The present disclosure relates generally to electronic display panels and/or other patterned devices and, more particularly, to display panels and/or other patterned devices having outer resistive trace(s) whose resistances correspond to dimensions or to the integrity of the display panel and/or other patterned device.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
A variety of electronic devices use electronic displays, such as liquid crystal displays (LCDs) and/or organic light emitting diode (OLED) displays, to display images, videos, and user interfaces. These electronic displays may be installed in the electronic devices to fit within an disclosure and around other electronic device components. If the dimensions of the display are not within a particular tolerance, the display could be too small (and thus loose) or too large (and thus not fit).
To ensure an electronic display is sized correctly, workers may use precise instruments such as calipers to measure the display after it has been fabricated, cut, and polished. Although generally effective, this technique is labor-intensive and prone to mistakes due to human error. Moreover, the tolerance of the size of the electronic display panels is constrained by the precision of the calipers and human workers, as well as the capabilities of the cutting and grinding tools to precisely cut and grind the display panels to the desired size. However, because consumers desire smaller electronic devices with increased functionality, device makers may desire tighter tolerances to reduce the amount of unused space within an electronic device.
In addition, electronic display panels may occasionally crack and break. Often, cracks may form in stages, beginning as microfractures that only eventually result in catastrophic display failure. For example, microfractures in a display panel may arise due to a flaw in the manufacturing process or due to being dropped or crushed during use. It may be difficult to detect when fractures or microfractures occur.
The various problems discussed above may also generally apply to other patterned devices. For example, touch screen panel size and precision may likewise be constrained by human workers and the capabilities of cutting and grinding tools. Flexible printed circuits (FPCs) may be occasionally mis-punched by die-punching machinery, and printed circuit boards (PCBs) may be drilled out to erroneous sizes. Though human workers can attempt to identify and alleviate such problems, doing so may be labor-intensive and error-prone. Additionally, touch screens, FPCs, and PCBs may crack or tear after manufacturing. It may also be difficult to identify when or where such cracks or tears occur in touch screen panels, FPCs, and PCBs, and/or other patterned devices.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
Embodiments of the present disclosure relate to systems and methods for manufacturing a display panel to specified dimensions using outer resistive trace(s) disposed on the display panel. Such a system, for example, may include resistance detection circuitry, a grinder, and data processing circuitry that controls the grinder. The resistance detection circuitry may detect a resistance of at least one resistive trace disposed around a display panel. The grinder may grind a first edge of the display panel such that at least part of the at least one resistive trace is grinded away as the first edge of the display panel is grinded. The data processing circuitry may control the grinder. Specifically, the data processing circuitry may cause the grinder to stop grinding the first edge of the display panel when the resistance of the at least one resistive trace increases to a first resistance value. This resistance value may correspond to a proper amount of grinding of the display panel to achieve certain specified dimensions. Additionally or alternatively, the system may cut and grind a touch sensor panel (e.g., a single-sided indium tin oxide (SITO) or double-sided indium tin oxide (DITO) touch sensor panel), or may cut a flexible printed circuit (FPC) or a printed circuit board (PCB), or any other suitable patterned device, in this manner.
Various refinements of the features noted above may exist in relation to various aspects of the present disclosure. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects of the present disclosure alone or in any combination. The brief summary presented above is intended only to familiarize the reader with certain aspects and contexts of embodiments of the present disclosure without limitation to the claimed subject matter.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments of the present disclosure will be described below. These described embodiments are only examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but may nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
The present disclosure relates to display panels and/or other suitable patterned devices having outer resistive trace(s) disposed near device edges. Such patterned devices may include display panels, as mentioned, but may also include touch sensor panels (e.g., single-sided indium tin oxide (SITO) or double-sided indium tin oxide (DITO) touch sensor panels), flexible printed circuits (FPCs), printed circuit boards (PCBs), or any other suitable patterned devices. Although the following disclosure describes the use of outer resistive traces with particular emphasis on display panels, it should be appreciated that outer resistive traces may be used with any suitable patterned devices. In other words, elements of the discussion below which relate to display panels should be understood to encompass any suitable patterned devices used in addition to, or in lieu of, display panels.
In the disclosure that follows, display panels are described which use a single outer resistive trace or multiple outer resistive traces, as desired. Thus, the present disclosure refers to “outer resistive trace(s)” or “at least one outer resistive trace” as acknowledging that one or more than one resistive trace may be employed. Since the resistance of a material deposited onto or into a display panel will vary depending on the geometry of the material, the outer resistive trace(s) may have a resistance that depends upon the dimensions of the outer resistive trace(s). For example, wider outer resistive trace(s) may have relatively lower resistances than thinner outer resistive trace(s). Thus, as the outer resistive trace(s) are partially polished away during a grinding process of manufacturing, the resistances of the outer resistive trace(s) will become higher.
