This is generally related to fabrication of photovoltaic structures. More specifically, this is related to a system and method for mass fabrication of high-efficiency photovoltaic structures.
“Solar cell” or “cell” is a photovoltaic structure capable of converting light into electricity. A cell may have any size and any shape, and may be created from a variety of materials. For example, a solar cell may be a photovoltaic structure fabricated on a silicon wafer or one or more thin films on a substrate material (e.g., glass, plastic, or any other material capable of supporting the photovoltaic structure), or a combination thereof.
A “photovoltaic structure” can refer to a solar cell, a segment, or a solar cell strip. A photovoltaic structure is not limited to a device fabricated by a particular method. For example, a photovoltaic structure can be a crystalline silicon-based solar cell, a thin film solar cell, an amorphous silicon-based solar cell, a poly-crystalline silicon-based solar cell, or a strip thereof.
Large-scale production of high-efficiency solar cells plays an important role in ensuring the success of solar power over conventional energy sources that are based on fossil fuels. However, most of the current processes for manufacturing high-efficiency solar cells are not optimized for mass production. For example, many laboratory-made solar cells demonstrate superior performance, but the fabrication process for those solar cells cannot be applied in a mass production environment.
It has been shown that double-junction heterojunction solar cells can demonstrate higher efficiency than single-junction solar cells. However, mass production of double-junction solar cells can be challenging, because the double-junction structure can require excellent surface passivation on both surfaces of the crystalline Si substrates, whereas the current fabrication process often leads to contamination on one side of the solar cells.
One embodiment of the invention can provide a system for fabricating a photovoltaic structure. During fabrication, the system can form a sacrificial layer on a first side of a Si substrate; load the Si substrate into a chemical vapor deposition tool, with the sacrificial layer in contact with a wafer carrier; and form a first doped Si layer on a second side of the Si substrate. The system subsequently can remove the sacrificial layer; load the Si substrate into a chemical vapor deposition tool, with the first doped Si layer facing a wafer carrier; and form a second doped Si layer on the first side of the Si substrate.
In a variation of the embodiment, forming the sacrificial layer can involve one or more operations selected from a group consisting of: wet oxidation to form an oxide layer, thermal oxidation to form an oxide layer, low-pressure radical oxidation to form an oxide layer, atomic layer deposition to form an oxide layer or a semiconductor layer, and chemical-vapor deposition to form an oxide layer or a semiconductor layer.
In a variation of the embodiment, a thickness of the sacrificial layer can be between 1 and 50 angstroms.
In a variation of the embodiment, the system can perform a quick dump rinsing operation prior to removing the sacrificial layer.
In a variation of the embodiment, the sacrificial layer can include an oxide layer, and removing the sacrificial layer can involve performing a diluted hydrofluoric acid dip.
In a further variation, a concentration of the diluted hydrofluoric acid can be between 0.1 and 5%.
In a variation of the embodiment, the system can form a passivation layer positioned between the Si substrate and the first doped Si layer, and the passivation layer can include one or more materials selected from a group consisting of: aluminum oxide, amorphous Si, amorphous SiC, and intrinsic hydrogenated amorphous Si incorporated with oxygen.
In a variation of the embodiment, the system can form a passivation layer positioned between the Si substrate and the second doped Si layer, and the passivation layer can include one or more materials selected from a group consisting of: aluminum oxide, amorphous Si, amorphous SiC, and intrinsic hydrogenated amorphous Si incorporated with oxygen.
In a variation of the embodiment, the first doped Si layer can have a graded doping profile, and a doping concentration of the first doped Si layer near a surface away from the Si substrate can be greater than 3×1019/cm3.
In a variation of the embodiment, the system can perform one or more operations selected from a group consisting of: forming a transparent conductive oxide layer on the first doped Si layer and forming a transparent conductive oxide layer on the second doped Si layer.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
Embodiments of the present invention can provide a system and method for fabricating high-efficiency photovoltaic structures. To ensure a high quality surface on both sides of a photovoltaic structure, the fabrication process can start with oxidation on both sides of a crystalline Si wafer, followed by formation of a semiconductor layer stack on one side. The semiconductor layer stack typically can include a heavily doped layer. While forming the heavily doped layer on one side, the opposite side of the photovoltaic structure can experience a counter doping effect, i.e., the opposite side can be contaminated by the dopants. To reduce the interface defects on the opposite side, after formation of the first layer stack, the photovoltaic structure can be submerged into diluted hydrofluoric acid (HF) to remove the previously formed oxide layer (which can act as a sacrificial layer) on the opposite side. The contaminations on the opposite side can then be removed along with the sacrificial layer. The photovoltaic structure can be further rinsed to remove large particles. The fabrication process can continue with forming the layer stack on the opposite side.
In this disclosure, the side of the photovoltaic structure that first undergoes fabrication processes can be referred to as the “front side” of the photovoltaic structure, and the other side that subsequently undergoes fabrication processes can be referred to as the “back side.” Both the “front side” and the “back side” are relative terms, and can be used to refer to any side of the photovoltaic structure.
Double-Junction Photovoltaic Structures and Fabrication Processes
Also in
As one can see from
Good passivation on one side of a Si wafer has been achieved by the CMOS industry. The fabrication process for CMOS transistors can control the defects on one side of the Si wafer, with the opposite side going through various handling and contacts. Because the CMOS structure is located on one side of the wafer, defects on the other side do not affect device yield and performance. This is not the case for the fabrication of photovoltaic structures. A typical fabrication process for photovoltaic structure 100 can include deposition of emitter layer 106 on one side of substrate 102, followed by the deposition of surface-field layer 104 on the opposite side of substrate 102. Because material deposition on one side of substrate 102 may contaminate the other side (e.g., the counter doping effect), it can be difficult to maintain low Dit on both sides of substrate 102. Furthermore, large-scale, automated fabrication processes can require that the substrates be carried from one processing station to the next by conveyors, and contacts between the substrates and the conveyors may also contaminate or damage the surface of the substrates.
For example, during the deposition of boron-doped amorphous Si, boron-containing radicals can attach to wafer carriers, and eventually attach to the back side of any subsequent substrates loaded onto the wafer carriers. A detailed, microscopy-based failure analysis can also find organic and amorphous Si particles on the substrate. Although cleaning procedures can reduce the number of attached particles, cleaning the wafer carriers after each round of deposition can significantly reduce the system throughput, and may not be able to eliminate all particles. Moreover, “belt mark” related defects can also be observed on substrates carried by conveyer systems. These surface defects can lead to various performance degradations, such as smaller maximum output power (Pmax) and lower fill factors, of the photovoltaic structures. These performance degradations can be sensitive to processing conditions (e.g., time since the last wafer carrier cleaning), making it difficult to predict manufacture yield. In extreme cases, the fabricated solar panel may include a “hot” cell due to its lower reverse breakdown voltage or instant shunting of a particular cell.
