiments described herein provide for tracking transformer load status with clear visibility of the load conditions of individual transformers. Accordingly, the LMS now has access to transformer load information and can include this in its decision to accept PEV charging requests; thus protecting the transformers and minimizing risk of down time. Charging decisions are made with better coordination and local awareness.
The automated system and processes described herein can be embodied in hardware, software and combinations of hardware and software elements to carry out one or more processes related to load management. The software embodiments and applications including transformer management, load management, demand side management, information collection and other application may include but are not limited to firmware, resident software, microcode, etc. Furthermore, the components of the embodiments can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any tangible apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can utilize electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium (though propagation mediums in and of themselves as signal carriers are not included in the definition of physical computer-readable medium). Examples of a physical computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk, and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or executing program code includes at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories that provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution. Input/output or I/O devices (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers. Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks, including various client-server configurations. Modems, cable modem, and Ethernet cards are just a few of the currently available types of network adapters.
Moreover, the disclosed processes may be readily implemented in software, e.g., as a computer program product having one or more modules each adapted for one or more functions of the software, executed on a programmed general purpose computer, cellular telephone, PDA, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this invention can be implemented as a program embedded on a personal computer such as a JAVA®, CGI or Perl script, as a resource residing on a server or graphics workstation, as a routine embedded in a dedicated image system, or the like. The systems and methods of this invention can also be implemented by physically incorporating this system and method into a software and/or hardware system, such as the hardware and software systems of a computer. Such computer program products and systems can be distributed and employ a client-server architecture.
It is to be appreciated that the various components of the technology can be located at distant portions of a distributed network and/or the Internet, or within a dedicated secure, unsecured and/or encrypted system. Thus, it should be appreciated that the components of the system can be combined into one or more devices or co-located on a particular node of a distributed network, such as a telecommunications network. As will be appreciated from the description, and for reasons of computational efficiency, the components of the system can be arranged at any location within a distributed network without affecting the operation of the system. Moreover, the components could be embedded in a dedicated machine.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. The term module as used herein can refer to any known or later developed hardware, software, firmware, or combination thereof that is capable of performing the functionality associated with that element. The terms determine, calculate and compute, and variations thereof, as used herein are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The methods described herein may include in whole or part workflows. Such workflows may include inquiry and response steps carried out for example via a web-based interface, a spreadsheet, existing software applications, etc. Embodiments of the tool or solution may include workflows that automate the collection and use of information in various ways, e.g., inquiries and responses; polling individuals, entities or users; HTML interfaces; integration with spreadsheets or other applications; and integration with external systems. Such information once collected may be arranged in a desired framework.
While embodiments of this disclosure have been depicted, described, and are defined by reference to example embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and are not exhaustive of the scope of the disclosure.
The present application claims the benefit of similarly titled U.S. provisional patent application Ser. No. 61/450,277, filed Mar. 8, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4132981 | White | Jan 1979 | A |
4190800 | Kelly, Jr. et al. | Feb 1980 | A |
4204195 | Bogacki | May 1980 | A |
4254472 | Juengel et al. | Mar 1981 | A |
4322842 | Martinez | Mar 1982 | A |
4396915 | Farnsworth et al. | Aug 1983 | A |
4425628 | Bedard et al. | Jan 1984 | A |
4638314 | Keller | Jan 1987 | A |
4644320 | Carr et al. | Feb 1987 | A |
4749992 | Fitzemeyer et al. | Jun 1988 | A |
4792946 | Mayo | Dec 1988 | A |
4939726 | Flammer et al. | Jul 1990 | A |
5007052 | Flammer | Apr 1991 | A |
5056107 | Johnson et al. | Oct 1991 | A |
5077753 | Grau, Jr. et al. | Dec 1991 | A |
5079768 | Flammer | Jan 1992 | A |
5115433 | Baran et al. | May 1992 | A |
5117422 | Hauptschein et al. | May 1992 | A |
5130987 | Flammer | Jul 1992 | A |
5138615 | Lamport et al. | Aug 1992 | A |
5159592 | Perkins | Oct 1992 | A |
5216623 | Barrett et al. | Jun 1993 | A |
5276680 | Messenger | Jan 1994 | A |
5311581 | Merriam et al. | May 1994 | A |
5400338 | Flammer, III et al. | Mar 1995 | A |
5430729 | Rahnema | Jul 1995 | A |
5432507 | Mussino et al. | Jul 1995 | A |
5453977 | Flammer, III et al. | Sep 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5463777 | Bialkowski et al. | Oct 1995 | A |
5465398 | Flammer | Nov 1995 | A |
5467345 | Cutter, Jr. et al. | Nov 1995 | A |
5471469 | Flammer, III et al. | Nov 1995 | A |
5479400 | Dilworth et al. | Dec 1995 | A |
5488608 | Flammer, III | Jan 1996 | A |
5515369 | Flammer, III et al. | May 1996 | A |
5515509 | Rom | May 1996 | A |
