System and method for measuring initial tissue impedance

Information

  • Patent Grant
  • 8034049
  • Patent Number
    8,034,049
  • Date Filed
    Tuesday, August 8, 2006
    17 years ago
  • Date Issued
    Tuesday, October 11, 2011
    12 years ago
Abstract
An electrosurgical system and method are disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The generator is further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response. The generator includes sensor circuitry adapted to continuously monitor initial tissue impedance response, wherein the initial tissue impedance response includes one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The generator also includes a microprocessor adapted to generate at least one tissue parameter based as a function of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue for treatment.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to a system and method for performing electrosurgical procedures. More particularly, the present disclosure relates to a system and method for measuring tissue properties during tissue sealing procedures.


2. Background of Related Art


Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, coagulate, cauterize, desiccate or seal tissue. Tissue or vessel sealing is a process of liquefying the collagen, elastin and ground substances in the tissue so that they reform into a fused mass with significantly-reduced demarcation between the opposing tissue structures. Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.


In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact with body tissue with either of the separated electrodes does not cause current to flow.


A forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, are used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue. The forceps includes electrosurgical sealing plates which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the sealing plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue. Selecting the appropriate energy parameters during the sealing procedure allows for efficient application of energy to tissue. Thus, a need exists to develop an electrosurgical system which effectively and consistently seals tissue.


SUMMARY

The present disclosure relates to a system and method for performing electrosurgical procedures. The system includes an electrosurgical generator and an instrument (e.g., electrosurgical forceps). The generator supplies an initial interrogatory signal at constant voltage to tissue and measures initial tissue impedance response. Thereafter, the generator analyzes the initial tissue impedance response and selects corresponding treatment parameters that are used to select corresponding output of the generator.


According to one aspect of the present disclosure an electrosurgical system is disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The generator is further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response. The generator includes sensor circuitry adapted to continuously monitor tissue impedance response, wherein the tissue impedance response includes an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The generator also includes a microprocessor adapted to generate at least one tissue treatment parameter as a function of one of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue for treatment.


According to another aspect of the present disclosure, a method for performing electrosurgical procedures is disclosed. The method includes the steps of supplying an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response, wherein the initial tissue impedance response includes at least one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The method also includes the step of continuously monitoring initial tissue impedance response. The method further includes the step of generating at least one tissue treatment parameter as a function of one of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise.


According to a further aspect of the present disclosure, an electrosurgical generator is disclosed. The electrosurgical generator includes an RF output stage adapted to supply electrosurgical energy to tissue and to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response. The generator also includes sensor circuitry adapted to continuously monitor initial tissue impedance response, wherein the initial tissue impedance response includes at least one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise. The generator further includes a microprocessor adapted to generate at least one tissue treatment parameter as a function of the initial impedance, the impedance drop, the impedance minimum and the first impedance rise.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of an electrosurgical system according to the present disclosure;



FIG. 2 is a side, partial internal view of an endoscopic forceps according to the present disclosure;



FIG. 3 is a schematic block diagram of a generator system according to the present disclosure;



FIG. 4 is a flow diagram illustrating a method according to the present disclosure; and



FIGS. 5A-B are illustrative graphs showing impedance values over time.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Those skilled in the art will understand that the invention according to the present disclosure may be adapted for use with either monopolar or bipolar electrosurgical systems



FIG. 1 shows an endoscopic bipolar electrosurgical system according to the present disclosure which includes an electrosurgical forceps 10. Those skilled in the art will understand that the invention according to the present disclosure may be adapted for use with either an endoscopic instrument as shown in FIG. 1 or an open instrument. More particularly, forceps 10 generally includes a housing 21, a handle assembly 40, a rotating assembly 80, and a trigger assembly 70 which mutually cooperate with the end effector assembly 100 to grasp and treat tissue. The forceps 10 also includes a shaft 12 which has a distal end 14 that mechanically engages the end effector assembly 100 and a proximal end 16 which mechanically engages the housing 21 proximate the rotating assembly 80. Handle assembly 40 includes a fixed handle 50 and a movable handle 42. Handle 42 moves relative to the fixed handle 50 to actuate the end effector assembly 100 and enable a user to grasp and manipulate tissue. Electrosurgical RF energy is supplied to the forceps 10 by generator 20 via a supply line connected to the active electrode and returned through a return line connected to the return electrode. The supply and return lines are enclosed within a cable 23.


