Embodiments of the disclosure relate to the field of cybersecurity. More specifically, one embodiment of the disclosure relates to management of a malware detection system that is configured to detect the presence of malicious objects within monitored data.
Over the last decade, cybersecurity attacks have become a pervasive problem for internet users as many networked devices and other resources have been subjected to attack and compromised. The attack may involve the infiltration of malicious software onto a network device or concentration on an exploit residing within a network device to perpetrate the cybersecurity attack (generally referred to as “malware”).
Recently, malware detection has undertaken three different approaches. One approach involves the installation of anti-virus software within network devices forming an enterprise network. Given that advanced malware is able to circumvent anti-virus analysis, this approach has been determined to be deficient.
Another approach involves the placement of dedicated malware detection appliances at various ingress points throughout a network or subnetwork. The malware detection appliances are configured to extract information propagating over the network at the ingress point, analyze the information to determine a level of suspiciousness, and conduct malware analysis internally within the appliance itself. While successful in detecting advanced malware that is attempting to infect network devices connected to the network (or subnetwork), as network traffic increases, this appliance-based approach may exhibit resource constraints. Stated differently, the dedicated, malware detection appliance has a prescribed (and finite) amount of resources (for example, bandwidth and processing power) that, once fully in use, requires either the malware detection appliance to resort to more selective traffic inspection or additional (and/or upscaled) malware detection appliances to be installed. The later solution requires a large outlay of capital and network downtime, as IT resources are needed to install the new malware detection appliances. Also, these dedicated, malware detection appliances provide limited scalability and flexibility in deployment.
Yet another approach involves the use of exclusive, cloud-based malware detection appliances. However, this exclusive cloud-based solution suffers from a number of disadvantages, including the inability of providing on-site deployment of resources at an enterprise's premises (e.g., as devices that are part of the enterprise's network infrastructure). On-site deployment may be crucial for compliance with requirements as to personally identifiable information (PII) and other sensitive information including those mandated at local, state, country or regional governmental levels.
For each of these malware detection approaches, the management of any scalable cybersecurity system is paramount, as any vulnerability in such management may be exploited.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Embodiments of the present disclosure generally relate to a management architecture that is adapted to configure and manage operability of a scalable, malware detection system, which is responsible for detecting the presence of malicious objects within monitored data. The malware detection system includes one or more sensors and at least one cluster of computing nodes that is communicatively coupled to the sensors. The management architecture is configured to, at least in part, control (i) cluster formation within the malware detection system, (ii) the assignment (registration) of sensors to a particular cluster through an enrollment service, and (iii) the monitoring of operability for each cluster and/or computing node within the malware detection system.
Once the malware detection system is in operation, each sensor is configured to receive intercepted or copied information that is propagating over a network, conduct an optional preliminary evaluation of at least a portion of the information, and provide at least a portion of the evaluated information to a cluster of computing nodes assigned to the sensor(s). The portion of evaluated information may include an object, and the preliminary evaluation may involve a determination as to whether the object is suspicious, namely whether the object should be provided to the assigned cluster for an in-depth malware analysis. Examples of an “object” may include content having a logical structure or organization that enables it to be classified for purposes of analysis for malware. Examples of this content may include, but is not limited or restricted to an executable (e.g., an application, program, code segment, a script, dynamic link library “dll” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, URL, web page, etc.), or simply collection of related data. The object may be retrieved from information in transit (e.g., a plurality of packets) or information at rest (e.g., data bytes from a storage medium).
In operation, each cluster is of a scalable architecture that includes at least one computing node and allows for additional computing nodes to be added as the network traffic increases or for computing nodes to be removed as network traffic decreases. Highly scalable in number based on network load, a cluster of computing nodes is configured to (i) analyze data content (e.g., suspicious objects) received from a sensor that was assigned to that cluster during enrollment, and (ii) determine whether the likelihood of the object being associated with malware exceeds a prescribed threshold. If so, the object is deemed to be “malicious”. The formation of a cluster is, at least, partially controlled in accordance with a management system, as described below.
Herein, the cluster formation involves an exchange of authentication credentials with each of the computing nodes that are to be part of the cluster, an assignment of an identifier for the cluster, and an assignment of role responsibility for each of the computing nodes forming the cluster. Herein, the credential exchange occurs between the management system and each computing node requesting to join a cluster. More specifically, when requesting to join a cluster of the malware detection system, a computing node uploads its authentication credentials to the management system. The authentication credentials may include, but are not limited or restricted to information that identifies the computing node and may be used for authentication, including a public key (PUK). Additionally, or in the alternative, the authentication credentials may include an identifier for the computing node (e.g., source media access control “MAC” address, assigned device name, etc.), an Internet Protocol (IP) address of the computing node, and/or an administrator password (in the event that requisite permission is needed from a network administrator for creating a cluster).
In response to receipt of the authentication credentials, if no cluster has been formed, the management system assigns the computing node to a cluster and adds the PUK of the computing node to a stored listing of public keys (hereinafter “public key listing”) for that cluster. The public key listing identifies all of the computing nodes that are part of the cluster. Thereafter, the management system provides the public key listing to the computing node. It is contemplated that, where the submission of the authentication credentials cause the creation of a cluster (i.e., the authentication credentials correspond to a first computing node for a cluster), the management system may assign an identifier (e.g., string of alphanumeric characters that represent the cluster name) to that cluster. The cluster identifier may be returned with the public key listing as well.