5528507 | McNamara et al. | Jun 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5553094 | Johnson et al. | Sep 1996 | A |
5570084 | Retter et al. | Oct 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5596722 | Rahnema | Jan 1997 | A |
5608721 | Natarajan et al. | Mar 1997 | A |
5608780 | Gerszberg et al. | Mar 1997 | A |
5623495 | Eng et al. | Apr 1997 | A |
5659300 | Dresselhuys et al. | Aug 1997 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5684710 | Ehlers et al. | Nov 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5696695 | Ehlers et al. | Dec 1997 | A |
5717718 | Rowsell et al. | Feb 1998 | A |
5719564 | Sears | Feb 1998 | A |
5726644 | Jednacz et al. | Mar 1998 | A |
5727057 | Emery et al. | Mar 1998 | A |
5737318 | Melnik | Apr 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5757783 | Eng et al. | May 1998 | A |
5758331 | Johnson | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5767790 | Jovellana | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5812531 | Cheung et al. | Sep 1998 | A |
5822309 | Ayanoglu et al. | Oct 1998 | A |
5844893 | Gollnick et al. | Dec 1998 | A |
5874903 | Shuey et al. | Feb 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5892758 | Argyroudis | Apr 1999 | A |
5894422 | Chasek | Apr 1999 | A |
5896097 | Cardozo | Apr 1999 | A |
5896566 | Averbuch et al. | Apr 1999 | A |
5898387 | Davis et al. | Apr 1999 | A |
5898826 | Pierce et al. | Apr 1999 | A |
5901067 | Kao et al. | May 1999 | A |
5903566 | Flammer, III | May 1999 | A |
5914672 | Glorioso et al. | Jun 1999 | A |
5914673 | Jennings et al. | Jun 1999 | A |
5919247 | Van Hoff et al. | Jul 1999 | A |
5920697 | Masters et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5933092 | Ouellette et al. | Aug 1999 | A |
5953371 | Rowsell et al. | Sep 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
5963457 | Kanoi et al. | Oct 1999 | A |
5974236 | Sherman | Oct 1999 | A |
5986574 | Colton | Nov 1999 | A |
5987011 | Toh | Nov 1999 | A |
5991806 | McHann, Jr. | Nov 1999 | A |
6014089 | Tracy et al. | Jan 2000 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6026133 | Sokoler | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6058355 | Ahmed et al. | May 2000 | A |
6061609 | Kanoi et al. | May 2000 | A |
6073169 | Shuey et al. | Jun 2000 | A |
6075777 | Agrawal et al. | Jun 2000 | A |
6078785 | Bush | Jun 2000 | A |
6084867 | Meier | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6097703 | Larsen et al. | Aug 2000 | A |
6108699 | Moiin | Aug 2000 | A |
6118269 | Davis | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6124806 | Cunningham et al. | Sep 2000 | A |
6134587 | Okanoue | Oct 2000 | A |
6137423 | Glorioso et al. | Oct 2000 | A |
6150955 | Tracy et al. | Nov 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6172616 | Johnson et al. | Jan 2001 | B1 |
6195018 | Ragle et al. | Feb 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6239722 | Colten et al. | May 2001 | B1 |
6240080 | Okanoue et al. | May 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6246689 | Shavitt | Jun 2001 | B1 |
6298053 | Flammer, III et al. | Oct 2001 | B1 |
6300881 | Yee et al. | Oct 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6311105 | Budike, Jr. | Oct 2001 | B1 |
6338087 | Okanoue | Jan 2002 | B1 |
6362745 | Davis | Mar 2002 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6366217 | Cunningham et al. | Apr 2002 | B1 |
6369719 | Tracy et al. | Apr 2002 | B1 |
6369769 | Nap et al. | Apr 2002 | B1 |
6373399 | Johnson et al. | Apr 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6400949 | Bielefeld et al. | Jun 2002 | B1 |
6407991 | Meier | Jun 2002 | B1 |
6415330 | Okanoue | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6457054 | Bakshi | Sep 2002 | B1 |
6480497 | Flammer, III et al. | Nov 2002 | B1 |
6480505 | Johansson et al. | Nov 2002 | B1 |
6492910 | Ragle et al. | Dec 2002 | B1 |
6509841 | Colton et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6535498 | Larsson et al. | Mar 2003 | B1 |
6538577 | Ehrke et al. | Mar 2003 | B1 |
6553355 | Arnoux et al. | Apr 2003 | B1 |
6556830 | Lenzo | Apr 2003 | B1 |
6577671 | Vimpari | Jun 2003 | B1 |
6606708 | Devine et al. | Aug 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618772 | Kao et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6636894 | Short et al. | Oct 2003 | B1 |
6650249 | Meyer et al. | Nov 2003 | B2 |
6653945 | Johnson et al. | Nov 2003 | B2 |
6657552 | Belski et al. | Dec 2003 | B2 |
6665620 | Burns et al. | Dec 2003 | B1 |
6671635 | Forth et al. | Dec 2003 | B1 |
6681110 | Crookham et al. | Jan 2004 | B1 |
6681154 | Nierlich et al. | Jan 2004 | B2 |
6684245 | Shuey et al. | Jan 2004 | B1 |
6687901 | Imamatsu | Feb 2004 | B1 |
6691173 | Morris et al. | Feb 2004 | B2 |
6697331 | Riihinen et al. | Feb 2004 | B1 |
6710721 | Holowick | Mar 2004 | B1 |
6711166 | Amir et al. | Mar 2004 | B1 |
6711409 | Zavgren, Jr. et al. | Mar 2004 | B1 |
6711512 | Noh | Mar 2004 | B2 |
6714787 | Reed et al. | Mar 2004 | B2 |
6718137 | Chin | Apr 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6728514 | Bandeira et al. | Apr 2004 | B2 |
6747557 | Petite et al. | Jun 2004 | B1 |
6747981 | Ardalan et al. | Jun 2004 | B2 |
6751445 | Kasperkovitz et al. | Jun 2004 | B2 |
6751455 | Acampora | Jun 2004 | B1 |
6751672 | Khalil et al. | Jun 2004 | B1 |
6772052 | Amundsen et al. | Aug 2004 | B1 |
6775258 | van Valkenburg et al. | Aug 2004 | B1 |
6778099 | Mayer et al. | Aug 2004 | B1 |
6785592 | Smith et al. | Aug 2004 | B1 |
6798352 | Holowick | Sep 2004 | B2 |
6801865 | Gilgenbach et al. | Oct 2004 | B2 |
6826620 | Mawhinney et al. | Nov 2004 | B1 |
6829216 | Nakata | Dec 2004 | B1 |
6829347 | Odiaka | Dec 2004 | B1 |
6831921 | Higgins | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6839775 | Kao et al. | Jan 2005 | B1 |
6842706 | Baraty | Jan 2005 | B1 |
6845091 | Ogier et al. | Jan 2005 | B2 |
6859186 | Lizalek et al. | Feb 2005 | B2 |
6865185 | Patel et al. | Mar 2005 | B1 |
6882635 | Eitan et al. | Apr 2005 | B2 |
6885309 | Van Heteren | Apr 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6904025 | Madour et al. | Jun 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6909705 | Lee et al. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6946972 | Mueller et al. | Sep 2005 | B2 |
6954814 | Leach | Oct 2005 | B1 |
6963285 | Fischer et al. | Nov 2005 | B2 |