The generator 20 includes input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 20. In addition, the generator 20 may include one or more display screens for providing the surgeon with a variety of output information (e.g., intensity settings, treatment complete indicators, etc.). The controls allow the surgeon to adjust the RF energy, waveform, and other parameters to achieve the desired waveform suitable for a particular task (e.g., coagulating, tissue sealing, intensity setting, etc.). It is also envisioned that the forceps 10 may include a plurality of input controls which may be redundant with certain input controls of the generator 20. Placing the input controls at the forceps 10 allows for easier and faster modification of RF energy parameters during the surgical procedure without requiring interaction with the generator 20.


The end effector assembly 100 includes opposing jaw members 110 and 120 having electrically conductive sealing plate 112 and 122, respectively, attached thereto for conducting electrosurgical energy through tissue. More particularly, the jaw members 110 and 120 move in response to movement of the handle 42 from an open position to a closed position. In open position the sealing plates 112 and 122 are disposed in spaced relation relative to one another. In a clamping or closed position the sealing plates 112 and 122 cooperate to grasp tissue and apply electrosurgical energy thereto. Further details relating to one envisioned endoscopic forceps is disclosed in commonly-owned U.S. application Ser. No. 10/474,169 entitled “VESSEL SEALER AND DIVIDER” the entire contents of which is incorporated by reference herein.


The jaw members 110 and 120 are activated using a drive assembly (not shown) enclosed within the housing 21. The drive assembly cooperates with the movable handle 42 to impart movement of the jaw members 110 and 120 from the open position to the clamping or closed position. Examples of a handle assemblies are shown and described in the above identified application as well as commonly-owned U.S. application Ser. No. 10/369,894 entitled “VESSEL SEALER AND DIVIDER AND METHOD MANUFACTURING SAME” and commonly owned U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” which are both hereby incorporated by reference herein in their entirety.


Jaw members 110 and 120 also include insulators 116 and 126 which together with the outer, non-conductive plates of the jaw members 110 and 120 are configured to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation.


The handle assembly 40 of this particular disclosure may include a four-bar mechanical linkage which provides a unique mechanical advantage when sealing tissue between the jaw members 110 and 120. For example, once the desired position for the sealing site is determined and the jaw members 110 and 120 are properly positioned, handle 42 may be compressed fully to lock the electrically conductive sealing plates 112 and 122 in a closed position against the tissue. The details relating to the inter-cooperative relationships of the inner-working components of forceps 10 are disclosed in the above-cited commonly-owned U.S. patent application Ser. No. 10/369,894. Another example of an endoscopic handle assembly which discloses an off-axis, lever-like handle assembly, is disclosed in the above-cited U.S. patent application Ser. No. 10/460,926.


As shown in FIGS. 1-2, the forceps 10 also includes a trigger 70 which advances a knife (not explicitly shown) disposed within the end effector assembly 100. Once a tissue seal is formed, the user activates the trigger 70 to separate the tissue along the tissue seal. Knife preferably includes a sharpened edge for severing the tissue held between the jaw members 110 and 120 at the tissue sealing site. A longitudinally-oriented channel (not explicitly shown) is defined in an electrically conductive sealing plate 112 extending from the proximal end to the distal end thereof. The channel facilitates longitudinal reciprocation of the knife along a preferred cutting plane to effectively and accurately separate the tissue along a formed tissue seal.


