The present invention relates to scented wax candles and more particularly to a system and process for manufacturing a scented candle made of scented wax beads and covered with a solid wax topping.
Scented candles are a popular fixture in many homes. Generally, candles consist of one or more solid wax components, with one or more fragrances. Of some increasing popularity are candles made of small beads of scented wax, to be assembled in a vessel by the end user, marketed as do-it-yourself kits.
While candles made from beads of wax have many benefits, they can also present some practical difficulties. First, most of the currently marketed wax bead candles are only available as do-it-yourself kits, where the beads are shipped and available for purchase separately from the container and the wick. The consumer has the benefit of being able to choose the container apart from the wax portion, but the consumer must also assemble the candle. Filling a container with thousands of small beads while keeping the wick in place could be a messy task. In addition, current candles made of wax beads are manufactured one at a time which makes it difficult to mass market such candles.
Of course, the wholesaler or retailer may assemble the candles pre-purchase. In a wax bead candle, however, the wick, which is normally held in a central position in solid wax candles, may shift during transportation and in use because the beads are fluid. The wax beads themselves also may shift during transportation and use, resulting in loss or an uneven appearance. The latter result is especially problematic if different wax bead colors and/or fragrances are layered to provide an aesthetic effect.
The manufacture of such a beaded candle through an automated process poses several obstacles because the beads can shift during shipping thereby greatly changing both the performance and appearance of the candles. There is also a concern that the wick would shift as the volume of beads moves within the jar which could cause uneven burning.
It is a principal object of the present invention to provide a system and method for manufacturing a candle comprised of wax beads that can be packaged and shipped in commercial quantities without significant added cost or processing steps to keep the beads in place.
Another object of the present invention it to provide a system and method for manufacturing a candle comprised of wax beads that maintains the position of the wick in the center of the candle vessel.
Another object of the present invention is to provide a system and method for manufacturing a candle comprised of wax beads that manufactures candles in high volumes.
The candle is formed by first producing wax beads from existing equipment. The wax beads are transported to a bead hopper and the bead hopper deposits a volume of wax beads into jars prepared with a wick. Concurrently the jars are vibrated using a continuous vibratory motor to settle the wax beads for increased wax bead density. The filled jars are then transported to an in-container wax bead compression system where an automated plunging device compresses the wax beads. Jars are then transported by in-line conveyor to a wide conveyor. The jars are then filled at a liquid wax depositing station where the wax has been heated to its melting point and deposited into the jar to fill the void left by the in-container wax bead compression system. The filled candle is then cooled to solidification. The finished candle is then ready for packing, distribution, sale, and use.
These and other features and objects of the present invention will be more fully understood from the following detailed description which should be read in light of the accompanying drawings in which corresponding reference numerals refer to corresponding parts throughout the several views.
In the present invention, wax beads 12 are formed using any known processes. In one common process to form wax beads, the wax beads 12 are manufactured by mixing together various combustible waxes or wax-like materials. These materials are mixed and melted into a homogenous liquid state creating a molten “blend”. A molten blend is then sprayed into the air via nozzles with an orifice of 0.35 mm to 0.45 mm onto a rotating cold drum where small spheres (approximately 0.25 mm-1.25 mm in diameter) are formed. The small spheres are scraped off the cold drum into a vibrating pan and collected at a point of vacuum. The vacuum delivers small spheres to a filling hopper 14.
Referring to
An in-line conveyor 30 supported by conveyor stand 31 is used to deliver the jar 22 with prepped wick 24 to a jar feed screw device 32. The jar feed screw device 32 ensures the jars' position is centered relative to the delivery tube 23. During filling, the jars 22 are vibrated in an effort to promote wax bead 12 settling, thus, increasing wax bead density, without the use of external force. Upon fill completion the vibrating conveyor 30 terminates vibration and the filled jars 22 are moved forward by the jar feed screw 32 to the in-container wax bead compression system (ICWBCS) which is described below. The process is then repeated for additional jars.
The ICWBCS is comprised of two subsystems, a wick centering subsystem 42 and a wax bead compression subsystem 60.
Referring now to
Referring to
Referring to
While the foregoing invention has been described with reference to its preferred embodiments, various alterations and modifications will occur to those skilled in the art. All such alterations and modifications are intended to fall within the scope of the appended claims.
This application claims priority to U.S. Provisional Application No. 61/419,407, filed on Dec. 3, 2010, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61419407 | Dec 2010 | US |