6967452 | Aiso et al. | Nov 2005 | B2 |
6970434 | Mahany et al. | Nov 2005 | B1 |
6970771 | Preiss et al. | Nov 2005 | B1 |
6975613 | Johansson | Dec 2005 | B1 |
6980973 | Karpenko | Dec 2005 | B1 |
6982651 | Fischer | Jan 2006 | B2 |
6985087 | Soliman | Jan 2006 | B2 |
6995666 | Luttrell | Feb 2006 | B1 |
6999441 | Flammer, III et al. | Feb 2006 | B2 |
7009379 | Ramirez | Mar 2006 | B2 |
7009493 | Howard et al. | Mar 2006 | B2 |
7010363 | Donnelly et al. | Mar 2006 | B2 |
7016336 | Sorensen | Mar 2006 | B2 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7042368 | Patterson et al. | May 2006 | B2 |
7046682 | Carpenter et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7053853 | Merenda et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062361 | Lane | Jun 2006 | B1 |
7064679 | Ehrke et al. | Jun 2006 | B2 |
7072945 | Nieminen et al. | Jul 2006 | B1 |
7079810 | Petite et al. | Jul 2006 | B2 |
7089089 | Cumming et al. | Aug 2006 | B2 |
7102533 | Kim | Sep 2006 | B2 |
7103086 | Steed et al. | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7106044 | Lee, Jr. et al. | Sep 2006 | B1 |
7119713 | Shuey et al. | Oct 2006 | B2 |
7126494 | Ardalan et al. | Oct 2006 | B2 |
7135850 | Ramirez | Nov 2006 | B2 |
7135956 | Bartone et al. | Nov 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7143204 | Kao et al. | Nov 2006 | B1 |
7145474 | Shuey et al. | Dec 2006 | B2 |
7170425 | Christopher et al. | Jan 2007 | B2 |
7174260 | Tuff et al. | Feb 2007 | B2 |
7185131 | Leach | Feb 2007 | B2 |
7188003 | Ransom et al. | Mar 2007 | B2 |
7197046 | Hariharasubrahmanian | Mar 2007 | B1 |
7200633 | Sekiguchi et al. | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7215926 | Corbett et al. | May 2007 | B2 |
7222111 | Budike, Jr. | May 2007 | B1 |
7230544 | Van Heteren | Jun 2007 | B2 |
7230931 | Struhsaker | Jun 2007 | B2 |
7231482 | Leach | Jun 2007 | B2 |
7245938 | Sobczak et al. | Jul 2007 | B2 |
7248181 | Patterson et al. | Jul 2007 | B2 |
7248861 | Lazaridis et al. | Jul 2007 | B2 |
7250874 | Mueller et al. | Jul 2007 | B2 |
7251570 | Hancock et al. | Jul 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7271735 | Rogai | Sep 2007 | B2 |
7274305 | Luttrell | Sep 2007 | B1 |
7274975 | Miller | Sep 2007 | B2 |
7277027 | Ehrke et al. | Oct 2007 | B2 |
7277967 | Kao et al. | Oct 2007 | B2 |
7289887 | Rodgers | Oct 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7301476 | Shuey et al. | Nov 2007 | B2 |
7304587 | Boaz | Dec 2007 | B2 |
7308370 | Mason, Jr. et al. | Dec 2007 | B2 |
7312721 | Mason, Jr. et al. | Dec 2007 | B2 |
7315257 | Patterson et al. | Jan 2008 | B2 |
7317404 | Cumeralto et al. | Jan 2008 | B2 |
7321316 | Hancock et al. | Jan 2008 | B2 |
7324453 | Wu et al. | Jan 2008 | B2 |
7327998 | Kumar et al. | Feb 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7348769 | Ramirez | Mar 2008 | B2 |
7349766 | Rodgers | Mar 2008 | B2 |
7362709 | Hui et al. | Apr 2008 | B1 |
7366113 | Chandra et al. | Apr 2008 | B1 |
7366191 | Higashiyama | Apr 2008 | B2 |
7379981 | Elliott et al. | May 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7402978 | Pryor | Jul 2008 | B2 |
7406298 | Luglio et al. | Jul 2008 | B2 |
7411964 | Suemura | Aug 2008 | B2 |
7427927 | Borleske et al. | Sep 2008 | B2 |
6249516 | Brownrigg et al. | Nov 2008 | B1 |
7451019 | Rodgers | Nov 2008 | B2 |
7457273 | Nakanishi et al. | Nov 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7487282 | Leach | Feb 2009 | B2 |
7495578 | Borleske | Feb 2009 | B2 |
7498873 | Opshaug et al. | Mar 2009 | B2 |
7505453 | Carpenter et al. | Mar 2009 | B2 |
7512234 | McDonnell et al. | Mar 2009 | B2 |
7515571 | Kwon et al. | Apr 2009 | B2 |
7516106 | Ehlers et al. | Apr 2009 | B2 |
7522540 | Maufer | Apr 2009 | B1 |
7522639 | Katz | Apr 2009 | B1 |
7539151 | Demirhan et al. | May 2009 | B2 |
7545285 | Shuey et al. | Jun 2009 | B2 |
7546595 | Wickham et al. | Jun 2009 | B1 |
7548826 | Witter et al. | Jun 2009 | B2 |
7548907 | Wall et al. | Jun 2009 | B2 |
7554941 | Ratiu et al. | Jun 2009 | B2 |
7562024 | Brooks et al. | Jul 2009 | B2 |
7571865 | Nicodem et al. | Aug 2009 | B2 |
7586420 | Fischer et al. | Sep 2009 | B2 |
7599665 | Sinivaara | Oct 2009 | B2 |
7602747 | Maksymczuk et al. | Oct 2009 | B2 |
7609673 | Bergenlid et al. | Oct 2009 | B2 |
7613147 | Bergenlid et al. | Nov 2009 | B2 |
7623043 | Mizra et al. | Nov 2009 | B2 |
7626967 | Yarvis et al. | Dec 2009 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7676231 | Demirhan et al. | Mar 2010 | B2 |
7680041 | Johansen | Mar 2010 | B2 |
7729496 | Hacigumus | Jun 2010 | B2 |
7733224 | Tran | Jun 2010 | B2 |
7743224 | Wang | Jun 2010 | B2 |
7756538 | Bonta et al. | Jul 2010 | B2 |
7788491 | Dawson | Aug 2010 | B1 |
7802245 | Sonnier et al. | Sep 2010 | B2 |
7814322 | Gurevich et al. | Oct 2010 | B2 |
7818758 | de Bonet et al. | Oct 2010 | B2 |
7847706 | Ross et al. | Dec 2010 | B1 |
8019697 | Ozog | Sep 2011 | B2 |
8051415 | Suzuki | Nov 2011 | B2 |
8324859 | Rossi | Dec 2012 | B2 |
20010005368 | Rune | Jun 2001 | A1 |
20010010032 | Ehlers et al. | Jul 2001 | A1 |
20010038342 | Foote | Nov 2001 | A1 |
20010046879 | Schramm et al. | Nov 2001 | A1 |
20020012358 | Sato | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020051269 | Margalit et al. | May 2002 | A1 |
20020066095 | Yu | May 2002 | A1 |
20020110118 | Foley | Aug 2002 | A1 |
20020114303 | Crosbie et al. | Aug 2002 | A1 |
20020120569 | Day | Aug 2002 | A1 |
20020174354 | Bel et al. | Nov 2002 | A1 |
20020186619 | Reeves et al. | Dec 2002 | A1 |
20030001640 | Lao et al. | Jan 2003 | A1 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20030014633 | Gruber | Jan 2003 | A1 |
20030033394 | Stine | Feb 2003 | A1 |
20030037268 | Kistler | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030112822 | Hong et al. | Jun 2003 | A1 |
20030117966 | Chen | Jun 2003 | A1 |
20030122686 | Ehrke et al. | Jul 2003 | A1 |
20030123481 | Neale et al. | Jul 2003 | A1 |
20030156715 | Reeds, III et al. | Aug 2003 | A1 |
20030207697 | Shpak | Nov 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030233201 | Horst et al. | Dec 2003 | A1 |
20040008663 | Srikrishna et al. | Jan 2004 | A1 |
20040031030 | Kidder et al. | Feb 2004 | A1 |
20040034773 | Balabine et al. | Feb 2004 | A1 |
20040039817 | Lee et al. | Feb 2004 | A1 |
20040056775 | Crookham et al. | Mar 2004 | A1 |
20040066310 | Ehrke et al. | Apr 2004 | A1 |