The forceps 10 also includes a rotating assembly 80 mechanically associated with the shaft 12 and the drive assembly (not shown). Movement of the rotating assembly 80 imparts similar rotational movement to the shaft 12 which, in turn, rotates the end effector assembly 100. Various features along with various electrical configurations for the transference of electrosurgical energy through the handle assembly 20 and the rotating assembly 80 are described in more detail in the above-mentioned commonly-owned U.S. patent application Ser. Nos. 10/369,894 and 10/460,926.


As best seen with respect to FIGS. 1 and 2, the end effector assembly 100 attaches to the distal end 14 of shaft 12. The jaw members 110 and 120 are pivotable about a pivot 160 from the open to closed positions upon relative reciprocation, i.e., longitudinal movement, of the drive assembly (not shown). Again, mechanical and cooperative relationships with respect to the various moving elements of the end effector assembly 100 are further described by example with respect to the above-mentioned commonly-owned U.S. patent application Ser. Nos. 10/369,894 and 10/460,926.


It is envisioned that the forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example, end effector assembly 100 may be selectively and releasably engageable with the distal end 14 of the shaft 12 and/or the proximal end 16 of the shaft 12 may be selectively and releasably engageable with the housing 21 and handle assembly 40. In either of these two instances, the forceps 10 may be either partially disposable or reposable, such as where a new or different end effector assembly 100 or end effector assembly 100 and shaft 12 are used to selectively replace the old end effector assembly 100 as needed.



FIG. 3 shows a schematic block diagram of the generator 20 having a controller 24, a high voltage DC power supply 27 (“HVPS”) and an RF output stage 28. The HVPS 27 provides high voltage DC power to an RF output stage 28 which then converts high voltage DC power into RF energy and delivers the RF energy to the active electrode 24. In particular, the RF output stage 28 generates sinusoidal waveforms of high frequency RF energy. The RF output stage 28 is configured to generate a plurality of waveforms having various duty cycles, peak voltages, crest factors, and other parameters. Certain types of waveforms are suitable for specific electrosurgical modes. For instance, the RF output stage 28 generates a 100% duty cycle sinusoidal waveform in cut mode, which is best suited for dissecting tissue and a 25% duty cycle waveform in coagulation mode, which is best used for cauterizing tissue to stop bleeding.


The controller 24 includes a microprocessor 25 operably connected to a memory 26 which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The microprocessor 25 includes an output port which is operably connected to the HVPS 27 and/or RF output stage 28 allowing the microprocessor 25 to control the output of the generator 20 according to either open and/or closed control loop schemes.


A closed loop control scheme is a feedback control loop wherein sensor circuitry 22, which may include a plurality of sensors measuring a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output current and/or voltage, etc.), provides feedback to the controller 24. Such sensors are within the purview of those skilled in the art. The controller 24 then signals the HVPS 27 and/or RF output stage 28 which then adjust DC and/or RF power supply, respectively. The controller 24 also receives input signals from the input controls of the generator 20 or the forceps 10. The controller 24 utilizes the input signals to adjust power outputted by the generator 20 and/or performs other control functions thereon.



FIG. 4 shows a method according to the present disclosure for controlling output of the generator in response to monitored tissue impedance. In step 300, the forceps 10 is positioned to grasp tissue using jaw members 110 and 120. In step 310, the sealing plates 112 and 122 are activated and are in contact with the tissue but may not be fully closed. A constant voltage signal is applied for a predetermined period of time (e.g., first 2 to 3 seconds) to determine initial tissue impedance response. This occurs prior to treatment of tissue via electrosurgical energy. Other electrical signals having one or more substantially constant values, such as constant power, current, and energy, may also be applied to tissue to determine initial tissue impedance response.


The initial tissue impedance response describes the natural tissue state and is used in subsequent calculations to determine a variety of seal parameters (e.g., duration of energy application, amount of energy to be applied, etc.). The impedance is monitored by the sensor circuitry 22. In particular, voltage and current signals are monitored and corresponding impedance values are calculated with the sensor circuitry 22 and/or with the microprocessor 25. Power and other energy properties may also be calculated based on collected voltage and current signals. The microprocessor 25 stores the collected voltage, current, and impedance within the memory 26.


