System and method for managing resources of a storage device and quantifying the cost of I/O requests

Information

  • Patent Grant
  • 11816043
  • Patent Number
    11,816,043
  • Date Filed
    Monday, June 25, 2018
    6 years ago
  • Date Issued
    Tuesday, November 14, 2023
    a year ago
  • CPC
  • Field of Search
    • CPC
    • G06F2209/501
    • G06F2209/5019
    • G06F2209/203
    • G06F2209/504
    • G06F2209/502
    • G06F13/161
    • G06F9/5027
  • International Classifications
    • G06F13/16
    • Term Extension
      323
Abstract
One embodiment facilitates measurement of a performance of a storage device. During operation, the system determines a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations. The system identifies a performance metric for the storage device by calculating a second number of virtual I/O operations per second which can be executed by the storage device. The system allocates incoming I/O requests to the storage device based on the performance metric, e.g., to satisfy a Quality of Service requirement, thereby causing an enhanced measurement of the performance of the storage device.
Description
BACKGROUND
Field

This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a system and method for managing the resources of a storage device and for quantifying the cost of input/output (I/O) requests.


Related Art

The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Various storage systems and servers have been created to access and store such digital content. In cloud or clustered storage systems, multiple applications may share the underlying system resources (e.g., of a storage device). Managing the resources of a storage device is critical both for the performance of the system, and to satisfy any Quality of Service (QoS) requirements (e.g., in a service level agreement). A metric is needed which can quantify the performance capability of a storage device. Conventional performance metrics such as input/output operations per second (IOPS) or throughput may be useful for quantifying the performance capability of a storage device under specific workloads, such as a workload with all read requests or all write requests).


However, in mixed workloads (e.g., with a dynamic ratio of read requests versus write requests distributed across a varying range of request sizes), neither the read nor the write bandwidth may be directly used to indicate the performance capability of a storage device. Furthermore, in a storage device such as a solid state drive (SSD), the read and write performance may be asymmetric because of the characteristics of the NAND media and the internal garbage collection mechanism. Thus, conventional performance metrics cannot effectively evaluate the performance capability of a storage device across a wide range of mixed workloads and request sizes. This limitation on a versatile performance metric can create result in a decreased accuracy in identifying the performance capabilities of a storage device, which can result in an ineffective management of the underlying resources of the storage device. This in turn can result in a reduced performance in the overall efficiency of a cloud or a clustered storage system, and may also impact the scalability of a distributed storage system.


SUMMARY

One embodiment facilitates measurement of a performance of a storage device. During operation, the system determines a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations. The system identifies a performance metric for the storage device by calculating a second number of virtual I/O operations per second which can be executed by the storage device. The system allocates incoming I/O requests to the storage device based on the performance metric, e.g., to satisfy a Quality of Service requirement, thereby causing an enhanced measurement of the performance of the storage device.


In some embodiments, determining the normalized cost comprises determining a cost factor for the I/O request, which involves: selecting a set of test cost factor values; executing varied workloads on the storage device based on varying I/O request sizes and a varying ratio of read I/O requests to write I/O requests; measuring the performance of the storage device based on a third number of virtual I/O operations per second executed on the storage device for each workload; determining a test cost factor value which projects a most constant virtual I/O operations per second performance across all the workloads; and setting the cost factor for the I/O request to the determined test cost factor value.


In some embodiments, determining the normalized cost further comprises: determining a first ratio of a size of the I/O request to a predetermined size for a base unit; and scaling the first ratio by the determined cost factor for the I/O request.


In some embodiments, the system generates a data structure which maps a range of latency values to a fourth number of virtual I/O operations per second that can be executed by the storage device.


In some embodiments, the system obtains the data structure in response to one or more of: initiating a startup or a configuration procedure; and requesting, by the storage device or by a user or application associated with the storage device, the data structure.


In some embodiments, the system determines a specific read latency or a specific write latency based on a size of a specific I/O request. The system performs a lookup in the data structure, based on the specific read latency or the specific write latency, to obtain a fifth number of virtual I/O operations per second mapped to a second range of latency values which include the specific read latency or the specific write latency.


In some embodiments, the system assigns portions of the second number of virtual I/O operations per second to one or more applications. The system receives a second I/O request from an application. The system schedules the second I/O request based on a respective portion of the second number of virtual I/O operations per second assigned to the application.


In some embodiments, assigning the portions of the second number of virtual I/O operations per second is based on one or more of: a priority associated with a respective application; a user associated with the respective application; and a predetermined time period which, when exceeded, causes a refresh or reassigning of the portions of the second number of virtual I/O operations per second to the one or more application.


In some embodiments, scheduling the second I/O request is further based on: a priority associated with the second I/O request; a priority associated with the respective application; and a user associated with the respective application.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary environment that facilitates measurement of the performance of a storage device, in accordance with an embodiment of the present application.



FIG. 2A illustrates an exemplary environment for facilitating measurement of the performance of a storage device, in accordance with an embodiment of the present application.



FIG. 2B illustrates an exemplary environment for facilitating measurement of the performance of a storage device, in accordance with an embodiment of the present application.



FIG. 3A presents a flowchart illustrating a method for facilitating measurement of the performance of a storage device, in accordance with an embodiment of the present application.



FIG. 3B presents a flowchart illustrating a method for determining the cost factor for an I/O request, in accordance with an embodiment of the present application.



FIG. 4 presents a diagram illustrating exemplary test results of measuring VIOPS over varying ratios of read to write requests on a given storage device, based on various test cost factor values, in accordance with an embodiment of the present application.



FIG. 5 presents a flowchart illustrating a method for scheduling I/O requests based on priority and allocated VIOPS, in accordance with an embodiment of the present application.



FIG. 6 presents exemplary pseudocode for scheduling or dispatching an I/O request based on priority and allocated VIOPS, in accordance with an embodiment of the present application.



FIG. 7A presents a flowchart illustrating a method for looking up VIOPS capability in a given storage device based on a specific target latency value, in accordance with an embodiment of the present application.



FIG. 7B illustrates an exemplary data structure mapping target latency range values to VIOPS capability in a given storage device, in accordance with an embodiment of the present application.



FIG. 8 illustrates an exemplary computer system that facilitates measurement of the performance of a storage device, in accordance with an embodiment of the present application.



FIG. 9 illustrates an exemplary apparatus that facilitates measurement of the performance of a storage device, in accordance with an embodiment of the present application.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the embodiments described herein are not limited to the embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


The embodiments described herein provide a system which solves the problem of providing a metric to quantify the performance of a storage device given a workload which consists of varying types of I/O requests (e.g., a dynamic ratio of read requests versus write requests).


In cloud or clustered storage systems, multiple applications may share the underlying system resources (e.g., of a storage device). Managing the resources of a storage device is critical both for the performance of the system, and to satisfy any Quality of Service (QoS) requirements (e.g., in a service level agreement). A metric is needed which can quantify the performance capability of a storage device. Conventional performance metrics such as input/output operations per second (TOPS) or throughput may be useful for quantifying the performance capability of a storage device under specific workloads, such as a workload with all read requests or all write requests).