20040077341 | Chandranmenon et al. | Apr 2004 | A1 |
20040081086 | Hippelainen et al. | Apr 2004 | A1 |
20040082203 | Logvinov et al. | Apr 2004 | A1 |
20040100953 | Chen et al. | May 2004 | A1 |
20040113810 | Mason, Jr. et al. | Jun 2004 | A1 |
20040117788 | Karaoguz et al. | Jun 2004 | A1 |
20040125776 | Haugli et al. | Jul 2004 | A1 |
20040138787 | Ransom et al. | Jul 2004 | A1 |
20040140908 | Gladwin et al. | Jul 2004 | A1 |
20040157613 | Steer et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040185845 | Abhishek et al. | Sep 2004 | A1 |
20040193329 | Ransom et al. | Sep 2004 | A1 |
20040210544 | Shuey et al. | Oct 2004 | A1 |
20040268142 | Karjala et al. | Dec 2004 | A1 |
20050026569 | Lim et al. | Feb 2005 | A1 |
20050027859 | Alvisi et al. | Feb 2005 | A1 |
20050030968 | Rich et al. | Feb 2005 | A1 |
20050033967 | Morino et al. | Feb 2005 | A1 |
20050055432 | Rodgers | Mar 2005 | A1 |
20050058144 | Ayyagari et al. | Mar 2005 | A1 |
20050065742 | Rodgers | Mar 2005 | A1 |
20050122944 | Kwon et al. | Jun 2005 | A1 |
20050136972 | Smith et al. | Jun 2005 | A1 |
20050172024 | Cheifot et al. | Aug 2005 | A1 |
20050187928 | Byers | Aug 2005 | A1 |
20050193390 | Suzuki et al. | Sep 2005 | A1 |
20050195757 | Kidder et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050228874 | Edgett et al. | Oct 2005 | A1 |
20050243867 | Petite | Nov 2005 | A1 |
20050249113 | Kobayashi et al. | Nov 2005 | A1 |
20050251403 | Shuey | Nov 2005 | A1 |
20050257215 | Denby et al. | Nov 2005 | A1 |
20050270173 | Boaz | Dec 2005 | A1 |
20050276243 | Sugaya et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20060028355 | Patterson et al. | Feb 2006 | A1 |
20060055432 | Shimokawa et al. | Mar 2006 | A1 |
20060056363 | Ratiu et al. | Mar 2006 | A1 |
20060056368 | Ratiu et al. | Mar 2006 | A1 |
20060077906 | Maegawa et al. | Apr 2006 | A1 |
20060087993 | Sengupta et al. | Apr 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060098604 | Flammer, III et al. | May 2006 | A1 |
20060111111 | Ovadia | May 2006 | A1 |
20060130053 | Buljore et al. | Jun 2006 | A1 |
20060140135 | Bonta et al. | Jun 2006 | A1 |
20060146717 | Conner et al. | Jul 2006 | A1 |
20060158347 | Roche et al. | Jul 2006 | A1 |
20060161310 | Lal | Jul 2006 | A1 |
20060167784 | Hoffberg | Jul 2006 | A1 |
20060184288 | Rodgers | Aug 2006 | A1 |
20060215583 | Castagnoli | Sep 2006 | A1 |
20060215673 | Olvera-Hernandez | Sep 2006 | A1 |
20060217936 | Mason et al. | Sep 2006 | A1 |
20060230276 | Nochta | Oct 2006 | A1 |
20060271244 | Cumming et al. | Nov 2006 | A1 |
20060271678 | Jessup et al. | Nov 2006 | A1 |
20070001868 | Boaz | Jan 2007 | A1 |
20070013547 | Boaz | Jan 2007 | A1 |
20070019598 | Prehofer | Jan 2007 | A1 |
20070036353 | Reznik et al. | Feb 2007 | A1 |
20070057767 | Sun et al. | Mar 2007 | A1 |
20070060147 | Shin et al. | Mar 2007 | A1 |
20070063866 | Webb | Mar 2007 | A1 |
20070063868 | Borleske | Mar 2007 | A1 |
20070085700 | Walters et al. | Apr 2007 | A1 |
20070087756 | Hoffberg | Apr 2007 | A1 |
20070089110 | Li | Apr 2007 | A1 |
20070101442 | Bondurant | May 2007 | A1 |
20070103324 | Kosuge et al. | May 2007 | A1 |
20070109121 | Cohen | May 2007 | A1 |
20070110024 | Meier | May 2007 | A1 |
20070120705 | Kiiskila et al. | May 2007 | A1 |
20070136817 | Nguyen | Jun 2007 | A1 |
20070139220 | Mirza et al. | Jun 2007 | A1 |
20070143046 | Budike, Jr. | Jun 2007 | A1 |
20070147268 | Kelley et al. | Jun 2007 | A1 |
20070169074 | Koo et al. | Jul 2007 | A1 |
20070169075 | Lill et al. | Jul 2007 | A1 |
20070169080 | Friedman | Jul 2007 | A1 |
20070174467 | Ballou, Jr. et al. | Jul 2007 | A1 |
20070177538 | Christensen et al. | Aug 2007 | A1 |
20070177576 | Johansen et al. | Aug 2007 | A1 |
20070177613 | Shorty et al. | Aug 2007 | A1 |
20070189249 | Gurevich et al. | Aug 2007 | A1 |
20070200729 | Borleske et al. | Aug 2007 | A1 |
20070201504 | Christensen et al. | Aug 2007 | A1 |
20070204009 | Shorty et al. | Aug 2007 | A1 |
20070205915 | Shuey et al. | Sep 2007 | A1 |
20070206503 | Gong et al. | Sep 2007 | A1 |
20070206521 | Osaje | Sep 2007 | A1 |
20070207811 | Das et al. | Sep 2007 | A1 |
20070210933 | Leach | Sep 2007 | A1 |
20070211636 | Bellur et al. | Sep 2007 | A1 |
20070239477 | Budike, Jr. | Oct 2007 | A1 |
20070248047 | Shorty et al. | Oct 2007 | A1 |
20070257813 | Vaswani et al. | Nov 2007 | A1 |
20070258508 | Werb et al. | Nov 2007 | A1 |
20070263647 | Shorty et al. | Nov 2007 | A1 |
20070265947 | Schimpf et al. | Nov 2007 | A1 |
20070266429 | Ginter et al. | Nov 2007 | A1 |
20070271006 | Golden et al. | Nov 2007 | A1 |
20070276547 | Miller | Nov 2007 | A1 |
20080011864 | Tessier et al. | Jan 2008 | A1 |
20080018492 | Ehrke et al. | Jan 2008 | A1 |
20080024320 | Ehrke et al. | Jan 2008 | A1 |
20080031145 | Ethier et al. | Feb 2008 | A1 |
20080032703 | Krumm et al. | Feb 2008 | A1 |
20080037569 | Werb et al. | Feb 2008 | A1 |
20080042874 | Rogai | Feb 2008 | A1 |
20080046388 | Budike, Jr. | Feb 2008 | A1 |
20080048883 | Boaz | Feb 2008 | A1 |
20080051036 | Vaswani et al. | Feb 2008 | A1 |
20080063205 | Braskich et al. | Mar 2008 | A1 |
20080068217 | Van Wyk et al. | Mar 2008 | A1 |
20080068994 | Garrison et al. | Mar 2008 | A1 |
20080068996 | Clave et al. | Mar 2008 | A1 |
20080086560 | Monier et al. | Apr 2008 | A1 |
20080089314 | Meyer et al. | Apr 2008 | A1 |
20080095221 | Picard | Apr 2008 | A1 |
20080097782 | Budike, Jr. | Apr 2008 | A1 |
20080107034 | Jetcheva et al. | May 2008 | A1 |
20080117110 | Luglio et al. | May 2008 | A1 |
20080129538 | Vaswani et al. | Jun 2008 | A1 |
20080130535 | Shorty et al. | Jun 2008 | A1 |
20080130562 | Shorty et al. | Jun 2008 | A1 |
20080132185 | Elliott et al. | Jun 2008 | A1 |
20080136667 | Vaswani et al. | Jun 2008 | A1 |
20080151795 | Shorty et al. | Jun 2008 | A1 |
20080151824 | Shorty et al. | Jun 2008 | A1 |
20080151825 | Shorty et al. | Jun 2008 | A1 |
20080151826 | Shorty et al. | Jun 2008 | A1 |
20080151827 | Shorty et al. | Jun 2008 | A1 |
20080154396 | Shorty et al. | Jun 2008 | A1 |
20080159213 | Shorty et al. | Jul 2008 | A1 |
20080165712 | Shorty et al. | Jul 2008 | A1 |
20080170511 | Shorty et al. | Jul 2008 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080180274 | Cumeralto et al. | Jul 2008 | A1 |
20080181133 | Thubert et al. | Jul 2008 | A1 |
20080183339 | Vaswani et al. | Jul 2008 | A1 |
20080186202 | Vaswani et al. | Aug 2008 | A1 |