In response to receipt of the authentication credentials, when one or more clusters have been formed, the management system analyzes cluster workload, especially where the malware detection system includes a plurality of clusters. Based on the analyzed workload, the management system assigns the computing node to a selected cluster and adds the PUK of the computing node to the public key listing associated with the selected cluster. Thereafter, the management system notifies the current computing nodes of the selected cluster of a change in the public key listing, which may represent expansion or contraction of the cluster. This notification may be accomplished by sending notification messages including the public key listing (i.e., link or listing itself) to each of the computing nodes that are part of the selected cluster. These notification messages may be sent concurrently (e.g., conducted at least partially at the same time). Alternatively, the notification messages may be sent concurrently, but the messages merely notify the computing nodes of an updated publication of the public key listing that is available for retrieval by the computing nodes.
As a result, each of the computing nodes currently forming the cluster, including the computing node that initially provided the PUK, has access to at least public key information associated with all other computing nodes within the cluster. Additionally, the management system may utilize a portion of the authentication credentials (e.g., the PUK) to establish a secure channel with the computing node. One type of secure channel is formed in accordance with a cryptographic, public-private key exchange protocol referred to as “Secure Shell” (SSH-2). The secure channel is used in the transmission of information between the management system and the computing nodes.
The formation of the cluster further involves an assignment of role responsibility for each of the computing nodes forming the cluster. Herein, the management system may configure each computing node as either a “broker” computing node or an “analytic” computing node. As each computing node includes, at least in some embodiments, an analysis coordination system and an object analysis system, the management system may configure a computing node as a “broker” computing node by enabling its analysis coordination system. Similarly, the management system may configure a computing node as an “analytic” computing node by disabling (or refraining from enabling) its analysis coordination system. Each cluster includes at least one “broker” computing node.
For instance, when the analysis coordination system is activated, the computing node is configured to operate as a “broker” computing node, namely a network device that is selected to directly communicate with sensors that are assigned to use the cluster for more in-depth malware analysis of a suspicious object. As a “broker” computing node, the analysis coordination system may be responsible for, inter alia, (i) assigning a unique identifier to a suspicious object, and (ii) distributing the metadata associated with the suspicious object to a distributed data store, where at least a portion of the metadata may be used to locate and retrieve the suspicious object for malware analysis.
Independent of its role (“broker” or “analytic”), each computing node includes an active, object analysis system. The object analysis system is configured to conduct in-depth malware analysis on the suspicious object. Hence, although the analysis coordination system of the “analytic” computing node is inactive, the “analytic” computing node is still able to analyze an incoming object to determine whether that object is associated with malware (i.e. a malicious object).
Sensor registration involves a communication scheme where one or more sensors establish communications with an enrollment service, which may be configured as (i) a daemon application running on the management system or (ii) an enrollment engine that is operating within a public or private cloud. The enrollment service provides an IP address or user name of a particular broker computing node assigned to communicate with the sensor that requested a communicative coupling to a cluster of the malware detection system. The selection of the broker computing node may be based on geographical location of the sensor, subscription level of the customer to which the sensor pertains, workload of the broker computing nodes of the cluster, type of objects analyzed by the particular broker computing node (where certain nodes are dedicated to analysis certain object types (e.g., webpage/URL, emails), type of guest-images supported where different computing nodes may support guest images directed to a single application version/operating system version (e.g., Microsoft® Word 2013 and Windows® 7 OS), multiple (two or more) application versions and a single OS version (e.g., Microsoft® Words® applications supported by Windows® 10 OS), multiple application versions and multiple OS versions (e.g., Microsoft® Words® applications supported by Windows®-based OSes or MAC OS X), single application and multiple OS types, or other information stored in a persistent matter. Upon receipt of the IP address (or user name) of the broker computing node, the sensor establishes direct communications with that particular broker computing node to send metadata for use in establishing secure communication paths (e.g., secure tunnels) with a computing node by which suspicious objects are to be analyzed for malware. The computing node for analysis may be the broker computing node or an analytic computing node.
After one or more clusters (sometimes referred to as “cluster(s)”) of the malware detection system have been formulated and the sensor(s) are communicatively coupled to the cluster(s), the management system may be configured to monitor operability of the cluster(s) and/or each computing node of the cluster(s). Such monitoring of computing node operability may include, but is not limited or restricted to monitoring hardware functionality (e.g., fan speed, processor speed, etc.), monitoring workload (e.g., processor utilization, queue capacity, etc.), monitoring compliance with a prescribed software configuration, or the like. Similarly, the monitoring of cluster operability may include monitoring of the cluster workload based on an aggregate of each computing node workload, monitoring compliance with usage of a particular version of a guest image bundle by each computing node forming the cluster, or the like.
In the following description, certain terminology is used to describe features of the invention. In certain situations, both terms “node” and “system” are representative of hardware, firmware and/or software that is configured to perform one or more functions. In particular, the terms “computing node,” “sensor” and/or “management system” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, the computing node and/or management system may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.
Alternatively, or in combination with the hardware circuitry described above, the management system or sensor may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.
The term “message” generally refers to information in a prescribed format and transmitted in accordance with a suitable delivery protocol such as Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Simple Mail Transfer Protocol (SMTP), iMESSAGE, Post Office Protocol (POP), Instant Message Access Protocol (IMAP), or the like. Hence, each message may be in the form of one or more packets, frames, or any other series of bits having the prescribed format. Messages may correspond to HTTP data transmissions, email messages, text messages, or the like.
According to one embodiment, the term “malware” may be construed broadly as any code or activity that initiates a malicious attack or any operations associated with anomalous or unwanted behavior. For instance, malware may correspond to a type of malicious computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. In the alternative, malware may correspond to an exploit, namely information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability in software and/or an action by a person gaining unauthorized access to one or more areas of a network device to cause the network device to experience undesirable or anomalous behaviors. The undesirable or anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner (a file is opened by a first process where the file is configured to be opened by a second process and not the first process); (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. In yet another alternative, malware may correspond to information that pertains to the unwanted behavior such as a process that causes data such as a contact list from a network (endpoint) device to be uploaded by a network to an external storage device without receiving permission from the user.