Exemplary impedance response is illustrated in FIGS. 5A-B which show a graph of impedance versus time. In particular, FIG. 5A shows changes in impedance during an entire tissue sealing procedure. As shown, the initial tissue impedance drops reaching a minimum impedance then rises at a first rate and then continues rising at a second rate which is generally slower than the first rate. FIG. 5B shows in more detail initial tissue impedance response that is represented by an impedance dip 400 that includes an initial impedance 402 followed by an impedance drop 404 that reaches an impedance minimum 406 and subsequently transitions into a first impedance rise 408.


In step 320, the initial tissue impedance response values, i.e., initial impedance 402, the impedance drop 404 (e.g., rate of drop), the impedance minimum 406 and the first impedance rise 40 (e.g., rate of rise) are recorded and analyzed. Impedance measurements as low as 50 Ohms or below are detected. The recorded initial tissue impedance response values provide detailed information concerning tissue between the jaws. For instance, the impedance drop 404 may be used to calculate the relationship between the gap distance between the electrodes and the amount of energy being supplied to tissue. Further, the impedance drop 404 may also be used to determine the type of tissue being grasped and the hydration levels thereof.


In step 330, the initial tissue impedance response values are used to determine treatment parameters (e.g., pressure to be applied to tissue, duration of energy application, amount of energy to be supplied, target impedance trajectory, etc.) for subsequent treatment of the tissue. This may be accomplished by populating a look up table that may be stored in the memory 26 with the impedance values. Based on these values corresponding tissue treatment parameters are loaded. The microprocessor 25 utilizes the loaded tissue treatment parameters to adjust output of the generator 20 as well as rate of closure and pressure exerted by the jaw members 110 and 120 on the tissue.


Those skilled in the art will appreciate that the measurement of initial impedance values and analysis thereof may be performed on a real-time basis providing for a system which is adaptive to various types of tissue.