However, in mixed workloads (e.g., with a dynamic ratio of read requests versus write requests distributed across a varying range of request sizes), neither the read nor the write bandwidth may be directly used to indicate the performance capability of a storage device. Furthermore, in a storage device such as an SSD, the read and write performance may be asymmetric because of the characteristics of the NAND media and the internal garbage collection mechanism. Thus, conventional performance metrics cannot effectively evaluate the performance capability of a storage device across a wide range of mixed workloads and request sizes. This limitation on a versatile performance metric can create result in a decreased accuracy in identifying the performance capabilities of a storage device, which can result in an ineffective management of the underlying resources of the storage device. This in turn can result in a reduced performance in the overall efficiency of a cloud or a clustered storage system, and may also impact the scalability of a distributed storage system.


The embodiments described herein address these limitations by providing a system which uses a new performance metric “virtual I/O operations per second” or “VIOPS” to generalize the concept of bandwidth in a storage device (e.g., an SSD). The system can normalize the resource cost of varying I/O requests on a target storage device, independent of the access pattern (e.g., random or sequential) and the type (e.g., read or write) of the I/O request. The system measures the cost of an individual I/O request by using the consumed number of virtual I/Os.


I/O requests can vary based on various characteristics or features of the request, including, e.g., the request type (read or write), the request size, and the access pattern (random or sequential). The number of VIOs consumed by an I/O request depends on the various characteristics of the I/O request. For example, a 4 KB random read may consume one virtual I/O, while a 4 KB random write may consume more than one virtual I/O. A virtual I/O operation is used as a logical unit of cost associated with physical I/O operations. The system can use a formula to calculate the number of virtual I/Os consumed by serving any random storage request (i.e., a read or a write request of any size), for a given storage device. Thus, the cost of an actual I/O request is converted into the consumed number of virtual I/Os on a target storage device. Determining the cost of random I/O requests is described below in relation to FIGS. 3B and 4.


By normalizing the cost of varying I/O requests based on the VIOs and independent of the access pattern or type of a given I/O request, the system can evaluate the performance of the storage device based on the VIOPS, i.e., the number of virtual I/Os served per second. Furthermore, a priority-based I/O scheduler component can leverage the VIOPS model to accurately control service resources among different I/O services or applications as described below in relation to FIG. 5. In a distributed storage system with multiple storage servers and storage devices, incoming I/O requests may be allocated to a particular storage device based on the calculated VIOPS for the particular storage device. That is, the scheduler component can determine, based on the calculated VIOPS for each of the multiple storage devices in the distributed storage system, how to allocate, distribute, dispatch, and schedule the incoming I/O requests among the multiple storage devices.


Thus, the embodiments described herein provide a system which improves and enhances the efficiency and performance of a storage system. By measuring the cost of any random I/O request using VIOs, the system can normalize the cost of varying I/O requests (by converting the cost of an I/O request to a number of VIOs consumed by a given storage device). The system can also identify a new performance metric with which to evaluate the storage device (by calculating a number of VIOPS served by the storage device). By using the VIOPS as the performance metric for the storage device, the system can overcome the deficiencies of the conventional metrics, such as TOPS or throughput, which are limited to quantifying performance under specific workloads. The embodiments described herein can thus more accurately provide a measurement of the performance of a storage device by accounting for mixed workloads, e.g., with a dynamic ratio between read requests and write requests, and varying sizes of I/O requests. In this way, and unlike conventional performance metrics, the system enhances the measurement of the performance of the storage device. Furthermore, by allocating incoming I/O requests based on the more accurate and flexible performance metric of VIOPS, the embodiments described herein enhance the overall efficiency and performance of a distributed storage system.


Exemplary Environment and Network



FIG. 1 illustrates an exemplary environment 100 that facilitates measurement of the performance of a storage device, in accordance with an embodiment of the present application. Environment 100 can include a computing device 102 and an associated user 104. Computing device 102 can communicate via a network 110 with storage servers 112, 114, and 116, which can be part of a distributed storage system and accessed via client servers (not shown). A storage server can include multiple storage devices, and each storage device can include a controller and multiple physical media for data storage. For example, server 116 can include: a network interface card (NIC) 122; a CPU 124; a DRAM DIMM 126; hard disk drives (HDDs) 132 and 136 (with, respectively, controllers 134 and 138); and SSDs 140 and 144 (with, respectively, controllers 142 and 146).


A controller can include interfaces to a host and to a non-volatile memory. For example, SSD 140 can include SSD controller 142. Controller 142 can include: a host interface 150; an embedded processor 152; and a channel management 158. SSD controller 142 can communicate with a host (e.g., via host interface 150 and a communication to/from host 192). SSD controller 142 can also communicate with the non-volatile memory (via channel management 158). The non-volatile memory can be accessed via multiple channels. For example, NAND dies 172, 174, and 176 may be accessed via a channel 170, and NAND dies 182, 184, and 186 may be accessed via a channel 180.


During operation, in the embodiments described herein, SSD 140, via SSD controller 142, may receive various I/O requests (e.g., via communication 192). The cost of an individual I/O request (i.e., VIO) and the identification of a performance metric (i.e., VIOPS) for SSD 140 may be determined by a component or module not residing in SSD 140. A priority-aware I/O scheduler, as described below in relation to FIGS. 2A and 2B), can use the determined cost and performance metric to dispatch incoming I/O requests which have different priorities, characteristics (e.g., size, type, and access pattern), and allocated overall VIOPS.



FIG. 2A illustrates an exemplary environment 200 for facilitating measurement of the performance of a storage device, in accordance with an embodiment of the present application. Environment 200 can include: an application 202, where incoming requests from application 202 are marked with a “high” priority; an application 204, where incoming requests from application 204 are marked with a “medium” priority; and an application 206, where incoming requests from application 206 are marked with a “medium” priority. Each of applications 202, 204, and 206 may also be associated with a previously allocated portion of the overall VIOPS for the given storage device.


During operation, an application can send an I/O request, which is received and dispatched by a scheduler component based on the priority of the I/O request, a previously allocated amount of VIOPS for the requesting application, and other factors. For example, application 204 can send an I/O request 205, which is received by priority-aware I/O scheduler 210. Based on the “medium” priority of I/O request 205, as well as any previously allocated amount of VIOPS to application 204, scheduler 210 can schedule and dispatch I/O request 205 (via a communication dispatch I/O request 211) to a device driver 220. Device driver 220 can send data 221 (associated with I/O request 205) to a storage device 240.


Thus, priority-aware I/O scheduler 210 can take into account the priority of an individual I/O request, and can also control the VIOPS usage across various applications based on configured settings, parameters, or rules for VIOPS usage. These factors for VIOPS usage may be pre-configured by a system, a system administrator, or other user. The factors for VIOPS usage may also result in the dynamic allocation of VIOPS usage across various applications, e.g., during operation of the storage system or the storage device, or as part of processing an I/O request.



FIG. 2B illustrates an exemplary environment 250 for facilitating measurement of the performance of a storage device, in accordance with an embodiment of the present application. Environment 250 is similar to environment 200, but includes communications which occur if the priority-aware I/O scheduler is not enabled. Environment 250 can include: a file I/O job 252 marked with a “high” priority; a file I/O job 254 marked with a “medium” priority; and a file I/O job 256 marked with a “low” priority. Each of file I/O jobs 252, 254, and 256 may also be associated with a previously allocated portion of the overall VIOPS for a given storage device.