One approach for removing the surface defects is to perform chemical cleaning after material deposition on one side of the substrate. However, standard chemical cleaning processes (e.g., RCA-1 clean and RCA-2 clean) can damage, even completely remove, the previously deposited layer stack. To solve this problem, embodiments of the present invention provide a novel fabrication process that can include an additional step of oxidation on both sides of the substrate prior to layer deposition and a bath in a diluted HF solution after the layer deposition on one side. This fabrication process can be suitable for large-scale, automated fabrications of high efficiency photovoltaic structures.
In operation 2B, a thin layer of oxide can be formed on both the front and back surfaces of Si substrate 200 to form front and back oxide layers 202 and 204, respectively. In some embodiments, only the back surface of Si substrate 200 can be covered with a thin layer of oxide. Various oxidation techniques can be used to form the oxide layers, including, but not limited to: wet oxidation using oxygen or ozone bubbling at low temperatures, dry oxidation at relatively high temperatures (around or below 400° C.) (also known as thermal oxidation), low-pressure radical oxidation, atomic layer deposition (ALD) of a SiO2 layer, plasma-enhanced chemical-vapor deposition (PECVD) of a SiO2 layer, etc. The oxide layers can also include native oxide. The thickness of oxide layers 202 and 204 can be between 1 and 50 angstroms, preferably between 1 and 10 angstroms. Oxide layers 202 and 204 should be thick enough (at least between 1 and 2 monolayers) to serve their purposes, e.g., passivation or functioning as a sacrificial layer.
In an optional operation 2C, front oxide layer 202 can be removed using plasma bombardment or chemical etching. This operation is optional, because front oxide layer 202 can also be used for passivation purposes after atomic hydrogen treatment.
In operation 2D, thin passivation layer 206 can be deposited on the front surface of substrate 200. Passivation layer 206 can be formed using various materials, including but not limited to: aluminum oxide, a-Si, a-SiC, intrinsic hydrogenated a-Si films incorporated with oxygen (i a-Si(H,O):H). Various deposition techniques can be used to deposit passivation layer 206, including, but not limited to: thermal oxidation, atomic layer deposition, low-pressure radical oxidation, PECVD, hot wire CVD, etc. The thickness of passivation layer 206 can be between 1 and 50 angstroms.
In operation 2E, emitter layer 208 can be deposited on passivation layer 206. The doping type of emitter layer 208 can be opposite to that of substrate 200. For n-type doped substrate, emitter layer 208 can be p-type doped. Emitter layer 208 can include a-Si or hydrogenated a-Si (a-Si:H). The thickness of emitter layer 208 can be between 2 and 50 nm, preferably between 4 and 8 nm. In some embodiments, emitter layer 208 can have a graded doping profile. The doping profile of emitter layer 206 can be optimized to ensure good ohmic contact, minimum light absorption, and a large built-in electrical field. In some embodiments, the doping concentration of emitter layer 208 can range from 1×1015/cm3 to 5×1020/cm3. In further embodiments, the region within emitter layer 208 that is adjacent to passivation layer 206 can have a lower doping concentration, and the region that is away from passivation layer 206 can have a higher doping concentration. The lower doping concentration at the interface between passivation layer 206 and emitter layer 208 can ensure minimum interface defect density, and the higher concentration on the other side can prevent emitter layer depletion. In one embodiment, the doping concentration of emitter layer 208 at the surface away from the passivation layer can be greater than 3×1019/cm3 to ensure that emitter layer 208 will not be damaged by a subsequent submergence in an HF solution. The crystal structure of emitter layer 208 can either be nanocrystalline, which can enable higher carrier mobility, or protocrystalline, which can enable good absorption in the ultra-violet (UV) wavelength range and good transmission in the infrared (IR) wavelength range. Both crystalline structures need to preserve the large bandgap of the a-Si. For higher film conductivity and better moisture barrier performance, the finishing surface of emitter layer 208 (the surface away from passivation layer 206) should have a nanocrystalline structure. Various deposition techniques can be used to deposit emitter layer 206, including, but not limited to: atomic layer deposition, PECVD, hot wire CVD, etc. In some embodiments, the deposition of thin passivation layer 206 and emitter layer 208 can be performed using the same deposition tool. This approach can significantly improve the system throughput, because there is no need for pumping down the vacuum chamber between the two depositions.
After the formation of the p-type layer stack (which can include passivation layer 206 and p-type emitter layer 208) on the front surface of substrate 200, the photovoltaic structure needs to be transferred out of the deposition tool for further processing. As a result, the back surface of substrate 200 may experience various handling related damages, such as “belt mark” related defects. For a system that implements a PECVD tool for material deposition, there is also a chance of buildup of charged particles at the back surface of substrate 200, which can be the result of plasma ignition. Moreover, boron-containing radicals may also attach to the back surface of substrate 200, causing counter doping. Without a countermeasure, all these damages/defects can increase the interface defect density (Dit) at the back surface of substrate 200, which can further lead to a low fill factor of the fabricated devices and unstable process yield.
Some of the large particles (e.g., a-Si or organic particles) attached to the photovoltaic structure can be removed using physical forces. In operation 2F, the semi-finished photovoltaic structure (including substrate 200, passivation layer 206, emitter layer 208, and back side oxide layer 204) can go through a few cycles of quick dump rinsing (QDR), which can physically remove large particles on surfaces of the photovoltaic structure. However, other defects (e.g., counter doping and belt marks) cannot be removed by this operation.
To further reduce the Dit at the back surface of substrate 200, in some embodiments, back side oxide layer 204 can be removed in operation 2G. More specifically, in operation 2G, the semi-finished photovoltaic structure, including substrate 200, passivation layer 206, emitter layer 208, and back side oxide layer 204, can be dipped into a diluted hydrofluoric acid (HF) solution. The HF solution can have a concentration ranging from 0.1 to 5%, preferably between 1 and 2%. The photovoltaic structure can be submerged into the diluted HF solution for a short time duration that can be between 1 and 5 minutes, preferably between 1 and 2 minutes. This operation can also be referred to as a diluted HF dip. In one embodiment, the photovoltaic structure can be submerged into a 1% HF solution for 2 minutes. The diluted HF dip can remove back side oxide layer 204, which can function as a sacrificial layer. Consequently, all defects attached to the back side of the photovoltaic structure (e.g., boron related radicals and belt marks) can be removed along with back side oxide layer 204. Because the etch rate of heavily p-type doped c-Si, doped or intrinsic a-Si, or SiO is very low in diluted HF solutions, this diluted HF dip will not damage the previously deposited p-type layer stack (i.e., passivation layer 206 and emitter layer 208). In addition to HF, other etchants, such as an Ammonium Fluoride (NH4F) solution or a buffered HF solution, can also be used to etch off back side oxide layer 204.
Operation 2G can further include a cleaning process for removing residual HF acid. In some embodiments, the cleaning process can include rinsing the photovoltaic structure using room temperature deionized (DI) water by submerging and then pulling the photovoltaic structure in and out of a DI water bath. In further embodiments, the pulling is performed in slow motion to leave the front surface of the photovoltaic structure water free, whereas the opposite surface can remain hydrophilic. To completely dry the photovoltaic structure, operation 2G can also include a warm N2 blow dry process.