20080186203 | Vaswani et al. | Aug 2008 | A1 |
20080187001 | Vaswani et al. | Aug 2008 | A1 |
20080187116 | Reeves et al. | Aug 2008 | A1 |
20080189415 | Vaswani et al. | Aug 2008 | A1 |
20080189436 | Vaswani et al. | Aug 2008 | A1 |
20080204272 | Ehrke et al. | Aug 2008 | A1 |
20080205355 | Liu et al. | Aug 2008 | A1 |
20080224891 | Ehrke et al. | Sep 2008 | A1 |
20080225737 | Gong et al. | Sep 2008 | A1 |
20080238714 | Ehrke et al. | Oct 2008 | A1 |
20080238716 | Ehrke et al. | Oct 2008 | A1 |
20080272934 | Wang et al. | Nov 2008 | A1 |
20080283620 | Knapp | Nov 2008 | A1 |
20080310311 | Flammer et al. | Dec 2008 | A1 |
20080310377 | Flammer et al. | Dec 2008 | A1 |
20080317047 | Zeng et al. | Dec 2008 | A1 |
20080318547 | Ballou, Jr. et al. | Dec 2008 | A1 |
20090003214 | Vaswani et al. | Jan 2009 | A1 |
20090003232 | Vaswani et al. | Jan 2009 | A1 |
20090003243 | Vaswani et al. | Jan 2009 | A1 |
20090003356 | Vaswani et al. | Jan 2009 | A1 |
20090010178 | Tekippe | Jan 2009 | A1 |
20090034418 | Flammer, III et al. | Feb 2009 | A1 |
20090034419 | Flammer, III et al. | Feb 2009 | A1 |
20090034432 | Bonta et al. | Feb 2009 | A1 |
20090043911 | Flammer et al. | Feb 2009 | A1 |
20090046732 | Pratt, Jr. et al. | Feb 2009 | A1 |
20090055032 | Rodgers | Feb 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090077405 | Johansen | Mar 2009 | A1 |
20090079584 | Grady et al. | Mar 2009 | A1 |
20090082888 | Johansen | Mar 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090102737 | Birnbaum et al. | Apr 2009 | A1 |
20090115626 | Vaswani et al. | May 2009 | A1 |
20090129575 | Chakraborty et al. | May 2009 | A1 |
20090132220 | Chakraborty et al. | May 2009 | A1 |
20090134969 | Veillette | May 2009 | A1 |
20090135677 | Veillette | May 2009 | A1 |
20090135716 | Veillette | May 2009 | A1 |
20090135843 | Veillette | May 2009 | A1 |
20090136042 | Veillette | May 2009 | A1 |
20090138777 | Veillette | May 2009 | A1 |
20090161594 | Zhu et al. | Jun 2009 | A1 |
20090167547 | Gilbert | Jul 2009 | A1 |
20090168846 | Filippo, III et al. | Jul 2009 | A1 |
20090175238 | Jetcheva et al. | Jul 2009 | A1 |
20090179771 | Seal et al. | Jul 2009 | A1 |
20090200988 | Bridges et al. | Aug 2009 | A1 |
20090201936 | Dumet et al. | Aug 2009 | A1 |
20090235246 | Seal et al. | Sep 2009 | A1 |
20090243840 | Petite et al. | Oct 2009 | A1 |
20090245270 | van Greunen et al. | Oct 2009 | A1 |
20090262642 | van Greunen et al. | Oct 2009 | A1 |
20090267792 | Crichlow | Oct 2009 | A1 |
20090285124 | Aguirre et al. | Nov 2009 | A1 |
20090303972 | Flammer, III et al. | Dec 2009 | A1 |
20090310593 | Sheynblat et al. | Dec 2009 | A1 |
20090315699 | Satish et al. | Dec 2009 | A1 |
20090319672 | Reisman | Dec 2009 | A1 |
20090320073 | Reisman | Dec 2009 | A1 |
20100017249 | Fincham et al. | Jan 2010 | A1 |
20100037069 | Deierling et al. | Feb 2010 | A1 |
20100037293 | St. Johns et al. | Feb 2010 | A1 |
20100040042 | van Greunen et al. | Feb 2010 | A1 |
20100060259 | Vaswani et al. | Mar 2010 | A1 |
20100061272 | Veillette | Mar 2010 | A1 |
20100061350 | Flammer, III | Mar 2010 | A1 |
20100073193 | Flammer, III | Mar 2010 | A1 |
20100074176 | Flammer, III et al. | Mar 2010 | A1 |
20100074304 | Flammer, III | Mar 2010 | A1 |
20100138660 | Haynes et al. | Jun 2010 | A1 |
20100238917 | Silverman et al. | Sep 2010 | A1 |
20100256830 | Kressner et al. | Oct 2010 | A1 |
20110004358 | Pollack et al. | Jan 2011 | A1 |
20110035073 | Ozog | Feb 2011 | A1 |
20110066297 | Saberi et al. | Mar 2011 | A1 |
20110109266 | Rossi | May 2011 | A1 |
Number | Date | Country |
---|---|---|
0 578 041 | Nov 1999 | EP |
0 663 746 | Jan 2003 | EP |
0 812 502 | Aug 2004 | EP |
0 740 873 | Dec 2005 | EP |
10-070774 | Mar 1998 | JP |
10-135965 | May 1998 | JP |
WO 9512942 | May 1995 | WO |
WO 9610307 | Apr 1996 | WO |
WO 9610307 | Apr 1996 | WO |
WO 0054237 | Sep 2000 | WO |
WO 0126334 | Apr 2001 | WO |
WO 0155865 | Aug 2001 | WO |
WO 03015452 | Feb 2003 | WO |
WO 2005091303 | Sep 2005 | WO |
WO 2006059195 | Jun 2006 | WO |
WO 2007015822 | Aug 2007 | WO |
WO 2007132473 | Nov 2007 | WO |
WO 2008027457 | Mar 2008 | WO |
WO 2008033287 | Mar 2008 | WO |
WO 2008033514 | Mar 2008 | WO |
WO 2008038072 | Apr 2008 | WO |
WO 2008092268 | Aug 2008 | WO |
WO 2009067251 | May 2009 | WO |
Entry |
---|
Hydro One Networks, Inc., Request for Proposal for Smart Metering Services, 16 pp., Mar. 4, 2005. |
Trilliant Networks, “The Trilliant AMI Solution,” RFP SCP-07003, 50 pp., Mar. 22, 2007. |
“ZigBee Smart Energy Profile Specification,” ZigBee Profile 0x0109, Revision 14, Document 075356r14, 202 pp., May 29, 2008. |
Hubaux, J. P., et al. “Towards Mobile Ad-Hoc WANs: Terminodes,” 2000 IEEE, Wireless Communications and Networking Conference, WCNC, vol. 3, pp. 1052-1059, 2000. |
Miklos, G., et al., “Performance Aspects of Bluetooth Scatternet Formation,” First Annual Workshop on Mobile and Ad Hoc Networking and Computing, MobiHOC 2000, pp. 147-148, 2000. |
Eng, K. Y., et al. “BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network,” 1995 IEEE International Conference on Communications, ICC '95 Seattle, ‘Gateway to Globalization’, vol. 2, pp. 1216-1223, Jun. 18-22, 1995. |
Lee, David J. Y., “Ricocheting Bluetooth,” 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings, ICMMT 2000, pp. 432-435, 2000. |
Lilja, Tore, “Mobile Energy Supervision,” Twenty-second International Telecommunications Energy Conference, 2000 INTELEC, pp. 707-712, 2000. |
Parkka, Juha, et al., “A Wireless Wellness Monitor for Personal Weight Management,” Proceedings of the 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine, pp. 83-88, 2000. |
Broch, J., et al., “Supporting Hierarchy and Heterogeneous Interfaces in Multi-Hop Wireless Ad Hoc Networks,” Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN '99), pp. 370-375 (7 pp. with Abstract), Jun. 23-25, 1999. |
Privat, G., “A System-Architecture Viewpoint on Smart Networked Devices,” Microelectronic Engineering, vol. 54, No. 1-2, pp. 193-197, Dec. 2000. |
Jonsson, U., et al., “MIPMANET-Mobile IP for Mobile Ad Hoc Networks,” MobiHOC 2000, First Annual Workshop on Mobile and Ad Hoc Networking and Computing, pp. 75-85 (12 pp. with Abstract), 2000. |
Kapoor, R., et al., “Multimedia Support Over Bluetooth Piconets,” First Workshop on Wireless Mobile Internet, pp. 50-55, Jul. 2001. |