During operation, file I/O job 252 may be sent as an I/O request 253 to a user-space file system 260. If a priority-aware I/O scheduler is enabled, I/O request 253 can be received by a priority-aware I/O scheduler 270 (via, e.g., an enabled scheduler 264 communication). Based on the “high” priority of I/O request 253, as well as any previously allocated amount of VIOPS to file I/O job 252 (or to an application or a user associated with file I/O job 252), priority-aware I/O scheduler 270 can schedule and dispatch I/O request 253 (via a communication dispatch I/O request 271) to a device driver (SPDK) 280. Device driver 280 can send data 281 (associated with I/O request 253) to a storage device (NVMe SSD) 280.


If the priority-aware I/O scheduler is not enabled (e.g., is disabled, does not exist, or is not recognized), user-space file system 260 can send I/O request 253 directly to a device driver (SPDK) 280, via a disabled scheduler 262 communication. I/O requests which are handled this way may be queued using a first in first out (FIFO) policy.


Measuring the Performance of a Storage Device Based on VIOPS; and Determining the Cost and Cost Factor of Individual I/O Requests



FIG. 3A presents a flowchart 300 illustrating a method for facilitating measurement of the performance of a storage device, in accordance with an embodiment of the present application. During operation, the system determines a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations (operation 302).


The system identifies a performance metric for the storage device by calculating a second number of virtual I/O operations per second (VIOPS) which can be executed by the storage device, thereby facilitating an enhanced measurement of the performance of the storage device (operation 304). The system allocates incoming I/O requests to the storage device based on the performance metric, e.g., to satisfy a Quality of Service requirement or to achieve an optimal or enhanced load balancing (operation 306).


The normalized cost in operation 302 can be further based on a “cost factor” for the I/O request. For example, the system can calculate the “VIO cost” of a given I/O request based on the costJactor for the specific I/O request:

VIO_cost=cost_factor*(request_size|base_size).  Equation (1)

The request_size is the size of the given I/O request, and the base_size is a predetermined size for a base unit, such as 4 KB. Assume that the cost_factor for a read I/O request is “1,” and that the costJactor for a write I/O request is represented by the variable k. The system can perform a specific procedure to select a value of k (i.e., a cost factor value) which provides the maximum VIOPS performance on a specific storage device.



FIG. 3B presents a flowchart 320 illustrating a method for determining the cost factor for an I/O request, in accordance with an embodiment of the present application. During operation, the system selects a set of test cost factor values, to determine a cost factor for an I/O request (operation 322) (e.g., a set of values for k). The system executes varied workloads on a storage device based on varying I/O request sizes and a varying ratio of read I/O requests to write I/O requests (operation 324). For example, a varying ratio of read to write requests can include: 100% read requests to 0% write requests (“100R”); 80% read requests to 20% write requests (“80R”); 50% read requests to 50% write requests (“50R”); and 30% read requests to 70% write requests (“30R”). The system measures the performance of the storage device based on a number of virtual I/O operations per second executed on the storage device for a respective workload (operation 326). If there are remaining workloads to be executed (decision 328), the operation continues as described above for operation 324 (e.g., executing the workload). If there are no remaining workloads to be executed (decision 328), the system determines the cost factor value which projects a most constant virtual I/O operations per second across all the workloads (operation 330). The system sets the cost factor for the I/O request to the determined cost factor value (operation 332). That is, the system identifies a k value which demonstrates or projects the most constant VIOPS, as shown below in relation to FIG. 4



FIG. 4 presents a diagram 400 illustrating exemplary test results of measuring VIOPS over varying ratios of read to write requests on a given storage device, based on various test cost factor values, in accordance with an embodiment of the present application. The x-axis indicates the varying ratios of read to write requests. That is, “100R” indicates 100% read requests to 0% write requests, “90R” indicates 90% read requests to 10% write requests, etc. The y-axis indicates the measured virtual I/O operations per second consumed by the storage device. Note that the value of the cost factor which provides the most constant VIOPS for the given storage device is when k=13. Note that the results in diagram 400 can reflect a specific I/O request size, with varying ratios of read to write requests.


Exemplary Method for Scheduling I/O Requests Based on Priority and Allocated VIOPS; Exemplary Pseudocode for Scheduling I/O Requests



FIG. 5 presents a flowchart illustrating a method for scheduling I/O requests based on priority and allocated VIOPS, in accordance with an embodiment of the present application. During operation, the system determines or calculates a total number of virtual I/O operations per second which can be executed by the storage device (operation 502), i.e., the number of VIOPS which can be served by the storage device. The system assigns portions of the total number of VIOPS to one or more applications (operation 504). Assigning the portions of the VIOPS can be based on, e.g.: a priority associated with a respective application; a user associated with the respective application; a predetermined time period which, when exceeded, causes a refresh or reassigning of the portions of the total VIOPS.


Subsequently, the system receives an I/O request from an application (operation 506). The system schedules or dispatches the received I/O request based on a respective portion of the total number of VIOPS assigned to the application (operation 508). Scheduling the I/O request can be further based on one or more of: a priority associated with the I/O request; a priority associated with the respective application; and a user associated with the respective application. An exemplary priority-aware I/O scheduler is described above in relation to FIGS. 2A and 2B.



FIG. 6 presents exemplary pseudocode 600 for scheduling or dispatching an I/O request based on priority and allocated VIOPS, in accordance with an embodiment of the present application.


Exemplary Method for Looking Up VIOPS Capability Based on Target Latency; Exemplary Data Structure



FIG. 7A presents a flowchart 700 illustrating a method for looking up VIOPS capability in a given storage device based on a specific target latency value, in accordance with an embodiment of the present application. During operation, the system generates a data structure which maps a range of latency values to a number of virtual I/O operations per second that can be executed by the storage device (operation 702). The system obtains the data structure in response to one or more of: initiating a startup or a configuration procedure; and requesting, by the storage device or by a user or application associated with the storage device, the data structure (operation 704). The system determines a specific read latency or a specific write latency based on a size of a specific I/O request (operation 706). The system performs a lookup in the data structure, based on the specific read latency or the specific write latency, to obtain a number of virtual I/O operations per second mapped to a second range of latency values which include the specific read latency or the specific write latency (operation 708).



FIG. 7B illustrates an exemplary data structure 750 mapping target latency range values to VIOPS capability in a given storage device, in accordance with an embodiment of the present application. Data structure 750 can include entries which include a latency range 752 and a maximum VIOPS executable by the storage device 754. For example, an entry 760 can include a latency range of “101 microseconds-300 microseconds” and a maximum VIOPS value of “300,000.” Similarly, an entry 762 can include a latency range of “301 microseconds 500 microseconds” and a maximum VIOPS value of “200,000.”


Exemplary Computer System and Apparatus



FIG. 8 illustrates an exemplary computer system 800 that facilitates measurement of the performance of a storage device, in accordance with an embodiment of the present application. Computer system 800 includes a processor 802, a volatile memory 804, and a storage device 806. Computer system 800 may be a computing device or a storage device. Volatile memory 804 can include memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Computer system 800 can be coupled to a display device 810, a keyboard 812, and a pointing device 814. Storage device 806 can store an operating system 816, a content-processing system 818, and data 832.


Content-processing system 818 can include instructions, which when executed by computer system 800, can cause computer system 800 to perform methods and/or processes described in this disclosure. For example, content-processing system 818 can include instructions for receiving and transmitting data packets, including a request to write or read data, an I/O request, data to be encoded and stored, or a block or a page of data.