After operation 2G, both sides of the photovoltaic structure can be clean and defect free. In some embodiments, an optional oxidation process (not shown in
In operation 2H, back side passivation layer 210 can be formed on the back surface of substrate 200. Back side passivation layer 210 can be similar to passivation layer 206, and operation 2H can be similar to operation 2D. When depositing back side passivation layer 210, the photovoltaic structure needs to be flipped over, with emitter layer 208 in contact with the wafer carrier. Because emitter layer 208 can be relatively thick and the exposed surface of emitter layer 208 can be heavily doped with dopants (e.g., boron ions), this side of the photovoltaic structure is not sensitive to surface contact. For example, transporting the photovoltaic structure using a conveyor belt may not generate belt marks on the surface of emitter layer 208.
In operation 2I, surface field layer 212 can be formed on back side passivation layer 210. Surface field layer 212 can have the same doping type as that of substrate 200. For an n-type doped substrate, surface field layer 212 can also be n-type doped. Other than the conductive doping type, surface field layer 212 can be similar to emitter layer 208 by having similar material make up, thickness, doping profile, and crystal structure. For example, like emitter layer 208, surface field layer 212 can include a-Si or a-Si:H, and can have a thickness between 2 and 50 nm, preferably between 4 and 8 nm. In some embodiments, the doping concentration of surface field layer 212 can range from 1×1015/cm3 to 5×1020/cm3. In further embodiments, the region within surface field layer 212 that is adjacent to back side passivation layer 210 can have a lower doping concentration, and the region that is away from back side passivation layer 210 can have a higher doping concentration. Various deposition techniques can be used to deposit surface field layer 212, including, but not limited to: atomic layer deposition, PECVD, hot wire CVD, etc. In some embodiments, the deposition of back side passivation layer 210 and surface field layer 212 can be performed using the same deposition tool.
In operation 2J, front-side electrode 214 and back-side electrode 216 can be formed on the surface of emitter layer 208 and surface field layer 212, respectively. In some embodiments, front-side electrode 214 and back-side electrode 216 each can include a Cu grid formed using various metallization techniques, including, but not limited to: electroless plating, electroplating, sputtering, and evaporation. In further embodiments, the Cu grid can include a Cu seed layer that can be deposited onto emitter layer 208 or surface field layer 212 using a physical vapor deposition (PVD) technique, such as sputtering and evaporation, and an electroplated bulk Cu layer. The bulk Cu layer can be at least tens of microns thick (e.g., greater than 30 microns) to ensure low series resistivity.
In operation 3A, substrate 300 can be prepared using a process similar to that of operation 2A.
In operation 3B, front oxide layer 302 and back oxide layer 304 can be formed on both surfaces of substrate 300, using a process similar to that of operation 2B.
In operation 3C, the front side layer stack, which can include emitter layer 306 and TCO layer 308, can be formed on the surface of front oxide layer 302. If substrate 300 is n-type doped, this layer stack can also be called the p-side layer stack because it includes p-type doped emitter layer 306. The process for forming emitter layer 306 can be similar to that of operation 2E. Because front side oxide layer 302 is not removed during fabrication, there may not be a need to deposit a passivation layer. Front side oxide layer 302 can function as a passivation layer, as well as a tunneling layer. TCO layer 308 can be formed using a physical vapor deposition (PVD) process, such as sputtering or evaporation. Materials used to form TCO layer 308 can include, but are not limited to: tungsten doped indium oxide (IWO), indium-tin-oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), tin-oxide (SnOx), aluminum doped zinc-oxide (ZnO:Al or AZO), gallium doped zinc-oxide (ZnO:Ga), and their combinations.
After the formation of the p-side layer stack, the semi-finished photovoltaic structure can go through a QDR process (operation 3D) to remove loose particles resulting from the previous CVD and PVD processes. Operation 3D can be similar to operation 2F.
In operation 3E, back side oxide layer 304 can be removed using a process similar to that of operation 2G. Removing back side oxide layer 304 can remove the various defects that are attached to or on the surface of back side oxide layer 304.
In operation 3F, back side passivation layer 310 can be deposited on the back surface of substrate 300, using a process similar to operation 2D or 2H. Alternatively, thin oxide layer 310 can be formed on the back surface of substrate 300, acting as a passivation/tunneling layer.
In operation 3G, the back side layer stack, which can include surface field layer 312 and TCO layer 314, can be formed on the surface of back side passivation layer 310. If substrate 300 is n-type doped, this layer stack can also be called the n-side layer stack, because it includes n-type doped surface field layer 312. The process for forming surface field layer 312 can be similar to that of operation 2I. The process and materials used to form TCO layer 314 can be similar to those used to form TCO layer 308.
In operation 3H, front and back electrodes 316 and 318 can be formed on the surface of TCO layers 308 and 314, respectively, using a process similar to that of operation 2J.
Fabrication System
This modified fabrication process can be compatible with various large-scale, automated photovoltaic structure fabrication systems. In general, this process can be used to fabricate a wide range of photovoltaic structures that have contact on both sides.
In
The substrates emerging from wet station 402 can have a thin oxide layer formed on both the front and back surfaces, and can be loaded onto a wafer carrier with one side up. The wafer carrier can then be sent to CVD tool 404 (as indicated by hollow arrow 408) for material deposition. In some embodiments, a wafer carrier can carry over 100 Si wafers (e.g., 5-inch or 6-inch square or pseudo-square Si wafers) to allow simultaneous material deposition on these wafers. The wafer carrier can be a graphite or carbon fiber composite (CFC) carrier coated with a low-porosity material, such as pyrolytic carbon or silicon carbide. The wafer carrier may also include a non-flat surface or a partially carved-out structure at the bottom of the wafer-holding pockets.
In some embodiments, CVD tool 404 can be configured to optionally remove the exposed oxide layer and then sequentially deposit a passivation layer and an emitter layer. In alternative embodiments, CVD tool 404 can be configured to deposit an emitter layer directly on the exposed oxide layer. If the wet oxide layer is maintained, to minimize defects, wafers transported from wet station 402 to CVD tool 404 can be kept in a substantially airtight enclosure to prevent possible environmental damage to the wet oxide layer before these wafers were loaded into the CVD chamber. After the first round of fabrication, photovoltaic structures emerging from CVD tool 404 can have a passivation layer and an emitter layer on one side (e.g., the p-side).
PVD tool 406 can be optional. It can be possible to print metal electrodes directly on the emitter layer. On the other hand, PVD tool 406 can be used to deposit a TCO layer on the emitter to enhance the energy conversion efficiency of the photovoltaic structures. In addition, high-efficiency photovoltaic structures often include electroplated Cu grids. To ensure good adhesion between electroplated Cu grids and the TCO layer, PVD tool 406 can also deposit one or more metallic layers on the TCO layer. Photovoltaic structures emerging from CVD tool 404 can be transported, sometimes via an automated conveyor system, to PVD tool 406 (as indicated by hollow arrow 410).