Sung-Yuan, K., “The Embedded Bluetooth CCD Camera,” TENCON, Proceedings of the IEEE Region 10 International Conference on Electrical and Electronic Technology, vol. 1, pp. 81-84 (5 pp. with Abstract), Aug. 19-22, 2001. |
Lim, A., “Distributed Services for Information Dissemination in Self-Organizing Sensor Networks,” Journal of the Franklin Institute, vol. 338, No. 6, pp. 707-727, Sep. 2001. |
Meguerdichian, S., et al., “Localized Algorithms in Wireless Ad-Hoc Networks: Location Discovery and Sensor Exposure,” ACM Symposium on Mobile Ad Hoc Networking & Computing, MobiHOC 2001, pp. 106-116, Oct. 2001. |
Lilakiatsakun, W., et al. “Wireless Home Networks Based on a Hierarchical Bluetooth Scatternet Architecture,” Proceedings of the Ninth IEEE International Conference on Networks, pp. 481-485 (6 pp. with Abstract), Oct. 2001. |
Jha, S., et al., “Universal Network of Small Wireless Operators (UNSWo),” Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 626-631 (7 pp. with Abstract), 2001. |
“AMRON Technologies Successfully Deploys Advanced Metering Solution for C&I Customers Using Bluetooth” [online], Sep. 2, 2004 [retrieved on Jan. 2, 2009], 3 pp., Retrieved from the Internet: http: //www.techweb.com/showpressrelease?articleId-X234101&CompanyId=3. |
Utility Intelligence, “Exclusive Distributors of Dynamic Virtual Metering” [online], Copyright 2004-2005 [retrieved on May 12, 2005], Retrieved from the Internet: http://www.empoweringutilities.com/hardware.html, 29 pp. |
“AMRON Meter Management System” [online], [retrieved on May 12, 2005], 41 pp., Retrieved from the Internet: http://www.amronm5.com/products/. |
Reexamination U.S. Appl. No. 90/008,011, filed Jul. 24, 2006, 75 pp. |
Broch, Josh, et al., “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proceedings of the Fourth Annual ACM/IEEE International Conference in Mobile Computing and Networking (MobiCom '98), Dallas, Texas, 13 pp., Oct. 25-30, 1998. |
Broch, Josh, et al., “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks” [online], Mar. 13, 1998 [retrieved on Feb. 24, 2009], 31 pp., Retrieved from the Internet: http://tools.ietf.org/draft-ietf-manet-dsr-00.txt |
Katz, Randy H. and Brewer, Eric A., “The Case for Wireless Overlay Networks,” Electrical Engineering and Computer Science Department, University of California, Berkeley, 12 pp., 1996. |
Johnson, David B., “Routing in Ad Hoc Networks of Mobile Hosts,” IEEE, pp. 158-163, 1995. |
Nachum Shacham, Edwin B. Brownrigg, & Clifford A. Lynch, A Packet Radio Network for Library Automation, 1987 IEEE Military Communications Conference, vol. 2 at 21.3.1, (Oct. 1987). (TN-IP 0004176-82). |
Nachum Shacham & Janet D. Tornow, Future Directions in Packet Radio Technology, Proc. of the IEEE Infocom 1985 at 93 (Mar. 1985). (TN-IP 0005080-86), 17 pp. |
John Jubin & Janet D. Tornow, The DARPA Packet Radio Network Protocols, Proc. of the IEEE, vol. 75, No. 1 at 21 (Jan. 87). (TN-IP 0004930-41). |
John Jubin, Current Packet Radio Network Protocols, Proc. of the IEEE Infocom1985 at 86 (Mar. 1985), (TN-IP 0004921-29), 9 pp. |
David B. Johnson & David A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks, reprinted in Mobile Computing, 153, Kluwer Academic Publishers (Tomasz Imielinski & Henry F. Korth eds., 1996), (TN-IP 0006929-46), 18 pp. |
David B. Johnson, Mobile Host Internetworking Using IP Loose Source Routing, Carnegie Mellon University CMU-CS-93-128, DARPA Order No. 7330 (Feb. 1993), (TN-IP 0006911-28), 18 pp. |
Daniel M. Frank, Transmission of IP Datagrams Over NET/ROM Networks, Proc. of the ARRL 7th Computer Networking Conference 1988 at 65 (Oct. 1988), (TN-IP 0006591-96), 6 pp. |
Robert E. Kahn, et al., Advances in Packet Radio Technology, Proc. of the IEEE, vol. 66, No. 11, pp. 1468-1496 (Nov. 1978), (TN-IP 0004942-71). |
Clifford A. Lynch & Edwin B. Brownrigg, Packet Radio Networks, Bergamon Press, 259-74 (1987), (TN-IP 0004018-175). |
Charles E. Perkins & Pravin Bhagwat, Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers, ACM SIGCOMM Computer Communication Review, vol. 24, Issue 4 at 234 (Oct. 1994), (TN-IP 0005018-28), 11 pp. |
William MacGregor, Jil Westcott, & Michael Beeler, Multiple Control Stations in Packet Radio Networks, 1982 IEEE Military Communications Conference, vol. 3 at 10.3-1 (Oct. 1982), (TN-IP 0004988-93), 6 pp. |
Nachum Shacham & Jil Westcott, Future Directions in Packet Radio Architectures and Protocols, Proc. of the IEEE, vol. 75, No. 1 at 83 (Jan. 1987), (TN-IP 0008712-28), 17 pp. |
David B. Johnson and David A. Maltz, Protocols for Adaptive Wireless and Mobile Networking, IEEE Personal Communications, Feb. 1996, p. 34-42. |
Arek J. Dadej and Daniel Floreani, Interconnected Mobile Radio Networks—A step Towards Integrated Multimedia Military Communications, Communications and Networks for the Year 2000, IEEE Singapore International Conference on Networks/International Conference on Information Engineering '93, vol. 1, p. 152-156. |
David A. Beyer, Accomplishments of the DARPA SURAN Program, IEEE MILCOM 1990, p. 39.6.1-8. |
William S. Hortos, Application of Neural Networks to the Dynamic Spatial Distribution of Nodes within an Urban Wireless Network, SPIE, vol. 2492, p. 58-70, 1995. |
Nachum Shacham and Richard G. Ogier, Network Control and Data Transport for C3I Applications, IEEE 1987, p. 30.5.1-6. |
John E. Rustad, Reidar Skaug, and Andreas Aasen, New Radio Networks for Tactical Communication, IEEE Jornal on Selected Areas in Communications, vol. 8, No. 5, p. 713-27, Jun. 1990. |
Barry M. Leiner, Donald L. Nielson, and Fouad A. Tobagi, Issues in Packet Radio Network Design, Proceedings of the IEEE, vol. 75, No. 1, p. 6-20, Jan. 1987. |
Janet Tornow, Functional Summary of the DARPA SURAP1 Network, DARPA, Sep., 1986, 17 pp. |
John F. Shoch and Lawrence Stewart, Interconnecting Local Networks via the Packet Radio Network, Sixth Data Communications Symposium, Nov. 1979, pp. 153-158. |
J.R. Cleveland, Performance and Design Considerations for Mobile Mesh Networks, IEEE MILCOM 96, vol. 1, p. 245-49. |
Cmdr. R. E. Bruninga, USN, A Worldwide Packet Radio Network, Signal, vol. 42, No. 10, p. 221-230, Jun. 1988. |
Nachum Shacham and Janet Tornow, Packet Radio Networking, Telecommunications, vol. 20, No. 9, p. 42-48, 64, 82, Sep. 1986. |
Spencer T. Carlisle, Edison's NetComm Project, IEEE 1989, Paper No. 89CH2709-4-B5, p. B5-1-B5-4. |