While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical system comprising: an electrosurgical generator adapted to supply electrosurgical energy to tissue, the generator further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine initial tissue impedance response, the initial tissue impedance being used to determine an amount of the electrosurgical energy to tissue prior to tissue treatment, the generator including:sensor circuitry adapted to continuously monitor initial tissue impedance response, wherein the initial tissue impedance response includes at least one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise; anda microprocessor adapted to generate at least one tissue treatment parameter as a function of the initial tissue impedance response, including the at least one of initial impedance, the impedance drop, the impedance minimum and the first impedance rise, the microprocessor being in electrical communication with a memory to continuously store collected impedance and tissue information, the memory including at least a look up table for storing collected impedance values from a plurality of uses of the electrosurgical system; andan electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue for treatment, wherein the electrosurgical instrument is an electrosurgical forceps for sealing tissue, the forceps comprising:at least one shaft member having an end effector assembly disposed at a distal end thereof; the end effector assembly including jaw members movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween; anda sealing plate attached to each of the jaw members in opposing relation thereto, said sealing plates adapted to connect to the electrosurgical generator such that said sealing plates communicate electrosurgical energy through tissue held therebetween;wherein a tissue impedance profile during an entire tissue sealing procedure varies in a non-linear manner, such that in a first phase the initial tissue impedance drops to reach a minimum impedance, in a second phase rises at a first rate, and in a third phase rises at a second rate, the second rate being less than the first rate and the second rate stabilizing over a period of time.
  • 2. An electro surgical system as in claim 1, wherein the microprocessor is further adapted to adjust output of the electrosurgical generator based on the at least one tissue parameter.
  • 3. An electrosurgical system as in claim 1, wherein the at least one tissue parameter is selected from the group consisting of pressure to be applied to tissue, duration of energy application, amount of energy to be supplied and target impedance trajectory.
  • 4. An electrosurgical system as in claim 1, wherein the constant value of the electrical signal is selected from the group consisting of constant voltage, constant current, constant power and constant energy.
  • 5. A method for performing electrosurgical procedures comprising: supplying an electrosurgical generator for providing an electrical signal having at least one substantially constant value to tissue to determine an initial tissue impedance response, the initial tissue impedance being used to determine an amount of electrosurgical energy to tissue prior to tissue treatment, said initial tissue response including at least one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise;continuously monitoring said initial tissue impedance response;generating, via a microprocessor, at least one tissue treatment parameter as a function of the initial tissue impedance response, including the at least one of initial impedance, the impedance drop, the impedance minimum and the first impedance rise, the microprocessor being in electrical communication with a memory to continuously store collected impedance and tissue information, the memory including at least a look up table for storing collected impedance values from the electrosurgical procedures performed; andproviding an electrosurgical instrument including at least one active electrode for applying the electrosurgical energy to tissue,wherein the step of providing an electrosurgical instrument further includes providing an electrosurgical forceps for sealing tissue, the forceps comprising:at least one shaft member having an end effector assembly disposed at a distal end thereof, the end effector assembly including jaw members movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween; anda sealing plate attached to each of the jaw members in opposing relation thereto, said sealing plates adapted to connect to the electrosurgical generator such that said sealing plates communicate electrosurgical energy through tissue held therebetween;wherein a tissue impedance profile during an entire tissue sealing procedure varies in a nonlinear manner, such that in a first phase the initial tissue impedance drops to reach a minimum impedance, in a second phase rises at a first rate, and in a third phase rises at a second rate, the second rate being less than the first rate and the second rate stabilizing over a period of time.
  • 6. A method as in claim 5, further comprising the step of: adjusting the output of the electrosurgical generator based on the at least one tissue parameter.
  • 7. A method as in claim 6, wherein the at least one tissue parameter is selected from the group consisting of pressure to be applied to tissue, duration of energy application, amount of energy to be supplied and target impedance trajectory.