Content-processing system 818 can further include instructions for determining a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations (cost-determining module 822). Content-processing system 818 can include instructions for identifying a performance metric for the storage device by calculating a second number of virtual I/O operations per second which can be executed by the storage device, thereby facilitating an enhanced measurement of the performance of the storage device (VIOPS-calculating module 824). Content-processing system 818 can include instructions for allocating incoming I/O requests to the storage device based on the performance metric to satisfy a Quality of Service requirement (request-scheduling module 830).


Content-processing system 818 can also include instructions for determining a cost factor for the I/O request (cost-determining module 822). Content-processing system 818 can include instructions for generating a data structure which maps a range of latency values to a fourth number of virtual I/O operations per second that can be executed by the storage device (data structure-managing module 826). Content-processing system 818 can include instructions for determining a specific read latency or a specific write latency based on a size of a specific I/O request (data structure-managing module 826). Content-processing system 818 can additionally include instructions for performing a lookup in the data structure, based on the specific read latency or the specific write latency, to obtain a fifth number of virtual I/O operations per second mapped to a second range of latency values which include the specific read latency or the specific write latency (data structure-managing module 826).


Content-processing system 818 can further include instructions for assigning portions of the second number of virtual I/O operations per second to one or more applications (VIOPS-allocating module 828). Content-processing system 818 can include instructions for receiving a second I/O request from an application (communication module 820). Content-processing system 818 can include instructions for scheduling the second I/O request based on a respective portion of the second number of virtual I/O operations per second assigned to the application (request-scheduling module 830).


Data 832 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 832 can store at least: data to be stored, written, loaded, moved, retrieved, accessed, deleted, or copied; a cost; a normalized cost; a request; an I/O request; a physical I/O operation; an access pattern of an I/O request; a type or size of an I/O request; a virtual I/O; a number of virtual I/Os; a logical unit of cost associated with physical I/O operations; a number of virtual I/O per second (VIOPS); a performance metric; the measurement of the performance of a storage device based on the VIOPS; a cost factor; a set of test cost factor values; a varied workload; varying I/O request sizes; a varying ratio of read I/O request to write I/O requests; a projection of VIOPS across a workload; a predetermined size for a base unit; a first ratio of an I/O request size to the predetermined base unit size; a data structure; a data structure entry; a latency value; a range of latency values; an entry mapping a range of latency values to a number of VIOPS that can be executed by a storage device; a startup or a configuration procedure; a request for the data structure; a read latency; a write latency; an assigned portion of a number of VIOPS; an application; an application-allocated VIOPS portion; a priority or a user associated with an I/O request or an application; a predetermined time period; and a new or updated re-assigned or re-allocated portion of the number of VIOPS.



FIG. 9 illustrates an exemplary apparatus 900 that facilitates measurement of the performance of a storage device, in accordance with an embodiment of the present application. Apparatus 900 can comprise a plurality of units or apparatuses which may communicate with one another via a wired, wireless, quantum light, or electrical communication channel. Apparatus 900 may be realized using one or more integrated circuits, and may include fewer or more units or apparatuses than those shown in FIG. 9. Further, apparatus 900 may be integrated in a computer system, or realized as a separate device which is capable of communicating with other computer systems and/or devices. Specifically, apparatus 900 can comprise units 902-912 which perform functions or operations similar to modules 820-830 of computer system 800 of FIG. 8, including: a communication unit 902; a cost-determining unit 904; a VIOPS-calculating unit 906; a data structure-managing unit 908; a VIOPS-allocating unit 910; and a request-scheduling unit 912.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing embodiments described herein have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the embodiments described herein to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the embodiments described herein. The scope of the embodiments described herein is defined by the appended claims.