From the relationship between the geometry of the outer resistive trace(s) and resistance, the resistance of the outer resistive trace(s) may be used to verify that a display panel has been cut and/or polished, or ground down, to specified dimensions. As used herein, the terms “ground,” “ground down,” “grinded,” and “polished” all generally refer to the effect of grinding to achieve more precise dimensions. In one example, the outer resistive trace(s) or segments of the outer resistive trace(s) may have specific resistances when the display panel has been properly polished, or ground down, to size. Likewise, the resistances of segments of the outer resistive trace(s) may have particular proportions when the display panel has been properly ground. In addition, the outer resistive trace(s) may enable a manner of cutting and grinding display panels to precise dimensions. By grinding the display panels while periodically monitoring the resistance of the outer resistive trace(s), the display panels may be ground down to precise specified dimensions.
In some cases, display panels need not be further polished or ground down, but may instead be recut to obtain more accurate and/or precise dimensions. Likewise, certain patterned devices may not typically undergo a polishing or grinding process (e.g., flexible printed circuits (FPCs)). Such patterned devices instead may be cut or recut to proper dimensions, if possible.
Additionally or alternatively, outer resistive trace(s) that remain around the edges of the display panel after the display panels have been cut and/or polished can be used to detect locations in the display panel where microfractures arise. For example, using time domain reflectance (TDR) or resistance detection circuitry, a location of a microfracture occurring along the edge of a display panel can be detected. Indeed, the location of a microfracture may be detected before a more serious display panel fracture occurs, allowing device manufacturers to identify potential problems before the devices reach the hands of users. Additionally or alternatively, an electronic device may monitor the integrity of a display panel installed within the electronic device, warning users when a microfracture arises before it results in a catastrophic failure.
A variety of electronic devices may incorporate the electronic displays and/or other patterned devices mentioned above. One example appears in a block diagram of
As shown in
The display 18 may be any suitable electronic display with a display panel incorporating the outer resistive trace(s) 20. For example, the display 18 may be a liquid crystal display (LCD) or an organic light emitting diode (OLED) display. In some embodiments, the display 18 may also serve as a touch-screen input device. For example, the display 18 may be a MultiTouch™ touch screen device that can detect multiple touches at once.
The outer resistive trace(s) 20 may be patterned along or near the outer edges of a display panel of the display 18. In some cases, the outer resistive trace(s) 20 will serve essentially no purpose in the operation of the electronic device 10 after manufacture. That is, the outer resistive trace(s) may remain, in a vestigial manner, after having been used previously during manufacturing to ensure the display 18 or the electronic device 10 has been manufactured properly. In these cases, the outer resistive trace(s) 20 may simply have resistances indicative that the display panel of the display 18 has the proper dimensions, but may not be otherwise used (any more) in the electronic device 10. In other cases, the outer resistive trace(s) 20 may be used to identify certain newly arising flaws in the electronic device 10 after manufacturing. Namely, by occasionally detecting changing resistances in the outer resistive trace(s) 20, the location and/or occurrence of a fracture or microfracture in the display 18 may be determined. Additionally or alternatively, time domain reflectance (TDR) may be used to identify the location and/or occurrence of a fracture or microfracture.
The input structures 22 of the electronic device 10 may enable a user to interact with the electronic device 10 (e.g., pressing a button to increase or decrease a volume level). The I/O interface 24 may enable electronic device 10 to interface with various other electronic devices, as may the network interfaces 26. The network interfaces 26 may include, for example, interfaces for a personal area network (PAN), such as a Bluetooth network, for a local area network (LAN), such as an 802.11x Wi-Fi network, and/or for a wide area network (WAN), such as a 3G or 4G cellular network. The motion-sensing circuitry 28 may include accelerometers, a gyroscope, and/or a compass to detect position changes of the electronic device 10.
The electronic device 10 may take the form of a computer or other type of electronic device. For example, the electronic device 10 in the form of a computer may be a model of a MacBook®, MacBook® Pro, MacBook Air®, iMac®, Mac® mini, or Mac Pro® available from Apple Inc.
The computer 30 may include the display 18. Thus, the dimensions of the display 18 may be relatively precisely cut and/or polished (e.g., to a tolerance of within 150 to 300 μm or smaller) based on manufacturing techniques involving the outer resistive trace(s) 20. Additionally or alternatively, the location and/or occurrence of fractures or microfractures of the display 18 may be detected using the outer resistive trace(s) 20.