In some embodiments, PVD tool 406 can be configured to sequentially deposit the TCO layer and the one or more metallic layers, without breaking vacuum. For example, PVD tool 406 can include a multiple-target sputtering tool (e.g., an RF magnetron sputtering tool). The multiple targets inside the deposition chamber can include an ITO target and one or more metallic targets. In some embodiments, the targets can include rotary targets coupled to periodically tuned capacitors. After the first round of fabrication, photovoltaic structures emerging from PVD tool 406 can now have a complete photovoltaic layer stack (which can include the passivation layer, the emitter layer, the TCO layer, and the optional metallic layers) on one side (e.g., the p-side). In other words, fabrication steps on one side of the photovoltaic structures, except for metallization, are completed, and the photovoltaic structures are ready for fabrication steps on the other side (e.g., the n-side).
Upon the completion of the p-side fabrication, the semi-finished photovoltaic structures can be flipped over, with the p-side in contact with the automated conveyor system, and be transported back to wet station 402 (as indicated by hollow arrow 412) for the removal of the defects on the back side. At this stage, the p-side of the photovoltaic structures can be covered with heavily doped Si and/or TCO layer, and hence is not sensitive to environmental factors, such as moisture or physical contacts. At wet station 402, the photovoltaic structures can go through a QDR process to remove loose particles. The photovoltaic structures can further be submerged into a diluted HF solution to remove the sacrificial layer (e.g., the thin oxide layer) on the back side. After the QDR process and the diluted HF dip, the back side (e.g., the n-side) of the photovoltaic structures can be clean and defect free. Wet station 402 can optionally re-oxidize the back side of the photovoltaic structures. Photovoltaic structures emerging from wet station 402 for the second time can be dried (e.g., by using a warm N2 blow dry process) and transported with one side (e.g., the p-side) down to CVD tool 404 (as indicated by hollow arrow 408) for the second time.
If the n-side of the photovoltaic structures has been re-oxidized, CVD tool 404 can simply deposit a surface field layer (e.g., an n-type doped Si layer) on the oxide layer. Otherwise, CVD tool 404 can sequentially deposit a passivation/tunneling layer (e.g., a thin oxide layer) and the surface field layer on the n-side of the photovoltaic structures. Photovoltaic structures emerging from CVD tool 404 for the second time can again be transported to PVD tool 406 (as indicated by hollow arrow 410) for the deposition of the n-side TCO layer and one or more metallic layers to complete the n-side layer stack. Subsequently, the photovoltaic structures can be sent to a plating tool (as indicated by hollow arrow 414). The plating tool (not shown in
Variations to the fabrication system shown in
In
After the QDR process and the diluted HF dip at wet station 422, Si wafers with a clean back surface can be sent to CVD tool 424 for the second time, as indicated by hollow arrow 428. CVD tool 424 can deposit a passivation layer and a surface field layer on the back surface of the Si wafers to complete the n-side stack.
Si wafers with both the p-side stack and the n-side stack can then be transported to PVD tool 426 (as indicated by hollow arrow 432) for the deposition of the TCO layers and/or the metallic layers. Because both sides of the Si wafers are protected with heavily doped layers, it doesn't matter which side of the Si wafers are now in contact with the conveyor. PVD tool 426 can be configured to deposit the TCO and/or metallic layers on one side of the Si wafers at a time or it can be configured to deposit TCO and/or metallic layers simultaneously on both sides of the Si wafers. In the latter case, specially designed substrate holders that can be substantially vertically oriented may be needed to hold the Si wafers.
Similar to what's shown in
In the examples shown in
In
In the examples shown in
Moreover, in the example shown in
In general, compared with conventional fabrication methods for double-junction photovoltaic structures, the approaches provided by embodiments of the present invention include simple cleaning (e.g., QDR) and etching (e.g., removing the sacrificial layer) operations. These additional operations do not require complicated equipment setup, and can be compatible with most existing large-scale fabrication systems. In addition, they can provide significant improvement in performance and yield of the fabricated photovoltaic structures.
The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the invention.
Number | Name | Date | Kind |
---|---|---|---|
819360 | Mayer | Mar 1902 | A |
2626907 | De | Jan 1953 | A |
2938938 | Dickson | May 1960 | A |
3094439 | Mann | Jun 1963 | A |
3116171 | Nielsen | Dec 1963 | A |
3459597 | Baron | Aug 1969 | A |
3961997 | Chu | Jun 1976 | A |
3969163 | Wakefield | Jul 1976 | A |
4015280 | Matsushita | Mar 1977 | A |
4082568 | Lindmayer | Apr 1978 | A |
4124410 | Kotval | Nov 1978 | A |
4124455 | Lindmayer | Nov 1978 | A |
4193975 | Kotval | Mar 1980 | A |
4200621 | Liaw | Apr 1980 | A |
4213798 | Williams | Jul 1980 | A |
4251285 | Yoldas | Feb 1981 | A |