Claims
  • 1. A computer-implemented method for facilitating measurement of a performance of a storage device, the method comprising: determining a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations;identifying a performance metric for the storage device by calculating a second number of virtual I/O operations per second which can be executed by the storage device;allocating incoming I/O requests to the storage device based on the performance metric;assigning portions of the second number of virtual I/O operations per second to one or more applications;receiving a second I/O request from an application; andscheduling the second I/O request based on a respective portion of the second number of virtual I/O operations per second assigned to the application.
  • 2. The method of claim 1, wherein determining the normalized cost comprises: determining a cost factor for the I/O request, which involves: selecting a set of test cost factor values;executing varied workloads on the storage device based on varying I/O request sizes and a varying ratio of read I/O requests to write I/O requests;measuring the performance of the storage device based on a third number of virtual I/O operations per second executed on the storage device for each workload;determining a test cost factor value which projects a most constant virtual I/O operations per second performance across all the workloads; andsetting the cost factor for the I/O request to the determined test cost factor value.
  • 3. The method of claim 1, further comprising: generating a data structure which maps a range of latency values to a fourth number of virtual I/O operations per second that can be executed by the storage device.
  • 4. The method of claim 1, wherein assigning the portions of the second number of virtual I/O operations per second is based on one or more of: a priority associated with a respective application;a user associated with the respective application; anda predetermined time period which, when exceeded, causes a refresh or reassigning of the portions of the second number of virtual I/O operations per second to the one or more application.
  • 5. The method of claim 1, wherein scheduling the second I/O request is further based on: a priority associated with the second I/O request;a priority associated with the respective application; anda user associated with the respective application.
  • 6. The method of claim 2, wherein determining the normalized cost further comprises: determining a first ratio of a size of the I/O request to a predetermined size for a base unit; andscaling the first ratio by the determined cost factor for the I/O request.
  • 7. The method of claim 3, further comprising: obtaining the data structure in response to one or more of: initiating a startup or a configuration procedure; andrequesting, by the storage device or by a user or application associated with the storage device, the data structure.
  • 8. The method of claim 3, further comprising: determining a specific read latency or a specific write latency based on a size of a specific I/O request; andperforming a lookup in the data structure, based on the specific read latency or the specific write latency, to obtain a fifth number of virtual I/O operations per second mapped to a second range of latency values which include the specific read latency or the specific write latency.
  • 9. A computer system for facilitating measurement of a performance of a storage device, the system comprising: a processor; anda memory coupled to the processor and storing instructions, which when executed by the processor cause the processor to perform a method, the method comprising:determining a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations;identifying a performance metric for the storage device by calculating a second number of virtual I/O operations per second which can be executed by the storage device;allocating incoming I/O requests to the storage device based on the performance metric;assigning portions of the second number of virtual I/O operations per second to one or more applications;receiving a second I/O request from an application; andscheduling the second I/O request based on a respective portion of the second number of virtual I/O operations per second assigned to the application.
  • 10. The computer system of claim 9, wherein determining the normalized cost comprises: determining a cost factor for the I/O request, which involves: selecting a set of test cost factor values;executing varied workloads on the storage device based on varying I/O request sizes and a varying ratio of read I/O requests to write I/O requests;measuring the performance of the storage device based on a third number of virtual I/O operations per second executed on the storage device for each workload;determining a test cost factor value which projects a most constant virtual I/O operations per second performance across all the workloads; andsetting the cost factor for the I/O request to the determined test cost factor value.
  • 11. The computer system of claim 9, wherein the method further comprises: generating a data structure which maps a range of latency values to a fourth number of virtual I/O operations per second that can be executed by the storage device.
  • 12. The computer system of claim 9, wherein assigning the portions of the second number of virtual I/O operations per second is based on one or more of: a priority associated with a respective application;a user associated with the respective application; anda predetermined time period which, when exceeded, causes a refresh or reassigning of the portions of the second number of virtual I/O operations per second to the one or more application.
  • 13. The computer system of claim 9, wherein scheduling the second I/O request is further based on: a priority associated with the second I/O request;a priority associated with the respective application; anda user associated with the respective application.
  • 14. The computer system of claim 10, wherein determining the normalized cost further comprises: determining a first ratio of a size of the I/O request to a predetermined size for a base unit; andscaling the first ratio by the determined cost factor for the I/O request.
  • 15. The computer system of claim 11, wherein the method further comprises: obtaining the data structure in response to one or more of: initiating a startup or a configuration procedure; andrequesting, by the storage device or by a user or application associated with the storage device, the data structure.
  • 16. The computer system of claim 11, wherein the method further comprises: determining a specific read latency or a specific write latency based on a size of a specific I/O request; andperforming a lookup in the data structure, based on the specific read latency or the specific write latency, to obtain a fifth number of virtual I/O operations per second mapped to a second range of latency values which include the specific read latency or the specific write latency.