The electronic device 10 may also take the form of a handheld device 34, as generally illustrated in
The handheld device 34 may include an enclosure 36 to protect interior components from physical damage and to shield them from electromagnetic interference. The enclosure 36 may surround the display 18, which may display indicator icons 38. The indicator icons 38 may indicate, among other things, a cellular signal strength, Bluetooth connection, and/or battery life. The I/O interfaces 24 may open through the enclosure 36 and may include, for example, a proprietary I/O port from Apple Inc. to connect to external devices. User input structures 40, 42, 44, and 46, in combination with the display 18, may allow a user to control the handheld device 34. A microphone 48 may obtain a user's voice for various voice-related features, and a speaker 50 may enable audio playback and/or certain phone capabilities. A headphone input 52 may provide a connection to external speakers and/or headphones.
Like the display 18 of the computer 30, the dimensions of the display 18 may be relatively precisely cut and/or polished (e.g., to a tolerance of within 150 to 300 μm) based on manufacturing techniques involving the outer resistive trace(s) 20. Additionally or alternatively, the location and/or occurrence of fractures or microfractures of the display 18 may be detected using the outer resistive trace(s) 20.
Regardless of the form taken by the electronic device 10, the display 18 must be manufactured before the display 18 can be installed within the electronic device 10. As will be discussed below, the manufacturing process of the display 18 may involve verifying a display panel of the electronic device 18 has the proper specified dimensions based on the outer resistive trace(s) 20 patterned around or near the edges of the display panel. Indeed, cutting and grinding each edge of the display panel may involve monitoring the resistance of the outer resistive trace(s) 20. In manufacturing the display 18, display panels may be fabricating in a batch and cut into individual, unground display panels of relatively coarse sizes. These unground display panels may then be ground down more finely to ultimate specified dimensions.
One example of an unground display panel 60 of the electronic display 18 appears in
In the example of
It should be appreciated that the outer resistive trace 20 may take any pattern and need not be a single trace of a particular width. Indeed, traces near different edges of the display panel 60 may have different sizes or may be arranged in a different pattern. Depending on the amount of circuitry to be patterned in the peripheral circuitry area 64 and the dead zone 62, a different amount of space may be available for the outer resistive trace(s) 20. The pattern and size of the outer resistive trace(s) 20 may vary accordingly.
When the outer resistive trace 20 is patterned at the same time that a component of the active display area 66 is patterned, the outer resistive trace 20 may have a precise distance apart from the active display area 66. In
To detect the resistance of the outer resistive trace 20, resistance detection circuitry 68 may be disposed in the peripheral circuitry area 64 of the display panel 60. The resistance detection circuitry 68 generally may detect an indication of the resistance of the outer resistive trace 20. The resistance detection circuitry 68 may be or may employ a component of other circuitry of the peripheral circuitry area 64, such as driver circuitry for the active display area 66. Thus, in some embodiments, data from the resistance detection circuitry 68 may be provided to other circuitry external to the display panel 60 (e.g., the processor(s) 12) may take place using the same channels as used by driver circuitry of the display panel 60.
The resistance detection circuitry 68 may include any suitable circuitry that can indicate a total resistance of the outer resistive trace 20, the resistance of certain segments of the outer resistive trace, and/or a relationship between certain segments of the outer resistive trace 20. For example, in some embodiments, the resistance detection circuitry 68 may employ a Wheatstone bridge circuit in the manner of
Although only one outer resistive trace 20 is shown in
In the example of
By contrast, in the example of
As mentioned above, the resistance detection circuitry 68 may include any suitable circuitry to enable a general detection of the resistance of the outer resistive trace(s) 20. In one example, a Wheatstone bridge circuit 470 may enable the detection of the entire resistance of the display panel 60, as generally illustrated in
To provide one example, each of the internal resistances Ri1, Ri2, and Ri4 may be individually equal to the sum of the resistances R1, R2, R3, and R4 expected to occur when the display panel 60 has been properly cut and/or polished. Power may be applied across driving contacts DRV1 and DRV2. If the bridge circuit is balanced (e.g., the ratio of Ri1:Ri4 is the same as Ri2:R1+R2+R3+R4), the voltages appearing at the SENSE1 and SENSE2 contacts should be the same. When each of the internal resistances Ri1, Ri2, and Ri4 are individually equal to the sum of the resistances R1, R2, R3, and R4 that occur when the display panel 60 has been properly cut and/or polished, equal voltages at the SENSE1 and SENSE2 contacts indicate that the display panel 60 has the proper dimensions. Any SENSE1 and SENSE2 voltage deviations may be used to determine any other values of the sum of the resistances R1, R2, R3, and R4 based on their relationship to the known resistances Ri1 Ri2, and Ri4. Based on the same principles, the known internal resistances Ri1, Ri2, and Ri4 may be any other suitable values. Because these internal resistance values are known, the voltages at the SENSE1 and SENSE2 contacts may vary in a particular way as the sum of the resistances R1, R2, R3, and R4 of the outer resistive trace(s) 20 varies.