4284490 | Weber | Aug 1981 | A |
4315096 | Tyan | Feb 1982 | A |
4336648 | Pschunder | Jun 1982 | A |
4342044 | Ovshinsky | Jul 1982 | A |
4431858 | Gonzalez | Feb 1984 | A |
4514579 | Hanak | Apr 1985 | A |
4540843 | Gochermann | Sep 1985 | A |
4567642 | Dilts | Feb 1986 | A |
4571448 | Barnett | Feb 1986 | A |
4577051 | Hartman | Mar 1986 | A |
4586988 | Nath | May 1986 | A |
4589191 | Green | May 1986 | A |
4612409 | Hamakawa | Sep 1986 | A |
4617421 | Nath | Oct 1986 | A |
4633033 | Nath | Dec 1986 | A |
4652693 | Bar-On | Mar 1987 | A |
4657060 | Kaucic | Apr 1987 | A |
4667060 | Spitzer | May 1987 | A |
4670096 | Schwirtlich | Jun 1987 | A |
4694115 | Lillington | Sep 1987 | A |
4753683 | Ellion | Jun 1988 | A |
4771017 | Tobin | Sep 1988 | A |
4784702 | Henri | Nov 1988 | A |
4877460 | Flodl | Oct 1989 | A |
4933061 | Kulkarni | Jun 1990 | A |
4968384 | Asano | Nov 1990 | A |
5053355 | von Campe | Oct 1991 | A |
5057163 | Barnett | Oct 1991 | A |
5075763 | Spitzer | Dec 1991 | A |
5084107 | Deguchi | Jan 1992 | A |
5118361 | Fraas | Jun 1992 | A |
5131933 | Floedl | Jul 1992 | A |
5178685 | Borenstein | Jan 1993 | A |
5181968 | Nath | Jan 1993 | A |
5213628 | Noguchi | May 1993 | A |
5217539 | Fraas | Jun 1993 | A |
5279682 | Wald | Jan 1994 | A |
5286306 | Menezes | Feb 1994 | A |
5364518 | Hartig | Nov 1994 | A |
5401331 | Ciszek | Mar 1995 | A |
5455430 | Noguchi | Oct 1995 | A |
5461002 | Safir | Oct 1995 | A |
5563092 | Ohmi | Oct 1996 | A |
5576241 | Sakai | Nov 1996 | A |
5627081 | Tsuo | May 1997 | A |
5676766 | Probst | Oct 1997 | A |
5681402 | Ichinose | Oct 1997 | A |
5698451 | Hanoka | Dec 1997 | A |
5705828 | Noguchi | Jan 1998 | A |
5726065 | Szlufcik | Mar 1998 | A |
5808315 | Murakami | Sep 1998 | A |
5814195 | Lehan | Sep 1998 | A |
5903382 | Tench | May 1999 | A |
5935345 | Kuznicki | Aug 1999 | A |
6034322 | Pollard | Mar 2000 | A |
6091019 | Sakata | Jul 2000 | A |
6140570 | Kariya | Oct 2000 | A |
6232545 | Samaras | May 2001 | B1 |
6303853 | Fraas | Oct 2001 | B1 |
6333457 | Mulligan | Dec 2001 | B1 |
6410843 | Kishi | Jun 2002 | B1 |
6441297 | Keller | Aug 2002 | B1 |
6468828 | Glatfelter | Oct 2002 | B1 |
6488824 | Hollars | Dec 2002 | B1 |
6538193 | Fraas | Mar 2003 | B1 |
6552414 | Horzel | Apr 2003 | B1 |
6586270 | Tsuzuki | Jul 2003 | B2 |
6620645 | Chandra | Sep 2003 | B2 |
6672018 | Shingleton | Jan 2004 | B2 |
6683360 | Dierickx | Jan 2004 | B1 |
6736948 | Barrett | May 2004 | B2 |
6803513 | Beernink | Oct 2004 | B2 |
6841051 | Crowley | Jan 2005 | B2 |
7030413 | Nakamura | Apr 2006 | B2 |
7128975 | Inomata | Oct 2006 | B2 |
7164150 | Terakawa | Jan 2007 | B2 |
7328534 | Dinwoodie | Feb 2008 | B2 |
7388146 | Fraas | Jun 2008 | B2 |
7399385 | German | Jul 2008 | B2 |
7534632 | Hu | May 2009 | B2 |
7635810 | Luch | Dec 2009 | B2 |
7737357 | Cousins | Jun 2010 | B2 |
7749883 | Meeus | Jul 2010 | B2 |
7769887 | Bhattacharyya | Aug 2010 | B1 |
7772484 | Li | Aug 2010 | B2 |
7777128 | Montello | Aug 2010 | B2 |
7825329 | Basol | Nov 2010 | B2 |
7829781 | Montello | Nov 2010 | B2 |
7829785 | Basol | Nov 2010 | B2 |
7872192 | Fraas | Jan 2011 | B1 |
7905995 | German | Mar 2011 | B2 |
7977220 | Sanjurjo | Jul 2011 | B2 |
8070925 | Hoffman | Dec 2011 | B2 |
8115093 | Gui | Feb 2012 | B2 |
8152536 | Scherer | Apr 2012 | B2 |
8168880 | Jacobs | May 2012 | B2 |
8182662 | Crowley | May 2012 | B2 |
8196360 | Metten | Jun 2012 | B2 |
8209920 | Krause | Jul 2012 | B2 |
8222513 | Luch | Jul 2012 | B2 |
8222516 | Cousins | Jul 2012 | B2 |
8258050 | Cho | Sep 2012 | B2 |
8343795 | Luo | Jan 2013 | B2 |
8586857 | Everson | Nov 2013 | B2 |
8671630 | Lena | Mar 2014 | B2 |
8686283 | Heng | Apr 2014 | B2 |
8815631 | Cousins | Aug 2014 | B2 |
9029181 | Rhodes | May 2015 | B2 |
9147788 | DeGroot | Sep 2015 | B2 |
9287431 | Mascarenhas | Mar 2016 | B2 |
20010008143 | Sasaoka | Jul 2001 | A1 |
20020015881 | Nakamura | Feb 2002 | A1 |
20020072207 | Andoh | Jun 2002 | A1 |
20020086456 | Cunningham | Jul 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020189939 | German | Dec 2002 | A1 |
20030000568 | Gonsiorawski | Jan 2003 | A1 |
20030000571 | Wakuda | Jan 2003 | A1 |
20030034062 | Stern | Feb 2003 | A1 |
20030042516 | Forbes | Mar 2003 | A1 |
20030070705 | Hayden | Apr 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030116185 | Oswald | Jun 2003 | A1 |
20030121228 | Stoehr | Jul 2003 | A1 |
20030168578 | Taguchi | Sep 2003 | A1 |
20030183270 | Falk | Oct 2003 | A1 |
20030201007 | Fraas | Oct 2003 | A1 |
20040065363 | Fetzer | Apr 2004 | A1 |
20040103937 | Bilyalov | Jun 2004 | A1 |
20040112426 | Hagino | Jun 2004 | A1 |
20040123897 | Ojima | Jul 2004 | A1 |
20040135979 | Hazelton | Jul 2004 | A1 |
20040152326 | Inomata | Aug 2004 | A1 |
20040185683 | Nakamura | Sep 2004 | A1 |
20040200520 | Mulligan | Oct 2004 | A1 |
20050009319 | Abe | Jan 2005 | A1 |
20050012095 | Niira | Jan 2005 | A1 |
20050022861 | Rose | Feb 2005 | A1 |
20050061665 | Pavani | Mar 2005 | A1 |
20050064247 | Sane | Mar 2005 | A1 |
20050074954 | Yamanaka | Apr 2005 | A1 |
20050109388 | Murakami | May 2005 | A1 |
20050133084 | Joge | Jun 2005 | A1 |
20050178662 | Wurczinger | Aug 2005 | A1 |
20050189015 | Rohatgi | Sep 2005 | A1 |
20050199279 | Yoshimine | Sep 2005 | A1 |
20050252544 | Rohatgi | Nov 2005 | A1 |
20050257823 | Zwanenburg | Nov 2005 | A1 |
20060012000 | Estes | Jan 2006 | A1 |