In certain instances, the terms “compare,” “comparing,” “comparison,” or other tenses thereof generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular pattern.
The term “network device” should be construed as any electronic device with the capability of processing data and connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, standalone appliance, a router or other intermediary communication device, etc. Other examples of a network device includes a sensor (described above) as well as a computing node, namely hardware and/or software that operates as a network device to receive information from a sensor, and when applicable, perform malware analysis on that information.
The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices (e.g., any devices with data processing and network connectivity such as, for example, a sensor, a computing node, mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.) or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), may be used.
The term “object” generally relates to content having a logical structure or organization that enables it to be classified for purposes of analysis for malware. The content may include an executable, a non-executable, or simply a collection of related data. The object may be retrieved from information in transit (e.g., a plurality of packets) or information at rest (e.g., data bytes from a storage medium). Examples of different types of objects may include a data element, one or more flows, or a data element within a flow itself.
Herein, a “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session, where multiple flows each being received, transmitted or exchanged within a corresponding communication session is referred to as a “multi-flow”. A “data element” generally refers to as a plurality of packets carrying related payloads, e.g., a single webpage received over a network. The data element may be an executable or a non-executable, as described above.
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition may occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
Referring to
As shown in
More specifically, according to one embodiment of the disclosure, the sensor 1101 may be implemented as a network device that is either coupled to the transmission medium 115 directly or communicatively coupled with the transmission medium 115 via an interface 125 operating as a data capturing device. According to this embodiment, the interface 125 is configured to receive the incoming data and subsequently process the incoming data, as described below. For instance, the interface 125 may operate as a network tap (in some embodiments with mirroring capability) that provides at least one or more data submissions (or copies thereof) extracted from data traffic propagating over the transmission medium 115. Alternatively, although not shown, the sensor 1101 may be configured to receive files or other objects automatically (or on command) accessed from a storage system. As yet another alternative, the sensor 1101 may be configured to receive data submissions which are not provided over the network 120. For instance, as an illustrative example, the interface 125 may operate as a data capturing device (e.g., port) for receiving data submissions manually provided via a suitable dedicated communication link or from portable storage media such as a flash drive.
As further shown in
Although not shown, it is contemplated that the sensor 1101 may be implemented entirely as software for uploading into a network device and operating in cooperation with an operating system running on the network device. For this implementation, the software-based sensor is configured to operate in a manner that is substantially similar or identical to a sensor implemented as a network device as illustrated in
As shown, the centralized analysis system 140 may be connected to the sensors 1101-110M over network 120 or a different network (e.g., a first network), and the clusters of computing nodes 1501-150N may be interconnected by a network (not shown), which may be network 120 or a second network (e.g., part of the first network or a different network than the first network). The network 120 may operate as part of a public network (internet) while the first and/or second networks may be part of a private network.
The centralized analysis system 140 features one or more clusters of computing nodes 1501-150N (N≥1), where the computing nodes are grouped in order to conduct collective operations for a set of sensors (e.g., sensors 1101-110M). Each cluster 1501-150N may include computing nodes equipped for malware analysis, including behavioral monitoring, while executing (running) objects within one or more virtual machines (VMs). The virtual machines may have different guest image bundles that include a plurality of software profiles each with a different type of operating system (OS), application program, or both. Alternatively, each cluster 1501-150N may include computing nodes having identical guest image bundles that include software profiles directed to the same operating system (e.g., Windows® OS cluster, MAC® OS X cluster, etc.). Additionally, the cluster 1501-150N may be located to communicate with sensors within the same state, Provence, region or country to ensure compliance with governmental regulations.
As shown, for illustrative purposes, a cluster 1501 may include a plurality of computing nodes 1601-160P (P≥1). The plurality of computing nodes 1601-160P may be arranged in a “blade server” type deployment, which allows additional computing nodes to be seamlessly added to or removed from the cluster 1501 (e.g., computing nodes 1601-160P being connected to a common bus plane (network) that may provide both power and signaling between the computing nodes, a hot-swapping deployment of the computing nodes forming the cluster 1501, or any other deployment that allows a scalable computing node architecture). However, it is contemplated that any or all of clusters 1501-150N may be virtualized and implemented as software, where the computing nodes 1601-160P are software modules that communicate with each other via a selected communication protocol.
Additionally according to this embodiment of the disclosure, each of the clusters 1501-150N (e.g., cluster 1501) is communicatively coupled to a distributed data store 170 and a distributed queue 175. The distributed data store 170 and the distributed queue 175 may be provided through a separate memory node 180, which is communicatively coupled to and accessed by computing nodes 1601-160P. For this embodiment, a data store 182 for storage of the malicious objects (hereinafter “object data store”) may be provided in memory node 180. Alternatively, as shown, it is contemplated that the distributed data store 170 and the distributed queue 175 may be provided as a collection of synchronized memories within the computing nodes 1601-160P (e.g., synchronized data stores 1701-170P that collectively form distributed data store 170; synchronized queues 1751-175P that collectively form distributed queue 175 where each of the queues 1751-175P is synchronized to store the same information), each accessible by the computing nodes 1601-160P respectively. The distributed data store 170 (formed by local data stores 1701-170P operating in accordance with a selected memory coherence protocol) are accessible by the computing nodes 1601-160P, and thus, data stores 1701-170P may be configured to store the same information. Alternatively, the data stores 1701-170P may be configured to store different information, provided the collective information is available to all of the computing nodes 1601-160P in the same cluster 1501.
Referring still to
In order to provide sufficient processing capabilities to the sensors 1101-110M deployed throughout the network 120, the centralized analysis system 140 is scalable by allowing a flexible clustering scheme for computing nodes as well as allowing for the number of clusters to be increased or decreased in accordance with system processing capability. Stated differently, one or more computing nodes (e.g., computing node 160P+1) may be added to the cluster 1501 based on an increase in the current workload of the malware detection system 100. Likewise, one or more computing nodes may be removed from the cluster 1501, now forming computing nodes 1601-160P−1, based on a decrease in the current workload.