Similarly,
In the system 78 of
The test circuitry 82 may determine the resistance of the outer resistive trace 20 in any suitable manner. For example, the test circuitry 82 may be substantially the same as the resistance detection circuitry 68 discussed in this disclosure. In one example, the test circuitry 82 may be an ohmmeter. Since the system 78 uses the external test circuitry 82, the display panel 60 may or may not include the built-in resistance detection circuitry 68 discussed above.
The test circuitry 82 may provide an indication of the resistance to an operator or to a data processing system 84. The operator or the data processing system 84 may indicate whether the display panel 80 has been cut and/or polished to the specified dimensions based on the measured resistance of the outer resistive trace 20. The data processing system 84 may represent any suitable data processing circuitry (e.g., processor(s), memory, storage, and so forth) as generally discussed above with reference to the electronic device 10. Thus, the data processing system 84 may carry out instructions stored on machine-readable media in generally the same manner.
In a similar example, a system 86 of
Using a system such as the system 78 of
Having cut and/or polished the display panel, the display panel may be tested to ensure the display panels have been properly cut and/or polished. To do so, the resistance of the outer resistive trace(s) of the display panel 60 may be ascertained (block 96). Ascertaining the resistance of the outer resistive traces 20 of the display panel may involve measuring or otherwise detecting an indication of the resistance of the outer resistive traces 20 using the test circuitry 82 and/or the resistance detection circuitry 68. When the resistance is determined to be less than a lower tolerance (block 98), it may be understood that the display panel 60 is too large (block 100). The display panel 60 then may be reground (block 95) if appropriate, such that the display panel 60 will be the proper size. Regrinding the display panel 60 may involve taking measures to ensure the various segments of the outer resistive traces 20 (e.g., R1 and R2) are properly proportioned. If grinding and/or regrinding is not an option, a display panel 60 determined to be too large at block 100 may instead be rejected.
If the resistance of the outer resistive trace(s) 20 is not below the lower tolerance (decision block 98), but rather is above an upper tolerance (decision block 102), the display panel 60 may be too small (block 104). Since a display panel 60 that has been ground to too small a size cannot be made to be larger, the display panel 60 may be rejected. If the resistance is above the lower tolerance (decision block 98) and beneath the upper tolerance (block 102), the display panel 60 may be understood to be within the tolerance (block 106). As such, the data processing circuitry 84 and/or an operator may indicate that the display panel 60 should be passed and used in the electronic display 18.
As generally noted above, it should be appreciated that the method discussed with reference to
Even if the display panel 60 has the right length (L) and width (W) measurements, it is possible that the active display area 66 may not be located the proper distance from each edge. Still, improper proportions of the display panel 60 can be detected by measuring the resistance of the outer resistive trace(s) 20. For example,
As can be seen in
When the display panel 60 has been properly cut and/or polished, as generally illustrated in
Accordingly, as shown by a flowchart 120 of
When the resistance of the first segment of the outer resistive trace(s) 20 (e.g., R1) is not approximately equal to the segment of the outer resistive trace(s) 20 on an opposite side of the display panel 60 (e.g., R2) (decision block 126), the display panel may be understood to be improperly proportioned (block 128). Thus, an operator or the data processing circuitry 84 may indicate that the display panel 60 should be rejected or reground, if possible. Otherwise, the display panel 60 may be understood to have been cut and/or polished to proper proportions (block 130). As such, an operator or the data processing circuitry 84 may indicate that the display panel 60 should be passed.
As discussed above with reference to
Turning to the example of
In particular, the circuit diagrams 150 of
when the voltage between R1 and R3 and the voltage between R4 and R2 are equal. Any deviation from this relationship can be used to determine the proportions
relative to
With specific reference to
The circuit diagram 160 of
Power may be applied across the driving contact DRV1 and DRV2, and the resulting voltages at nodes 70 and 76 sensed by the sense contact SENSE1 and SENSE2. In some embodiments, the driving contact DRV1 and DRV2 and sense contact SENSE1 and SENSE2 may be contact accessible to probes on the display panel 60. In other embodiments, these contacts may be connected to internal circuitry of the resistance detection circuitry 68. It should be appreciated that, when power is applied across the driving contacts DRV1 and DRV2, the voltages that arise at the sense contacts SENSE1 and SENSE2 relate to the relationship of the resistances R1, R2, R3, and R4. Specifically, as mentioned above, the voltage at SENSE1 (VSENSE1) relates to the voltage at SENSE2 (VSENSE2) in the same way that
relates to