  • 8. A method as in claim 5, wherein the constant value of the electrical signal is selected from the group consisting of constant voltage, constant current, constant power and constant energy.
  • 9. An electrosurgical system adapted to supply electrosurgical energy to tissue comprising an electrosurgical generator having: an RF output stage adapted to supply electrosurgical energy to tissue and further adapted to supply an electrical signal having at least one substantially constant value to tissue to determine an initial tissue impedance response, the initial tissue impedance being used to determine an amount of the electrosurgical energy to tissue prior to tissue treatment;a sensor circuitry adapted to continuously monitor the initial tissue impedance response, wherein the initial tissue impedance response includes at least one of an initial impedance, an impedance drop, an impedance minimum and a first impedance rise; anda microprocessor adapted to generate at least one tissue treatment parameter as a function of the initial tissue impedance response, including the at least one of initial impedance, the impedance drop, the impedance minimum and the first impedance rise, the microprocessor being in electrical communication with a memory to continuously store collected impedance and tissue information, the memory including at least a look up table for storing collected impedance values from a plurality of uses of an electrosurgical instrument;wherein the electrosurgical instrument is an electrosurgical forceps for sealing tissue, the forceps comprising:at least one shaft member having an end effector assembly disposed at a distal end thereof, the end effector assembly including jaw members movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween; anda sealing plate attached to each of the jaw members in opposing relation thereto, said sealing plates adapted to connect to the electrosurgical generator such that said sealing plates communicate electrosurgical energy through tissue held therebetween;wherein a tissue impedance profile during an entire tissue sealing procedure varies in a non-linear manner, such that in a first phase the initial tissue impedance drops to reach a minimum impedance, in a second phase rises at a first rate, and in a third phase rises at a second rate, the second rate being less than the first rate and the second rate stabilizing over a period of time.
  • 10. An electrosurgical generator as in claim 9, wherein the microprocessor is further adapted to adjust output of the electrosurgical generator based on the at least one tissue parameter.
  • 11. An electrosurgical generator as in claim 9, wherein the at least one tissue treatment parameter is selected from the group consisting of pressure to be applied to tissue, duration of energy application, amount of energy to be supplied and target impedance trajectory.
  • 12. An electrosurgical generator as in claim 9, wherein the electrosurgical generator is connected to an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue.
  • 13. An electrosurgical generator as in claim 9, wherein the constant value of the electrical signal is selected from the group consisting of constant voltage, constant current, constant power and constant energy.
US Referenced Citations (589)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Giannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3642008 Bolduc Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Bierlein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768482 Shaw Oct 1973 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3905373 Gonser Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3978393 Wisner et al. Aug 1976 A
3980085 Ikuno Sep 1976 A
4005714 Hilebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4097773 Lindmark Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gosner Apr 1980 A
4209018 Meinke et al. Jun 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gosner Dec 1980 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4397314 Vaguine Aug 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4436091 Banko Mar 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4463759 Garito et al. Aug 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4559496 Harnden, Jr. et al. Dec 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4582057 Auth et al. Apr 1986 A
4586120 Malik et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4608977 Brown Sep 1986 A
4615330 Nagasaki et al. Oct 1986 A
4630218 Hurley Dec 1986 A
4632109 Patterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4651264 Shiao-Chung Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4691703 Auth et al. Sep 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4754757 Feucht Jul 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827927 Newton May 1989 A
4848335 Manes Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4887199 Whittle Dec 1989 A
4890610 Kirwan et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4959606 Forge Sep 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
4969885 Farin Nov 1990 A
4992719 Harvey Feb 1991 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5024668 Peters et al. Jun 1991 A
5087257 Farin Feb 1992 A