As an optional feature, one or more of the clusters 1501-150N may be configured with reporting logic 184 to provide alerts to a customer such as a network administrator 190 of the customer for example, that identify degradation of the operability of that cluster. For example, the reporting logic (illustrated in
Referring to
The processor(s) 191 is a multi-purpose, processing component that is configured to execute logic 195-196 maintained within the non-transitory storage medium 192 that is operating as a data store. As described below, the logic 195 may include, but is not limited or restricted to packet analysis logic that conducts an analysis of at least a portion of the intercepted or copied data traffic to determine whether an object within the data traffic is suspicious. This preliminary analysis is conducted to determine, at least for most data types, whether to provide the object to the computing nodes for more in-depth malware analysis. Additionally, the non-transitory storage medium 192 may include cluster enrollment logic 196 which, when executed, supports the handshaking signaling necessary for the sensor 1101 to join a cluster as well as support continued communications with an enrollment service and/or management system 185 to re-evaluate whether the sensor 1101 should remain in communication with a particular cluster, and more specifically, with a particular broker computing node, as shown in
Referring to
As an illustrative example, during the handshaking scheme, the first computing node 1601 issues a request message 200 to the management system 185. The request message 200 includes authentication credentials 205 associated with the first computing node 1601. The authentication credentials 205 may include, but is not limited or restricted to a public key (PUKCN1) 210 associated with the first computing node 1601. Additionally, or in the alternative, the authentication credentials 205 may include an identifier for the computing node (e.g., source media access control “MAC” address, assigned device name, etc.), an Internet Protocol (IP) address of the computing node, and/or an administrator password (in the event that requisite permission is needed from a network administrator for creating a cluster).
In response to receipt of the request message 200, the management system 185 may provide its authentication credentials 220 (e.g., at least its public key “PUKMS” 225) to the first computing node 1601. As a result, both the first computing node 1601 and the management system 185 possess keying material for use in establishing secure communications for transmission of a message requesting to join a cluster of the malware detection system. One type of secure communications includes a secure channel 230 formed in accordance with a cryptographic, public-private key exchange protocol referred to as “Secure Shell” (SSH-2). The secure channel 230 is now used in the transmission of information between the management system 185 and the first computing node 1601.
In general, to establish secure communications, the same operations may be conducted for other newly added computing nodes, such as a second computing node 1602 and a third computing node 1603, where the management system 185 may utilize authentication credentials provided from the second computing node 1602 and the third computing node 1603 (e.g., PUKCN2 215 and PUKCN3 217) to establish secure communications 235 and 237 therewith.
Expanding an existing cluster with an additional computing node will now be explained. More specifically, as shown in
Formation of a new cluster will now be described. Where the malware detection system 100 has no active clusters, the management system 185 may assign the second computing node 1602 to a newly formed cluster (e.g., cluster 1501) and add the public key of the second computing node 1602 (PUKCN2) 215 to a stored listing of public keys 250 (hereinafter “public key listing 250”) associated with the cluster 1501. The management system 185 maintains the public key listing 250 (e.g., an organized collection of public keys), which is used to identify all of the computing nodes that are part of the cluster 1501. Thereafter, the management system 185 provides the public key listing 250 to the second computing node 1602. It is contemplated that, upon creation of the cluster 1501, the management system 185 assigns an identifier 260 (e.g., string of alphanumeric characters that represent a name of the cluster 1501) for the cluster 1501. The cluster identifier 260 may be provided with the public key listing 250 as well.
Alternatively, where the second computing node 1602 is seeking to join one of a plurality of active clusters (i.e., where secure channels 230 and 237 have already been established prior to establishing secure channel 235), the management system 185 analyzes the workload for each active cluster, as described above. Based on the analyzed workload, the management system 185 assigns the second computing node 1602 to a selected cluster (e.g., cluster 1501) and adds the PUKCN2 215 of the second computing node 1602 to the public key listing 250 associated with the selected cluster 1501.
Additionally, the management system 185 provides one or more notification messages 270 to all computing nodes of the selected cluster 1501 (e.g., computing nodes 1601-1603) of a change in the public key listing 250, which denotes expansion or contraction of the cluster 1501. The notification messages 270 include the public key listing 250 (i.e., as a link or the listing itself) to each of the computing nodes (e.g., computing nodes 1601-1603) that are part of the cluster 1501. The notification messages 270 may be sent concurrently or sequentially. Alternatively, the notification messages 270 may merely notify the computing nodes 1601-1603 of an updated publication of the public key listing 250, where the public key listing 250 is published and available for retrieval by the computing nodes (computing nodes 1601-1603 as shown).
As a result, each of the computing nodes (e.g., computing nodes 1601-1603 as shown) that collectively form the cluster 1501 has access to public key information associated with all other computing nodes within that cluster. Hence, depending on the assigned roles of the computing nodes as described below, a “broker” computing node (e.g., computing node 1601) is capable of establishing secured communications 280 and 285 with other computing nodes (e.g., computing nodes 1602 and 1603).