20060060238 | Hacke | Mar 2006 | A1 |
20060060791 | Hazelton | Mar 2006 | A1 |
20060130891 | Carlson | Jun 2006 | A1 |
20060154389 | Doan | Jul 2006 | A1 |
20060213548 | Bachrach | Sep 2006 | A1 |
20060231803 | Wang | Oct 2006 | A1 |
20060255340 | Manivannan | Nov 2006 | A1 |
20060260673 | Takeyama | Nov 2006 | A1 |
20060272698 | Durvasula | Dec 2006 | A1 |
20060283496 | Okamoto | Dec 2006 | A1 |
20060283499 | Terakawa | Dec 2006 | A1 |
20070023081 | Johnson | Feb 2007 | A1 |
20070023082 | Manivannan | Feb 2007 | A1 |
20070108437 | Tavkhelidze | May 2007 | A1 |
20070110975 | Schneweis | May 2007 | A1 |
20070132034 | Curello | Jun 2007 | A1 |
20070137699 | Manivannan | Jun 2007 | A1 |
20070148336 | Bachrach | Jun 2007 | A1 |
20070186968 | Nakauchi | Aug 2007 | A1 |
20070186970 | Takahashi | Aug 2007 | A1 |
20070202029 | Burns | Aug 2007 | A1 |
20070235829 | Levine | Oct 2007 | A1 |
20070256728 | Cousins | Nov 2007 | A1 |
20070274504 | Maes | Nov 2007 | A1 |
20070283996 | Hachtmann | Dec 2007 | A1 |
20070283997 | Hachtmann | Dec 2007 | A1 |
20080000522 | Johnson | Jan 2008 | A1 |
20080041436 | Lau | Feb 2008 | A1 |
20080041437 | Yamaguchi | Feb 2008 | A1 |
20080047602 | Krasnov | Feb 2008 | A1 |
20080047604 | Korevaar | Feb 2008 | A1 |
20080053519 | Pearce | Mar 2008 | A1 |
20080061293 | Ribeyron | Mar 2008 | A1 |
20080092947 | Lopatin | Apr 2008 | A1 |
20080121272 | Besser | May 2008 | A1 |
20080121276 | Lopatin | May 2008 | A1 |
20080121932 | Ranade | May 2008 | A1 |
20080128013 | Lopatin | Jun 2008 | A1 |
20080149161 | Nishida | Jun 2008 | A1 |
20080156370 | Abdallah | Jul 2008 | A1 |
20080173347 | Korevaar | Jul 2008 | A1 |
20080173350 | Choi | Jul 2008 | A1 |
20080196757 | Yoshimine | Aug 2008 | A1 |
20080202577 | Hieslmair | Aug 2008 | A1 |
20080202582 | Noda | Aug 2008 | A1 |
20080216891 | Harkness | Sep 2008 | A1 |
20080230122 | Terakawa | Sep 2008 | A1 |
20080251114 | Tanaka | Oct 2008 | A1 |
20080251117 | Schubert | Oct 2008 | A1 |
20080264477 | Moslehi | Oct 2008 | A1 |
20080276983 | Drake | Nov 2008 | A1 |
20080283115 | Fukawa | Nov 2008 | A1 |
20080302030 | Stancel | Dec 2008 | A1 |
20080303503 | Wolfs | Dec 2008 | A1 |
20080308145 | Krasnov | Dec 2008 | A1 |
20090007965 | Rohatgi | Jan 2009 | A1 |
20090056805 | Barnett | Mar 2009 | A1 |
20090078318 | Meyers | Mar 2009 | A1 |
20090084439 | Lu | Apr 2009 | A1 |
20090101872 | Young | Apr 2009 | A1 |
20090120492 | Sinha | May 2009 | A1 |
20090139512 | Lima | Jun 2009 | A1 |
20090151783 | Lu | Jun 2009 | A1 |
20090155028 | Boguslavskiy | Jun 2009 | A1 |
20090160259 | Naiknaware et al. | Jun 2009 | A1 |
20090188561 | Aiken | Jul 2009 | A1 |
20090221111 | Frolov | Sep 2009 | A1 |
20090229854 | Fredenberg | Sep 2009 | A1 |
20090239331 | Xu | Sep 2009 | A1 |
20090250108 | Zhou | Oct 2009 | A1 |
20090255574 | Yu | Oct 2009 | A1 |
20090283138 | Lin | Nov 2009 | A1 |
20090283145 | Kim | Nov 2009 | A1 |
20090293948 | Tucci | Dec 2009 | A1 |
20090301549 | Moslehi | Dec 2009 | A1 |
20090308439 | Adibi | Dec 2009 | A1 |
20090317934 | Scherff | Dec 2009 | A1 |
20090320897 | Shimomura | Dec 2009 | A1 |
20100006145 | Lee | Jan 2010 | A1 |
20100015756 | Weidman | Jan 2010 | A1 |
20100043863 | Wudu | Feb 2010 | A1 |
20100065111 | Fu | Mar 2010 | A1 |
20100068890 | Stockum | Mar 2010 | A1 |
20100084009 | Carlson | Apr 2010 | A1 |
20100087031 | Veschetti | Apr 2010 | A1 |
20100108134 | Ravi | May 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100124619 | Xu | May 2010 | A1 |
20100132774 | Borden | Jun 2010 | A1 |
20100132792 | Kim | Jun 2010 | A1 |
20100147364 | Gonzalez | Jun 2010 | A1 |
20100154869 | Oh | Jun 2010 | A1 |
20100169478 | Saha | Jul 2010 | A1 |
20100175743 | Gonzalez | Jul 2010 | A1 |
20100186802 | Borden | Jul 2010 | A1 |
20100193014 | Johnson | Aug 2010 | A1 |
20100218799 | Stefani | Sep 2010 | A1 |
20100224230 | Luch | Sep 2010 | A1 |
20100229914 | Adriani | Sep 2010 | A1 |
20100236612 | Khajehoddin | Sep 2010 | A1 |
20100240172 | Rana | Sep 2010 | A1 |
20100269904 | Cousins | Oct 2010 | A1 |
20100279492 | Yang | Nov 2010 | A1 |
20100300506 | Heng | Dec 2010 | A1 |
20100300507 | Heng | Dec 2010 | A1 |
20100313877 | Bellman | Dec 2010 | A1 |
20100326518 | Juso | Dec 2010 | A1 |
20110005569 | Sauar | Jan 2011 | A1 |
20110005920 | Ivanov | Jan 2011 | A1 |
20110073175 | Hilali | Mar 2011 | A1 |
20110088762 | Singh | Apr 2011 | A1 |
20110146759 | Lee | Jun 2011 | A1 |
20110146781 | Laudisio | Jun 2011 | A1 |
20110156188 | Tu | Jun 2011 | A1 |
20110168250 | Lin | Jul 2011 | A1 |
20110168261 | Welser | Jul 2011 | A1 |
20110174374 | Harder | Jul 2011 | A1 |
20110186112 | Aernouts | Aug 2011 | A1 |
20110220182 | Lin | Sep 2011 | A1 |
20110245957 | Porthouse | Oct 2011 | A1 |
20110259419 | Hagemann | Oct 2011 | A1 |
20110272012 | Heng | Nov 2011 | A1 |
20110277688 | Trujillo | Nov 2011 | A1 |
20110277816 | Xu | Nov 2011 | A1 |
20110277825 | Fu et al. | Nov 2011 | A1 |
20110284064 | Engelhart | Nov 2011 | A1 |
20110297224 | Miyamoto | Dec 2011 | A1 |
20110297227 | Pysch | Dec 2011 | A1 |
20110308573 | Jaus | Dec 2011 | A1 |
20120000502 | Wiedeman | Jan 2012 | A1 |
20120012174 | Wu | Jan 2012 | A1 |
20120028461 | Ritchie | Feb 2012 | A1 |
20120031480 | Tisler | Feb 2012 | A1 |
20120040487 | Asthana | Feb 2012 | A1 |
20120060911 | Fu | Mar 2012 | A1 |
20120073975 | Ganti | Mar 2012 | A1 |
20120080083 | Liang | Apr 2012 | A1 |