The resistance detection circuitry 68 may employ circuitry commonly available on a display panel 60 to determine the proportions of the resistances R1, R2, R3, and R4 relative to one another. Indeed,
Similarly, as shown in
In some embodiments, the resistance detection circuitry 68 may supply a given digital value γ to both of the circuits 170 and 180 to produce output values OUT1 and OUT2. The values OUT1 and OUT2 may be output by the resistance detection circuitry 68 (e.g., to the data processing system 84) or may be further compared by the resistance detection circuitry 68. As shown in a circuit 190 of
to
when used in combination with the Wheatstone bridge circuits of
In some embodiments, the relationship between the SENSE1 voltage value and the SENSE2 voltage may be determined in an analog fashion, as generally illustrated by a circuit 200 of
Using the Wheatstone bridge circuits of
The flowchart 210 may begin when a voltage or current is applied through the driver contacts DRV1 and DRV2 (block 212). As mentioned above, the voltage or current may be applied internally (e.g., using circuitry commonly found in the driver circuitry of a display panel 60) or may be supplied by an external source (e.g., probes). As the voltage or current is being applied, the resulting voltages at the SENSE1 and SENSE2 contacts may be measured (block 214). In a similar manner, the resistance detection circuitry 68 may measure the voltages at the SENSE1 and SENSE2 contacts using the circuitry described above with reference to
When the values of the SENSE1 and SENSE2 voltages compare to one another according to a particular proportion, it may be understood that the display panel has been properly or improperly cut and/or polished. For example, the resistance values R1, R2, R3, and R4 of the segments of the outer resistive trace(s) 20 may be patterned such that, when the display panel 60 has been properly cut and/or polished, R1=R2=R3=R4. Under such conditions, the voltages at the SENSE1 and SENSE2 contact should be equal when the display panel 60 has been properly cut and/or polished. Alternatively, the outer resistive trace(s) 20 may be patterned such that, when the display panel 60 is properly cut and/or polished, the relationship between the resistances R1, R2, R3, and R4 takes any other suitable form.
In any case, if the relationship between the SENSE1 voltage and the SENSE2 voltage indicates the display panel 60 has not been properly cut and/or polished (decision block 216), the display panel 60 may be rejected or, if possible, reground (block 218). Otherwise, if the SENSE1 and SENSE2 voltages indicate that the display panel 60 has been properly cut and/or polished, the display panel 60 may be considered to have passed (block 220).
An alternative circuit 230, illustrated in
As illustrated by a flowchart 240 of
The display panel 60 size can be tested using this complete determination of the resistances R1, R2, R3, and R4, as seen in a flowchart 260 of
Having cut and/or polished the display panels, each of the display panels 60 may be tested to ensure the display panels 60 have been properly cut and/or polished. To do so, the resistance of the outer resistive trace(s) of the display panels 60 may be ascertained (block 266). Ascertaining the resistance of the outer resistive traces 20 of the display panel may involve measuring or otherwise detecting an indication of the resistance of the outer resistive traces 20 using the test circuitry 82 and/or the resistance detection circuitry 68. That is, the resistances R1, R2, R3, and R4 may be determined using the circuit of
If none of the resistances R1, R2, R3, and R4 of the outer resistive trace(s) 20 is below the lower tolerance (decision block 268), but at least one is above an upper tolerance (decision block 272), the display panel 60 may be too small (block 274). Since a display panel 60 that has been ground to too small a size cannot be made to be larger, the display panel 60 may be rejected. If the resistance is above the lower tolerance (decision block 268) and beneath the upper tolerance (block 272), the display panel 60 may be understood to be within the tolerance (block 276). As such, the data processing circuitry 84 and/or an operator may indicate that the display panel 60 should be passed and used in the electronic display 18.
In the examples above, the outer resistive trace(s) 20 were used to determine whether the display panel 60 or other patterned device had been cut and/or polished to specified dimensions. The outer resistive trace(s) 20 of a display panel 60 may also be used to properly cut and/or grind the display panel 60 to such specified dimensions in the first place. For example, a system 280 of
The test circuitry 284 may provide the value of the resistance to industrial control circuitry 286. It should be understood that the industrial control circuitry 286 may represent any suitable data processing circuitry (e.g., processor(s), memory, and so forth) that can control a grinder 288 based on the resistance determined by the test circuitry 284. That is, as will be described below, the industrial control circuitry 286 may control the grinder 288 to grind away edges of the display panel 60 until the resistance of the outer resistive trace(s) 20 and/or a segment of the outer resistive trace(s) 20 reaches specified values or proportions. In addition to, or in lieu of, the grinder 288, a cutting device may be employed to successively cut away slices of the display panel 60 or other patterned device.