Hence, the assignment of role responsibility for the computing nodes is one of the operations performed when forming or adjusting the configuration of a cluster. Herein, the management system 185 may configure each computing node as either a “broker” computing node or an “analytic” computing node. A number of factors may be used by the management system 185 in determining what role to assign the computing node. Some of these factors may include, but are not limited or restricted to (i) public network (Internet) connectivity i.e. sensors enrolled with a cluster can be deployed in different geographical locations and these geographically distributed sensors must be able to access broker computing nodes over the Internet or WAN (however, ‘analytic’ computing nodes may not be exposed to the Internet or WAN); (ii) anticipated or current workload (e.g., queue utilization, processor utilization, number of analyses being conducted, ratio between number of analyses and timeout events, etc.); (iii) capability to replicate shared job queue across multiple broker computing nodes; (iv) capacity in terms of number of guest image instances or types of guest image instances supported; (v) types of guest-images supported (e.g., type/version of application program, type/version of operating system, etc.) especially where different computing nodes are dedicated to analysis of a certain object type in a certain operating environment (e.g., a single application/OS version, multiple application versions and single OS version, multiple application/OS versions, single application and multiple OS versions); (vi) geographical location (e.g., computing node in same geographic region as the sensor such as continent, country, region, district, county, state, etc.; and (vii) compatibility with different types of sensors (e.g., by model, by original equipment manufacturer, by storage capacity, by capability such as handling web traffic, email traffic, etc.); (ix) type of objects analyzed by the particular broker computing node (where certain nodes are dedicated to analysis certain object types (e.g., webpage/URL, emails), or (x) other factors that may influence the assignment.
As shown in
Although not shown, an exemplary embodiment of a logical representation of the computing node 1601 is described. Herein, the computing node 1601 comprises one or more processors, one or more network interfaces, and logic associated with the analysis coordination system 2901 and the object analysis system 2951. The logic may be hardware, software stored in non-transitory storage medium, or firmware. These components may be virtualized software or components at least partially encased in a housing, which may be made entirely or partially of a rigid material. According to one embodiment of the disclosure, when the analysis coordination system 2901 is activated, the processor(s) supports communications between the analysis coordination system 2901 and any enrolled sensors (e.g., sensor 1101).
More specifically, when analysis coordination system 2901 is activated, the computing node 1601 is configured to operate as a “broker” computing node, namely a network device that is selected to directly communicate with any or all of the sensors that are assigned to use the cluster that conducts an in-depth malware analysis of a received suspicious object. As a “broker” computing node, the analysis coordination system 2901 of the computing node 1601 may be responsible for, inter alia, (i) assigning an identifier (e.g., an identifier unique to the domain) to incoming metadata that is associated with a suspicious object received from a sensor, and (ii) distributing the metadata to a distributed data store, where at least a portion of the metadata may be used by an object analysis system (within the broker computing node or another computing node) to obtain the suspicious object for analysis, as described in U.S. Patent Application entitled “SENSOR ARCHITECTURE FOR A SCALABLE MALWARE DETECTION SYSTEM” filed concurrently herewith (U.S. patent application Ser. No. 15/283,108), the entire contents of which are incorporated by reference.
Independent of its role (“broker” or “analytic”), each computing node 1601-1603 includes an active, object analysis system 2951-2953. An object analysis system is configured to conduct in-depth malware analysis on the object. Hence, although the analysis coordination systems 2952-2953 of the computing nodes 1602-1603 are inactive, the computing nodes 1602-1603 are still able to analyze an incoming object to determine whether that object is associated with malware.
Of course, it is contemplated, as an alternative embodiment, that a “broker” computing node may have a logical architecture different than an “analytic” computing node. For example, a broker computing node may be configured with only an analysis coordination system. An analytic computing node may be configured with only an object analysis system.
Referring now to
The enrollment service 400 may be highly available in a variety of deployments. For instance, if the enrollment service 400 operates on the management system 185, it is contemplated that a redundant management system deployment may be utilized, where one management system works as a primary system while a second management system operates as a secondary/standby system. In the case of a failover (or takeover), the enrollment service 400 becomes available automatically on the secondary management system that now operates as the primary management system. Alternatively, the enrollment service 400 in the cloud is horizontally scalable against a single DNS name.
According to one embodiment of the disclosure, the sensor 1101 may automatically transmit the request message 310 upon activation or may transmit the request message 310 based on a manual setting by an administrator when configuring (or re-configuring) one or more clusters of the malware detection system. Besides providing addressing information (e.g., source IP address) that enables the credential web server 320 to return a response message 340, the request message 310 may include information 330 that uniquely identifies the sensor 1101, such as a device serial number, a source MAC address, or other unique identifier assigned by the particular original equipment manufacturer or software provider (e.g., hash value derived from information that uniquely identifies the sensor 1101). Herein, the request message 310 may be part of a handshaking protocol to establish secure communications (e.g., HTTPS, HTTP, etc.), and if so, keying material may accompany the request message 310 or may be provided prior to transmission of the request message 310. It is contemplated that the request message 310 may include or accompany information that identifies a customer associated with the sensor 1101, information that identifies a subscription level of the customer that may affect the features and capabilities returned to the sensor 1101, or the like.
As shown, the credential web server 320 is adapted to receive the request message 310 from the sensor 1101, and in response, extract the information 330 that uniquely identifies the sensor 1101. Upon obtaining the information 330, the credential web server 320 generates a tenant credentials 350 associated with the sensor 1101. The tenant credentials 350 includes a unique identifier (tenant ID) 360 that is used by the enrollment service for authentication of the sensor 1101, when the sensor 1101 seeks access to a particular cluster managed, at least in part, by the enrollment service. The unique identifier 360 may be generated based, at least in part, on the information provided with the request message 310, or may be generated randomly or pseudo-randomly by the credential web server 320. It is contemplated that the tenant credentials 350 may include information that identifies that the sensor 1101 (or entity associated with the sensor 1101) has an active subscription to the services offered by the cluster to which the sensor seeks access and the subscription level assigned to the sensor 1101.