Brian H. Davies and T.R. Davies, The Application of Packet Switching Techniques to Combat Net Radio, Proceedings of the IEEE, vol. 75, No. 1, p. 43-55, Jan. 1987. |
Fouad A. Tobagi, Richard Binder, and Barry Leiner, Packet Radio and Satellite Networks, IEEE Communications Magazine, vol. 22, No. 11, p. 24-40, Nov. 1984. |
M. Scott Corson, Joseph Macker, and Stephen G. Batsell, Architectural Considerations for Mobile Mesh Networking, IEEE MILCOM 96, vol. 1, p. 225-9. |
K.Y. Eng, et. al., Bahama: A Broadband Ad-Hoc Wireless ATM Local-Area Network, 1995 IEEE International Conference on Communications, vol. 2, p. 1216-23, Jun. 18-22, 1995. |
J. Jonquin Garcia-Luna-Aceves, A Fail-Safe Routing Algorithm for Multihop Packet-Radio Networks, IEEE INFOCOM '86, p. 434-43, Apr. 8-10, 1986. |
Johanes P. Tamtomo, A Prototype of TCP/IP-Based Internet-PRNET for Land Information Networks and Services, Department of Surveying Engineering, University of New Brunswick, Jan. 25, 1993, 118 pp. |
A. Alwan, et al., Adaptive Mobile Multimedia Networks, IEEE Personal Communications, p. 34-51, Apr. 1996. |
Michael Ball, et al., Reliability of Packet Switching Broadcast Radio Networks, IEEE Transactions on Circuits and Systems, vol. Cas-23, No. 12, p. 806-13 ,Dec. 1976. |
Kenneth Brayer, Implementation and Performance of Survivable Computer Communication with Autonomous Decentralized Control, IEEE Communications Magazine, p. 34-41, Jul. 1983. |
Weidong Chen and Eric Lin, Route Optimization and Locations Updates for Mobile Hosts, Proceedings of the 16th ICDCS, p. 319-326, 1996. |
Daniel Cohen, Jonathan B. Postel, and Raphael Rom, IP Addressing and Routing in a Local Wireless Network, IEEE INFOCOM 1992, p. 5A.3.1-7. |
Charles Perkins and David B. Johnson, Mobility Support in IPv6, Sep. 22, 1994, http//www.monarch.cs.rice.edu/internet-drafts/draft-perkins-ipv6-mobility-sup-00.txt (last visited Sep. 26, 2009. |
Jonathan J. Hahn and David M. Stolle, Packet Radio Network Routing Algorithms: A Survey, IEEE Communications Magazine, vol. 22, No. 11, p. 41-7, Nov. 1984. |
David A. Hall, Tactical Internet System Architecture for the Task Force XXI, IEEE 1996, p. 219-30. |
Robert Hinden and Alan Sheltzer, The DARPA Internet Gateway, DARPA RFC 823, Sep. 1982, 45 pp. |
Manuel Jimenez-Cedeno and Ramon Vasquez-Espinosa, Centralized Packet Radio Network: A Communication Approach Suited for Data Collection in a Real-Time Flash Flood Prediction System, Dept. of Electrical and Computer Engineering, University of Puerto Rico-Mayaguez, ACM 0-89791-568-2/93, p. 709-13, 1993. |
David B. Johnson, Routing in Ad Hoc Networks of Mobile Hosts, Workshop on Mobile Computing Systems and Applications, Dec. 8-9, 1994, Santa Cruz, California, IEEE 1995, p. 158-63. |
David B. Johnson, Route Optimization in Mobile IP, Nov. 28, 1994, http://www.monarch.cs.rice.edu/internet-drafts/draft-ietf-mobileip-optim-00.txt (last visited Sep. 26, 2009), 32 pp. |
Mark G. Lewis and J.J. Garcia-Luna-Aceves, Packet-Switching Applique for Tactical VHF Radios, 1987 IEEE MILCOM Communciations Conference, Oct. 19-22, 1987, Washington, D.C., p. 21.2.1-7. |
Sioe Mak and Denny Radford, Design Considerations for Implementation of Large Scale Automatic Meter Reading Systems, IEEE Transactions on Power Delivery, vol. 10, No. 1, p. 97-103, Jan. 1995. |
Charles E. Perkins and Pravin Bhagwat, A Mobile Networking System Based on Internet Protocol, IEEE Personal Communications, First Quarter 1994, IEEE 1994, p. 32-41. |
Richard Schulman, Richard Snyder, and Larry J. Williams, SINCGARS Internet Controller-Heart of the Digitized Battlefield, Proceedings of the 1996 Tactical Communications Conference, Apr. 30-May 2, 1996, Fort Wayne, Indiana, p. 417-21. |
Nachum Shacham and Earl J. Craighill, Dynamic Routing for Real-Time Data Transport in Packet Radio Networks, Proceedings of INFOCOM 1982, IEEE 1982, p. 152-58. |
R. Lee Hamilton, Jr. and Hsien-Chuen Yu, Optimal Routing in Multihop Packet Radio Networks, IEEE 1990, p. 389-96. |
Carl A. Sunshine, Addressing Problems in Multi-Network Systems, Proceedings of INFOCOM 1982, IEEE 1982, p. 12-18. |
J.J. Garcia-Luna-Aceves, Routing Management in Very Large-Scale Networks, North-Holland, Future Generations Computer Systems 4, 1988, pp. 81-93. |
J.J. Garcia-Luna-Aceves, A Minimum-hop Routing Algorithm Based on Distributed Information, North-Holland, Computer Networks and ISDN Systems 16, 1988/1989, p. 367-382. |
D. Hubner, J. Kassubek, F. Reichert, A Distributed Multihop Protocol for Mobile Stations to Contact a Stationary Infrastructure, Third IEE Conference on Telecommunications, Conference Publication No. 331, p. 204-7. |
Jens Zander and Robert Forchheimer, The SOFTNET Project: A Retrospect, IEEE EUROCON, Jun. 13-17, 1988, p. 343-5. |
Mario Gerla and Jack Tzu-Chich Tsai, Multicluster, Mobile, Multimedia Radio Network, Wireless Networks 1, J.C. Baltzer AG, Science Publishers, 1995, p. 255-265. |
F. G. Harrison, Microwave Radio in the British TeleCom Access Network, Second IEE National Conference on Telecommunications, Conference Publication No. 300, Apr. 2-5, 1989, p. 208-13. |
Chai-Keong Toh, A Novel Distributed Routing Protocol to Support Ad-Hoc Mobile Computing, Conference Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix Conference on Computers and Communications, Mar. 27-29, 1996, p. 480-6. |
Fadi F. Wahhab, Multi-Path Routing Protocol for Rapidly Deployable Radio Networks, Thesis submitted to the Department of Electrical Engineering and Computer Science of the University of Kansas, 1994, 59 pp. |
Jil Westcott and Gregory Lauer, Hierarchical Routing for Very Large Networks, IEEE MILCOM 1984, Oct. 21-24, 1984, Conference Record vol. 2, p. 214-8. |
International Search Report and Written Opinion for Application No. PCT/US08/13027, dated Feb. 9, 2009, 6 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13023, dated Jan. 12, 2009, 10 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13019, dated Jan. 12, 2009, 13 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13025, dated Jan. 13, 2009, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13018, dated Jan. 30, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13020, dated Jan. 9, 2009, 8 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13028, dated Jan. 15, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13021, dated Jan. 15, 2009, 11 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13016, dated Jan. 9, 2009, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13024, dated Jan. 13, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13022, dated Jan. 27, 2009, 10 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13030, dated Jan. 9, 2009, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/12161, dated Mar. 2, 2009, 13 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13017, dated Mar. 18, 2009, 11 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13026, dated Feb. 24, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13029, dated Feb. 2, 2009, 8 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13032, dated May 12, 2009, 14 pp. |