For example, as illustrated by a flowchart 300 of
Grinding a display panel 60 may allow the dimensions of the display panel 60 to be relatively finely defined (e.g., to a tolerance smaller than around 300 μm, 250 μm, 200 μm, or 150 μm, or even smaller still). To more precisely grind the display panel 60 to desired specified dimensions, a first edge of the display panel 60 may be ground until the entire resistance of the outer resistive trace(s) 20 reaches a first target resistance (block 306). The first target resistance should be higher than the total resistance of the outer resistive trace(s) 20 before the outer resistive trace(s) 20 are ground. After grinding the first edge at block 306, the grinder 288 may grind a second edge of the display panel 60 until the total resistance of the outer resistive trace(s) 20 reaches a second target resistance (block 308). This second target resistance will be higher than the first target resistance because more of the outer resistive trace(s) 20 will have been ground away. Additionally or alternatively, the display panel 60 or other patterned device (e.g., touch sensor panel, FPC, PCB, etc.) may be successively cut away rather than grinded. That is, a cutting device may cut successively more of the display panel 60 or patterned device edge until the target resistances are substantially met. Although potentially less precise than grinding, cutting may be preferable to grinding for some patterned devices that may not contain glass (e.g., an FPC or a PCB).
The display panel 60 may continued to be ground in a similar way on other edges of the display panel 60. For example, the grinder 288 may grind a third edge of the display panel 60 until the total resistance of the outer resistive trace(s) 20 reaches a third target resistance (block 310), before grinding a fourth edge of the display panel 60 until the total resistance of the outer resistive trace(s) 20 reaches a fourth target resistance (block 312). As should be appreciated, the third target resistance may be higher than the first and second target resistances, and the fourth target resistance may be higher than the first, second, and third target resistances. If desired, the grinder 288 may continue to grind the outer edges in finer increments until finer target resistances have been reached.
Additionally or alternatively, the proportion of resistances of segments of the outer resistive trace(s) 20 can be used to indicate how much to grind away edges of the display panel 60. For example, a flowchart 320 of
In some embodiments, before grinding the edges of the display panel 60, a baseline proportion of the resistances of the segments of the outer resistive trace(s) 20 may be measured (block 326). For example, a Wheatstone bridge circuit such as those described above with reference to
Whether or not the baseline proportions of the display panel 60 are determined, the grinder 288 may grind a first edge of the display panel 60 until the proportion of the resistances R1, R2, R3, and R4 (e.g., the relative value of the SENSE1 and SENSE2 voltages) reaches a first target value (block 328). The first target value may represent a relationship between the resistances R1, R2, R3, and R4 that may occur when the first edge is ground down a proper amount. The first target value (as well as succeeding target values) may vary from display panel 60 to display panel 60 depending on the baseline proportions, if desired. It should be appreciated that grinding the first edge of the display panel 60 will entail grinding away at least part of a segment of the outer resistive trace(s), thereby changing the relationship between the resistance values R1, R2, R3, and R4.
This pattern may continue. That is, the grinder 288 may grind a second edge of the display panel 60 until the relationship between the segments of the outer resistive trace(s) 20 reach a second target value (block 330), grinding a third edge until a third target value is reached (block 332), and grinding a fourth edge until a fourth target value is reached (block 334). In certain embodiments, the edges of the display panel 60 may be ground down in a manner such that the second target value and the fourth target value are the same. For example, the second edge to be ground may be the opposite of the first, and the fourth edge to be ground may be the opposite of the third. Thus, if these opposite edges are ground equally and the initial, baseline proportion of the display panel 60 indicates equal resistances, grinding the second and fourth edges to the proper degree may cause the SENSE1 and SENSE2 voltages to be equal.
In another example, illustrated as a flowchart 340 of
In the flowchart 340 of
Alternatively, the grinder 288 may properly grind a display panel 60 to specified dimensions using multiple outer resistive trace(s) 20 patterned in a manner such as that shown in
Using a display panel 60 having outer resistive trace(s) 20 patterned in a manner such as that shown in
In particular, the grinder 288 may grind the first edge 362 of the display panel 60 until the resistance detection circuitry 68 detects that the resistance of the outermost of the outer resistive trace(s) 20 has exceeded a threshold (block 376). For example, the threshold of the outermost trace of the multiple outer resistive trace(s) 20 may be above some value indicating an infinite resistance. An infinite resistance would signify that there has been a complete break in at least part of the first, outermost edge of the multiple resistive trace(s) 20. The grinder 288 then may grind the second edge 364 of the display panel 60 until both the first, outmost edge of the multiple outer resistive trace(s) 20 and a second, next-outermost of the multiple outer resistive trace(s) 20 has been ground away (block 378). It may be appreciated that the resistance detection circuitry 68 may not detect any changes in the first, outermost of the outer resistive trace(s) 20 as it is ground away on the second edge 364, since the resistance of this first, outermost trace of the multiple outer resistive trace(s) 20 will already be infinite when the second edge 364 is ground down. However, because grinding the first edge 362 did not involve grinding away any part of the second, next-outermost of the multiple outer resistive trace(s) 20, the resistance detection circuitry 68 may detect when the resistance of this second, next-outermost of the multiple outer resistive trace(s) 20 exceeds a threshold (e.g., becomes substantially infinite). When the second, next-outermost of the multiple outer resistive trace(s) 20 exceeds the threshold, signifying it has been ground away, the grinder 288 may be controlled to stop grinding the second edge.