It is contemplated that sensor 1101 may obtain the address of the enrollment service 400 using any number of techniques to set the address of the enrollment service 400 within the sensor 1101. For instance, as an illustrative example, the sensor 1101 may be configured (at manufacture or in the field) with a default address setting that includes a well-defined domain name server (DNS) as the public address of a public enrollment service. As another illustrative example, where the sensor 1101 is managed by the management system 185, the sensor 1101 may be configured with an address (e.g., IP address) of the management system 185, acquired from the management system 185 (described below), for use in lieu of the public address (DNS). As another illustrative example, the sensor 1101 may be configured by a network administrator who manually changes the enrollment service address to a desired address. Independent of the setting technique, the sensor 1101 is configured to support connectivity with the enrollment service 400.
Referring to
The advertised features and capabilities 410 (along with any other features and capabilities from other broker computing nodes) are maintained by the enrollment service 400. The enrollment service 400 considers one or more of the advertised features and capabilities of one or more computing nodes for selecting a particular broker computing node to support the sensor 1101 requesting access to cluster 1501. Upon selecting the particular broker computing node (e.g., broker computing node 1601), the enrollment service 400 returns at least a portion of the features and capabilities 410 to the requesting sensor 1101.
In particular, as shown in
In response to receipt of the CLUSTER_REQ( ) message 420 and after analysis of the features and capabilities of the available broker computing nodes, the management system 185 returns one or more response message 425 (e.g., represented as “CLUSTER_RSP( ) message”) to the sensor 1101. The CLUSTER_RSP( ) message 425 provides address information 430 for accessing the enrollment service 400 where, according to this embodiment of the disclosure, the address information 430 may include an address (e.g., IP address) or a Domain Name System (DNS) name of the management system 185 as the address of enrollment service 400 that is available on the management system. Additionally, the CLUSTER_RSP( ) message 425 may further include keying material 432 associated with the management system 185 to establish secured communications (e.g., HTTPS secure channel) with the management system 185.
In a response to receipt of the CLUSTER_RSP( ) message 425, the sensor 1101 issues one or more enrollment request messages 440 (e.g., represented as “ENROLL_REQ( ) message”) to the enrollment service 400 via the HTTPS secure channel, which may be established based on the exchange of keying material during the handshaking protocol (e.g., exchange of CLUSTER_REQ( ) message 420 and CLUSTER_RSP( ) message 425). The ENROLL_REQ( ) message 440 may include the tenant credentials 350 of
More specifically, before selecting of the particular broker computing node, using a portion of the tenant credentials 350, the enrollment service 400 may conduct a subscription check of the sensor 1101 to determine whether the customer associated with the sensor 1101 has an active subscription to a particular service being requested (if not already conducted by the credential web server 320 of
Herein, both the sensor 1101 and the enrollment service 400 may check if the subscription is active and update-to-date. As soon as any of them detects that the subscription is not active anymore, the sensor 1101 disconnects itself from the broker computing node 1601 of the cluster 1501 and sends an Un-enrollment request (not shown) to the enrollment service 400. Thereafter, the enrollment service 400 removes the authenticated keying material for the sensor 1101 from one or more broker computing nodes in communication with the sensor 1101. Once the sensor authenticated keying material is removed from the broker computing node 1601, the broker computing node 1601 will not accept the connections from the sensor 1101 until a new enrollment process for the sensor 1101 is conducted.
Additionally, besides whether the subscription is active for the sensor 1101, the enrollment service 400 may determine a type of subscription assigned to the sensor 1101. More specifically, the enrollment service may further determine the subscription level assigned to the sensor 1101 (e.g., basic with entry level malware analysis, premium with more robust malware analysis such as increased analysis time per object, increased guest images supported, prescribed quality of service greater than offered with basic subscription, access to computing nodes dedicated to processing certain object types, etc.). Such information may be relied upon for selection of the broker computing node by the enrollment service 400.
Where the sensor 1101 is not authenticated, the enrollment service 400 does not respond to the ENROLL_REQ( ) message 440 or returns a first type of enrollment response message 450 (e.g., represented as “ENROLL_ERROR( )” message as shown) that identifies the sensor 1101 has not been authenticated or not authorized. However, upon authenticating the sensor 1101, the enrollment service 400 is configured to forward (send) the keying material 422 associated with the sensor 1101 to the broker computing node 1601. The enrollment service 400 is also configured to return an enrollment response message 460 (e.g., represented as “ENROLL_RSP( ) message”) to the sensor 1101. The ENROLL_RSP( ) message 460 includes a portion of features and capabilities 410 of the selected broker computing node (e.g., broker computing node 1601), such as the IP address 462 for the broker computing node 1601, the name 464 of the broker computing node 1601, and/or authentication information 466 (e.g., passwords, keying material, etc.) associated with the broker computing node 1601 of the cluster 1501.
Upon receipt of the portion of features and capabilities 410 for the selected broker computing node 1601, the sensor 1101 is now able to establish a secure communication path 470 to the broker computing node 1601. Thereafter, according to one embodiment of the disclosure, the sensor 1101 may submit metadata associated with any detected suspicious objects, where the broker computing node 1601 determines from the metadata whether a suspicious object has been previously analyzed, and if not, queues the metadata for subsequent use in retrieval of the suspicious object for an in-depth malware analysis by the broker computing node 1601 or in any of the computing nodes 1602 and 1603 that is part of the cluster 1501. The in-depth malware analysis may involve static, dynamic or emulation analysis, as generally described in U.S. Pat. No. 9,223,972, the entire contents of which are incorporated by reference.
Referring now to
In the event that the workload of the broker computing node 1601 is substantially larger than another broker computing node within the cluster 1501, it is contemplated that the enrollment service 400 may redirect communications from the sensor 1101 to another broker computing node within the cluster 1501 (or even a different cluster) in lieu of the broker computing node 1601. In this regard, in response to receipt of the Status Request message 480, the enrollment service 400 issues a Status Response 485 (“STATUS_RSP( )”). The STATUS_RSP( ) message 485 may include a portion of features and capabilities for the same computing node 1601 or for another broker computing node selected to communicate with sensor 1101 (e.g., computing node 1602 with its analysis coordination system 2902 activated and operating as a broker computing node), such as the IP address 490 for the broker computing node 1602, (ii) the name 492 of the broker computing node 1602, and/or authentication information 494 (e.g., passwords, keying material, etc.) associated with the broker computing node 1602 of the cluster 1501.