International Search Report and Written Opinion for Application No. PCT/US09/05008, dated Oct. 22, 2009, 8 pp. |
Leis, John, “TPC/IP Protocol Family,” pp. 1 and 42-43, Apr. 3, 2006. |
Supplementary European Search Report for Application No. EP 08 85 1869, dated Dec. 30, 2010, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US10/26956, dated May 19, 2010, 2 pp. |
Supplementary European Search Report for Application No. EP 08 85 1132, dated Dec. 6, 2010, 9 pp. |
Baumann, R., et al., “Routing Packets Into Wireless Mesh Networks,” Wireless and Mobile Computing, Networking and Communications, 2007, WIMOB 2007, Third IEEE International Conference, Piscataway, NJ, Oct. 8, 2007, p. 38 (XP031338321). |
Levis Stanford University, J. P. Vasseur, Cisco Systems, et al., “Overview of Existing Routing Protocols for Low Power and Lossy Networks,” draft-levis-rl2n-overview-protocols-02.txt, IETF Standard-Working-Draft, Internet Engineering Task Force, IETF, Ch, No. 2, Nov. 17, 2007 (XP015054252) (ISSN: 0000-0004). |
Culler Arch Rock, J.P. Vasseur, Cisco Systems, et al., “Routing Requirements for Low Power and Lossy Networks, draft-culler-rl2n-routing-reqs-01.txt,” IETF StandardWorking-Draft, Internet Engineering Task Force, IETF, Ch, No. 1, Jul. 7, 2007 (XP015050851) (ISSN: 000-0004). |
Perkins, C. E., et al., “Ad Hoc On-Demand Distance Vector (AODV) Routing,” Network Working Group Internet Draft, XX, Nov. 9, 2001 (XP002950167). |
Postel, J., “RFC 793 Transmission Control Protocol,” Sep. 1981 [retrieved on Jan. 1, 2007], Retrieved From the Internet: http://www.ietf.org/rfc/rfc0793.txt. |
Supplementary European Search Report for Application No. EP 08 85 1927, dated Dec. 22, 2010, 10 pp. |
Younis, M., et al., “Energy-Aware Routing in Cluster-Based Sensor Networks,” Modeling, Analysis and Simulation of Computer and Telecommunications Systems, 10th IEEE Proceedings on Mascots, Oct. 11-16, 2002, Piscataway, NJ (XP010624424) (ISBN: 978-0-7695-1840-4). |
Supplementary European Search Report for Application No. EP 08 85 3052, dated Mar. 18, 2011, 10 pp. |
Supplementary European Search Report for Application No. EP 08 85 1560, dated Mar. 24, 2011, 9 pp. |
Supplementary European Search Report for Application No. EP 08 85 2992, dated Mar. 23, 2011, 6 pp. |
International Search Report and Written Opinion for Application No. PCT/US2011/060694, dated Apr. 9, 2012, 10 pp. |
International Search Report and Written Opinion for Application No. PCT/US2011/049227, dated Jan. 31, 2012, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US12/22334, dated Apr. 9, 2012, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US11/56620, dated Mar. 13, 2012, 8 pp. |
Supplementary European Search Report for Application No. EP 08 84 2449, dated Nov. 29, 2011, 5 pp. |
Lin, Shen, et al., “A Wireless Network Based on the Combination of Zigbee and GPRS” [online], [retrieved on Feb. 16, 2012], IEEE International Conference on Networking, Sensing and Control, Apr. 6-8, 2008, 4 pp., Retrieved From the Internet: http://ieeexplore.ieee.org/xpls/abs13 all.jsp?arnumber=4525223. |
Telegesis, “ZigBee Gateway Makes Your Meter Smart” [online], 2005 [retrieved on Feb. 16, 2012], 1 p., Retrieved From the Internet: http://www.telegesis.com/downloads/general/SSV%20IP%20gateway%20case%20study.pdf. |
Supplementary European Search Report for Application No. EP 09 81 1849, dated Dec. 13, 2011, 9 pp. |
Gerla, Mario, et al., Multicasting Protocols for High-Speed, Wormhole-Routing Local Area Networks, ACM SIGCOMM Computer Communication Review, vol. 26, No. 4, Oct. 4, 1996, pp. 184-193. |
International Search Report and Written Opinion for Application No. PCT/US2011/049277, dated Jan. 31, 2012, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US11/21167, dated Mar. 21, 2012, 8 pp. |
“UCAIug Home Area Network System Requirements Specification, A Work Product of the OpenHAN Task Force Formed by the SG Systems Working Group Under the Open Smart Grid (OpenSG) Technical Committee of the UCA® International Users Group, Version 2.0,” 157 pp., Aug. 30, 2010. |
“ZigBee Smart Energy Profile Specification,” ZigBee Profile: 0x0109, Revision 15, Dec. 1, 2008, Document 075345r15 (SEP Document), 244 pp. |
Edison Electric Institute (EEI), “Uniform Business Practices for Unbundled Electricity Metering, Volume Two,” Dec. 5, 2000, 196 pp., www.naesb.org/pdf/ubp120500.pdf. |
“ZigBee Smart Energy Profile Specification,” ZigBee Profile: 0x0109, Revision 16, Version 1.1, Document 075356r16ZB, 332 pp., Mar. 23, 2011. |
“ZigBee Over-the-Air Upgrading Cluster,” ZigBee Alliance, Document 095264r18, Revision 18, Version 1.0, 63 pp., Mar. 14, 2010. |
IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),” IEEE Computer Society, 323 pp., Sep. 8, 2006. |
IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Computer Society, 679 pp., Oct. 1, 2003. |
“ZigBee Cluster Library Specification,” ZigBee Alliance, Document 075123r02ZB, 420 pp., May 29, 2008. |
Liu, Ryan, et al., “A Survey of PEV Impacts on Electric Utilities,” EEE PES Innovative Smart Grid Technologies Conference, Anaheim, California, 8 pp., Jan. 17-19, 2011. |
“Utility/Lab Workshop on PV Technology and Systems,” DTE Energy DER Technology Adoption, DEW Analysis of Renewable, PEV & Storage, Tempe, Arizona, 36 pp., Nov. 8-9, 2010. |
International Search Report and Written Opinion for Application No. PCT/US12/28135, dated Jul. 5, 2012, 7 pp. |
“Network Device: Gateway Specification,” ZigBee Alliance, ZigBee Document 075468r35, Revision 35, Version No. 1.0, 301 pp., Mar. 23, 2011. |
Number | Date | Country | |
---|---|---|---|
20120229089 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61450277 | Mar 2011 | US |