  • 17. An apparatus for facilitating measurement of a performance of a storage device, the device comprising: a cost-determining module configured to determine a normalized cost for an I/O request, wherein the normalized cost is independent of an access pattern and a type of the I/O request, wherein the normalized cost is indicated by a first number of virtual I/O operations consumed by the I/O request, and wherein a virtual I/O operation is used as a logical unit of cost associated with physical I/O operations;a virtual I/O operation per second (VIOPS) calculating module configured to identify a performance metric for the storage device by calculating a second number of virtual I/O operations per second which can be executed by the storage device;a request-scheduling module configured to allocate incoming I/O requests to the storage device based on the performance metric,wherein the cost-determining module is further configured to determine a cost factor for the I/O request, which involves: selecting a set of test cost factor values;executing varied workloads on the storage device based on varying I/O request sizes and a varying ratio of read I/O requests to write I/O requests;measuring the performance of the storage device based on a third number of virtual I/O operations per second executed on the storage device for each workload;determining a test cost factor value which projects a most constant virtual I/O operations per second performance across all the workloads; andsetting the cost factor for the I/O request to the determined test cost factor value.
  • 18. The apparatus of claim 17, wherein the cost-determining module is further configured to: determine a first ratio of a size of the I/O request to a predetermined size for a base unit; andscale the first ratio by the determined cost factor for the I/O request.
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2018/092632 6/25/2018 WO
Publishing Document Publishing Date Country Kind
WO2020/000136 1/2/2020 WO A
US Referenced Citations (509)
Number Name Date Kind
3893071 Bossen Jul 1975 A
4562494 Bond Dec 1985 A
4718067 Peters Jan 1988 A
4775932 Oxley Oct 1988 A
4858040 Hazebrouck Aug 1989 A
5394382 Hu Feb 1995 A
5602693 Brunnett Feb 1997 A
5715471 Otsuka Feb 1998 A
5732093 Huang Mar 1998 A
5802551 Komatsu Sep 1998 A
5930167 Lee Jul 1999 A
6098185 Wilson Aug 2000 A
6148377 Carter Nov 2000 A
6226650 Mahajan et al. May 2001 B1
6243795 Yang Jun 2001 B1
6457104 Tremaine Sep 2002 B1
6658478 Singhal Dec 2003 B1
6795894 Neufeld Sep 2004 B1
7351072 Muff Apr 2008 B2
7565454 Zuberi Jul 2009 B2
7599139 Bombet Oct 2009 B1
7953899 Hooper May 2011 B1
7958433 Yoon Jun 2011 B1
8024719 Gorton, Jr. Sep 2011 B2
8085569 Kim Dec 2011 B2
8144512 Huang Mar 2012 B2
8166233 Schibilla Apr 2012 B2
8260924 Koretz Sep 2012 B2
8281061 Radke Oct 2012 B2
8452819 Sorenson, III May 2013 B1
8516284 Chan Aug 2013 B2
8527544 Colgrove Sep 2013 B1
8751763 Ramarao Jun 2014 B1
8819367 Fallone Aug 2014 B1
8825937 Atkisson Sep 2014 B2
8832688 Tang Sep 2014 B2
8868825 Hayes Oct 2014 B1
8904061 O'Brien, III Dec 2014 B1
8949208 Xu Feb 2015 B1
9015561 Hu Apr 2015 B1
9031296 Kaempfer May 2015 B2
9043545 Kimmel May 2015 B2
9088300 Chen Jul 2015 B1
9092223 Pani Jul 2015 B1
9129628 Fallone Sep 2015 B1
9141176 Chen Sep 2015 B1
9208817 Li Dec 2015 B1
9213627 Van Acht Dec 2015 B2
9213632 Song Dec 2015 B1
9251058 Nellans Feb 2016 B2
9258014 Anderson Feb 2016 B2
9280472 Dang Mar 2016 B1
9280487 Candelaria Mar 2016 B2
9311939 Malina Apr 2016 B1
9336340 Dong May 2016 B1
9436595 Benitez Sep 2016 B1
9495263 Pang Nov 2016 B2
9529601 Dharmadhikari Dec 2016 B1
9529670 O'Connor Dec 2016 B2
9569454 Ebsen Feb 2017 B2
9575982 Sankara Subramanian Feb 2017 B1
9588698 Karamcheti Mar 2017 B1
9588977 Wang Mar 2017 B1
9607631 Rausch Mar 2017 B2
9671971 Trika Jun 2017 B2
9722632 Anderson Aug 2017 B2
9747202 Shaharabany Aug 2017 B1
9830084 Thakkar Nov 2017 B2
9836232 Vasquez Dec 2017 B1
9852076 Garg Dec 2017 B1
9875053 Frid Jan 2018 B2
9910705 Mak Mar 2018 B1
9912530 Singatwaria Mar 2018 B2
9923562 Vinson Mar 2018 B1
9933973 Luby Apr 2018 B2
9946596 Hashimoto Apr 2018 B2
9971548 Talwar May 2018 B1
10013169 Fisher Jul 2018 B2
10199066 Feldman Feb 2019 B1
10229735 Natarajan Mar 2019 B1
10235198 Qiu Mar 2019 B2
10268390 Warfield Apr 2019 B2
10318467 Barzik Jun 2019 B2
10361722 Lee Jul 2019 B2
10417086 Lin Sep 2019 B2
10437670 Koltsidas Oct 2019 B1
10459663 Agombar Oct 2019 B2
10459794 Baek Oct 2019 B2
10466907 Gole Nov 2019 B2
10484019 Weinberg Nov 2019 B2
10503535 Hickey Dec 2019 B1
10530391 Galbraith Jan 2020 B2
10635529 Bolkhovitin Apr 2020 B2
10642522 Li May 2020 B2
10649657 Zaidman May 2020 B2
10649969 De May 2020 B2
10678432 Dreier Jun 2020 B1
10756816 Dreier Aug 2020 B1
10831734 Li Nov 2020 B2
10884636 Abrol Jan 2021 B1
10928847 Suresh Feb 2021 B2
10990526 Lam Apr 2021 B1
11016932 Qiu May 2021 B2
11023150 Pletka Jun 2021 B2
11068165 Sharon Jul 2021 B2
11068409 Li Jul 2021 B2
11126561 Li Sep 2021 B2
11138124 Tomic Oct 2021 B2
11243694 Liang Feb 2022 B2
11340939 Barker, Jr. May 2022 B1
11360863 Varadan Jun 2022 B2
11442669 Frandzel Sep 2022 B1
20010003205 Gilbert Jun 2001 A1
20010032324 Slaughter Oct 2001 A1
20010046295 Sako Nov 2001 A1
20020010783 Primak Jan 2002 A1
20020039260 Kilmer Apr 2002 A1
20020073358 Atkinson Jun 2002 A1
20020095403 Chandrasekaran Jul 2002 A1
20020112085 Berg Aug 2002 A1
20020161890 Chen Oct 2002 A1
20030074319 Jaquette Apr 2003 A1
20030145274 Hwang Jul 2003 A1
20030163594 Aasheim Aug 2003 A1
20030163633 Aasheim Aug 2003 A1
20030217080 White Nov 2003 A1
20040010545 Pandya Jan 2004 A1
20040066741 Dinker Apr 2004 A1
20040103238 Avraham May 2004 A1
20040143718 Chen Jul 2004 A1
20040255171 Zimmer Dec 2004 A1
20040267752 Wong Dec 2004 A1
20040268278 Hoberman Dec 2004 A1
20050038954 Saliba Feb 2005 A1
20050097126 Cabrera May 2005 A1
20050138325 Hofstee Jun 2005 A1
20050144358 Conley Jun 2005 A1
20050149827 Lambert Jul 2005 A1
20050174670 Dunn Aug 2005 A1
20050177672 Rao Aug 2005 A1
20050177755 Fung Aug 2005 A1
20050195635 Conley Sep 2005 A1
20050235067 Creta Oct 2005 A1
20050235171 Igari Oct 2005 A1
20060031709 Hiraiwa Feb 2006 A1
20060101197 Georgis May 2006 A1
20060156009 Shin Jul 2006 A1
20060156012 Beeson Jul 2006 A1
20060184813 Bui Aug 2006 A1
20070033323 Gorobets Feb 2007 A1
20070061502 Lasser Mar 2007 A1
20070061542 Uppala Mar 2007 A1
20070101096 Gorobets May 2007 A1
20070168581 Klein Jul 2007 A1
20070204128 Lee Aug 2007 A1
20070250756 Gower Oct 2007 A1
20070266011 Rohrs Nov 2007 A1
20070283081 Lasser Dec 2007 A1
20070283104 Wellwood Dec 2007 A1
20070285980 Shimizu Dec 2007 A1
20080028223 Rhoads Jan 2008 A1
20080034154 Lee Feb 2008 A1
20080065805 Wu Mar 2008 A1
20080082731 Karamcheti Apr 2008 A1
20080104369 Reed May 2008 A1
20080112238 Kim May 2008 A1
20080163033 Yim Jul 2008 A1
20080195829 Wilsey Aug 2008 A1
20080301532 Uchikawa Dec 2008 A1