This pattern may also continue. The grinder 288 may grind the third edge 366 of the display panel 60 until a third-outermost of the outer resistive trace(s) 20 is ground away (block 380). The grinder 288 next may grind the fourth edge 368 of the display panel 60 until the fourth-outermost of the outer resistive trace(s) 20 is ground away (block 382).
Outer resistive trace(s) 20 can also be used to monitor the integrity of a display panel 60. That is, the outer resistive trace(s) 20 may enable the detection of fractures or microfractures along edges of the display panel 60. The resistance and/or continuity of the outer resistive trace(s) 20 may change when a fracture or microfracture arises. For example, the resistance may increase along a segment of the outer resistive trace(s) 20 when a fracture or microfracture disrupts the continuity of the segment. By monitoring the outer resistive trace(s) 20 for such changes in resistance, likely fractures or microfractures may be detected.
For example, the resistance of some segment of the outer resistive trace(s) 20 may change resistance at a time other than while the display panel 60 is being ground. Such an unexpected change in resistance may indicate that a fracture or microfracture has interrupted the continuity of the outer resistive trace(s) 20. Though a microfracture may not immediately produce a catastrophic failure of the electronic display 18, it could signal the likely future occurrence of a catastrophic display 18 failure. Moreover, the extent and/or location of the occurrence of such microfractures could indicate whether the display panel 60 is likely to suffer a catastrophic failure at some point in the future, as well as indicate when a manufacturing failure is occurring.
Thus, by monitoring the outer resistive trace(s) 20, locations of fractures or microfractures may be detected. For example, the resistance of one segment of the outer resistive trace(s) 20 may quickly and unexpectedly increase in resistance. This increase in resistance may signal that the edge of the display panel 60 where the segment appears has been at least partially broken. Thus, when a fracture or microfracture occurs, which may produce a discontinuity near the edge of the display panel 60 that increases the resistance of the outer resistive trace(s) 20 at that point, the resistance detection circuitry 68 may be able to detect the change in resistance. By noting along which segment(s) the increase in resistance occurred, the location(s) of the likely fracture or microfracture in the display 60 can be determined.
Additionally or alternatively, locations of fractures or microfractures may be identified through time domain reflectance (TDR), as generally illustrated by
The TDR circuitry 392 may apply an AC signal over the outer resistive trace(s) 20A and/or 20B. Discontinuities in the outer resistive trace(s) 20A and/or 20B may become apparent as portions of the AC signal are reflected back to the TDR circuitry 392. Thus, the TDR circuitry 392 may identify the location(s) where discontinuities in the outer resistive trace(s) 20A and/or 20B arrive. Although the outer resistive trace(s) 20 are illustrated as single top and bottom outer resistive traces in
Time domain reflection (TDR) may allow a system 400, shown in
Additionally or alternatively, the display panel 60 may not include the TDR circuitry 382 patterned on the display panel 60. Instead, in a system 410 shown in
Quality control during the manufacture of the display panel 60 may be maintained by detecting the location and/or extent of microfractures in the display panel 60. For example, as illustrated by a flowchart 420 of
The flowchart 420 may begin when a display panel 60 having outer resistive trace(s) 20 is obtained and connected to display panel integrity monitoring 402 (block 422). The TDR circuitry 392 or TDR test circuitry 412 may transmit an AC signal through the outer resistive trace(s) 20 (block 424). Based on the amount of reflectance occurring when the signal is sent through the outer resistive trace(s) 20, the display panel integrity monitoring 402 may detect any location(s) of fractures or microfractures that may be found on the display panel 60 (block 426). Depending on the location(s) and/or the extent of the microfractures on the display panel 60, the display panel integrity monitoring 402 and/or a human operator may decide to reject or pass the display panel 60 (block 428). For example, the likelihood of catastrophic failure of the display panel 60 given the location(s) and/or extent of microfractures may be correlated to statistical experimental data and/or computer modeling data. Thus, whether the display panel 60 is permitted to be used in an electronic device 10 sold to a user may depend on the likelihood that, given the location(s) and/or extent of microfractures, the display panel 60 is unlikely to suffer a catastrophic failure due to these microfractures.