Referring to
As shown in
From the features and capabilities 540 of the selected broker computing node information contained in the WEB_ENROLL_RSP( ) message 530, the sensor node 1101 establishes a secure (HTTPS) communication path 550 with the selected broker computing node 1601 located in cloud 500. Thereafter, as described above, the sensor 1101 may submit metadata associated with any detected suspicious object, where the broker computing node 1601 determines from the metadata whether the suspicious object has been previously analyzed. If not, the broker computing node 1601 coordinates the retrieval of the suspicious object and the handling of an in-depth malware analysis of the suspicious object. The malware analysis may be performed by the broker computing node 1601 or any available computing node operating in the cluster 1501.
Referring to
In accordance with this embodiment of the disclosure, the enrollment service 400 is provided by the second management system 610. Being configured to manage sensor operability, the first management system 600 operates as a proxy for a request for enrollment service received from the sensors 1101-110M. More specifically, the sensor 1101 issues one or more request messages 620 (herein, “CLUSTER_REQ( ) message”) to the first management system 600, as described in
Thereafter, the sensor 1101 issues one or more enrollment request messages 640 (herein, “ENROLL_REQ( ) message”) to the enrollment service 400, perhaps via the HTTPS secure channel pre-established between the sensor 1101 and the second management system 620. The ENROLL_REQ( ) message 640 may include the tenant credentials 350 of
Where the sensor 1101 is not authenticated, the enrollment service 400 does not respond to the ENROLL_REQ( ) message 640 or returns an enrollment response message that identifies a communication error (not shown), as described above.
However, upon authenticating the sensor 1101, the enrollment service 400 is configured to forward keying material 622 associated with the sensor 1101 to a broker computing node selected by the enrollment service 400 for operating in cooperation with sensor 1101 (e.g. broker computing node 1601). The enrollment service 400 is also configured to return an enrollment response message 660 (e.g., herein, “ENROLL_RSP( )” message) to the sensor 1101. The ENROLL_RSP( ) message 660 includes a portion of features and capabilities 410 of the selected broker computing node (e.g., broker computing node 1601), as described above.
Thereafter, the sensor 1101 is in secure communications with broker computing node 1601 to receive metadata and corresponding suspicious objects for malware analysis.
Referring now to
Herein, the sensor 1101 may be configured to transmit status messages 730 to the broker computing node 1601. The transmission of the status messages 730 may be periodic or aperiodic in response to a triggering event such as a timeout event that denotes expiration of a time period allocated for the malware analysis of a particular suspicious object. In response to receipt of the status message 730, the broker computing node 1601 extracts information from the status message 730, namely a unique identifier 740 associated with the submitted suspicious object. Using the identifier 740, the broker computing node 1601 accesses the distributed data store 170 recover analysis results 700 performed by status analysis logic, dynamic analysis logic or emulation analysis logic within the object analysis system 2952 of the computing node 1602 to determine whether or not the suspicious object is associated with malware.
Upon determining that the results 700 for the identified suspicious object have been produced and are stored in the distributed data store 170, the broker computing node 1601 transmits the results 700 to the sensor 1101. Upon receipt of the results 700, the sensor 1101 may provide an aggregate of the analysis results (referred to as “aggregation results 750”), which includes results 700, to the management system 185. It is contemplated that, as an alternative embodiment, the broker computing node 1601 may transmit at least a portion of the results 700 to the management system 185 in lieu of transmission via the sensor 1101.
Based on the content of the aggregated analysis results 700, the management system 185 may generate an alert 760 via a wired or wireless transmitter (not shown) to notify a network administrator (see
Referring to
In the event that the metadata 840 indicates that the suspicious object 850 has not been analyzed, the broker computing node 810 obtains the metadata 840 and utilizes the metadata 840 to obtain the suspicious object 850. The suspicious object 850 may be stored in a local data store of the sensor 820 or in a data store accessible by the sensor 820.