20090006667 Lin Jan 2009 A1
20090089544 Liu Apr 2009 A1
20090110078 Crinon Apr 2009 A1
20090113219 Aharonov Apr 2009 A1
20090125788 Wheeler May 2009 A1
20090177944 Kanno Jul 2009 A1
20090183052 Kanno Jul 2009 A1
20090254705 Abali Oct 2009 A1
20090282275 Yermalayeu Nov 2009 A1
20090287956 Flynn Nov 2009 A1
20090307249 Koifman Dec 2009 A1
20090307426 Galloway Dec 2009 A1
20090310412 Jang Dec 2009 A1
20100031000 Flynn Feb 2010 A1
20100169470 Takashige Jul 2010 A1
20100217952 Iyer Aug 2010 A1
20100229224 Etchegoyen Sep 2010 A1
20100241848 Smith Sep 2010 A1
20100281254 Carro Nov 2010 A1
20100321999 Yoo Dec 2010 A1
20100325367 Kornegay Dec 2010 A1
20100332922 Chang Dec 2010 A1
20110031546 Uenaka Feb 2011 A1
20110055458 Kuehne Mar 2011 A1
20110055471 Thatcher Mar 2011 A1
20110060722 Li Mar 2011 A1
20110072204 Chang Mar 2011 A1
20110099418 Chen Apr 2011 A1
20110153903 Hinkle Jun 2011 A1
20110161621 Sinclair Jun 2011 A1
20110161784 Selinger Jun 2011 A1
20110191525 Hsu Aug 2011 A1
20110218969 Anglin Sep 2011 A1
20110231598 Hatsuda Sep 2011 A1
20110239083 Kanno Sep 2011 A1
20110252188 Weingarten Oct 2011 A1
20110258514 Lasser Oct 2011 A1
20110289263 McWilliams Nov 2011 A1
20110289280 Koseki Nov 2011 A1
20110292538 Haga Dec 2011 A1
20110296411 Tang Dec 2011 A1
20110299317 Shaeffer Dec 2011 A1
20110302353 Confalonieri Dec 2011 A1
20110302408 McDermott Dec 2011 A1
20120017037 Riddle Jan 2012 A1
20120039117 Webb Feb 2012 A1
20120084523 Littlefield Apr 2012 A1
20120089774 Kelkar Apr 2012 A1
20120096330 Przybylski Apr 2012 A1
20120117399 Chan May 2012 A1
20120147021 Cheng Jun 2012 A1
20120151253 Horn Jun 2012 A1
20120159099 Lindamood Jun 2012 A1
20120159289 Piccirillo Jun 2012 A1
20120173792 Lassa Jul 2012 A1
20120203958 Jones Aug 2012 A1
20120210095 Nellans Aug 2012 A1
20120233523 Krishnamoorthy Sep 2012 A1
20120246392 Cheon Sep 2012 A1
20120278579 Goss Nov 2012 A1
20120284587 Yu Nov 2012 A1
20120324312 Moyer Dec 2012 A1
20120331207 Lassa Dec 2012 A1
20130013880 Tashiro Jan 2013 A1
20130013887 Sugahara Jan 2013 A1
20130016970 Koka Jan 2013 A1
20130018852 Barton Jan 2013 A1
20130024605 Sharon Jan 2013 A1
20130054822 Mordani Feb 2013 A1
20130061029 Huff Mar 2013 A1
20130073798 Kang Mar 2013 A1
20130080391 Raichstein Mar 2013 A1
20130138871 Chiu May 2013 A1
20130144836 Adzic Jun 2013 A1
20130145085 Yu Jun 2013 A1
20130145089 Eleftheriou Jun 2013 A1
20130151759 Shim Jun 2013 A1
20130159251 Skrenta Jun 2013 A1
20130159723 Brandt Jun 2013 A1
20130166820 Batwara Jun 2013 A1
20130173845 Aslam Jul 2013 A1
20130179898 Fang Jul 2013 A1
20130191601 Peterson Jul 2013 A1
20130205183 Fillingim Aug 2013 A1
20130219131 Alexandron Aug 2013 A1
20130227347 Cho Aug 2013 A1
20130238955 D Abreu Sep 2013 A1
20130254622 Kanno Sep 2013 A1
20130318283 Small Nov 2013 A1
20130318395 Kalavade Nov 2013 A1
20130325419 Al-Shaikh Dec 2013 A1
20130329492 Yang Dec 2013 A1
20130346532 D Amato Dec 2013 A1
20140006688 Yu Jan 2014 A1
20140019650 Li Jan 2014 A1
20140019661 Hormuth Jan 2014 A1
20140025638 Hu Jan 2014 A1
20140082273 Segev Mar 2014 A1
20140082412 Matsumura Mar 2014 A1
20140095758 Smith Apr 2014 A1
20140095769 Borkenhagen Apr 2014 A1
20140095827 Wei Apr 2014 A1
20140108414 Stillerman Apr 2014 A1
20140108891 Strasser Apr 2014 A1
20140164447 Tarafdar Jun 2014 A1
20140164879 Tam Jun 2014 A1
20140181532 Camp Jun 2014 A1
20140195564 Talagala Jul 2014 A1
20140215129 Kuzmin Jul 2014 A1
20140223079 Zhang Aug 2014 A1
20140233950 Luo Aug 2014 A1
20140250259 Ke Sep 2014 A1
20140279927 Constantinescu Sep 2014 A1
20140304452 De La Iglesia Oct 2014 A1
20140310574 Yu Oct 2014 A1
20140337457 Nowoczynski Nov 2014 A1
20140359229 Cota-Robles Dec 2014 A1
20140365707 Talagala Dec 2014 A1
20140379965 Gole Dec 2014 A1
20150006792 Lee Jan 2015 A1
20150019798 Huang Jan 2015 A1
20150039849 Lewis Feb 2015 A1
20150067436 Hu Mar 2015 A1
20150082317 You Mar 2015 A1
20150106556 Yu Apr 2015 A1
20150106559 Cho Apr 2015 A1
20150121031 Feng Apr 2015 A1
20150142752 Chennamsetty May 2015 A1
20150143030 Gorobets May 2015 A1
20150186657 Nakhjiri Jul 2015 A1
20150199234 Choi Jul 2015 A1
20150227316 Warfield Aug 2015 A1
20150234845 Moore Aug 2015 A1
20150269964 Fallone Sep 2015 A1
20150277937 Swanson Oct 2015 A1
20150286477 Mathur Oct 2015 A1
20150294684 Qjang Oct 2015 A1
20150301964 Brinicombe Oct 2015 A1
20150304108 Obukhov Oct 2015 A1
20150310916 Leem Oct 2015 A1
20150317095 Voigt Nov 2015 A1
20150341123 Nagarajan Nov 2015 A1
20150347025 Law Dec 2015 A1
20150363271 Haustein Dec 2015 A1
20150363328 Candelaria Dec 2015 A1
20150370700 Sabol Dec 2015 A1
20150372597 Luo Dec 2015 A1
20160014039 Reddy Jan 2016 A1
20160026575 Samanta Jan 2016 A1
20160041760 Kuang Feb 2016 A1
20160048327 Jayasena Feb 2016 A1
20160048341 Constantinescu Feb 2016 A1
20160054922 Awasthi Feb 2016 A1
20160062885 Ryu Mar 2016 A1
20160077749 Ravimohan Mar 2016 A1
20160077764 Ori Mar 2016 A1
20160077968 Sela Mar 2016 A1
20160078245 Amarendran Mar 2016 A1
20160098344 Gorobets Apr 2016 A1
20160098350 Tang Apr 2016 A1
20160103631 Ke Apr 2016 A1
20160110254 Cronie Apr 2016 A1
20160124742 Rangasamy May 2016 A1
20160132237 Jeong May 2016 A1
20160141047 Sehgal May 2016 A1
20160154601 Chen Jun 2016 A1
20160155750 Yasuda Jun 2016 A1
20160162187 Lee Jun 2016 A1
20160179399 Melik-Martirosian Jun 2016 A1
20160188223 Camp Jun 2016 A1
20160188890 Naeimi Jun 2016 A1
20160203000 Parmar Jul 2016 A1
20160224267 Yang Aug 2016 A1
20160232103 Schmisseur Aug 2016 A1
20160234297 Ambach Aug 2016 A1
20160239074 Lee Aug 2016 A1
20160239380 Wideman Aug 2016 A1
20160274636 Kim Sep 2016 A1
20160283140 Kaushik Sep 2016 A1
20160306699 Resch Oct 2016 A1
20160306853 Sabaa Oct 2016 A1
20160321002 Jung Nov 2016 A1
20160335085 Scalabrino Nov 2016 A1
20160342345 Kankani Nov 2016 A1
20160343429 Nieuwejaar Nov 2016 A1
20160350002 Vergis Dec 2016 A1
20160350385 Poder Dec 2016 A1
20160364146 Kuttner Dec 2016 A1
20160381442 Heanue Dec 2016 A1
20170004037 Park Jan 2017 A1
20170010652 Huang Jan 2017 A1
20170068639 Davis Mar 2017 A1
20170075583 Alexander Mar 2017 A1
20170075594 Badam Mar 2017 A1
20170091110 Ash Mar 2017 A1
20170109199 Chen Apr 2017 A1
20170109232 Cha Apr 2017 A1
20170123655 Sinclair May 2017 A1
20170147499 Mohan May 2017 A1
20170161202 Erez Jun 2017 A1
20170162235 De Jun 2017 A1
20170168986 Sajeepa Jun 2017 A1
20170177217 Kanno Jun 2017 A1
20170177259 Motwani Jun 2017 A1
20170185316 Nieuwejaar Jun 2017 A1
20170185498 Gao Jun 2017 A1
20170192848 Pamies-Juarez Jul 2017 A1
20170199823 Hayes Jul 2017 A1
20170212680 Waghulde Jul 2017 A1
20170212708 Suhas Jul 2017 A1
20170220254 Warfield Aug 2017 A1
20170221519 Matsuo Aug 2017 A1
20170228157 Yang Aug 2017 A1
20170242722 Qiu Aug 2017 A1
20170249162 Tsirkin Aug 2017 A1
20170262176 Kanno Sep 2017 A1
20170262178 Hashimoto Sep 2017 A1
20170262217 Pradhan Sep 2017 A1
20170269998 Sunwoo Sep 2017 A1
20170277655 Das Sep 2017 A1
20170279460 Camp Sep 2017 A1
20170285976 Durham Oct 2017 A1
20170286311 Juenemann Oct 2017 A1
20170322888 Booth Nov 2017 A1