Systems that detect the resistance of different segments of the outer resistive trace(s) 20 may also be used to detect the location(s) and/or extent of fractures or microfractures along edges of a display panel 60. For example, a flowchart 430 of
The flowchart 430 may begin when measurements of the resistance of segments of the outer resistive trace(s) 20 and/or a proportion of the resistance of the outer resistive trace(s) 20 are detected over at least two different times using any suitable technique (block 432). For example, the resistance of segments of the outer resistive trace(s) 20 may be measured using resistance detection circuitry 68 having circuitry such as that illustrated in
If the resistance of a segment of the outer resistive trace(s) 20 or the proportion of the resistance of the segments has changed over time, this change could be due to the occurrence of a fracture or microfracture. Thus, when no changes have occurred (decision block 434), data processing circuitry such as the data processing system 84, display panel integrity monitoring 402 (e.g., the processor(s) 12 of an electronic device 10), and/or human operators may identify that no fractures or microfractures are likely to have occurred (block 436). On the other hand, when changes have occurred (decision block 434), a fracture or microfracture may be deemed to have occurred (block 438). In such a case, the fracture or microfracture may be understood to have occurred at the segment of the outer resistive trace(s) 20 where resistance has changed. The segment may be identified based on a specific measurement of the resistance of the segment or from a change in the proportion of the resistances.
Microfractures that could ultimately result in catastrophic failure are believed to arise in some cases from errors in the manufacturing process of an electronic device 10 that includes a display 18 with a display panel 60. Thus, as illustrated by a flowchart 440 of
The flowchart 440 may begin when a display panel 60 is used in an electronic display 18 that is installed into an electronic device 10 (block 442). At stages throughout the manufacturing process of the electronic device 10, location(s) of microfractures in the display panel 60 of the display 18 may be tested (block 444). For example, TDR circuitry 392 and/or the TDR test circuitry 412 may use time domain reflectance (TDR) to determine the location(s) and/or extent of microfractures. Additionally or alternatively, the resistance of various segments of the outer resistive trace(s) 20 (R1, R2, R3, and/or R4) may be monitored and/or the relationship between the resistances of the segments may be monitored for changes. Changes in the resistance of the outer resistive trace(s) 20 occurring during the manufacturing process of an electronic device 10 may indicate that a microfracture has occurred in the display panel 60. That is, the segment of the outer resistive trace(s) 20 that increases at some point in the manufacturing process may be understood to indicate the presence of a new fracture or microfracture in the display panel 60.
Over time, the display panel integrity monitoring 402, the data processing system 84, and/or human operators may record at which stages or at which manufacturing lines (e.g., assembly lines or factories) the microfractures tend to occur in the display panels 60 (block 446). Data relating to the occurrence of microfractures in display panels 60 during the manufacturing process may be used to identify stages and/or manufacturing lines that are particularly problematic to enable an appropriate remedy.
Microfractures may also occur from events happening after an electronic device 10 has been manufactured and sold to a user. Determining how, in the hands of a user, microfractures and/or catastrophic display panel 60 failures occur may be particularly useful for improving the design and/or manufacturing process of the electronic device 10. One manner of gaining such information is shown in a flowchart 450 of
The same detection of microfractures described above with reference to the flowchart 440 of
The processor(s) 12 of the electronic device 10 may determine whether the location(s) of the microfractures and/or the extent of the microfractures indicate the likely imminent failure of the display panel 60 (decision block 464). For example, the likelihood of imminent catastrophic failure of the display panel 60 given the location(s) and/or extent of microfractures may be correlated to statistical experimental data and/or computer modeling data. In one case, given the location(s) and/or extent of microfractures, the display panel 60 may be unlikely to suffer a catastrophic failure due to these microfractures. If so, the electronic device 10 may continue to occasionally detect the location(s) of microfractures or the extent of such microfractures, as discussed above with reference to block 462. Otherwise, if given the location(s) and/or extent of microfractures, the display panel 60 is likely to suffer a catastrophic failure (decision block 464), the electronic device 10 may issue some form of user prompt indicating imminent failure of the display panel 60 is likely (block 466). For example, a prompt may urge the user to repair the display 18 before the display panel 60 suffers a catastrophic failure.
Technical effects of the present disclosure include, among other things, efficient and/or less labor-intensive display panel size verification. Rather than require manual testing with calipers, a display panel size may be tested by measuring the resistance of outer resistive trace(s) at or near the edges of the display panel. This process may also be manual but more quickly performed, or this process may be automated. The outer resistive trace(s) of a display panel may also be used to more efficiently and/or more precisely grind the display panel to size. Moreover, monitoring the occurrence of discontinuities in the outer resistive trace(s) of a display panel (e.g., via time domain reflectance or changes in resistance) may enable the discovery of fractures or microfractures. The detection of fractures or microfractures in display panels may improve display or device manufacturing processes, as well as enable users to be alerted before a catastrophic display failure occurs.
The specific embodiments described above have been shown by way of example, and it should be understood that these embodiments may be susceptible to various modifications and alternative forms. It should be further understood that the claims are not intended to be limited to the particular forms disclosed, but rather to cover all modifications, equivalents, and alternatives falling within the spirit and scope of this disclosure.
Number | Date | Country | |
---|---|---|---|
61542091 | Sep 2011 | US |