20120085384 | Beitel | Apr 2012 | A1 |
20120122262 | Kang | May 2012 | A1 |
20120125391 | Pinarbasi | May 2012 | A1 |
20120145233 | Syn | Jun 2012 | A1 |
20120152349 | Cao | Jun 2012 | A1 |
20120152752 | Keigler | Jun 2012 | A1 |
20120167986 | Meakin | Jul 2012 | A1 |
20120192932 | Wu | Aug 2012 | A1 |
20120240995 | Coakley | Sep 2012 | A1 |
20120248497 | Zhou | Oct 2012 | A1 |
20120279443 | Kornmeyer | Nov 2012 | A1 |
20120279548 | Munch | Nov 2012 | A1 |
20120285517 | Souza | Nov 2012 | A1 |
20120305060 | Fu | Dec 2012 | A1 |
20120318319 | Pinarbasi | Dec 2012 | A1 |
20120318340 | Heng | Dec 2012 | A1 |
20120319253 | Mizuno | Dec 2012 | A1 |
20120325282 | Snow | Dec 2012 | A1 |
20130000705 | Shappir | Jan 2013 | A1 |
20130014802 | Zimmerman | Jan 2013 | A1 |
20130056051 | Jin | Mar 2013 | A1 |
20130096710 | Pinarbasi | Apr 2013 | A1 |
20130112239 | Liptac | May 2013 | A1 |
20130130430 | Moslehi | May 2013 | A1 |
20130139878 | Bhatnagar | Jun 2013 | A1 |
20130152996 | DeGroot | Jun 2013 | A1 |
20130160826 | Beckerman | Jun 2013 | A1 |
20130174897 | You | Jul 2013 | A1 |
20130206213 | He | Aug 2013 | A1 |
20130206221 | Gannon | Aug 2013 | A1 |
20130213469 | Kramer | Aug 2013 | A1 |
20130220401 | Scheulov | Aug 2013 | A1 |
20130228221 | Moslehi | Sep 2013 | A1 |
20130247955 | Baba | Sep 2013 | A1 |
20130269771 | Cheun | Oct 2013 | A1 |
20130291743 | Endo | Nov 2013 | A1 |
20140000682 | Zhao | Jan 2014 | A1 |
20140053899 | Haag | Feb 2014 | A1 |
20140066265 | Oliver | Mar 2014 | A1 |
20140102524 | Xie | Apr 2014 | A1 |
20140124013 | Morad | May 2014 | A1 |
20140124014 | Morad | May 2014 | A1 |
20140154836 | Kim | Jun 2014 | A1 |
20140196768 | Heng | Jul 2014 | A1 |
20140242746 | Albadri | Aug 2014 | A1 |
20140318611 | Moslehi | Oct 2014 | A1 |
20140345674 | Yang | Nov 2014 | A1 |
20140349441 | Fu | Nov 2014 | A1 |
20150007879 | Kwon | Jan 2015 | A1 |
20150020877 | Moslehi | Jan 2015 | A1 |
20150075599 | Yu | Mar 2015 | A1 |
20150090314 | Yang | Apr 2015 | A1 |
20150096613 | Tjahjono | Apr 2015 | A1 |
20150114444 | Lentine | Apr 2015 | A1 |
20150171230 | Kapur | Jun 2015 | A1 |
20150214409 | Pfeiffer | Jul 2015 | A1 |
20150236177 | Fu | Aug 2015 | A1 |
20150270410 | Heng | Sep 2015 | A1 |
20150280641 | Garg | Oct 2015 | A1 |
20150349145 | Morad | Dec 2015 | A1 |
20150349153 | Morad | Dec 2015 | A1 |
20150349161 | Morad | Dec 2015 | A1 |
20150349162 | Morad | Dec 2015 | A1 |
20150349167 | Morad | Dec 2015 | A1 |
20150349168 | Morad | Dec 2015 | A1 |
20150349169 | Morad | Dec 2015 | A1 |
20150349170 | Morad | Dec 2015 | A1 |
20150349171 | Morad | Dec 2015 | A1 |
20150349172 | Morad | Dec 2015 | A1 |
20150349173 | Morad | Dec 2015 | A1 |
20150349174 | Morad | Dec 2015 | A1 |
20150349175 | Morad | Dec 2015 | A1 |
20150349176 | Morad | Dec 2015 | A1 |
20150349190 | Morad | Dec 2015 | A1 |
20150349193 | Morad | Dec 2015 | A1 |
20150349701 | Morad | Dec 2015 | A1 |
20150349702 | Morad | Dec 2015 | A1 |
20150349703 | Morad | Dec 2015 | A1 |
20160190354 | Agrawal | Jun 2016 | A1 |
20160204289 | Tao | Jul 2016 | A1 |
20160329443 | Wang | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
1253381 | May 2000 | CN |
1416179 | Oct 2001 | CN |
101233620 | Jul 2008 | CN |
101553933 | Oct 2009 | CN |
100580957 | Jan 2010 | CN |
101305454 | May 2010 | CN |
102088040 | Jun 2011 | CN |
102263157 | Nov 2011 | CN |
104409402 | Mar 2015 | CN |
4030713 | Apr 1992 | DE |
102006009194 | Aug 2007 | DE |
202007002897 | Aug 2008 | DE |
102008045522 | Mar 2010 | DE |
102010061317 | Jun 2012 | DE |
10201201051 | Nov 2013 | DE |
102012010151 | Nov 2013 | DE |
1770791 | Apr 2007 | EP |
1816684 | Aug 2007 | EP |
2071635 | Jun 2009 | EP |
2113946 | Nov 2009 | EP |
2362430 | Aug 2011 | EP |
2385561 | Nov 2011 | EP |
2387079 | Nov 2011 | EP |
2479796 | Jul 2012 | EP |
2626907 | Aug 2013 | EP |
2479796 | Jul 2015 | EP |
2626907 | Aug 2015 | EP |
5789269 | Jun 1982 | JP |
H04245683 | Sep 1992 | JP |
H07249788 | Sep 1995 | JP |
10004204 | Jan 1998 | JP |
H1131834 | Feb 1999 | JP |
2000164902 | Jun 2000 | JP |
2002057357 | Feb 2002 | JP |
2005159312 | Jun 2005 | JP |
2006324504 | Nov 2006 | JP |
2008135655 | Jun 2008 | JP |
2009054748 | Mar 2009 | JP |
2009177225 | Aug 2009 | JP |
2013526045 | Jun 2013 | JP |
2013161855 | Aug 2013 | JP |
2013536512 | Sep 2013 | JP |
2013537000 | Sep 2013 | JP |
2013219378 | Oct 2013 | JP |
2013233553 | Nov 2013 | JP |
2013239694 | Nov 2013 | JP |
2013247231 | Dec 2013 | JP |
20050122721 | Dec 2005 | KR |
20060003277 | Jan 2006 | KR |
20090011519 | Feb 2009 | KR |
9117839 | Nov 1991 | WO |
9120097 | Dec 1991 | WO |
03083953 | Oct 2003 | WO |
2006097189 | Sep 2006 | WO |
2008089657 | Jul 2008 | WO |
2009094578 | Jul 2009 | WO |
2009150654 | Dec 2009 | WO |
2009150654 | Dec 2009 | WO |
2010070015 | Jun 2010 | WO |
2010075606 | Jul 2010 | WO |
2010075606 | Jul 2010 | WO |
2010085949 | Aug 2010 | WO |
2010104726 | Sep 2010 | WO |
2010123974 | Oct 2010 | WO |
2010123974 | Oct 2010 | WO |
2011005447 | Jan 2011 | WO |
2011005447 | Jan 2011 | WO |
2011008881 | Jan 2011 | WO |
2011008881 | Jan 2011 | WO |
2011053006 | May 2011 | WO |
2011123646 | Oct 2011 | WO |
2013020590 | Feb 2013 | WO |
2013020590 | Feb 2013 | WO |
2013046351 | Apr 2013 | WO |
2014066265 | May 2014 | WO |
2014074826 | May 2014 | WO |
2014110520 | Jul 2014 | WO |
2014117138 | Jul 2014 | WO |
2015183827 | Dec 2015 | WO |