20170344470 Yang Nov 2017 A1
20170344491 Pandurangan Nov 2017 A1
20170353576 Guim Bernat Dec 2017 A1
20180024772 Madraswala Jan 2018 A1
20180024779 Kojima Jan 2018 A1
20180033491 Marelli Feb 2018 A1
20180052797 Barzik Feb 2018 A1
20180067847 Oh Mar 2018 A1
20180069658 Benisty Mar 2018 A1
20180074730 Inoue Mar 2018 A1
20180076828 Kanno Mar 2018 A1
20180081832 Longo Mar 2018 A1
20180088867 Kaminaga Mar 2018 A1
20180107591 Smith Apr 2018 A1
20180113631 Zhang Apr 2018 A1
20180143780 Cho May 2018 A1
20180150640 Li May 2018 A1
20180165038 Authement Jun 2018 A1
20180165169 Camp Jun 2018 A1
20180165340 Agarwal Jun 2018 A1
20180167268 Liguori Jun 2018 A1
20180173620 Cen Jun 2018 A1
20180188970 Liu Jul 2018 A1
20180189175 Ji Jul 2018 A1
20180189182 Wang Jul 2018 A1
20180212951 Goodrum Jul 2018 A1
20180219561 Litsyn Aug 2018 A1
20180226124 Perner Aug 2018 A1
20180232151 Badam Aug 2018 A1
20180260148 Klein Sep 2018 A1
20180270110 Chugtu Sep 2018 A1
20180293014 Ravimohan Oct 2018 A1
20180300203 Kathpal Oct 2018 A1
20180307620 Zhou Oct 2018 A1
20180321864 Benisty Nov 2018 A1
20180322024 Nagao Nov 2018 A1
20180329776 Lai Nov 2018 A1
20180336921 Ryun Nov 2018 A1
20180349396 Blagojevic Dec 2018 A1
20180356992 Lamberts Dec 2018 A1
20180357126 Dhuse Dec 2018 A1
20180373428 Kan Dec 2018 A1
20180373655 Liu Dec 2018 A1
20180373664 Vijayrao Dec 2018 A1
20190004944 Widder Jan 2019 A1
20190012111 Li Jan 2019 A1
20190034454 Gangumalla Jan 2019 A1
20190042571 Li Feb 2019 A1
20190050312 Li Feb 2019 A1
20190050327 Li Feb 2019 A1
20190065085 Jean Feb 2019 A1
20190073261 Halbert Mar 2019 A1
20190073262 Chen Mar 2019 A1
20190087089 Yoshida Mar 2019 A1
20190087115 Li Mar 2019 A1
20190087328 Kanno Mar 2019 A1
20190108145 Raghava Apr 2019 A1
20190116127 Pismenny Apr 2019 A1
20190166725 Jing May 2019 A1
20190171532 Abadi Jun 2019 A1
20190172820 Meyers Jun 2019 A1
20190196748 Badam Jun 2019 A1
20190196907 Khan Jun 2019 A1
20190205206 Hornung Jul 2019 A1
20190212949 Pletka Jul 2019 A1
20190220392 Lin Jul 2019 A1
20190227927 Miao Jul 2019 A1
20190272242 Kachare Sep 2019 A1
20190278654 Kaynak Sep 2019 A1
20190278849 Chandramouli Sep 2019 A1
20190317901 Kachare Oct 2019 A1
20190320020 Lee Oct 2019 A1
20190339998 Momchilov Nov 2019 A1
20190361611 Hosogi Nov 2019 A1
20190377632 Oh Dec 2019 A1
20190377821 Pleshachkov Dec 2019 A1
20190391748 Li Dec 2019 A1
20200004456 Williams Jan 2020 A1
20200004674 Williams Jan 2020 A1
20200013458 Schreck Jan 2020 A1
20200042223 Li Feb 2020 A1
20200042387 Shani Feb 2020 A1
20200082006 Rupp Mar 2020 A1
20200084918 Shen Mar 2020 A1
20200089430 Kanno Mar 2020 A1
20200092209 Chen Mar 2020 A1
20200097189 Tao Mar 2020 A1
20200133841 Davis Apr 2020 A1
20200143885 Kim May 2020 A1
20200159425 Flynn May 2020 A1
20200167091 Haridas May 2020 A1
20200210309 Jung Jul 2020 A1
20200218449 Leitao Jul 2020 A1
20200225875 Oh Jul 2020 A1
20200242021 Gholamipour Jul 2020 A1
20200250032 Goyal Aug 2020 A1
20200257598 Yazovitsky Aug 2020 A1
20200322287 Connor Oct 2020 A1
20200326855 Wu Oct 2020 A1
20200328192 Zaman Oct 2020 A1
20200348888 Kim Nov 2020 A1
20200364094 Kahle Nov 2020 A1
20200371955 Goodacre Nov 2020 A1
20200387327 Hsieh Dec 2020 A1
20200401334 Saxena Dec 2020 A1
20200409559 Sharon Dec 2020 A1
20200409791 Devriendt Dec 2020 A1
20210010338 Santos Jan 2021 A1
20210075633 Sen Mar 2021 A1
20210089392 Shirakawa Mar 2021 A1
20210103388 Choi Apr 2021 A1
20210124488 Stoica Apr 2021 A1
20210132999 Haywood May 2021 A1
20210191635 Hu Jun 2021 A1
20210263795 Li Aug 2021 A1
20210286555 Li Sep 2021 A1
Foreign Referenced Citations (4)
Number Date Country
2003022209 Jan 2003 JP
2011175422 Sep 2011 JP
9418634 Aug 1994 WO
1994018634 Aug 1994 WO
Non-Patent Literature Citations (19)
Entry
https://web.archive.org/web/20071130235034/http://en.wikipedia.org:80/wiki/logical_block_addressing wikipedia screen shot retriefed on wayback Nov. 20, 2007 showing both physical and logical addressing used historically to access data on storage devices (Year: 2007).
Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe Bonnet. “uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives.” APSys'17, Sep. 2017, Mumbai, India. pp. 1-7, 2017 <10.1145/3124680.3124741>. <hal-01654985>.
EMC Powerpoath Load Balancing and Failover Comparison with native MPIO operating system solutions. Feb. 2011.
Tsuchiya, Yoshihiro et al. “DBLK: Deduplication for Primary Block Storage”, MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5.
Chen Feng, et al. “CAFTL: A Content-Aware Flash Translation Layer Enhaving the Lifespan of Flash Memory based Solid State Devices” < FAST '11, San Jose, CA Feb. 15-17, 2011, pp. 1-14.
Wu, Huijun et al. “HPDedep: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud”, Cornell Univ. arXiv: 1702.08153v2[Cs.DC], Apr. 16, 2017, pp. 1-14https://www.syncids.com/#.
WOW: Wise Ordering for Writes—Combining Spatial and Temporal Locality in Non-Volatile Caches by Gill (Year: 2005).
Helen H. W. Chan et al. “HashKV: Enabling Efficient Updated in KV Storage via Hashing”, https://www.usenix.org/conference/atc18/presentation/chan, (Year: 2018).
S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory,” 2010 International Workshop on Storage Network Architecture and Parallel I/Os, Incline Village, NV, 2010, pp. 21-30.
Arpaci-Dusseau et al. “Operating Systems: Three Easy Pieces”, Originally published 2015; Pertinet: Chapter 44; flash-based SSDs, available at http://pages.cs.wisc.edu/˜remzi/OSTEP/.
Jimenex, C., Novo, D. and P. Ienne, “Pheonix:Reviving MLC Blocks as SLC to Extend NAND Flash Devices Lifetime,” Design, Automation & Text in Europe Conference & Exhibition (Date), 2013.
Yang, T. Wu, H. and W. Sun, “GD-FTL: Improving the Performance and Lifetime of TLC SSD by Downgrading Worn-out Blocks,” IEEE 37th International Performance Computing and Communications Conference (IPCCC), 2018.
C. Wu, D. Wu, H. Chou and C. Cheng, “Rethink the Design of Flash Translation Layers in a Component-Based View”, in IEEE Acess, vol. 5, pp. 12895-12912, 2017.
Po-Liang Wu, Yuan-Hao Chang and T. Kuo, “A file-system-aware FTL design for flash-memory storange systems,” 2009, pp. 393-398.
S. Choudhuri and T. Givargis, “Performance improvement of block based NAND flash translation layer”, 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Systems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262.
A. Zuck, O. Kishon and S. Toledo. “LSDM: Improving the Preformance of Mobile Storage with a Log-Structured Address Remapping Device Driver”, 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, 2014, pp. 221-228.
J. Jung and Y. Won, “nvramdisk: A Transactional Block Device Driver for Non-Volatile RAM”, in IEEE Transactions on Computers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016.
Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending the Lifetime: (Year: 2018).
Arm (“Cortex-R5 and Cortex-R5F”, Technical reference Manual, Revision r1p1) (Year:2011).
Related Publications (1)
Number Date Country
20210365390 A1 Nov 2021 US