Upon receipt of the suspicious object 850, the broker computing node 810 (object analysis system) conducts one or more analyses (e.g., static analysis, dynamic analysis, and/or emulation analysis) on the suspicious object 850 to determine whether the suspicious object 850 is associated with malware. If so, results 880 from the one or more analyses are stored within the distributed data store 170, which is accessible by the sensor 820 through one or more status messages 870, as illustrated as status messages 730 in
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
This application claims the benefit of priority on U.S. Provisional Patent Application No. 62/313,639, filed Mar. 25, 2016, the entire contents of which are incorporated by references.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5828847 | Gehr et al. | Oct 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6032189 | Jinzenji et al. | Feb 2000 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6195680 | Goldszmidt et al. | Feb 2001 | B1 |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7188367 | Edwards et al. | Mar 2007 | B1 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7492780 | Goolsby | Feb 2009 | B1 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644438 | Dash et al. | Jan 2010 | B1 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7865614 | Lu et al. | Jan 2011 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937760 | Ross et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7971208 | Stokes | Jun 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8065660 | Tanner et al. | Nov 2011 | B1 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220054 | Lu | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8302192 | Cnudde et al. | Oct 2012 | B1 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8468602 | McDougal et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shifter et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782788 | Krueger | Jul 2014 | B2 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8862675 | Coomer et al. | Oct 2014 | B1 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8914406 | Haugsnes | Dec 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shifter et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071535 | Chattopadhyay et al. | Jun 2015 | B2 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118689 | Apte | Aug 2015 | B1 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9210156 | Little | Dec 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9223980 | Bao | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9342695 | Barkan | May 2016 | B2 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9489516 | Lu et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050049825 | King et al. | Mar 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050198247 | Perry et al. | Sep 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060037079 | Midgley | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060149704 | Wyatt et al. | Jul 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060265637 | Marriott et al. | Nov 2006 | A1 |
20060271784 | Bolosky et al. | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070083930 | Dumont et al. | Apr 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20070282848 | Kiilerich et al. | Dec 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080022205 | Shinkai et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080117816 | Stone et al. | May 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080243878 | de Spiegeleer et al. | Oct 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090274384 | Jakobovits | Nov 2009 | A1 |
20090287653 | Bennett | Nov 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115242 | Yamada | May 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192152 | Miyamoto et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100202236 | Kahler et al. | Aug 2010 | A1 |
20100205279 | Takakura | Aug 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110010697 | Golovkin | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110125778 | Kubo | May 2011 | A1 |
20110128965 | Brehm et al. | Jun 2011 | A1 |
20110131621 | Brehm et al. | Jun 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110153743 | Lindner et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110191341 | Meyer et al. | Aug 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110219451 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110231901 | Nakamura et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110280240 | Yamagaki et al. | Nov 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20110321124 | Kisin et al. | Dec 2011 | A1 |
20120023209 | Fletcher | Jan 2012 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120063319 | Christin et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120204144 | Fioritoni et al. | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120216244 | Kumar et al. | Aug 2012 | A1 |
20120221571 | Orman | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120246337 | Ross | Sep 2012 | A1 |
20120252439 | Peterson et al. | Oct 2012 | A1 |
20120254917 | Burkitt et al. | Oct 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120290584 | De Bona et al. | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120323131 | Ting et al. | Dec 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130007883 | Zaitsev | Jan 2013 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047034 | Salomon et al. | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130067023 | Joy et al. | Mar 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130148158 | Kanakubo | Jun 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130223608 | Flockhart et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263122 | Levijarvi et al. | Oct 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298192 | Kumar et al. | Nov 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20130336285 | Edara et al. | Dec 2013 | A1 |
20130340080 | Gostev et al. | Dec 2013 | A1 |
20130345887 | Govindan et al. | Dec 2013 | A1 |
20140007236 | Krueger | Jan 2014 | A1 |
20140019962 | Litty et al. | Jan 2014 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140122569 | Abel et al. | May 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140229221 | Shih et al. | Aug 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140281514 | Erofeev et al. | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140310483 | Bennett | Oct 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140330976 | van Bemmel | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150089252 | Chen | Mar 2015 | A1 |
20150095961 | Kliger et al. | Apr 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150100617 | Diederich et al. | Apr 2015 | A1 |
20150180764 | Pacella et al. | Jun 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150181614 | Mitra et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150189005 | Dubois | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150222656 | Haugsnes | Aug 2015 | A1 |
20150229656 | Shieh | Aug 2015 | A1 |
20150236821 | Degraaf et al. | Aug 2015 | A1 |
20150278243 | Vincent et al. | Oct 2015 | A1 |
20150319182 | Natarajan | Nov 2015 | A1 |
20150334511 | Rivera | Nov 2015 | A1 |
20150370723 | Nambiar | Dec 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20150373036 | Patne et al. | Dec 2015 | A1 |
20150373043 | Wang | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160044035 | Huang | Feb 2016 | A1 |
20160070589 | Vermeulen et al. | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160110544 | Singla | Apr 2016 | A1 |
20160119379 | Nadkarni | Apr 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160197949 | Nyhuis | Jul 2016 | A1 |
20160212239 | Das | Jul 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160269427 | Haugsnes | Sep 2016 | A1 |
20160269437 | McDougal et al. | Sep 2016 | A1 |
20160275303 | Narayanaswamy | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160294829 | Angus | Oct 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20170085565 | Sheller | Mar 2017 | A1 |
20170093897 | Cochin et al. | Mar 2017 | A1 |
20170164218 | Ni et al. | Jun 2017 | A1 |
20170180421 | Shieh | Jun 2017 | A1 |
20170250997 | Rostamabadi | Aug 2017 | A1 |
20170251013 | Kirti | Aug 2017 | A1 |
20170257767 | Zhao | Sep 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180027006 | Zimmermann | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180144128 | Hakuta | May 2018 | A1 |
20180227627 | Jabara | Aug 2018 | A1 |
20180288077 | Siddiqui | Oct 2018 | A1 |
20180293111 | Chen et al. | Oct 2018 | A1 |
20180295508 | Kyllonen | Oct 2018 | A1 |
20180367560 | Mahaffey | Dec 2018 | A1 |
20190109849 | Frempong | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2448065 | Oct 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.iso?reload=true&arnumber=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”) (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlaq Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: a Statistical Viewpoint”, (“Marchette”), (2001). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
U.S. Appl. No. 15/283,108, filed Sep. 30, 2016 Advisory Action dated Nov. 16, 2018. |
U.S. Appl. No. 15/283,108, filed Sep. 30, 2016 Final Office Action dated Jul. 26, 2018. |
U.S. Appl. No. 15/283,108, filed Sep. 30, 2016 Non-Final Office Action dated Feb. 23, 2018. |
U.S. Appl. No. 15/283,108, filed Sep. 30, 2016 Non-Final Office Action dated Mar. 7, 2019. |
U.S. Appl. No. 15/283,126, filed Sep. 30, 2016 Non-Final Office Actiong dated Sep. 7, 2018. |
U.S. Appl. No. 15/283,126, filed Sep. 30, 2016 Notice of Allowance dated Mar. 4, 2019. |
U.S. Appl. No. 15/283,128, filed Sep. 30, 2016 Non-Final Office Action dated Mar. 7, 2019. |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
Number | Date | Country | |
---|---|---|---|
62313639 | Mar 2016 | US |