2016090332 | Jun 2016 | WO |
Entry |
---|
Machine translation of JP 10004204 A, Shindou et al. |
WP Leroy et al., “In Search for the Limits of Rotating Cylindrical Magnetron Sputtering”, Magnetron, ION Processing and ARC Technologies European Conference, Jun. 18, 2010, pp. 1-32. |
Beaucarne G et al: ‘Epitaxial thin-film Si solar cells’ Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH LNKD—DOI:10.1016/J.TSF.Dec. 3, 2005, vol. 511-512, Jul. 26, 2006 (Jul. 26, 2006), pp. 533-542, XP025007243 ISSN: 0040-6090 [retrieved on Jul. 26, 2006]. |
Chabal, Yves J. et al., ‘Silicon Surface and Interface Issues for Nanoelectronics,’ The Electrochemical Society Interface, Spring 2005, pp. 31-33. |
Collins English Dictionary (Convex. (2000). In Collins English Dictionary. http://search.credoreference.com/content/entry/hcengdict/convex/0 on Oct. 18, 2014). |
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE/%20343/Chapter/%207%20Dopant%20 diffusion%20—%20I.pptx> and converted to PDF. |
Davies, P.C.W., ‘Quantum tunneling time,’ Am. J. Phys. 73, Jan. 2005, pp. 23-27. |
Dosaj V D et al: ‘Single Crystal Silicon Ingot Pulled From Chemically-Upgraded Metallurgical-Grade Silicon’ Conference Record of The IEEE Photovoltaic Specialists Conference, May 6, 1975 (May 6, 1975), pp. 275-279, XP001050345. |
Green, Martin A. et al., ‘High-Efficiency Silicon Solar Cells,’ IEEE Transactions on Electron Devices, vol. ED-31, No. 5, May 1984, pp. 679-683. |
Hamm, Gary, Wei, Lingyum, Jacques, Dave, Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells, EU PVSEC Proceedings, Presented Sep. 2009. |
JCS Pires, J Otubo, AFB Braga, PR Mei; The purification of metallurgical grade silicon by electron beam melting, J of Mats Process Tech 169 (2005) 16-20. |
Khattak, C. P. et al., “Refining Molten Metallurgical Grade Silicon for use as Feedstock for Photovoltaic Applications”, 16th E.C. Photovoltaic Solar Energy Conference, May 1-5, 2000, pp. 1282-1283. |
Merriam-Webster online dictionary—“mesh”. (accessed Oct. 8, 2012). |
Mueller, Thomas, et al. “Application of wide-band gap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation.” Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008. |
Mueller, Thomas, et al. “High quality passivation for heteroj unction solar cells by hydrogenated amorphous silicon suboxide films.” Applied Physics Letters 92.3 (2008): 033504-033504. |
Munzer, K.A. “High Throughput Industrial In-Line Boron BSF Diffusion” Jun. 2005. 20th European Photovoltaic Solar Energy Conference, pp. 777-780. |
National Weather Service Weather Forecast Office (“Why Do We have Seasons?” http://www.crh.noaa.gov/lmk/?n=seasons Accessed Oct. 18, 2014). |
O'Mara, W.C.; Herring, R.B.; Hunt L.P. (1990). Handbook of Semiconductor Silicon Technology. William Andrew Publishing/Noyes. pp. 275-293. |
Roedern, B. von, et al., ‘Why is the Open-Circuit Voltage of Crystalline Si Solar Cells so Critically Dependent on Emitter-and Base-Doping?’ Presented at the 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, CO, Aug. 9-11, 1999. |
Stangl et al., Amorphous/Crystalline Silicon heterojunction solar cells—a simulation study; 17th European Photovoltaic Conference, Munich, Oct. 2001. |
Warabisako T et al: ‘Efficient Solar Cells From Metallurgical-Grade Silicon’ Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 19, No. Suppl. 19-01, Jan. 1, 1980 (Jan. 1, 1980), pp. 539-544, XP008036363 ISSN: 0021-4922. |
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology;The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011 (Jul. 26, 2011), p. 78402, XP020207379, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402. |
Parthavi, “Doping by Diffusion and Implantation”, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/course03/pdf/0306.pdf>. |
Weiss, “Development of different copper seed layers with respect to the copper electroplating process,” Microelectronic Engineering 50 (2000) 443-440, Mar. 15, 2000. |
Tomasi, “Back-contacted Silicon Heterojunction Solar Cells With Efficiency>21%” 2014 IEEE. |
Hornbachner et al., “Cambered Photovoltaic Module and Method for its Manufacture” Jun. 17, 2009. |
Jianhua Zhao et al. “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research”. |
“Nonequilibrium boron doping effects in low-temperature epitaxial silicon” Meyerson et al., Appl. Phys. Lett. 50 (2), p. 113 (1987). |
“Doping Diffusion and Implantation” Parthavi, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/content/course03/pdf/0306.pdf>. |
Meyerson et al. “Nonequilibrium boron doping effects in low-temperature epitaxial silicon”, Appl. Phys. Lett. 50 (2), p. 113 (1987). |
Li, “Surface and Bulk Passsivation of Multicrystalline Silicon Solar Cells by Silicon Nitride (H) Layer: Modeling and Experiments”, Ph.D. dissertation, N.J. Inst. of Tech., Jan. 2009. |
Kanani, Nasser. Electroplating: Basic Principles, Processes and Practice, Chapter 8—“Coating Thickness and its Measurement,” 2004, pp. 247-291. |
P. Borden et al. “Polysilicon Tunnel Junctions as Alternates to Diffused Junctions” Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Sep. 1, 2008-Sep. 5, 2008, pp. 1149-1152. |
L. Korte et al. “Overview on a-Se:H/c heterojunction solar cells—physics and technology”, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Sep. 3, 2007-Sep. 7, 2007, pp. 859-865. |
Number | Date | Country | |
---|---|---|---|
20170179326 A1 | Jun 2017 | US |