5099840 Goble et al. Mar 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker Apr 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5167658 Ensslin Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5249121 Baum et al. Sep 1993 A
5254117 Rigby et al. Oct 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin Dec 1993 A
5281213 Milder et al. Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5348554 Imran et al. Sep 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5436566 Thompson Jul 1995 A
5438302 Goble Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5451224 Goble et al. Sep 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540683 Ichikawa Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5596466 Ochi Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5599348 Gentelia et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5613966 Makower et al. Mar 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5674217 Wahlstrom et al. Oct 1997 A
5685840 Schechter et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696441 Mak et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718246 Vona Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5729448 Haynie et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern May 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu Jun 1998 A
5772659 Becker et al. Jun 1998 A
5792138 Shipp Aug 1998 A
5797902 Netherly Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5814092 King Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Bussey et al. Oct 1998 A
5830212 Cartmell Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5897552 Edwards et al. Apr 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5948007 Starkenbaum et al. Sep 1999 A
5951545 Schilling Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971980 Sherman Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
6010499 Cobb Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6033399 Gines Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6055458 Cochran et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6068627 Orszulak et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6074388 Tockweiler et al. Jun 2000 A
6080149 Huang et al. Jun 2000 A
6093186 Goble Jul 2000 A
6102497 Ehr et al. Aug 2000 A
6113591 Whayne et al. Sep 2000 A
6113596 Hooven Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6155975 Urich et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6188211 Rincon-Mora et al. Feb 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6222356 Taghizadeh-Kaschani Apr 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek May 2001 B1
6235020 Cheng et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman May 2001 B1
6241725 Cosman Jun 2001 B1
6245065 Panescu Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6258085 Eggleston Jul 2001 B1
6261285 Novak Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6273886 Edwards Aug 2001 B1
6275786 Daners Aug 2001 B1
6293941 Strul Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6325799 Goble Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6383183 Sekino et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6416509 Goble et al. Jul 2002 B1
6436096 Hareyama Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6458121 Rosenstock Oct 2002 B1
6464689 Qin Oct 2002 B1
6464696 Oyama Oct 2002 B1
6498466 Edwards Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6517538 Jacob et al. Feb 2003 B1
6524308 Muller et al. Feb 2003 B1
6547786 Goble Apr 2003 B1
6558376 Bishop May 2003 B2
6560470 Pologe May 2003 B1
6562037 Paton May 2003 B2
6565559 Eggleston May 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6620157 Dabney et al. Sep 2003 B1
6623423 Sakurai Sep 2003 B2
6629973 Wardell et al. Oct 2003 B1
6635057 Harano Oct 2003 B2
6645198 Bommannan et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6652514 Ellman Nov 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6679875 Honda Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim Feb 2004 B1
6693782 Lash Feb 2004 B1
6712813 Ellman Mar 2004 B2
6730080 Harano May 2004 B2
6733495 Bek May 2004 B1
6733498 Paton May 2004 B2
6740079 Eggers May 2004 B1
6740085 Hareyama May 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6783523 Qin Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6796981 Wham Sep 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson Dec 2004 B2
6843789 Goble Jan 2005 B2
6849073 Hoey Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano Feb 2005 B2
6860881 Sturm Mar 2005 B2
6864686 Novak Mar 2005 B2
6875210 Refior Apr 2005 B2
6893435 Goble May 2005 B2
6923804 Eggers et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6939347 Thompson Sep 2005 B2
6942660 Pantera et al. Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6966907 Goble Nov 2005 B2
6989010 Francischelli et al. Jan 2006 B2
6994704 Qin et al. Feb 2006 B2
6994707 Ellman et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7041096 Malis et al. May 2006 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7060063 Marion et al. Jun 2006 B2
7062331 Zarinetchi et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7122031 Edwards et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7147638 Chapman et al. Dec 2006 B2
7160293 Sturm et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7175618 Dabney et al. Feb 2007 B2
7175621 Heim et al. Feb 2007 B2
7211081 Goble May 2007 B2
7214224 Goble May 2007 B2
7220260 Fleming et al. May 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250746 Oswald et al. Jul 2007 B2
7255694 Keppel Aug 2007 B2
7282048 Goble et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7364577 Wham et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
RE40388 Gines Jun 2008 E
7396336 Orszulak et al. Jul 2008 B2
20010014804 Goble et al. Aug 2001 A1
20010029315 Sakurai et al. Oct 2001 A1
20010031962 Eggleston Oct 2001 A1
20020035363 Edwards et al. Mar 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020052599 Goble May 2002 A1
20020068932 Edwards Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020151889 Swanson et al. Oct 2002 A1
20020193787 Qin Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030060818 Kannenberg Mar 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble Aug 2003 A1
20030158551 Paton et al. Aug 2003 A1
20030163123 Goble Aug 2003 A1
20030163124 Goble Aug 2003 A1
20030171745 Francischelli Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199863 Swanson Oct 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20040002745 Flemming Jan 2004 A1
20040015159 Slater et al. Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040019347 Sakurai Jan 2004 A1
20040024395 Ellman Feb 2004 A1
20040030328 Eggers Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040044339 Beller Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040059323 Sturm et al. Mar 2004 A1
20040068304 Paton Apr 2004 A1
20040082946 Malis Apr 2004 A1
20040095100 Thompson May 2004 A1
20040097912 Gonnering May 2004 A1
20040097914 Pantera May 2004 A1
20040097915 Refior May 2004 A1
20040116919 Heim Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040138653 Dabney et al. Jul 2004 A1
20040138654 Goble Jul 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147918 Keppel Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172016 Bek Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040230189 Keppel Nov 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040260279 Goble Dec 2004 A1
20050004564 Wham Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050021020 Blaha et al. Jan 2005 A1
20050021022 Sturm et al. Jan 2005 A1
20050070896 Daniel et al. Mar 2005 A1
20050101948 Harano et al. May 2005 A1
20050101949 Harano et al. May 2005 A1
20050101951 Wham May 2005 A1
20050113818 Sartor May 2005 A1
20050113819 Wham May 2005 A1
20050149151 Orszulak Jul 2005 A1
20050182398 Paterson Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060025760 Podhajsky Feb 2006 A1
20060079871 Plaven et al. Apr 2006 A1
20060161148 Behnke Jul 2006 A1
20060178664 Keppel Aug 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060281360 Sartor et al. Dec 2006 A1
20070038209 Buysse et al. Feb 2007 A1
20070093800 Wham et al. Apr 2007 A1
20070093801 Behnke Apr 2007 A1
20070135812 Sartor Jun 2007 A1
20070173802 Keppel Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173804 Wham et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173810 Orszulak Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070208339 Arts et al. Sep 2007 A1
20070225698 Orszulak et al. Sep 2007 A1
20070250052 Wham Oct 2007 A1
20070265612 Behnke et al. Nov 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20080015564 Wham et al. Jan 2008 A1
20080039831 Odom et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080082094 McPherson et al. Apr 2008 A1
20080125767 Blaha May 2008 A1
20100042093 Wham et al. Feb 2010 A9
Foreign Referenced Citations (108)
Number Date Country
179607 Mar 1905 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
390937 Apr 1989 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4339049 May 1995 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
246350 Nov 1987 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
336742 Oct 1989 EP
390937 Oct 1990 EP
556705 Aug 1993 EP
0569130 Nov 1993 EP
608609 Aug 1994 EP
0640317 Mar 1995 EP
0 694 291 Jan 1996 EP
0694291 Jan 1996 EP
836868 Apr 1998 EP
878169 Nov 1998 EP
1051948 Nov 2000 EP
1053720 Nov 2000 EP
1151725 Nov 2001 EP
1293171 Mar 2003 EP
1 472 984 Nov 2004 EP
1472984 Nov 2004 EP
1495712 Jan 2005 EP
1500378 Jan 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1645235 Apr 2006 EP
0880220 Jun 2006 EP
1707143 Oct 2006 EP
1 810 628 Jul 2007 EP
1 810 633 Jul 2007 EP
1810628 Jul 2007 EP
1810630 Jul 2007 EP
1810633 Jul 2007 EP
1275415 Oct 1961 FR
1347865 Nov 1963 FR
2313708 Dec 1976 FR
2502935 Oct 1982 FR
2517953 Jun 1983 FR
2573301 May 1986 FR
607850 Sep 1948 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2358934 Aug 2001 GB
166452 Jan 1965 SU
727201 Apr 1980 SU
WO9206642 Apr 1992 WO
WO9324066 Dec 1993 WO
WO 9410922 May 1994 WO
WO9424949 Nov 1994 WO
WO9428809 Dec 1994 WO
WO9509577 Apr 1995 WO
WO9519148 Jul 1995 WO
WO9602180 Feb 1996 WO
WO9604860 Feb 1996 WO
WO9608794 Mar 1996 WO
WO9618349 Jun 1996 WO
WO9629946 Oct 1996 WO
WO9639086 Dec 1996 WO
WO 9639086 Dec 1996 WO
WO9639914 Dec 1996 WO
WO9706739 Feb 1997 WO
WO9706740 Feb 1997 WO
WO9706855 Feb 1997 WO
WO9711648 Apr 1997 WO
WO9717029 May 1997 WO
WO0211634 Feb 2002 WO
WO0245589 Jun 2002 WO
WO0247565 Jun 2002 WO
WO02053048 Jul 2002 WO
WO02088128 Jul 2002 WO
WO03090630 Nov 2003 WO
WO03090635 Nov 2003 WO
WO03092520 Nov 2003 WO
WO2005060365 Nov 2003 WO
WO2004028385 Apr 2004 WO
WO2004098385 Apr 2004 WO
WO2004103156 Dec 2004 WO
WO2005046496 May 2005 WO
WO2005048809 Jun 2005 WO
WO2005050151 Jun 2005 WO
WO2005048809 Jun 2005 WO
WO2005060849 Jul 2005 WO
Related Publications (1)
Number Date Country
20080039831 A1 Feb 2008 US